
Building partitioning graphs in Parallel-DEVS context for
parallel simulations

C. Herbez
ULCO LISIC

50, rue Ferdinand Buisson
BP 719 62228 Calais Cedex

France
herbez@lisic.univ-littoral.fr

G. Quesnel
INRA MIAT

24 chemin de Borde Rouge
Auzeville CS 52627

31326 Castanet-Tolosan cedex
France

gauthier.quesnel@toulouse.inra.fr

É. Ramat
ULCO LISIC

50, rue Ferdinand Buisson
BP 719 62228 Calais Cedex

France
ramat@lisic.univ-littoral.fr

ABSTRACT
With the emergence of parallel computational infras-
tructures at low cost, reducing simulation time becomes
again an issue of the research community in modeling
and simulation. This paper presents a method to im-
prove simulation time through handling the structure of
the model. This operation consists in partitioning the
graph models based on several criteria. In this work,
we use the DEVS formalism which is a discrete event
formalism with a modular and hierarchical structure of
models. To improve simulation time, we use partition-
ing methods. We will present the partitioning method
chosen to achieve this division and quantify the result-
ing time savings. Many tests are performed from graphs
with different sizes and shapes.

Author Keywords
Simulation, Optimisation, Graph, Partition, Multilevel,
GGGP, DEVS

ACM Classification Keywords
I.6.8 SIMULATION AND MODELING: Discrete event,
Distributed; G.2.2 DISCRETE MATHEMATICS:
Graph Theory

INTRODUCTION
Modeling and analysis of complex system dynamics is
now a full science. Models derived therefrom are becom-
ing increasingly complex in terms of components (sub-
models) and interactions. Therefore, we need to develop
both modeling tools and efficient simulators. However,
this process leads to the increase in computation demand
and therefore, the increase of computation time.
Multi-modeling is a response to the increased complex-
ity of the models [13]. The multi-modelling approach

Paste the appropriate copyright statement here. ACM now supports
three different copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the
historical approach.
• License: The author(s) retain copyright, but ACM receives an ex-
clusive publication license.
• Open Access: The author(s) wish to pay for the work to be open
access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release state-
ment assuming it is single spaced.

allows to couple heterogeneous models (i.e. each mod-
els can use different formalisms). DEVS [16] (Discrete
Event Specification is a good candidate to develop the
multi-modeling approach[12]. DEVS is a discrete events
modeling and simulation theory with a hierarchical ap-
proach. The global model, called structure of the model
in DEVS terminology, is a graph of coupled models.
To improve simulation computation time, the DEVS
community provides several simulation algorithms and
softwares based on classical distributed and parallel com-
puting algorithms or techniques [2, 3, 5] for example, in
the CD++ platform [14].
In this paper, we propose to transform and optimise the
structure of the model provided by the modeler into a
new one, optimised for the simulation. These works show
how possible it is to design a graph of simulators which
guarantees a high level of performance DEVS algorithms.
In the first part, we describe the DEVS formalism and we
show how models are structured. We will have a focus on
the kernel of some algorithms to understand what we are
looking for to optimise. Then we show how it is possible
to make a partition of the graph model to optimise the
simulation algorithms. And to finish, various tests will
be offered by illustration of the results.

DEVS MODELING AND SIMULATION
As we mentioned in the introduction, DEVS [16] is a high
level formalism based on the discrete events for the mod-
eling of complex discrete and continuous systems. The
model is a network of interconnections between atomic
and coupled models. These models are in interaction via
time-stamped events exchanges.
In this section, we present the Parallel-DEVS (PDEVS)
formalism [4]. PDEVS is an extension of the clas-
sic DEVS. It introduces the concept of simultaneity of
events essentially by allowing bags of inputs to the ex-
ternal transition function. Bags can collect inputs that
are built at the same date, and process their effects in
future bags. This formalism offers a solution to manage
simultaneous events that could not be easily managed
with Classic DEVS. For a detailed description, we en-

1



courage to read the section 3.4.2 in chapter 3 and the
section 11.4 in chapter 11 of Zeigler’s book [16].
PDEVS defines an atomic model as a set of input and
output ports and a set of state transition functions:

M = 〈X,Y, S, δint , δext , δcon, λ, ta〉
With: X, Y , S are respectively the set of input values,
output values and sequential states
ta : S → R+

0 is the time advance function
δint : S → S is the internal transition function
δext : Q×Xb → S is the external transition function

where:
Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
Q is the set of total states,
e is the time elapsed since last transition
Xb is a set of bags over elements in X

δcon : S ×Xb → S is the confluent transition
function, subject to δcon(s, ∅) = δint(s)

λ : S → Y is the output function
If no external event occurs, the system will stay in state
s for ta(s) time. When e = ta(s), the system changes
to the state δint . If an external event, of value x, occurs
when the system is in the state (s, e), the system changes
its state by calling δext(s, e, x). If it occurs when e =
ta(s), the system changes its state by calling δcon(s, x).
The default confluent function δcon definition is:

δcon(s, x) = δext(δint(s), 0, x)
The modeler can prefer the opposite order:

δcon(s, x) = δint(δext(s, ta(s), x))
Indeed, the modeler can define its own function.
Every atomic model can be coupled with one or several
other atomic models to build a coupled model. This
operation can be repeated to form a hierarchy of coupled
models. A coupled model is defined by:

N = 〈X,Y,D, {Md}, {Id}, {Zi,d}〉

Where X and Y are input and output ports, D the set
of models and:

∀d ∈ D,Md is a PDEVS model
∀d ∈ D ∪ {N}, Id is the influencer set of d :
Id ⊆ D ∪ {N}, d /∈ Id,∀d ∈ D ∪ {N},
∀i ∈ Id, Zi,d is a function,

the i-to-d output translation:
Zi,d : X → Xd, if i = N

Zi,d : Yi → Y, if d = N

Zi,d : Yi → Xd, if i 6= N and d 6= N

The influencer set of d is the set of models that interact
with d and Zi,d specifies the types of relations between
models i and d.
PDEVS is an operational formalism. This means that
the formalism is executable and thus it provides algo-
rithms for its execution. These algorithms define the
sequence of the different functions of the PDEVS struc-
ture. Moreover, the atomic and coupled models are re-
spectively associated with simulators and coordinators.
The aim of simulators is to compute the various func-
tions while the coordinators manage the synchronisation
of exchanges between simulators (or coordinators in a
hierarchical view). A PDEVS feature is the possibility
to parallelize the set of events to reduce time calculation.
The association between the modeler’s structure of the
model and the simulator hierarchy may be underperfor-
mant and/or not easily suitable to distribute or to par-
allel the simulation over a calculator:
• The coordinators sub-graphs can be not balanced i.e.

schedulers sizes may be not balanced.

• Atomic models and simulators with high output fre-
quency must be move closer to reduce overhead of
events between simulator and the hierarchy of coor-
dinators.

• In the same way, atomic models with expensive in-
ternal or external transition (in term of computation
time) must be placed alone to use more processing re-
sources.

Figure 1 shows an simple example of an optimised graph.

Figure 1. In left part of the picture, we show a typi-
cal DEVS model provides by modeler. It contains fives
atomic models and six coupled models and a root coor-
dinator. In right part, a optimised graph for simulation
with three processors.

INTEGRATION OF THE GRAPH PARTITIONING IN DEVS
SIMULATION
Our approach consists to transform the structure of a
model into another. The source model comes from the
modeler activity (plant for agronomist for example). The
destination structure is optimized for parallel simulation
(i.e. with minimal hierarchy and minimal interaction be-
tween coupled model) with our partitioning algorithms.
This work is possible thanks to the closure under cou-
pling property of DEVS [16]. This property formally
describes the coupled model is equivalent to an atomic
model. Thus an atomic model can be move into a new

2



coupled model and all the hierarchy of coupled model
can be merge into a unique coupled model.
For our partitioning algorithms, we propose to use a
method of undirected graph partitioning on the graph
stemming from the simulation. Knowing that graph
stemming from simulation is oriented, the first step is
to convert this in a undirected flat graph.
The aim of this section is to make a short state of the
art of graph by existing partitioning methods and to in-
troduce the one we chose for Section Results.

Generality on the graph partitioning
The k-way graph partitioning is a constraints optimisa-
tion problem. This involves cutting up a graph G into
k sub-graphs {G1, G2, . . . , Gk} in order to minimize one
or more criteria often called “objective functions”. This
dividing is translated by the creation of k subsets of ver-
tices called partition.
In our works, we are interested in a constrained par-
titioning problem. It consist in obtaining a partition
whose parts have similar weight. The weight of a parti-
tion Pk is defined by the following formula :

weightmean = dweight(V )
k

e (1)

The balance between the parts is not the only constraint
which has to be respected, it must also minimize one of
the objective functions presented in the following section.
The choice of this function occur according to the type
of problem to solve.

The objective functions
The objective functions quantify a criterion that we seek
to respect when creating a partition. The researched
goal during partitioning is to find the best partition that
minimizes the studied objective function. Under the par-
titioning graph, the objective functions revolve around
two concepts: cost cutting between the parts of the par-
tition and weight of these parts.
Given a graph G = (V,E) and two subsets V1 ⊆ V and
V2 ⊆ V , we define the cut cost, named cut, between this
two parts as the weight sum of edges connecting V1 and
V2 :

Cut(V1, V2) =
∑

v1∈V1,v2∈V2

weight(v1, v2) (2)

And the cut cost of a partition Pk as the weight sum of
edges between the partition parts :

Cut(Pk) =
∑
i<j

Cut(Vi, Vj) (3)

This objective function was already used by Brian
Kernighan and Shen Lin in [9].
Another function allows simultaneous management the
minimization of the cut cost and weight balance between

the parts : the ratio cut. It’s introduced by Yen-Chuen
Wei and Chung-Kuan Cheng in [15].

Ratio(Pk) =
k∑

i=1

Cut(Vi, V − Vi)
weight(Vi)

(4)

In our works, we seek to minimize the objective function
of the ratio cut.

The main methods of the graph partitioning
There are many methods related to the problem of graph
partitioning. Each one has its features and functionality.
The main categories of methods are: greedy methods,
spectral methods, meta-heuristics and region expanding
methods. The choice of the method depends on the na-
ture of the problem and the objective function to solve.
In our case, we seek a simple and effective method to
minimize the ratio cut. We have opted for a graph def-
inition by adjacency so, it is natural to seek a method
that uses the concept of neighbourhood to generate the
partition. That is why we have chosen a method of ex-
panding region: the Greedy Graph Growing Partitioning
(GGGP).
The GGGP method is an amelioration of the “Graph
Growing Partitioning” method introduced in [8]. GGGP
is a bisection method, which aims to divide the set of
vertices of the graph into two parts of equal weight using
the concept of neighbourhood. It works such as: two
sets Vertex source (Vs) and Vertex destination (Vd) are
defined such as Vs contains all vertices of the graph and
Vd is empty in the initial state. The algorithm starts by
randomly to select a vertex in Vs and moves it in Vd.
An array containing the adjacent vertices to those of Vd
is created: Vertex neigh (Vn). The process is to select
the vertex of Vn whose gain with respect to the studied
objective function is maximum. The selected vertex is
moved from Vs to Vd and Vn is updated. The process
stops when the weight of Vd is equal to the half weight
of graph vertices.
The presented method is a variation of the original
GGGP method because the selection criterion of adja-
cent vertices is initially designed to reduce exclusively
the edge-cut Furthermore, it is important to remember
that it is originally designed for the bisection. It is nec-
essary to perform a recursive application of the latter in
the context of a k-way partitioning.
As Charles Edmond Bichot reports in his book [1], the
major problem of this method is that it gives good re-
sults only on graphs of small size (less than 200 ver-
tices). In order to apply this method on large graphs,
it is necessary to establish a method to reduce its size
without changing its structure. We propose to imple-
ment a multi-level scheme, presented in [8], to solve this
problem.

Multilevel Graph Partitioning
The interest of multi-level is in this question: how can
we create quickly a partition of a graph G of given size,

3



knowing that it is very expensive to take care of each
vertex one by one?
The answer to this question is in three phases of the
multilevel introduced in the figure 2 :

Figure 2. Multilevel Graph Bisection

• Coarsening: Generating of a reduced graph by succes-
sive matching vertices, while maintaining the nature
of the original graph. Iterative process generating a
graph base {G1, · · · , Gn}, where G1 = G the original
graph and Gn the contracted graph.
• Partitioning: The purpose of this step is to create a

partition Pk of the graph Gn. For this, the graph Gn

resulting from the step of contraction can be parti-
tioned by using a heuristic of partitioning such as, for
example, expanding region method.
• Uncoarsening: The refining step is to project the solu-

tion of the partition Pk on the initial graph G. How-
ever, the partition can not be projected directly on the
original graph on pain of getting a result of poor qual-
ity. An overall good solution on the graph Gn may
not be on the graph G. That’s why it is necessary to
realise a refinement after each projection. The solu-
tion obtained on the original graph remains globally
and locally good.

To implement our multilevel structure, we were inspired
by algorithms present in literature and have contributed
to their development for some of them. This is especially
the case for the partitioning and uncoarsening phase al-
gorithms. These algorithms are introduced in the follow-
ing subsections.
Coarsening Phase
There are different methods of graph contraction orient-
ing mainly around the aggregation of vertices. As part of
our researches, we were interested in methods Random
Matching and Heavy Edge Matching (HEM) introduced
in [7].
These methods have a common iterative structure. At
each iteration, adjacent vertices are merged until there

are no more available vertices. The difference between
these two methods lies in the choice of the neighbouring
vertex eligible for a merger. The algorithm 1 presents
the iterative structure common to both methods of con-
traction.

Algorithm 1: Graph contraction for one iteration
Function : Contraction
Input: Graph Gi(Vi, Ei)
Output: Graph Gi+1(Vi+1, Ei+1)
Initialisation :

Gi+1 ← Gi

V list vertices set of Gi sorted randomly

for each vertex vi in V list do
Search of adjacent vertices at vi

Select a neighbour → vn (*)
Remove edge (vi, vn)
weight(vi) + = weight(vn)
for each neighbour α of vn do

if edge (vi, α) ∈ Gi+1 then
weight(vi, α) + = weight(vn, α)

else
Creation of edge (vi, α)

Remove edge (vn, α)
Delete vn

Modification of Vertex list

Now, let’s talk about the specificity of each method:
the selection criterion of the neighbour (represented by
(*) in the algorithm 1). In Random Matching method,
the selection criterion of neighbour is purely random.
There are no specific regulations concerning the neigh-
bour choice. Unlike it, the HEM method selects the
neighbour whose weight of the edge is the strongest. The
advantage of this approach is to regroup the vertices con-
nected by edges whose weight is maximal. Thus, the
edges of low weight should be most likely to be cut dur-
ing the partitioning step.

Partitioning Phase
The partitioning process is accomplished using the
GGGP method described in last section. It has the ad-
vantage of being fast and efficient, but the disadvan-
tage of having a highly dependent outcome of the cho-
sen starting vertex. To relieve this, we propose an parti-
tioning optimisation approach related to starting vertex.
This approach is described by the algorithm 2.
This consists in choosing nbr select different starting
vertices and to keep the best partition that minimizes
the studied objective function. Considering the solution
space that is the partition quality, the interest of this ap-
proach is to look into the solution space in order to find
a good solution (not necessarily the best). For this, we
propose to realise between 10 and 20 “smart” selections.
We mean by this that the failure to take two vertices
sensible to give a similar result.

4



Algorithm 2: Optimisation of partitioning
Function : Optim Rec GGGP
Input: Graph G(V,E), Integer nbr select
Output: Partition P (k)
Initialisation :

V list vertices set of G sorted randomly crit←∞
criterion to minimize
Pi(k)← ∅ partition with starting vertex i

for i in 1 to nbr select do
Partitioning for starting vertex V list(i) → Pi(k)
Compute the criterion → tmp crit
if tmp crit ¡ crit then

P (k) = Pi(k) recording of the partition
crit = tmp crit

else
Pi(k)← ∅ destruction of the partition

Starting from the postulate that a group of vertices lo-
cating in the same area may provide an equivalent par-
tition, we set up a system of selection using a notion
of distance between vertices. Distance is defined as the
number of arcs defining a path (without cycle) between
two vertices. Either the selection of a initial vertex, the
selection policy implementation prohibits the selection of
another vertices located at a distance less than d max.
This approach allows a depth route of the space solu-
tions. However, if this one is poorly conditioned it may
result a restriction of the solution space and thus be the
cause of a lower quality. To avoid this type of over-
flow, we recommend to fix the d max parameter between
2 and 3. Algorithm 3 represents the optimal selection
method following a notion of distance.

Algorithm 3: Optimal selection
Function : Iterative Optimal Selection
Input: Graph G(V,E), Integer d max, Integer

nbr select
Output: V list

Initialisation :
V list vertices set of G sorted
cpt← 0 counter

while cpt ¡ nbr select do
Random selection of a vertex v ∈ V list
Search of vertices from a distance lower or equal to
d max
Remove all vertices in V
cpt← cpt+ 1

Uncoarsening Phase
As George Karypis and Vipin Kumar find in [6], the
uncoarsening phase of the multilevel method consists in
projecting on the initial graph, the partition of the con-
tracted graph obtained during the partitioning phase.

The method introduced is a variation of the original
GGGP method because the selection criterion of adja-
cent vertices is initially designed to reduce exclusively
the edge-cut. Furthermore, it is important to remember
that it is originally designed for the bisection. It is nec-
essary to perform a recursive application of the latter in
the context of a k-way partitioning.

Algorithm 4: Refining by local displacement
Function : Refining Local Displacement
Input: Graph G(V,E), Partition P (k)
Output: Partition P (k)
Initialisation :

D ← ∅ cutting difference

while Ratio Cut decreases do
for each partition parts do

D ← calculation of cutting difference for each
part vertices
for each part vertex do

if D(v) > 0 then
Gain← gain for each adjacent part
g ← max(Gain) and α best adjacent part
if g > 0 then

move v from current part to alpha
else

Next vetex
else

Next vetex

The method that we have implemented is a local op-
timisation algorithm based on algorithm of Kernighan-
Lin [9]. It consists in moving successively vertices located
on the periphery of a part. A vertex is considered on the
periphery of a part Vi if it has a common edge with a
vertex that does not belong to Vi. For each periphery
vertex of a part, we notice that the gain associated at
the movement thereof toward each neighbouring parts.
The gain represents the difference between the old value
of the studied objective function and the new one. If
at least one gain is positive, the vertex is moved to the
maximum gain part. This process is applied to each
part of the partition and is repeated as long as one gain
is realised. The structure of the method is described in
algorithm 4.
The detection of eligible vertices for displacement (ver-
tices of the periphery) is realised using the concept of cut
difference introduced by Kernighan-Lin in [9]. To define
what is the cut difference, we introduce the notions of
internal and external cut. Let v a vertex Vi, the internal
cost I(v) is defined as the sum of the weights of edges
adjacent to v whose the second vertex is in Vi and the
external cost E(v) is defined as the sum of the weights
of edges between v and the vertices not belonging to Vi.

5



I(v) =
∑

v′∈Vi

weight(v, v′) (5)

E(v) =
∑

v′∈V−Vi

weight(v, v′) (6)

The cut difference D(v) is the difference of cost between
the external and the internal cost of the vertex v :

D(v) = E(v)− I(v) (7)

All vertex with a cut difference bigger than 0 is eligible
for a moving. Instead, if it has a negative D(v), it implies
that it is not on the periphery or its movement is not
likely to make a gain.

RESULTS
The objective of this section is to show the impact of the
structure of the model in a DEVS simulation. Thanks
to the closing under coupling DEVS’ property, we can
change the original modeler’s structure into a new one,
improved for simulation algorithms.
For this, we propose to make a comparison of simulation
time between a set of classic modeler’s’ graphs with op-
timised graph for simulation. We choose the following
structures: grid, linked and tree.
The benchmark characteristics:
• The internal transitions of all atomic models computes

the linkpack benchmark for performing numerical lin-
ear algebra and force the processor to compute data.
The calculations are limited to 3m̃s.

• Only the coordinator (child of the root coordinator)
uses the PDEVS threading mode with all threads
available on hardware processor.

• 37 replicas are run to avoid benchmarks problems (i/o
access, processor affinity etc.).

• We vary the method from orig (original modeler’s
graph), GGGP and coarsening and parts number 2
to 16 every two.

To bring us to the conditions of use of the partitioning
method GGGP, we have parameterized our multilevel as
follows:
• coarsening method HEM until size 200,

• partitioning method: modeler, gggp and coarsening,

• application of the refining method using difference.
But before observing the results obtained by applying
the partitioning on the PDEVS models, the following
section introduces the type of hardware and software ar-
chitecture used for tests.

Hardware and Software architecture for tests
The tests were performed on a PDEVS simulation kernel
called Echll (A C++ open-source software available at
https://github.com/vle-forge/Echll). Echll is a part of the
modeling and simulation software suite VLE [11] and
provides several DEVS extensions. It will replace the
existing simulation kernel of VLE. The simulations were
done on an SMP cluster node equipped with 20 Intel
XEON ES 2670 processors at 2.5 Ghz and 256 GB of
memory.

Datas presentation
The tests presented in the following section are realised
from three types of graphs derived from the flattening
of different hierarchical models. This graphs have a par-
ticular structure, they were designed to represent a fluid
flow in a watershed in the context of the project in which
we work.

Figure 3. Example of grid graph and tree graph of little
size

The graph of grid type shown in Figure 3 models a uni-
form fluid flow starting from a single source to a single
outlet. Each vertex communicates with its two neighbors
of bottom until reach the last vertex.
The graph of tree type shown in Figure 3 is composed of
several levels. Each level consists of one or more branches
where the vertices are connected to each other following a
single direction. The branches are branched until reach-
ing the single outlet. Unlike the grid, the tree graph has
multiple sources tops (n sources by branches).

Figure 4. Linked graph example of little size

The graph of linked type shown in Figure 4 consists of
several levels. It has the particularity of being hyper
connected because each vertex of a level is connected to
2 or 3 vertices of the lower level. The vertices of the
penultimate level are connected only to the outlet. As
the tree graph, the linked graph have several sources
vertices that are the vertices of the first level.

6

https://github.com/vle-forge/Echll


For the test phase, we assume that the execution time
is equal for each model (vertices weight equal and fixed
at 1) and the cost of message transfer from a simulator
to another is equivalent to the entire simulation (edge
weight equal and fixed at 1).

Results observation
The aim of this part is to compare the simulation dura-
tions for a parallel mode, i.e. when the coordinator and
this childs are parallelized. The comparison is made on
the choice of the coupled model hierarchy and structure.
Two kinds of approaches are studied for the choice of
the structure : original modeler graph and partitioning
methods, used to coarsening or GGGP method
To highlight this, we propose to compare the simulation
durations obtained for each of the following graphs: tree
graph of size 20000, linked graph of size 10000 and grid
graph of size 4900 (the graph size correspond to the sim-
ulation model number). For each graph, we observe the
evolution of the simulation time in seconds in function
of the number of parts (submodels) for each partitioning
methods. These methods are represented by the follow-
ing captions:
• (solid line) coarsening method

• - - - - (dashed line) GGGP method

• -.-.-.- (dashed and point line) original model

Figure 5. Evolution of parallel simulation time against
parts number for a tree graph

The figure 5 present results for tree graphs with 20,000
models. In this figure, we observe that partitioning
methods are 1.5 times faster than the original models.
However, we can see that the coarsening and GGGP
methods offer similar results. This is due to the fact
that these methods create a partition that is generally
respect to the balance between the parts. Therefore, ex-
ecution time results are close to each part, which is not
necessarily the case for original models.

Figure 6. Evolution of parallel simulation time against
part number for a linked graph

In the case of strongly connected graphs, observation is
the same. The simulation duration is shorter (factor 1.2)
for partionning methods compared to original models.
It’s a bit weaker than the previous case.

Figure 7. Evolution of parallel simulation time against
part number for a grid graph

In grid case, results are completely different. Indeed, no
method stands out. It is a special case: precedence graph
implies a spread of cascading events and one model is
responsible for the spread. However, remember that for
our simulations, the cost of message transfer is fully in-
significant compared to computation time. The partion-
ning methods, including GGGP, are designed to mini-
mize the transfer costs between the parts while balanc-
ing at best. Therefore it can be expected to a significant
improvement of the results of partitioning methods for
simulations with large transfer cost.

7



We also used the devstone bench [10] to test our method.
Results are similar to those obtained with our graphs.

CONCLUSION
This paper presents a method to improve simulation
time. This method consists in partitioning a DEVS
graph models in a optimised DEVS graph models for
the parallel simulation, i.e. by minimizing number of
message exchange and by balancing of models execution
time. This minimizes the transfer of messages between
parts and have an equivalent execution time for each of
them.
This article highlights the importance of integrating the
graph partitioning within DEVS simulations to reduce
the execution time. This time saving is obtained by a
reconstruction of a two-level hierarchy of the original
model and by parallelization of the root child and his
coupled models children.
When building sub-graphs, it was essential to choose
an objective function that reflects both the balancing
of the parts and the minimisation of the links between
the parts.
Concerning the results, we observe that the gggp and
coarsening partitioning methods provide a better struc-
ture than the random partitioning method which is close
to the structure provided by a modeler. What affects the
time distributed simulation which are between 1.5 and
2 times faster for a simulation with inexpensive message
transfers.

ACKNOWLEDGMENTS
This work is carried out in research project named Es-
capade (Assessing scenarios on the nitrogen cascade in
rural landscapes and territorial modeling - ANR-12-
AGRO-0003) funded by French National Agency for Re-
search (ANR).
We are grateful to the genotoul bioinformatics platform
Toulouse Midi-Pyrenees for providing help and comput-
ing resources.

REFERENCES
1. Bichot, C.-E. A Partitioning Requiring Rapidity

and Quality: The Multilevel Method and Partitions
Refinement Algorithms. John Wiley & Sons, Inc.,
2013, 27–63.

2. Chandy, K. M., and Misra, J. Distributed
simulation: A case study in design and verification
of distributed programs. IEEE Trans. Software
Eng. 5, 5 (1979), 440–452.

3. Chandy, K. M., and Misra, J. Asynchronous
distributed simulation via a sequence of parallel
computations. Commun. ACM 24, 4 (1981),
198–206.

4. Chow, A. C. H., and Zeigler, B. P. Parallel DEVS:
a parallel, hierarchical, modular, modeling
formalism. In Proceedings of the 26th conference on

Winter simulation (Orlando, Florida, United
States, 1994), 716–722.

5. Fujimoto, R. M. Parallel discrete event simulation.
Commun. ACM 33, 10 (Oct. 1990), 30–53.

6. Karypis, G., and Kumar, V. Analysis of multilevel
graph partitioning. In Proceedings of the 1995
ACM/IEEE Conference on Supercomputing,
Supercomputing ’95, ACM (New York, NY, USA,
1995).

7. Karypis, G., and Kumar, V. Multilevel graph
partitioning schemes. In Proc. 24th Intern. Conf.
Par. Proc., III, CRC Press (1995), 113–122.

8. Karypis, G., and Kumar, V. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20, 1 (Dec. 1998), 359–392.

9. Kernighan, B. W., and Lin, S. An efficient heuristic
procedure for partitioning graphs. Bell System
Technical Journal 49, 2 (1970), 291–307.

10. M. Gutierrez-Alcaraz, G. W. Experiences with the
devstone benchmark.

11. Quesnel, G., Duboz, R., and Ramat, E. The
Virtual Laboratory Environment – An operational
framework for multi-modelling, simulation and
analysis of complex dynamical systems. Simulation
Modelling Practice and Theory 17 (April 2009),
641–653.

12. Vangheluwe, H. DEVS as a common denominator
for hybrid systems modelling. In IEEE
International Symposium on Computer-Aided
Control System Design, A. Varga, Ed., IEEE
Computer Society Press (Anchorage, Alaska, 2000),
129–134.

13. Vangheluwe, H., Lara, J., and Mosterman, P. J. An
introduction to multi-paradigm modelling and
simulation. In AIS’2002. Simulation and Planning
in High Autonomy Systems, F. Barros and
N. Giambiasi, Eds., Society for Modelling and
Simulation International (Lisbon, Protugal, April
2002), 9–20.

14. Wainer, G. A., Liu, Q., and Jafer, S. Advanced
parallel simulation of DEVS models in CD++.
Taylor and Francis, 2010, ch. 9, TBD. Authors: G.
Wainer, P. Mosterman Eds, Book: Discrete-Event
Modeling and Simulation: Theory and
Applications.

15. Wei, Y.-C., and Cheng, C.-K. Towards efficient
hierarchical designs by ratio cut partitioning. In
Computer-Aided Design, 1989. ICCAD-89. Digest
of Technical Papers., 1989 IEEE International
Conference on (Nov 1989), 298–301.

16. Zeigler, B. P., Kim, D., and Praehofer, H. Theory
of modeling and simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems,
2nd ed. Academic Press, 2000.

8


	Introduction
	DEVS modeling and simulation
	INTEGRATION OF THE GRAPH PARTITIONING IN DEVS SIMULATION
	Generality on the graph partitioning
	The objective functions
	The main methods of the graph partitioning

	Multilevel Graph Partitioning
	Coarsening Phase
	Partitioning Phase
	Uncoarsening Phase


	Results
	Hardware and Software architecture for tests
	Datas presentation
	Results observation

	CONCLUSION
	Acknowledgments
	REFERENCES 

