

Building DEVS Models from the Functional Design of

Software Architecture Components to Estimate Quality

María J. Blas1, Horacio P. Leone1, Silvio M. Gonnet1

1Instituto de Desarrollo y Diseño INGAR – Consejo Nacional de Investigaciones

Científicas y Técnicas (CONICET) – Universidad Tecnológica Nacional (UTN)

Avellaneda 3657 – Santa Fe – CP 3000 – Argentina

{mariajuliablas, hleone, sgonnet}@santafe-conicet.gov.ar

Abstract. Software architectures can be used as a vehicle to improve the study

of quality properties in the early stages of development. This paper proposes

an automatic mapping between the design of architectural components and the

specification of DEVS atomic models with aims to evaluate all-purpose quality

metrics. Then, we use the functional description of architectural components

(that address functional requirements) to estimate the architecture adjustment

to non-functional requirements. The guidelines for structuring the simulation

models are defined starting from the design of high-level components. To

illustrate the proposal, web-based architecture is used as proof of concepts.

1. Introduction

Software engineering encompasses processes, methods, and tools that enable complex

computer-based systems to be built in a timely manner with quality [Pressman and

Maxim 2019]. From a broad point of view, quality refers to the degree to which

software products meet their stated requirements. Specifically, software quality can be

defined as “the capability of a software product to satisfy stated and implied needs

under specified conditions” [ISO/IEC 2011]. Then, quality is the basic parameter of

software engineering efforts whose primary goal is the delivery of maximum

stakeholder value while balancing cost and schedule.

 Quality is everyone’s business [Li, Chen and Cheung 2000]. In software

development, the quality encompasses requirements, specifications, design, and

implementation of the system. Each artifact produced during development has its

individual quality properties. These properties provide a feasible context that will allow

achieving quality in the final product. Take software architecture as an example. The

architecture of a computing system is the structure or structures of the system, which

comprise software elements, the externally visible properties of those elements, and the

relationships among them [Bass, Clements and Kazman 2012]. Regarding the design

itself, system engineers usually inspect the architecture to determine whether it is

acceptable. Typically, this determination is made by a human engineer inspecting a set

of architectural representations and using heuristics to judge whether they will result in

a viable system that, when built, will meet the system requirements [Rodano and

Giammarco 2013]. There is no such thing as an inherently good or bad architecture:

architectures are either more or less fit for some stated purpose [Bass, Clements and

Kazman 2012]. Hence, one of the vexing challenges of software architecture is the

problem of satisfying the functional specifications of the system to be created while at

the same time meeting its non-functional needs [Harrison and Avgeriou 2007].

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

 The software architecture is a pivotal vehicle to address and guarantee non-

functional software qualities such as security, maintainability, extensibility, and

portability [Heijstek, Kühne and Chaudron 2011]. From this perspective, the software

architecture can be used as a vehicle to improve the study of quality properties in the

early stages of development. Instead of applying heuristics for architectural evaluation,

innovative approaches combine new types of techniques (as additional evaluation

methods) with the traditional ones (such as SAAM and ATAM). This is the case of

Modeling and Simulation (M&S). A deeper discussion regarding the use of M&S for

software architectures in comparison with other traditional approaches is presented in

[Blas, Leone and Gonnet 2020].

 Software architectures are design models that refer to discrete-event systems.

Under this conceptualization, the user requests are seen as the events to which

architectural components react. Hence, discrete-event simulation models can be used to

perform their evaluation quantitatively [Bogado, Gonnet and Leone 2014; Blas, Gonnet

and Leone 2016; Reussner et al. 2016]. Most approaches use the Discrete Event System

Specification (DEVS) formalism [Zeigler, Muzy and Kofman 2018] to define the

simulation model.

 Building a simulation model that provides a quality estimation using the

software architecture as a sketch is not easy. Prior to defining the model design, quality

measures should be defined (i.e. the simulation goal) with aims to ensure the

measurement of non-functional requirements. Also, the architectural representation

should be taken into account with aims to ensure the correctness of the simulation model

structure. Combining both fields (software quality and architecture representation) in a

single simulation model is a complex task [Blas 2019].

 With aims to provide a partial solution to this problem, in this paper we propose

an automatic mapping between the design of architectural components and the

specification of DEVS atomic models in order to evaluate all-purpose quality metrics.

The architectural components studied in this paper are located at low-level design (i.e.

functional components). To illustrate the approach, we use a web-based architecture as

proof of concepts. The main contribution of this paper is the strategy proposed to

obtaining a runnable DEVS atomic model from the functional definition of an

architectural component.

 The remainder of this paper is organized as follows. Section 2 introduces the

M&S approach used as a guideline to study quality using the software architecture

design. Section 3 presents the DEVS-centered modeling strategy that allows building

the simulation model specification for measuring a set of generic quality properties.

Finally, Section 4 is devoted to conclusions and future work.

2. Software Architecture Evaluation using M&S

Quality estimation of software architecture using M&S involves the understanding of i)

the software product domain that describes the architecture to be evaluated, and ii) the

M&S formalism that will be used for describing the discrete-event specification of the

architecture. To accomplish i), the evaluation requires defining: i) the set of quality

attributes to be measured during the simulation, and ii) the way in which architecture

components should be structured to build the simulation model. On the other hand, to

achieve ii), the definitions required in i) must be set.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

 The goal of the final simulation model is to perform the behavior of the software

product following its architectural components as a prototype with aims to measure a set

of pre-defined quality properties. At the core of the simulation model, the components

and relationships detailed in the architecture provide the functional behavior. Depending

on the type of component, different strategies can be used to get this behavior. Then, the

following subsections detail how the statements described in i) were defined with aims

to structure the functional behavior of the simulation model in a generic DEVS

specification. Such specification is detailed in Section 3.

2.1. Definition of Quality Properties

The quality model proposed in ISO/IEC 25010 [ISO/IEC 2011] classifies the software

product quality using three hierarchical levels: i) characteristic level to represent

external quality views, ii) sub-characteristic level to define properties that can be

evaluated when the software is used in a system, and iii) attribute level to depict entities

that can be verified or measured over the software product.

 Due to attributes change among distinct types of products, the standard does not

define entities to be measured. However, a set of all-purpose quality measures can be set

up using the most common software attributes. Table 1 summarizes these measures

including the quality properties attached to each case.

Table 1. Quality properties to be measured during the architecture simulation.

Quality* Software

Characteristic
Sub-

characteristic
Attribute

Quality Measure

Description (Abrev) Unit

Performance

efficiency

Time

behavior

Invocation

time

Processing time for user requests (ET). time

Total time for processing a request (TSIT). time

Reliability

Maturity
Replies

accuracy

Number of processed requests (TR). request

Number of requests with incorrect responses (IR). request

Availability
Software

robustness

Inactive time (FT). time

Operative time (TT). time

Fault

tolerance

Software

stability

Number of faults that are not failures (FNF). fault

Number of faults (TF). fault

* Quality properties defined as characteristic and sub-characteristic in [ISO/IEC 2010].

 The attributes detailed in Table 1 refer only to internal quality properties (i.e.

the factors that affect the software itself and its developers). For example, the quality

characteristic named reliability is defined in [ISO/IEC 2011] as “the degree to which a

system, product, or component performs specified functions under specified conditions

for a specified period of time”. This characteristic includes the sub-characteristic named

maturity. This quality sub-characteristic is defined as “the degree to which a system,

product or component meets needs for reliability under normal operation” [ISO/IEC

2011]. Regarding these quality properties, a generic attribute to be measure in any

software product is replies accuracy. This attribute is defined as “the accuracy of the

software product in responding to a specific user request”. For this attribute, Table 1

defines two metrics: the number of requests processed (TR) and the number of requests

with incorrect responses (IR).

 As a result of the quality properties definition, each quality measure becomes a

simulation goal. That is, the architectural simulation model should lead to the

calculation of the set of metrics detailed in Table 1.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

2.2. Representation of Software Architectures

A software architecture design representation is a description of the highest-level

concept of a system in its environment [Kruchten 2003]. The architectural principles

related to the topology of the architecture should be obvious in any design. A style

determines the vocabulary of components and connectors that can be used in instances

of that style, together with a set of constraints on how they can be combined [Garlan

and Shaw 1993]. The use of patterns offers a reusable and proven way to partition a

system with known consequences to quality attributes [Harrison and Avgeriou 2007].

 Given that software architectures should satisfy the functional specifications of

the system to be created, most architectural styles define different types of elements to

be used for functional design. Commonly, two architecture levels are defined.

Architects employ low-level components to define high-level components. Then, high-

level components refer to domain components specifically designed to fulfill some

software functionality. Instead, low-level components refer to basic actions, functions,

or procedures that combined allow getting complex behaviors. Links are frequently

allowed on both levels. In the case of low-level components, links describe an execution

flow. For high-level components, links describe interactions.

 Take web-based architectures as an example. Web-based systems and

applications have evolved from simple collections of information content to

sophisticated systems that present complex functionality and multimedia content

[Pressman and Maxim 2019]. The architectural patterns for web-based software

architectures proposed in [Fehling et al. 2014] employ three types of architectural

components: i) application components as elements used to define functional

requirements, ii) management components as elements used to watch the performance

of application components, and iii) functional components as basic functionalities used

to build the complex behaviors of application components. A full analysis of these types

of architectural components is presented in [Blas, Leone and Gonnet 2019].

 Figure 1 presents an architecture composed of three high-level components

(Load Balancer, Elastic Load Balancer, and Presentation and Business Logic) and three

low-level components (User Interface, Processing, and Data Access). In this example,

two types of application components are used: i) generic components that refer to

components frequently used as standard templates in web-based software (such as Load

Balancer), and ii) domain-specific components that refer to components specifically

used to define software functionalities (i.e. Presentation and Business Logic). Then, the

behavior of generic application components is well-know. Meanwhile, the behavior of

domain-specific components varies from one architecture to another according to the

functional components employed in the design.

 Since functional requirements describe the required behavior of the system in

terms of required activities [Pfleeger and Altee 2006], high-level components are the

ones that should be studied during the simulation. That is, quality measures should be

obtained over high-level components. However, at the basic level, low-level components

are the ones that perform functionalities. For example, the behavior of domain-specific

components (Figure 1) is detailed as a sequence of functional components. Then, the

simulation models for high-level components (i.e. domain-specific components in Figure

1) should be designed following the structure of low-level components (i.e. functional

components in Figure 1) with aims to get the quality measures.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

Figure 1. Example two-tier web architecture (adapted from [Fehling et al. 2014]).

 Section 3.4 presents a DEVS-based solution for building the simulation model

of the high-level component named Presentation and Business Logic using low-level

components as phases. These phases are designed considering the quality measures.

3. DEVS Atomic Model for High-Level Components

3.1. DEVS Formalism

DEVS is a modular and hierarchical formalism based on systems theory that provides a

general methodology for the construction of reusable models at two distinct levels

[Wainer and Mosterman 2010]. At the lower level, an atomic DEVS describes the

autonomous behavior of a discrete-event system as a sequence of deterministic

transitions between sequential states as well as how it reacts to external input events and

how it generates output events. On the other hand, at a higher level, a coupled DEVS

describes a system as a network of DEVS components.

 Therefore, an atomic DEVS defines the system behavior while a coupled DEVS

defines the system structure. In this context, our approach uses an atomic DEVS to

define the behavior of high-level architecture components. Then, the final model can be

obtained structuring architectural interactions among the simulation models built for

high-level components.

3.2. Simulation Model Definition

3.2.1. Input and Output Events

Following the architecture design, a high-level component receives user requests to be

processed. Considering that any software component is executed over infrastructure, the

behavior of high-level components is influenced by their state during hardware

execution. To include this influence as part of the model, we consider running and not-

running as possible execution states. Hence, the simulation model inputs are defined as

two distinct events named user_request and execution_state.

 As Table 1 shows, two types of quality measures should be calculated during the

simulation: measures related to user requests (ET, TSIT, TR, and IR) and measures

related to the software itself (FT, TT, FNF, and TF). For the first set, measures are

directly calculated in the user_request. That is, a user_request is modeled to include the

quality measures related to its processing. Table 2 presents the properties included in the

user_request event in order to capture these metrics. After a user_request is processed

in a high-level component, the user_request should be transferred to the next component

defined in the architecture. Then, user_request is also an output event.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

Table 2. User request information.

Name Description

execution_time1 Processing time.

total_time2 Total time used to solve the request (processing and waiting).

incorrect3 Boolean value that is true if the request is processed in a fault function (false in other case).

1 Quality metric ET of the actual request.
2 Quality metric TSIT of the actual request.
3 To measure the quality metric IR.

 On the other hand, the simulation model includes an explicit output event named

component_state to measure software processing states. This output captures the state

information from three perspectives: hardware, activity and processing. According to

the quality measures to be calculated during the simulation, a high-level component can

be: i) running or not-running from the hardware perspective, ii) active or in failure from

the activity perspective, and iii) ok or in fault from the processing perspective. Not all

combinations are possible. For example, if a component is not-running, it cannot be in

activity or processing. Table 3 resumes available combinations for component_state.

Table 3. Component state information.

Hardware State Activity State Processing State

not-running N/A N/A

running failure N/A

running active ok

running active fault

N/A = not applicable.

3.2.2. State Definition

An atomic DEVS is based on a sequence of deterministic states. The state definition

should include all the information required to describe the behavior of the model.

 For high-level architectural components, this information is related to its

processing state (phase), the processing time attached to the actual processing state

(sigma), the user request been processed by the component (request), and the possibility

of having a failure (or fault) in a low-level component (function_state). Hence, the state

of the model is structured as { phase, sigma, request, function_state }.

3.2.3. Low-Level Components as DEVS Phases

Initially, any high-level component is waiting for some user_request. When a

user_request arrives, the component should perform its behavioral description (saving

the user_request as the value of request in the next state). If new requests arrive during

the processing, the component just ignores them.

 The behavioral description of a high-level component is given by the execution

flow depicted using the set of low-level components that compose them. Hence, a low-

level component can be seen as a basic function that can act correctly or not during a

certain period (i.e. processing_time). The correctness in the function behavior is given

by the parameter fault_probability. Then, for each low-level component included in the

high-level component, two possible phases are considered using the fault_probability:

processing and processing with faults. Before executing some function, the variable

function_state is used to define the next phase. The value of this variable is calculated

using the fault_probability of the next function to be executed. Once the execution of a

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

function ends (correctly or not), the control is given to the next function in the sequence

according to the function_state. The evolution among phases is detailed following the

sequence of low-level components. When the sequence final function is executed, the

request is sent as output. After that, the component returns to waiting.

 A function can also fail. When a low-level component presents a fault, this fault

can become a failure according to a failure_probability. If a function fails, the high-

level component cannot continue working. That is, once a failure is detected in a high-

level component, the entire component fails. Then, a new phase is added to the model:

failure. This phase is used to evolve the simulation model when any low-level

component fails. In our approach, failures cannot be fixed. Hence, once the component

achieves the failure phase, the simulation model stays in this phase until the hardware

information indicates that the component is not-running.

 In any case, when hardware information notifies that the component is not-

running, the simulation model changes to the inactive phase. Once the component is

inactive, the model stays in this phase forever.

 Table 4 summarizes the transitions following the prior description. The

guidelines for updating the quality_measures of the request are the following: i)

execution_time set as execution_time + processing_time and total_time set as total_time

+ processing_time if the phase is processing or processing with faults, ii) incorrect set

as true if the next phase is processing with faults.

3.3. Building an Example: Defining a Web-based Application Component

With aims to provide proof of concepts, the high-level component named Presentation

and Business Logic (Figure 1) is used as an example. In this case, the high-level

component is composed of three functional components: User Interface Component

(UIC), Processing Component (PC), and Data Access Component (DAC). Per each

functional component, three parameters are included: processing_time,

fault_probability, and failure_probability. Then, for example, the parameters related to

UIC are named processing_timeUIC, fault_probabilityUIC, and failure_probabilityUIC.

 For space reasons, the formal specification of the DEVS atomic model cannot be

included. However, Figure 2 shows a simplified statechart diagram of the model.

Figure 2. Representation of the “Presentation and Business Logic” model.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

Table 4. Transitions for a high-level component with N low-level components.

Phase
Final Phase

Evolution
Description

waiting

waiting →

inactive*

The model goes from waiting to sending state (transient state). Then, the

model changes to inactive after sending the output component_state =

(not-running).

waiting →

processing1
**

The model goes directly from waiting to processing1.

waiting →

processing with

faults1
**

The model goes from waiting to sending fault (transient state). Then, the

model changes to processing with faults1 after sending the output

component_state = (running, active, fault).

waiting →

failure**

The model goes from waiting to sending failure (transient state). Then, the

model changes to failure after sending the output component_state =

(running, failure).

processingi

processingi →

processingi+1

The model goes from processingi to processingi+1 after sending the output

component_state = (running, active, ok). In the new state, the

quality_measures of the request are updated.

processingi →

processing with

faultsi+1

The model goes from processingi to processing with faultsi+1 after sending

the output component_state = (running, active, fault). In the new state, the

quality_measures of the request are updated.

processingi →

failure

The model goes from processingi to failure after sending the output

component_state = (running, failure).

processingi →

inactive*

The model goes from waiting to sending state (transient state). Then, the

model changes to inactive after sending the output component_state =

(not-running).

processingN

processingN →

waiting

The model goes from processingN to sending request (transient state) after

sending the output component_state = (running, active, ok). In the new

state, the quality_measures of the request are updated. Then, the model

changes to waiting after sending the output user_request = (request).

processingN →

inactive*

The model goes from waiting to sending state (transient state). Then, the

model changes to inactive after sending the output component_state =

(not-running).

processing

with faultsi

processing with

faultsi →

processingi+1

The model goes from processing with faultsi to processingi+1 after sending

the output component_state = (running, active, ok). In the new state, the

quality_measures of the request are updated.

processing with

faultsi →

processing with

faultsi+1

The model goes from processing with faultsi to processing with faultsi+1

after sending the output component_state = (running, active, fault). In the

new state, the quality_measures of the request are updated.

processing with

faultsi → failure

The model goes from processingi to failure after sending the output

component_state = (running, failure).

processing with

faultsi →

inactive*

The model goes from waiting to sending state (transient state). Then, the

model changes to inactive after sending component_state = (not-running).

processing

with faultsN

processing with

faultsN →

waiting

The model goes from processing with faultsN to sending request (transient

state) after sending the output component_state = (running, active, ok). In

the new state, the quality_measures of the request are updated. Then, the

model changes to waiting after sending user_request = (request).

processing with

faultsN →

inactive*

The model goes from waiting to sending state (transient state). Then, the

model changes to inactive after sending component_state = (not-running).

failure
failure →

inactive*

The model goes from waiting to sending state (transient state). Then, the

model changes to inactive after sending component_state = (not-running).

inactive -

*** External transition due an input event execution_state = (not-running).

** External transition due an input event user_request defined as (domain_request, quality_measures) with

quality_measures = (execution_time, total_time, incorrect). The domain_request field should be defined

according to the software product in development.

*** 1 ≤ i ≤ N-1 con N ≠ 1.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

4. Conclusions and Future Work

In this paper, we present a DEVS-based approach for building simulation models for

functional components defined in software architectures as high-level components. A

set of all-purpose quality measures is used as a simulation goal with aims to provide a

feasible solution for architectural evaluation in the early stages of development. The

DEVS atomic model definition detailed in this paper can be used as a foundation for

other types of measures related to software products (such as quality in use). The

prerequisites of software architectures studied in this paper are the chance to distinguish

low-level components as actions of high-level components.

 Actually, the approach presented in this paper is used as a support mechanism

for building the essential models required for quality estimation in web-based

applications using the architecture design. The Routed DEVS (RDEVS) essential

models are basically DEVS atomic models used as embedded components in a new type

of discrete-event model named RDEVS routing model [Blas, Gonnet and Leone 2017].

The use of Routed DEVS as a formalism for building architectural simulation models

was presented in [Blas, Leone and Gonnet 2020].

 Given that the approach is centered on building DEVS atomic models from the

design of functional components, the final goal is performing the mapping as an internal

functionality of a software tool. In such a case, the modeling effort required to use the

approach in real-world projects should be minimum. However, a deeper evaluation of

such a modeling effort is part of the future work. Moreover, the approach may need

some adjustment if other different domains are studied. For example, for software

components that implement concurrency with threads, new phases may be required.

 Future work is devoted to expanding the number of quality metrics measured

during the simulation with aims to support new quality properties at the basic

architectural level. Higher levels of architectural design could be modeled hierarchically

by adding new top-level models to the existing ones. In DEVS, this can be done by

building coupled models. In RDEVS, instead, routing and network models should be

defined. In this last case, the advantage is that the essential models are used to define the

behavior of routing models. Hence, when the architectural design changes, only the

routing information attached to the specification of routing models need to be modified.

The behavior of the components (essential model definition) remains the same.

References

Bass, L., Clements, P. and Kazman, R. (2012). Software Architecture in Practice,

Addison Wesley Publishing Company, 3rd edition.

Blas, M. (2019). Un modelo de simulación para el análisis de arquitecturas de software

de aplicaciones web y en la nube. Doctoral Thesis. Universidad Tecnológica

Nacional (Argentina).

Blas, M., Gonnet, S. and Leone, H. (2016). Building Simulation Models to Evaluate

Web Application Architectures. In Proceedings of the 2016 Latin American

Symposium of Software Engineering (CLEI), pages 647-657.

Blas, M., Gonnet, S. and Leone, H. (2017). Routing Structure over Discrete Event

System Specification: A DEVS Adaptation to Develop Smart Routing in Simulation

Models, In Proceedings of the 2017 Winter Simulation Conference, pages 774-785.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

Blas, M., Leone, H. and Gonnet, S. (2019). Modelado y Verificación de Patrones de

Diseño de Arquitectura de Software para Entornos de Computación en la Nube, In

Revista Ibérica de Sistemas e Tecnologias de Informação, vol. 35, pages 1-17.

Blas, M., Leone, H. and Gonnet, S. (2020). Modeling and Simulation Framework for

Quality Estimation of Web Applications through Architecture Evaluation, In SN

Applied Sciences, vol. 2, pages 374-395.

Bogado, V., Gonnet S. and Leone H. (2014). Modeling and Simulation of Software

Architecture in Discrete Event System Specification for Quality Evaluation. In

Simulation, vol. 90(3), pages 290-319.

Fehling, C., Leymann, F., Retter, R., Schupeck, W. and Arbitter, P. (2014). Cloud

computing patterns: fundamentals to design, build, and manage cloud applications,

Springer Science & Business Media.

Garlan, D. and Shaw, M. (1993). An introduction to software architecture. In Advances

in Software Engineering and Knowledge Engineering, pages 1-39.

Harrison, N. and Avgeriou, P. (2007). Pattern-driven architectural partitioning:

Balancing functional and non-functional requirements. In 2007 Second International

Conference on Digital Telecommunications, pages 21-21.

Heijstek, W., Kühne, T. and Chaudron, M. (2011). Experimental analysis of textual and

graphical representations for software architecture design. In 2011 International

Symposium on Empirical Software Engineering and Measurement, pages 167-176.

ISO/IEC (2011). ISO/IEC 25010:2011 Systems and Software Engineering–Systems and

Software Quality Requirements and Evaluation (SQuaRE) – System and Software

Quality Models.

Kruchten, P. (2003). The Rational Unified Process: An Introduction. Addison-Wesley

Longman Publishing Co., Inc.

Li, E. Y., Chen, H. G. and Cheung, W. (2000). Total quality management in software

development process. In Journal of Quality Assurance Institute, vol. 14, pages 4-6.

Pfleeger, S. L. and Altee, J. M. (2006). Software Engineering: Theory and Practice,

Pearson Prentice Hall, 3rd edition.

Pressman, R. and Maxim, B. (2019). Software Engineering: A Practitioner's Approach,

McGraw Hill, 9th edition.

Reussner, R., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H. and

Krogmann, K. (2016). Modeling and simulating software architectures: The Palladio

approach. MIT Press.

Rodano, M. and Giammarco, K. (2013). A formal method for evaluation of a modeled

system architecture. In Procedia Computer Science, vol. 20, pages 210-215.

Wainer, G. A. and Mosterman, P. J. (2010). Discrete-Event Modeling and Simulation:

Theory and Applications, CRC press.

Zeigler, B., Muzy, A. and Kofman, E. (2018). Theory of Modeling and Simulation:

Discrete Event & Iterative System Computational Foundations, Academic Press, 3rd

edition.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)

