
Automated
Simulation Model
Generation

Yilin Huang

仿真模型
自动生成方法

Automated Simulation Model Generation

Automated Simulation Model Generation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.Ch.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 5 november 2013 om 12.30 uur

door

Yilin HUANG
Diplom-Ingenieurin (FH)

geboren te Shanghai, China

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. A. Verbraeck

Copromotor: Dr. M.D. Seck

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. A. Verbraeck Technische Universiteit Delft, promotor
Dr. M.D. Seck, Technische Universiteit Delft, copromotor
Prof. dr. F.M.T. Brazier Technische Universiteit Delft
Prof. dr. ir. P.M. Herder Technische Universiteit Delft
Prof. dr. A. Tolk Old Dominion University
Prof. dr. H. Vangheluwe Universiteit Antwerp
Prof. dr. S. Straßburger Technische Universität Ilmenau
Prof. dr. ir. W.A.H. Thissen Technische Universiteit Delft, reservelid

Dissertation
Automated Simulation Model Generation

Yilin Huang
ME@YILIN.INFO

Section Systems Engineering
Faculty of Technology, Policy and Management
Delft University of Technology
The Netherlands

Typeset with LATEX 2ε
Cover image by Patrick Gunderson www.theorigin.net
Cover design by Yilin Huang
Printed by CPI Wöhrman Print Service www.wps.nl

ISBN/EAN 978-94-6203-461-7

Yilin Huang © 2013
All rights reserved.

All trademarks used herein are the properties of their respective owners. The use of any trademark
in this text does not vest in the author any trademark ownership rights in such trademarks, nor
does the use of such trademarks imply any affiliation with or endorsement of this book by such
owners.

http://www.theorigin.net
http://www.wps.nl

To my family

Acknowledgment

I have been extremely fortunate in the past years to know a number of interesting people
with whom I spent quality time both at work and in my private life. I would like to take
this opportunity to express my sincere gratitude for their time, professional and per-
sonal help and support, company and friendship.

I held lengthy and thorough discussions with my promoter Alexander Verbraeck and
my supervisor Mamadou Seck. Alexander offered me a position at Delft allowing me to
reunite with my then-boyfriend-now-husband while pursuing my PhD. As a promoter,
he is sharp-minded, critical and encouraging. He gave me guidance and at the same
time enough freedom to conduct my research. Mamadou, who arrived at Delft the same
year as I did, is gentle and philosophical. Besides work, we also had interesting discus-
sions about life and religion. From both Alexander and Mamadou, I could not have
wished for more challenging ideas, constructive criticisms and support.

At Delft, interactions with colleagues were pleasant. Diones Supriana, Everdine de
Vreede-Volkers and Sabrina Ramos Rodrigues were at all times helpful with adminis-
trative issues. As a fresh PhD, I had much fun with earlier PhD fellows and roommates,
Rafael Gonzáles, Michele Fumarola and Jan-Paul van Staalduinen, who are smart gen-
tlemen. Special thanks to Michele for his patience and understanding with my inde-
cisiveness on a certain issue. PhDs and PostDocs who joined the section later are all
friendly chaps who were good company forming an international and vibrant group,
Deniz Çentinkaya, Tanja Buttler, Jordan Janeiro, Çaǧri Tekinay, Kassidy Clark, Evangelos
Pournaras, Maartje van den Bogaard, Stefan Knoll, Shalini Kurapati, Farideh Heidari,
Yakup Koç, Mingxin Zhang. Thanks for the Ouzo, Raki, Caipirinha, Sake, Whiskey, cof-
fee, tee, chocolates, BBQ, Chinese food, parties and other cheerful gatherings. I enjoyed
lunch breaks, sweet treats and discussions with colleagues. Martijn Warnier’s inquir-
ies about my dissertation progress, Michel Oey’s concert flyers, Jos Vrancken’s birthday
quiz, Sander van Splunter’s cookies ... I will remember all.

HTM provided me with invaluable resources for the research project. From data
and documents to productive meetings, many people offered generous help. Hilbert
Veldhoen had his important role in the project. We had uncountable numbers of dis-
cussions, exchanging ideas and experiences. He organized visits for me to different de-
partments and introduced me to many experts with whom I collaborated. Tom van der
Heijden was always very responsive to my questions and gave me good hints to solve
problems concerning the EBS database. The discussions with Niels van Oort and Peter

Scheepmaker were delightful and full of information. The latter kindly invited me to the
tram museum he managed. The others I would like to thank include Peter Tros, Marc
Drost, Anne-Wil Boterman, the members in the validation panel and the HTM board,
and those that I encountered in meetings and on other occasions whose names I failed
to note down (for which I apologize).

My old friends in Shanghai, the Viennese family Lotte, Peter and Alexander Smrha,
who cared and are still caring for me as if I was their own, friends from Erlachplatz, FH
and TU in Vienna, those I encountered in The Hague, Delft, and more recently at the
climbing hall, all have brought many joyful moments in my life. My family is always
unconditionally loving and supportive. I thank my husband for being who he is and
particularly for his understanding and trust. I do not feel I can adequately express my
gratefulness to my family and friends in a few words. But please keep in mind that
wherever my life path leads to, I will stand by you whenever you are in need.

Yilin Huang, Delft, July 2013

Contents

Chapter 1 Towards Automated Simulation Model Generation 1

1.1 Research Context 1

1.1.1 Motivation 2

1.1.2 An Example: HTM Cases 3

1.1.3 Problem Statement 4

1.2 Research Objective and Questions 5

1.3 Research Strategy 6

1.3.1 Research Philosophy 6

1.3.2 Research Approach 8

1.3.3 Research Instruments 8

1.4 Thesis Outline 9

Chapter 2 Foundations of Systems and Simulation Modeling 11

2.1 Systems and Models 12

2.1.1 What are They? 12

2.1.2 Sources of Systems Knowledge 14

2.1.3 Levels of Systems Knowledge 16

2.1.4 Levels of Systems Specification 18

2.2 Meta-Models 20

2.2.1 Roles of Models 20

2.2.2 Types of Meta-Models 22

2.3 Component-Based Models 23

2.4 Modeling Formalisms and Model Specifications 25

2.4.1 Formalisms and Formalism Classes 25

2.4.2 Formalism Transformations 29

2.4.3 DEVS Formalism 30

Chapter 3 An Outlook on Automated Simulation Model Generation 35

3.1 Proposed Constructs on Research Questions 36

3.2 A Modeling Example 40

3.2.1 Vignette: A Tram Crossing 40

3.2.2 Model Components and Composition 41

3.2.3 Data Models 43

3.3 Data Quality Issues 44

3.3.1 Background 44

3.3.2 Data Quality Categories and Criteria 45

3.3.3 Discussion On Data Quality Issues and Measures 49

3.4 From Data to Simulation Model 52

3.4.1 Model Transformation 55

3.4.2 Model Instantiation 56

3.4.3 Model Calibration 57

Chapter 4 Domain Simulation Library 59

4.1 Towards Developing A Rail Simulation Library 60

4.1.1 Application Context and Challenges 60

4.1.2 Basic Functionality and Elements 62

4.2 Systems Modeling 65

4.2.1 Modeling Vehicles 67

4.2.2 Modeling Infrastructures 69

4.2.3 Modeling Vehicle Communications 73

4.3 Model Design in LIBROS 79

4.3.1 A Communication Mechanism: Message Propagation 79

4.3.2 An Overview on Infrastructure Models 83

4.3.3 Vehicle Model 87

4.3.4 Rail Infrastructure Element Models 100

4.3.5 Coupled Infrastructure Models 108

4.4 A Study on LIBROS Model Performance 114

4.4.1 Experimental Setup 115

4.4.2 Experiment Results and Discussion 117

4.5 Model/Simulation Presentation 120

Chapter 5 Model Generation 125

5.1 Graph Theory and Graph Transformation 126

5.1.1 Structure Representation with Graphs 126

5.1.2 Basic Concepts of Graph Transformation 129

5.2 Model Transformation 134

5.2.1 On Start Graph 135

5.2.2 Transformation Step 1 138

5.2.3 On Model Composite Graph 144

5.2.4 Transformation Step 2 153

5.3 Model Instantiation 162

5.3.1 On Instantiation of LIBROS Models 163

5.3.2 Transformation Step 3 169

5.4 Model Generator 170

Chapter 6 Model Calibration 175

6.1 Output Estimation and Comparison 176

6.1.1 Output Estimation with Replication Method 177

6.1.2 Operational Validation through Comparison 179

6.2 Calibration Procedure 180

6.2.1 Basic Elements and Functions 180

6.2.2 Procedure Design 181

6.3 Calibration Experiments 185

6.3.1 Case Description 185

6.3.2 Two Stage Calibration 186

6.4 A Calibration Test Case 191

6.4.1 Measures of Scale Parameter Differences 191

6.4.2 Bounds of Parameter Configuration 195

6.4.3 Validation of Calibration Results 198

Chapter 7 Expert Validation and Evaluation 201

7.1 Model Validation Procedure 202

7.2 Expert Validation Results 204

7.2.1 Driving Behind A Vehicle 204

7.2.2 Double Halting at Stops 204

7.2.3 Boundary Locations of Crossings 205

7.2.4 Search Distance of Misc-Crossings 207

7.2.5 Control Logic at Crossings 208

7.2.6 Other Remarks 209

7.3 Reflection 210

Chapter 8 Epilogue 211

8.1 Research Findings 212

8.2 Practical Use of LIBROS Models 218

8.3 Future Research 219

Appendices

A Background 223

A.1 Modeling Relation: Homomorphism 223

A.2 A DEVS Simulator: DSOL and ESDEVS 225

B LIBROS Library 227

B.1 Communication Mechanism 227

B.1.1 Message Initiators 227

B.1.2 Message Propagation Rules 227
B.1.3 Distance Accumulation Rules 228

B.2 Vehicle Model Specification 229
B.2.1 External Transition Function 230
B.2.2 Output Function 230
B.2.3 Internal Transition Function 232

B.3 Animation Legend 233
B.4 Infrastructure Composite Examples 235

C Model Generation 236
C.1 Infrastructure CAD Entities 236
C.2 Infrastructure Composites 237
C.3 Infrastructure Model Examples 241

D Model Validation 244
D.1 Validation of Calibration Results 244

D.1.1 Calibration vs. Validation Datasets 244
D.1.2 Calibration Results 246

D.2 Expertise of Panelists 247
D.3 Validation Questionnaire 247

References 251

List of Tables 268

List of Figures 269

Subject Index 272

Summary 275

Samenvatting 279

1
Towards Automated

Simulation Model
Generation

S
IMULATION is a useful method for analyzing the design and operation of com-

plex systems (SHANNON 1975, SOL 1982, LAW 2007). It can be used to imitate
the operation of a real system by executing a model of that system over time
(BANKS et al. 2010), nowadays often with the use of computers. Simulation

models of this kind are dynamic, as opposed to static models which do not simulate
systems change over time trajectories. In this research, we are interested in automated
generation of dynamic computer-based simulation models.

1.1 Research Context

One of today’s challenges in the field of Modeling and Simulation (M&S)1 is the need
to model and simulate increasingly larger and more complex systems (CROSBIE 2010).
It currently takes too long to develop and experiment with models, not to mention the

1M&S is also known as simulation modeling.

1

1
Towards Automated Simulation Model Generation

high cost and human resource involved (FOWLER and ROSE 2004, BANKS et al. 2010).
Many examples can be found in production and manufacturing (FOWLER and ROSE

2004), supply chains (LONGO 2011), air transportation (WIELAND and PRITCHETT 2007),
health care (MIELCZAREK and UZIALKO-MYDLIKOWSKA 2012), to name just a few.

1.1.1 Motivation

Modeling refers to the full scope of activities in model development. It is central to the
efficacy of simulation (PAGE 1995). There is a rich history of efforts to improve the ef-
fectiveness and efficiency of the modeling process in order to better the overall M&S
process, e.g., developing simulation languages and user interfaces for modeling, and
developing domain specific simulators (FOWLER and ROSE 2004). While all these de-
velopments have significantly reduced the time and effort to build models, there is still
considerable room for improvement (ibid.).

One opportunity to reduce time and effort in modeling is to use the available data of
a system to automatically or semi-automatically generate simulation models (FOWLER

and ROSE 2004, BERGMANN and STRASSBURGER 2010). Regardless of whether model-
ing is performed by humans or by automation, data sources include data acquired by
observation and measurement, as well as documents about a system (SHANNON 1975).
The former type of data can be used, e.g., to determine the appropriate input distribu-
tion and to validate simulation output data; the latter type can be used, e.g., to define
and configure simulation models.

Increased Data Availability The availability of both types of data has increased along
with the advances in sensor technology as well as the more popular use of computer-
aided technologies such as CAD, CAE, ERP and MES systems2 (GLOTZER et al. 2010).
The increased availability of data has rendered automation more attractive. On the
one hand, the increased availability of data allows for a higher degree of automation
in modeling as more useful information becomes accessible in digital forms. On the
other hand, the increased amount of data often requires automation because the data
can no longer be handled manually in an effective and efficient manner (ibid.).

Automation in Modeling In this thesis, we study Automated Model Generation (AMG).
The goal is to develop a method that can automatically generate simulation models.
AMG is a relatively new research field with early works dating around 1990s. Some liter-
ature calls it automated modeling (AMSTERDAM 1993, NAYAK 1995, XIA and SMITH 1996,
GRANDA and MONTGOMERY 2003).

Many works in AMG use circuit design schematics (WASYNCZUK and SUDHOFF 1996,
EECKELAERT et al. 2004, LITTLE et al. 2010), SysML (CAO et al. 2012, JOHNSON et al. 2012),
or bond graphs (GRANDA and MONTGOMERY 2003, UMESH RAI and UMANAND 2009,
ROYCHOUDHURY et al. 2011, TIAN et al. 2012, ZUPANCIC and SODJA 2012) to generate

2Computer Aided Design (CAD); Computer Aided Engineering (CAE); Enterprise Requirements Planning
(ERP); Manufacturing Execution Systems (MES).

2

1
1.1 Research Context

simulation models for physical systems such as circuits, hydraulics and mechatron-
ics, or for biochemical processes and manufacturing (FERNEY 2000, THOMASETH 2003,
MUELLER 2007, ROMAN and SELISTEANU 2012). The simulation models are generated
based on model-like descriptions which already contain the required structure inform-
ation. GELSEY (1990, 1995) and LEVY et al. (1997) apply advanced reasoning methods
to determine model structures (i.e., the interrelations of components) based on pre-
specified component descriptions. In these works, the input for AMG, i.e., the systems
specification, is prepared for the AMG, by which the pre-specified parts or structures
match the model parts and structures. It is an ideal situation but not always applicable
to model large and complex systems.

There are some recent works that use existing data for AMG. An often used approach
is to define general/generic models or model templates so that specific model instances
can be created through parameter configuration. For example, BRAUSE (2004) can se-
lect differential equation models of minimum description length by parameter pruning
(i.e., unnecessary parameters become zero). HARRISON et al. (2004) and LUCKO et al.
(2010) use data to configure parameters such as the amount of resources and time in
workflow process models in Arena® and WorkSim®. In WANG et al. (2011), automobile
general assembly plant models can be generated based on the physical layout data and
the production data of the plant; but still, the model selection is parameter-based.

Research Opportunity To our knowledge, there has not been works of AMG that can
generate simulation models with flexible structures using existing data. By “generating
simulation models with flexible structures”, we mean that simulation models are not
generated by parameter-based configuration on a pre-specified model structure, but a
model with a (new) structure is dynamically constructed according to the existing data.
To demonstrate why this is needed, we first give an example.

1.1.2 An Example: HTM Cases

HTM (Haagsche Tramweg Maatschappij, www.htm.net) is a public transport operator
based in The Hague, the Netherlands. The organization often uses M&S to study the
design and operation of their light-rail network3 (VELDHOEN 2009), e.g.,

◦ the infrastructure and control at intersections (KANACILO and VERBRAECK 2006,
2007);

◦ the design of new infrastructure and operation (KAMERLING 2007, HUANG et al.
2010);

◦ the depot capacity and the vehicle planning on the deadhead-kilometer (non-
value added trips) (CAI 2011);

◦ the strategies in the design of infrastructure networks, service networks and time-
tables (VAN OORT 2011).

3The network in The Hague covers over 150 km2 with fourteen scheduled tram lines, 140 km tracks and
540 stops.

3

http://www.htm.net

1
Towards Automated Simulation Model Generation

Every year, a number of M&S studies is initiated by the organization. New simu-
lation models are needed to study new or different parts of the light-rail network and
operation. The models are different in the sense that they have different infrastructure
layouts, services and timetables, etc., yet they share similar underlying concepts. De-
veloping the simulation models is labor intensive and time consuming – three to six
months for small projects and over a year for large ones.

The organization possesses a large amount of data, from infrastructure design, ser-
vice plans and timetables to the (sensor collected) passenger counts and GPS data. Us-
ing the data in modeling could provide useful information about the system and help
improve the validity of models. However, the more data modelers use, the longer it
takes to develop the models. Constrained by time and cost, a large part of the available
data is unused.

There is a huge interest from the organization to improve the situation. Because the
underlying study goals of the simulation projects in the organization are often very sim-
ilar, i.e., to study the infrastructure, control strategies and timetables in relation with,
e.g., the quality, reliability and robustness of the services, it is desirable to develop an
automated routine that can generate the simulation models with different structures
and to reuse some previous modeling solutions. The availability of data in the organiz-
ation makes this kind of automation possible.

1.1.3 Problem Statement

Indeed, many organizations are facing a similar situation. On the one hand, they often
need simulation models which take a long time to develop and incur high costs (WIE-
LAND and PRITCHETT 2007, LONGO 2011). On the other hand, more and more data has
become available in organizations which could provide useful information for mod-
eling, however, much of it is unused (GLOTZER et al. 2010). To benefit from the data
and improve the situation, there is a need for a method that can automatically use the
existing data to generate simulation models.

Using existing data for AMG is very different from using data that is specifically pre-
pared for the purpose of model generation. In the latter case, the data already contains
the right content and structure of information required for model generation (e.g., FER-
NEY 2000, GRANDA and MONTGOMERY 2003, MUELLER 2007, ROMAN and SELISTEANU

2012). In existing data, the information that can be directly used for model generation
is often not readily available (COBP 2002). The data may need to be transformed (or
rewritten) in content and structure. The transformation should eventually lead to a
model structure according to which a simulation model can be generated.

Model structure variations can be achieved with parameter-based approaches (e.g.,
BRAUSE 2004, WANG et al. 2011). In such cases, all possible model structures have to be
pre-specified, which is not convenient and can be impractical when the models are
complex (with many parts or components). The ability to dynamically construct struc-
ture variations provides more flexibility. Hence, we choose to generate model structures
dynamically during the AMG.

4

1
1.2 Research Objective and Questions

How to use formal methods to achieve the above goals is the aim of this research.
To summarize, the research presented in this thesis differs from previous works of AMG
in at least two aspects:

◦ We aim at using existing data where the model structures are not directly defined.

◦ We aim at generating simulation models with flexible structures which are not
pre-specified before model generation.

1.2 Research Objective and Questions

The discussion so far depicted the motivation and problem situation of this research.
The research is motivated by the fact that modeling large and complex systems takes
a long time and is costly. As more data becomes available in many organizations, the
issue of how to efficiently and effectively use the data to help modeling has attracted
more attention. AMG is studied by previous works in different ways (§ 1.1.1). We po-
sition this research at a niche. We posit that there is both a need and a lack of works
in tackling the problem of generating simulation models with flexible structures using
existing data. Therefore, we set the research objective to provide a method to tackle this
problem as following.

Research Objective To provide a method that automatically generates simulation models
with flexible structures using existing data assuming that these simulation models are
intended for a certain domain.

The objective states what is given to the method and what is to be expected from
it. When we treat AMG as a function, then the existing data is the input of the function
and the generated simulation model is the output. The research objective is to define
an appropriate transformation function. To reach the research objective, we first need
to know the nature of the input and the output. For example, what information is or
should be carried by the existing data? What information is required for generating
a simulation model? And how to define a flexible model structure to accommodate
changes in the data within a given degree? These tasks can be phrased as the first two
research questions.

Research Question 1 What is a good way to define flexible structures for simulation mod-
els in order to achieve the research objective?

Research Question 2 What are the requirements for the data in order to achieve the re-
search objective?

With this knowledge, we can embark upon defining the transformation function.
We first identify the requirements for the function, i.e., what functionalities it should
provide, and then design a method that can deliver these functionalities4.

4Non-functional requirements are as important; however, they are not the focus of this research.

5

1
Towards Automated Simulation Model Generation

Research Question 3 What functionalities should a method provide in order to automat-
ically generate simulation models with flexible structures using existing data?

And finally, we evaluate the method by assessing the quality of the simulation model
generated.

Research Question 4 What is the quality of the simulation models generated by the method?

We use cases in the domain of light-rail transport to study the AMG method.

1.3 Research Strategy

To be an effective systems scientist, we must at the same time be both a holist, looking
at a system as a whole, and a reductionist, understanding a system in more detailed
forms (M’PHERSON 1974, FLOOD and CARSON 1993).

1.3.1 Research Philosophy

The philosophical basis of research is important for numerous reasons. It can assist in
understanding notable issues: the interrelation between ontological, epistemological,
and methodological5 levels of inquiry (PROCTOR 1998, CRESWELL 2003, TOLK 2013). It
is significant in reference to research methodology: (1) to clarify the overall research
strategy and to refine and specify the research methods; (2) to enable and assist the
evaluation of different methods and avoid inappropriate use; and (3) to help research-
ers to be creative and innovative in either the selection or the adaptation of methods
(EASTERBY-SMITH et al. 2001).

In literature, positivism and interpretivism are two common and often seen as op-
posing views of research philosophy. Table 1.1 lists their basic differences. Some other
views include postpositivism, critical theory, constructivism, postmodernism, etc. What
the critiques of different philosophical views have brought, as MINGERS (2006) puts it,
is the refutation of any form of monism. MINGERS (ibid.) further states that “we have
to recognize a plurality . . . This should not be seen as some sort of slide into relativism,
but rather a recognition of the amazing complexity of the world we are trying to under-
stand.” CROSSAN (2003) argues that sometimes the distinction between quantitative
and qualitative philosophies and research methods is overstated, and in contemporary
research they are indeed frequently used in conjunction. WEBER (2004) contends and
exemplifies that the distinction between positivism and interpretivism is not clear-cut,
and the rhetoric of positivism versus interpretivism no longer serves a useful purpose.

Combining different intervention and research methods can have many benefits in
dealing with different dimensions of system problems. The choice of approach may be

5The ontological question: what is the form and nature of reality and, therefore, what can be known
about it? The epistemological question: what is the nature of the relationship between the knower or would-
be knower and what can be known? The methodological question: how can the inquirer (would-be knower)
go about finding out whatever he or she believes can be known? GUBA and LINCOLN (1994)

6

1
1.3 Research Strategy

Meta-theoretical
Assumptions

Positivism Interpretivism

Ontology
Person (researcher) and reality are
separate.

Person (researcher) and reality are
inseparable (life-world).

Epistemology
Objective reality exists beyond the
human mind (objective, tangible,
single).

Knowledge of the world is
intentionally constituted through a
person’s lived experience (socially
constructed, multiple).

Methodology
Hypothetical-deductive approach
(experimental design)

Holistic-inductive approach
(naturalistic inquiry)

Research Object
Research object has inherent
qualities that exist independently
of the researcher.

Research object is interpreted in
light of the structure of meaning of
a researcher’s lived experience.

Goal of Research Explanation, strong prediction Understanding, weak prediction

Focus of Interest
What is general, average and
representative

What is specific, unique and
deviant

Research Methods

Lab and field experiments, survey,
case study, simulation, etc. (seek
empirical data and analyze
statistically).

Hermeneutics, phenomenology,
ethnography, case study, action
research, etc.

Subject-Researcher Rigid separation Interactive, cooperative

Knowledge
Generated

Laws: absolute (time, context, and
value-free)

Meanings: relative (time, context,
culture, and value-bound)

Desired Information
How many people think and do a
specific thing, or have a specific
problem?

What do some people think and
do, what kind of problems are they
confronted with and how do they
deal with it?

Theory of Truth
Correspondence theory of truth:
one-to-one mapping between
research statements and reality.

Truth as intentional fulfillment:
interpretations of research object
match the lived experience of the
object.

Validity
Certainty: data truly measures
reality.

Defensible knowledge claims.

Reliability
Replicability: research results can
be reproduced.

Interpretive awareness:
researchers recognize and address
implications of their subjectivity.

Table 1.1: Positivism and interpretivism – basic differences (WEBER 2004, DECROP 2006)

dependent on the nature of the phenomena of interest, the goal of the research, the level
and nature of the questions, researchers’ experience and personal beliefs, and practical
considerations related to the research environment and the efficient use of resources
(CROSSAN 2003).

This research aims at AMG with a focus on flexible model structure. Naturally posit-

7

1
Towards Automated Simulation Model Generation

ivism is the main philosophical view to follow during the method and tool development.
However, systems often involves human actors, and domain experts have their percep-
tions, values and interests, which must not be neglected. A deterministic perspective
may hinder systems understanding and human interaction. Therefore, a positivist’s
view combined with interpretive elements is appropriate to gather information of sys-
tems knowledge and to evaluate the research outcome as to avoid over-quantification.

1.3.2 Research Approach

M&S and systems science are two fields that are intimately entwined (WYMORE 1967,
KLIR and ELIAS 2003, ZEIGLER 2003). Systems engineering is the engineering subset of
systems science, which deals with the design of systems in a broad sense (SAGE 1992,
BLANCHARD and FABRYCKY 2011). In systems engineering, there exists a number of de-
velopment processes, but most are grounded in one of the following three seminal pro-
cesses (ESTEFAN 2008):

(1) ROYCE (1970)’s waterfall model which elaborates an iterative and incremental re-
lationship between successive development phases,

(2) BOEHM (1988)’s spiral model which has various refinements of the waterfall model
and emphasizes on cyclic development, and

(3) FORSBERG and MOOZ (1992)’s “Vee” model which emphasizes on systems decom-
position and alternative design concepts.

In our view, the underlining concepts of these processes are not inconsistent. They
can be used in a combined manner, since the characteristics of the processes stated
above are all important for the development of solutions for the research problems.

An M&S system can be deemed as an information system (JACOBS 2005). In informa-
tion systems research, two foundational and complementary paradigms are design sci-
ence and behavioral science (MARCH and SMITH 1995, HEVNER et al. 2004). The former
has its roots in engineering and the sciences of the artificial (SIMON 1996), seeking to
create “what is effective” for problem solving (HEVNER et al. 2004). The latter has its
roots in natural sciences research methods, seeking to know “what is true” for explana-
tion and/or prediction (ibid.). The two paradigms are combined by HEVNER et al. (ibid.)
who advocate for an iterative and incremental design process solving real-life problems
using grounded scientific theory.

We therefore approached the research problems from a combined perspective of
systems engineering and design science, with a focus on M&S, through which an AMG
method (an artifact) should be designed to generate simulation models (artifacts) that
are used to support explanation and/or prediction of systems of a certain domain.

1.3.3 Research Instruments

For systems understanding (which refers to the domain knowledge), we used literat-
ure review and semi-structured interviews. We studied existing literature and (HTM in-

8

1
1.4 Thesis Outline

ternal) documents relevant to the rail, light-rail and transport domain. The literature
helps to substantiate the problems and suggests possible questions or hypotheses that
need to be addressed (CRESWELL 2003). We also interviewed domain experts to gain
first-hand domain knowledge to conduct the research. The questions and discussions
mainly focused on modeling related aspects such as systems behavior and structure.
The experts were also allowed to talk openly about any topics which they deemed po-
tentially important for the research without the use of specific questions (ibid.).

For solution design and development, we used literature review, data analysis, semi-
structured interview, experiments and case studies. Literature review was mainly con-
ducted in the domains of systems theory, M&S, information systems, graph transform-
ation and related works. Besides what is mentioned above, the literature was also used
to present results of similar studies and to relate this research to the ongoing dialogue
in the literature (ibid.). A theoretical approach was used for our solution whenever pos-
sible.

Data analysis is an ongoing process during research (ibid.). We performed data ana-
lysis (1) on the data used as the input for the AMG to identify data quality issues and
possible solutions, (2) on the data of the model output to verify model behaviors, and
(3) on the data from the real system to validate model behaviors. Some data analysis
sessions were performed together with the domain experts.

As in gathering information about the relevant domain knowledge, we used semi-
structured interviews to discuss and evaluate the design concepts with domain experts.
Experiments and case studies were conducted with the simulation model to evaluate
the design. In software engineering, experiments are typically used to explore relation-
ship among data to evaluate the accuracy of methods or to validate measures; and case
studies are important for the industrial evaluation of the methods and tools (SJOBERG

et al. 2007).
For the final model validation, we used questionnaires and panel discussions with

domain experts who evaluated the structure validity of the domain simulation models.

1.4 Thesis Outline

In § 2, we present a literature-based and systems-theory-rooted foundation of M&S
upon which the later chapters are developed. The main concepts include levels of sys-
tems knowledge and specification, meta-models, component-based models and mod-
eling formalisms.

In § 3, we provide an outlook on the AMG method. We first discuss the research
questions and propose a set of constructs for the AMG method based on § 2. We then
give a modeling example to elucidate data quality issues for an AMG method, and dis-
cuss a number of data quality categories and criteria. Finally, we propose three steps
for an AMG process.

The AMG method proposed by this research is presented throughout § 4, § 5 and
§ 6. We use cases in the domain of light-rail transport to study the AMG method. In
§ 4, we discuss the theory, design concepts, and research findings related to develop-

9

1
Towards Automated Simulation Model Generation

ing a simulation library that is fit for use for AMG. A domain model component library
developed for the domain of light-rail transport is presented. In § 5, we discuss graph
transformation theory, and present step-by-step the transformation rules for the AMG
method. To complement the AMG method, in § 6, we present a model calibration pro-
cedure, and discuss a calibration test case.

The simulation models generated by the AMG method developed in this research
was validated by an expert panel. The results are discussed in § 7.

In § 8, we summarize the thesis, high-light the research findings, show the practical
relevance of this research and comment on future research.

10

2
Foundations of

Systems and
Simulation Modeling

T
HE STRONG TIES between systems theory (VON BERTALANFFY 1950, LASZLO and

KRIPPNER 1998) and M&S have been elaborated by many authors (WYMORE

1967, ZEIGLER 2003, ÖREN and ZEIGLER 2012, TOLK et al. 2013b). The two are
intimately entwined — success in the first became bound up with another

kind of success in the second (ZEIGLER 2003). After all, a simulation model is a formal
representation of relevant systems knowledge used to study a system.

In this chapter, we present a literature-based and systems-theory-rooted founda-
tion of M&S upon which the later chapters are developed. The chapter begins with
grounding concepts and theories of systems and models in § 2.1, among which the or-
ganization and specification of systems knowledge at distinct epistemological levels are
explained.

We proceed with discussion about meta-models and component-based models in
§ 2.2 and § 2.3 correspondingly. The former is relevant to this thesis as meta-models al-
low for abstract representations of model structures of a class of models instead of just
one model. The latter is a promising modeling concept, not only because it promotes

11

2

Foundations of Systems and Simulation Modeling

the development of ready-to-use building blocks for concrete model instantiations, but
also because it is inline with the systems theoretical viewpoint of dealing with complex-
ity, among many other benefits.

The final section § 2.4 of this chapter brings in another important issue in M&S, that
is: modeling formalisms. We briefly discuss some formalism classes and formalisms in
literature, and give the rationale for choosing the Discrete Event System Specification
(DEVS) as the underlying modeling formalism for our model specifications. The DEVS
formalism and its principles are then presented.

2.1 Systems and Models

2.1.1 What are They?

In M&S, a model represents “a portion of the real world” (SHANNON 1975), existing or
not, under modeling interest. According to systems theorists such as ACKOFF (1973),
FORRESTER (1976) and KLIR (2001), a system is a set of interrelated parts (or elements)
of any kind that operate together for a common purpose. A model is an abstraction of
a system intended to replicate some properties of that system (OVERSTREET 1982, PAGE

1995). This means that a model needs to possess three features (STACHOWIAK 1973,
KÜHNE 2006):

Mapping feature A model is based on an original system, existing or non-existing. We
may call the original system a source system or a referent.

Reduction feature A model only reflects a relevant selection of an original system’s prop-
erties.

Pragmatic feature A model needs to be usable in place of an original system with re-
spect to some purpose.

The relation between systems and models is seemingly straightforward. Some may
hold a misconception of systems which would need some clarification. “A portion of
the real world” (let us call it a referent) that is perceived by an observer as “a system” is
in fact an image of the referent. This image is our mental model1 of the referent, which
already has reduced and somewhat organized complexity (SHANNON 1975, CHECKLAND

1981, FLOOD 1990, KLIR 2001). As such, it is reasonable to state that, strictly speaking,
a system in our eyes and minds is a model, not the referent itself; though a simulation
model is as well a model but a different one.

2.1.1.1 A Formal Definition of Systems

Before furthering the discussion, we shall give a formal definition of systems. One of the
most generic definitions is given by WYMORE (1967). Wymore’s definition of a system is

1The term mental model is suggested by the Scottish experimental psychologist Kenneth Craik (ZANG-
WILL 1980) — the mind carries a convenient small scale model of external reality that it uses to anticipate
events (CRAIK 1943).

12

2

2.1 Systems and Models

expressed by a 7-tuple (VANGHELUWE 2008, ÖREN and ZEIGLER 2012)

S = (T , X ,Ω,Q ,δ, Y ,λ) (2.1)

where

T ⊂R+0 is the time base
X is the input set
Ω= {ω : T → X } is the input segment set or function
Q is the state set
δ :Ω×Q →Q is the transition function
Y is the output set
λ : Q → Y is the output function

and the transition function satisfies the composition property

∀ω1,ω2 ∈Ω, q ∈Q : δ(ω1 •ω2, q) =δ(ω2,δ(ω1, q)) (2.2)

whereω1 •ω2 is a concatenation of two input segments. In essence, the property says
that the state set must retain enough information to allow the system to continue from
where it is left by the first input so that it can arrive at the same state it would have, had
there been no interruption in the middle (ZEIGLER 2003).

2.1.1.2 Some Related Terms and Concepts

How a system and its complexity are perceived is strongly influenced by human per-
spectives and perceptions (FLOOD 1990). Approaching systems complexity, we habitu-
ally divide (or decompose) the system into less complex parts (or sub-systems) and ana-
lyze the parts and their relations, which are more comprehensible. This decomposition
approach is well established in the systems theory and systems thinking literature (SI-
MON 1962, 1996, ACKOFF 1978, CHECKLAND 1999, KLIR and ELIAS 2003).

SIMON (1962) defines a complex system roughly as one made up of a large number of
parts that interact in a non simple way. A part is the representation of some phenomena
of the real world by a noun or a noun phrase that informed observers agree exists, or
could exist, or whose existence may be worth assuming in order to gain insight (FLOOD

and CARSON 1993). Each of these parts can be deemed a system and be formally de-
fined, e.g., in the form of Eq. 2.1. Any characteristic quality or property ascribed to a
part is a variable of that part (ibid.). A state is the values recognized for a set of vari-
ables (KLIR and ELIAS 2003).

A relation (or interaction) can be said to exist between two parts if the behavior of
one is influenced or controlled by the other (JONES 1982). A structure defines the way
in which the parts of a system can be related to each other (FLOOD and CARSON 1993).
While structure is the inner constitution of a system; behavior, on the contrary, is the
outer manifestation of a system (ZEIGLER et al. 2000). This means, when we view a sys-
tem or a sub-system as a black box, its behavior is the relationship it imposes between
its input trajectories and output trajectories, i.e., X → Y in Eq. 2.1 (ibid.).

13

2

Foundations of Systems and Simulation Modeling

Systems can be represented in the form of levels in hierarchical structures and or-
ganizations; more specifically, a system can be decomposed into smaller sub-systems,
and systems can be composed to form larger systems (SIMON 1962, 1996, FLOOD and
CARSON 1993, ZEIGLER et al. 2000). This hierarchy allows us to systematically reduce
the breath of analysis from system to sub-systems to sub-sub-systems, etc., which in-
creases the level of resolution of analysis (FLOOD and CARSON 1993). An important part
of any study drawing upon systems is to choose an appropriate level of resolution to
focus our attention on (ibid.). In simulation studies, the levels of resolution (or model
details) are choices resulting from the intended use of the models (ZEIGLER et al. 2000,
LAW 2007).

A simulation model can be defined to resemble a system in parts and relations. If
properly designed and specified, the model is in a morphism to its system counterpart
(ZEIGLER et al. 2000, KLIR 2001). We can achieve this when we have sufficient2 know-
ledge about a system, i.e., systems knowledge, in terms of its parts, relations, structures,
among others.

2.1.2 Sources of Systems Knowledge

A simulation model is a formal representation3 of relevant systems knowledge. When
a system under modeling interest is unknown or partially unknown to a modeler, he or
she needs to first acquire sufficient systems knowledge4 for the modeling goal. Systems
knowledge can be learned from several sources; the knowledge learned can be overlap-
ping and complementary, as shown in Figure 2.1.

Formal Systems Knowledge Formal knowledge is explicit knowledge that is articu-
lated or presented with a unique meaning in a preservable form. Examples of formal
systems knowledge are theories and theorems; mathematical models and simulation
models are also formal systems knowledge. They can be recorded in books, articles
and other media. An often used method for acquiring formal knowledge is literature
review.

Informal Systems Knowledge Much systems knowledge is implicit knowledge in the
heads of people who are familiar with the system, e.g., domain experts and users of the
system. The mental models of the system constructed by these individuals may, of-
ten do, possess “first-hand knowledge” (MACK 1990) that is not covered by the formal
sources. Clearly, informal systems knowledge is only usable after elicitation and form-
alization. Common methods for elicitation are meetings, interviews, questionnaires,
etc.

2Sufficient to the extent demanded by the intended use of the model.
3A formal representation refers to a representation that is specified following a modeling formalism, see,

e.g., § 2.4.1.
4This acquisition is meant for the gathering of existing systems knowledge, not the scientific discovery

type of knowledge acquisition.

14

2

2.1 Systems and Models

Formal knowledge
(theories, theorems, etc.)

Systems observation
(empirical data)

Referent

Informal knowledge
(mental models of

experts, users, etc.)

Modelers

Systems description
(documents, designs, etc.)

Figure 2.1: Sources of
systems knowledge

The content of formal systems knowledge is readily accessible in its meaning and
form. Its acquisition and exchange are often easier and faster than that of informal
knowledge (WANG 2009). Nevertheless, a large portion of systems knowledge is learned
informally. Hence, it is critical that modelers can identify and communicate effectively
with people who possess systems knowledge and involve these people in the model de-
velopment process (SHANNON 1975, BALCI 2012). Besides obtaining knowledge from
the knowledgeable, we can also indirectly acquire systems knowledge through the ana-
lysis of different data. We classify different data into two categories: systems observa-
tion and systems description.

Systems Observation By systems observation we refer to the type of data that is ob-
tained from recorded observation (or measurement) of a system. Some literature calls
it empirical data. It potentially contains information about the behavior (i.e., the outer
manifestation) of a system and its sub-systems. Following the definition of systems be-
havior previously stated, this type of data can describe the input and output, i.e., X and
Y in Eq. 2.1, of a system and its sub-systems. Modelers often use it, e.g., to chose and
fit input distribution and to validate output data of the models. With advances in data
collection and storage technologies, many organizations have large amounts of systems
observation.

Systems Description By systems description we refer to the type of data that poten-
tially contains descriptive information about a system. Compared to systems obser-

15

2

Foundations of Systems and Simulation Modeling

vation, systems description describes a systems and its sub-systems themselves (i.e.,
the inner constitution) instead of describing their behaviors in terms of their input and
output. Systems description is often produced by people such as domain experts, de-
signers and engineers of the systems; though it does not have to be. Examples are doc-
uments, floor-plans of factories, descriptions of manufacturing processes, maps and
satellite images of terrains. Systems description can contain structure and relation in-
formation about a system. The analysis and interpretation of systems description often
require professional training, domain expertise and knowledge of special notations5.
Modelers often can not understand or interpret systems description without expert ex-
planations. This type of data has become more and more available, particularly with
the increased use of computer-aided and model-based design and engineering.

As stated in §1.2, the objective of this thesis is to provide a method that automat-
ically generates simulation models with flexible structures using existing data. A key
construct of the study is to investigate the organization of systems knowledge from the
above mentioned sources, and to investigate the embodiment of the knowledge into a
method in a formal and flexible way that allows for a class of simulation models to be
generated according to different contents of the existing data.

This leads us to follow a systems theoretical approach to simulation modeling. The
theoretical framework used as a foundation by this thesis is the systems framework pro-
posed by KLIR and ELIAS (2003) in general systems theory as well as the theory from
ZEIGLER et al. (2000) which extends the theory of KLIR and ELIAS (2003) to the context
of simulation modeling.

2.1.3 Levels of Systems Knowledge

Epistemology is the theory of knowledge. KLIR and ELIAS (ibid.) presents a hierarchy
of epistemological levels of systems. This systems framework organizes distinct levels
of systems knowledge in a hierarchy, which is shown in Figure 2.2. The levels also im-
ply the profoundness of our systems knowledge. We give an overview of the levels as
following based on KLIR and ELIAS (ibid.).

Level 0 – Source System At the bottom level of the hierarchy is the “primitive under-
standing” of a system. A source system is defined (according to the modeling interest)
by a set of variables, a set of potential states (values) recognized for the variables, and
some operational way of describing the meaning of these states in terms of the mani-
festations of the associated attributes of a real system6. A source system is (potentially)
a source of empirical data.

Systems at higher levels are distinguished from each other by the level of knowledge
regarding the variables of the associated source system. A higher level entails that the

5Special notations refer to notations, terminology, rules, etc., used specifically in some organizations, that
are unknown to the others.

6A variable is an abstract image of an attribute; this means, attributes exist in a real system and variables
exist in the model system (KLIR and ELIAS 2003).

16

2

2.1 Systems and Models

knowledge attained at the lower levels is known and it contains additional knowledge
that is not available at the lower levels. Hence, the source system is included in all of the
higher level systems. Interaction with the world is mediated through the source system
to give a data system that is modeled through the levels above.

Level 1 – Data System When the source system is supplemented with data, we view
the new system as a data system. The data on the variables are obtained by measure-
ment or are defined as desirable states. The data obtained by measurement is the sys-
tems observation previously discussed. It can describe systems behavior and states.
Higher levels involve knowledge of some relational characteristics of the variables de-
fined through which the data can be generated for initial or boundary conditions.

Level 2 – Generative System With knowledge at this level, we are able to define one
overall characterization of the constraint among the variables. This characterization
describes a process by which the states of the variables (i.e., data) can be generated for
each initial or boundary condition. Each variable is defined in terms of a specific trans-
lation rule. The rule can be applied either to a variable in the given source system or
to a hypothetical variable, introduced for various methodological reasons and usually
referred to as an internal variable.

Level 3 – Structure System A structure system is defined as a set of generative systems
(or sometimes lower level systems), referred to as sub-systems, that interact with each
other in some way.

The status of a system as either a sub-system or super-system is, of course, not ab-
solute. A generative system may be viewed in one context as a sub-system of a structure
system, while in another context it may be viewed as a super-system whose sub-systems
form a structure system. This duality makes it possible to represent each (overall) sys-
tem by a hierarchy of structure systems7. The data type of systems description previ-

Level 4 Meta-Systems Relations between relations at Level 3

Level 3 Structure System Relations between models at Level 2

Level 2 Generative System Models that generate data at Level 1

Level 1 Data System Observations and desirable states of Level 0

Level 0 Source System A source of empirical data

Figure 2.2: Hierarchy of epistemological levels of systems (ibid.)

7There are numerous reasons why structure systems are desirable in design and engineering; readers of
interest may refer to KLIR and ELIAS (ibid.) or other relevant literature.

17

2

Foundations of Systems and Simulation Modeling

ously discussed contains information related to at least generative level.

Level 4 and above – Meta-Systems At level 4 and higher levels, a meta-system or a
meta-system of higher orders consists of a set of systems defined at some lower levels
and some meta-characterization by which changes in the lower level systems are de-
scribed. Meta-systems are introduced basically for the purpose of describing changes
of systems traits that are defined as invariant at lower levels.

Although the hierarchy defined by KLIR and ELIAS (2003) is in the context of general
systems theory, it is as well useful for simulation modeling, whose basic assignment is
the understanding and representation of systems.

Climbing the epistemological hierarchy often aims at specifying a generative or struc-
ture system that can generate correct data. Problems of this nature fall into the category
of systems modeling; this category can further be divided into systems inference and sys-
tems design depending on whether the system is in existence (KLIR 1988, ZEIGLER et al.
2000). On the other hand, systems analysis is the process of using a generative or struc-
ture system to generate data that is at a lower hierarchy level; computer simulation is
an example of this type (ZEIGLER et al. 2000).

Systems specification in the context of M&S is basically the formal description of
systems knowledge in a specification of a (simulation) model. If we wish to define a
simulation model that resembles a system in terms of parts, relations and structures,
we should draw a parallel between the levels of systems knowledge and the levels of
systems specification. The work of ZEIGLER et al. (ibid.) presents such a parallelism.

2.1.4 Levels of Systems Specification

The levels of systems specification (ibid.) has a similar hierarchy placing emphasis on
the M&S context (KLIR and ELIAS 2003). They identify useful ways of describing the
systems knowledge at the corresponding levels as given in Table 2.1. The following in-
troduction to the levels is based on ZEIGLER et al. (2000).

Observation Frame The observation frame corresponds to the source system. It spe-
cifies which variables to measure and how to observe them over a time base. The time-
indexed inputs to systems are called input trajectories; likewise, the time-indexed out-
puts are called output trajectories. Each pair of input and associated output traject-
ories is called an input/output (or I/O) pair. The choice of input and output variables
depends on our modeling objectives.

I/O Behavior and I/O Function They correspond to the data system. The collection of
all I/O pairs gathered by observation is called the I/O behavior of a system. The term I/O
function indicates the functional relationships of I/O pairs associated with the initial
states. For example, given an initial state qi ∈ Q or q ′i ∈ Q of the total state set Q , the

18

2

2.1 Systems and Models

Level Systems Knowledge Systems Specification Validity
4 Meta-System
3 Structure System Coupled Component Structural validity
2 Generative System State Transition Structural validity
1 Data System I/O Function Predictive validity

I/O Behavior Replicative validity
0 Source System Observation Frame

Table 2.1: Levels of systems knowledge and systems specification (ibid.)

response of a system to input ~x ∈ X is output ~y ∈ Y or ~y ′ ∈ Y . An initial state and an
input trajectory determine a unique output trajectory.

State Transition The state transition of a system corresponds to the systems know-
ledge at generative level. At this level, we specify how a system changes its states given
a current state and an input trajectory so that the correct output trajectory can be gen-
erated, i.e., (qm ∈Q , ~x ∈ X) 7→ (qn ∈Q , ~y ∈ Y).

Coupled Component The coupled component corresponds to the structure system in
Klir’s hierarchy. A component in a model is simply a counterpart of a part (or sub-
system) in the original system. A coupled component is a component that specifies
the interrelations (hence coupling) of its constituent components. Given the duality
of a system as previously discussed, a component can be a coupled component or a
component that specifies its state transition.

ZEIGLER et al. (ibid.) does not define a level of systems specification that corres-
ponds to Klir’s meta-system. Models at meta-levels are discussed in § 2.2. Before that,
we give ZEIGLER et al. (ibid.)’s view on morphism and validity in relation with the levels
of systems specification.

Levels of Morphism and Validity In mathematics, a morphism is a map between two
mathematical structures in a category. In general, the concept of morphism tries to
capture similarity between pairs of systems. The pairs of systems knowledge and spe-
cification can be related by morphism at each level of the hierarchy. A morphism at an
upper level must imply the existence of morphism at a lower level.

The validity of a model is the degree to which the model represents its system coun-
terpart (i.e., morphism) to the extent demanded by the intended use of the model. It
refers to the relation between a model, a system and an experimental frame. An exper-
imental frame is a specification of the conditions under which the system is observed
or experimented with.

The replicative validity is affirmed if the behavior of the model, i.e., I/O behavior,
and the system agree within acceptable tolerance for all the experiments possible within

19

2

Foundations of Systems and Simulation Modeling

the experimental frame. Stronger forms of validity are predictive validity and struc-
tural validity. The predictive validity requires replicative validity and the ability to pre-
dict as yet unseen system behavior, i.e., agreement at the I/O function. The structural
validity requires agreement at state transition or higher (coupled component). This
means that the model not only is capable of replicating the data observed from the sys-
tem but also mimics it step-by-step and component-by-component the way how the
system does its state transitions.

2.2 Meta-Models

There is a necessity for using meta-models when one needs to define a class of models in
an abstract way. What are meta-models? Are they meta-systems in the epistemological
hierarchy of KLIR and ELIAS (2003)? We try to answer the question in this section.

The etymology of meta- is µετα-.

In ancient Greek and Hellenistic Greekµετα- is combined chiefly with verbs and
verbal derivatives principally to express notions of sharing, action in common, pur-
suit, quest, and, above all, change (of place, order, condition, or nature), in the last
sense frequently corresponding to classical Latin words in trans- ... English forma-
tions with meta- meaning “beyond” ... “above, at a higher level” ... These formations
became common for scientific terms ... predominantly with the sense “dealing with
second-order questions”. 8

This dictionary entry renders important properties of “meta-ness” of models. The
term meta-model has been in wide use for quite a while. Nevertheless, relevant literat-
ure shows alternative interpretations of the term. In the following, we present two dis-
tinct roles of models, some different ways of interpretation of meta-models, and then
discuss the concept that is used in this thesis.

2.2.1 Roles of Models

Meta-models are models too (VANGHELUWE and DE LARA 2002). The distinction of model
roles and corresponding relations between the modeled and the model (i.e., the source
and target systems) is essential in understanding the concept of meta-models.

KÜHNE (2006) proposes two fundamentally different model roles by the distinction
of tokens and types. A type is a general sort of thing and a token is a particular concrete
instance of a type; types are generally said to be abstract and unique, and tokens are
concrete particulars (WETZEL 2011). Applying this distinction to models, token models
model particular instances (and their relations), and type models model classes of in-
stances (and their relations).

Example 2.1 Figure 2.3 illustrates examples of the model roles. The original system S is
the highway connections of “Randstad” in the Netherlands.

8Oxford English Dictionary.

20

2

2.2 Meta-Models

conformsTo

M2
Amsterdam

Rotterdam

The Hague

A4

UtrechtA12

A13 A20‐A12

A2

tokenModelOf

ty
pe

M
od

el
Of

typeModelOf

tokenModelOf

City Highway2 1..*
M3

co
nf

or
m

sT
o

typeModelOf

tokenModelOf

M1 Amsterdam

Rotterdam

The Hague

Leiden

Delft

Gouda

A4

A4
Utrecht

A12
A13

A13
A20

A2

A12

modelOf

tokenModelOftypeModelOf

S

Figure 2.3: Token and type model examples (based on KÜHNE 2006, SPRINKLE et al. 2011)

◦ M1 is a token model of S that consists of 7 cities, 8 highway connections and their
relations.

◦ M2 is a (simpler) token model of M1 and (thus also) of M2 that consists of 4 cities,
5 highway connections and their relations.

◦ M3 is a type model of S, M1 and M2. M3 consists of 2 types, viz., “City” and “High-
way”, and their relation. M3 is not a token model of S. Both M1 and M2 conform
to M3.

To summarize KÜHNE (2006)’s propositions of toke and type models:

◦ A token model captures a certain aspect of the parts and relations in a source
system in an one-to-one representation. The abstraction process for creating
token models involves no further abstraction beyond projection and translation.
A token models are sometimes referred to as snapshot models. They can be used
to capture a single configuration of a dynamic system.

◦ A type model condenses the above one-to-one representations to concise descrip-
tions by capturing the types of parts and the relations among the types only. The
complete abstraction process for creating type models involves classification in
addition to projection and translation. Token models are sometimes referred to
as schema models, classification models, etc. Most models used in model driven
engineering are type models.

◦ The token and type roles are not absolute properties of a model but depend on
its relation to its source system.

21

2

Foundations of Systems and Simulation Modeling

2.2.2 Types of Meta-Models

A meta-model is a model of models (OMG 2003, SPRINKLE et al. 2011). Although the sen-
tence is weak as a definition, it points out that the “modeling” operation or themodelOf
relation shall be applied twice (KÜHNE 2006, HESSE 2006). As the modelOf relation can
betokenModelOf ortypeModelOf, meta-models can have token or type roles as well.
In this section, we show some different types of meta-models that appear in literature.
The distinction of the types is based on the model roles from a M&S standpoint.

Meta-Model Type-I The meta-model of this type is a token model of a token model of
an original system; that is

S0
tokenModelOf←−−−−−−−− S1

tokenModelOf←−−−−−−−− S2

where S0 is the source system of S1, and S1 is the source system of S2. The tokenMode-
lOf relation is transitive, i.e., the last token model can reach down to the original sys-
tem to be its token model in a chain of token models (KÜHNE 2006). The meta-model
is therefore also a token model of the original system.

S0
tokenModelOf←−−−−−−−− S1

tokenModelOf←−−−−−−−− S2 =⇒ S0
tokenModelOf←−−−−−−−− S2

In the Example 2.1 previously given, M2 is a Type-I meta-model of S. The works by,
e.g., KLEIJNEN and SARGENT (2000) and KLEIJNEN (2009) concern meta-models of this
type. By their definition, a meta-model is an approximation of the I/O function that is
defined by the underlying simulation model; the meta-model is fitted to the I/O data
produced by the experiment with the simulation model. These meta-models are also
called response surfaces, surrogates, emulators, auxiliary models, etc. (KLEIJNEN 2009)

Meta-Model Type-II The meta-model of Type-II is a type model of a token model of an
original system. In this case, the meta-model holds a typeModelOf but not token-
ModelOf relation with the original system.

S0
tokenModelOf←−−−−−−−− S1

typeModelOf
←−−−−−−−− S2 =⇒ S0

typeModelOf
←−−−−−−−− S2

This means that the meta-model does not model concrete particulars of “a portion of
the real world” but a class of those concrete particulars.

In the Example 2.1 previously given, M3 is a Type-II meta-model of S; as such, M3
can model not only S (as M1 and M2 do) but as well any other highway connections.
In model driven engineering and development (OMG 2003), the meta-models are of
this type. Examples are ATKINSON and KÜHNE (2003) and CETINKAYA and VERBRAECK

(2011).

Meta-Model Type-III Recall that the meta-system level of KLIR and ELIAS (2003) de-
scribes changes of systems properties that are defined as invariant at lower levels. This
type of meta-models is very different to the previous two types.

22

2

2.3 Component-Based Models

The meta-model represents a larger system (which is a set of lower level systems)
and describes a replacement procedure (i.e., replacements of one low level system by
another). The meta-system is neither a token model nor a type model of the original
system. It is a token model of a larger system that has the original system as a member.

S0
tokenModelOf←−−−−−−−− S1 ∈ S2

The works of, e.g., KICKERT and VAN GIGCH (1979) and VAN GIGCH (1991, 1993, 2005)
concern meta-models of this type. They discuss meta-models for systems design and
organizational decision-making where the meta-model is essentially a model of the
modeling or design process.

Discussion The objective of this research is to provide a method that automatically
generates simulation models with flexible structures according to the existing data de-
scribing different referents within a certain domain, assuming that these simulation
models are intended for similar purposes. A simulation model is a token model. It has
a concrete referent. Certainly, we do not intend to pre-specify simulation models in-
stance by instance for every referent in AMG. This would be essentially the same as
manual processes. In order to specify an abstraction of a class of simulation models
within a certain domain, a type model of that domain (with respect to some purposes)
is desirable. This means that we need a Type-II meta-model for generating simulation
models through instantiation by altering model structures and constituent model parts
according to existing data.

As stated earlier, a type model models classes of instances and their relations. It cap-
tures the types of system parts and the relations among the types only. This requires an
appropriate model (and meta-model) representation for the parts and the relations. In
this context, we propose component-based models and the use of formal model spe-
cifications.

2.3 Component-Based Models

Components are also known as building blocks. According to VERBRAECK et al. (2002),
a component is a self-contained, interoperable, reusable and replaceable unit that en-
capsulates its internal structure and provides useful services to its environment through
precisely defined interfaces. Component-based modeling is founded on a paradigm
that is common to all engineering disciplines: complex systems can be obtained by as-
sembling components (GÖSSLER and SIFAKIS 2005). It is a promising modeling concept
from both systems theory and M&S perspectives.

From A Systems Theoretical Perspective The word system in Greek σύστηµ-αmeans
composition in its literary sense. In § 2.1.1.2, we see that systems can be viewed as parts
and relations. A complex system can be recursively decomposed into sub-systems until

23

2

Foundations of Systems and Simulation Modeling

an elementary level is reached where we choose to no longer further the decomposition.
The criterion for reduction is often functionality (SIMON 1996). SIMON (ibid.) gives a
parable of two watchmakers to explain the advantage of using components over using
only basic parts. Such a recursive decomposition (or composition when we observe it
bottom-up rather than top-down) forms a system into a hierarchical structure.

As stated in § 2.1.3 and § 2.1.4, systems knowledge can be organized into differ-
ent levels, and we may define the levels of systems specification to correspond with
the knowledge levels, which lead to morphisms and validity at different levels (KLIR

and ELIAS 2003, ZEIGLER et al. 2000). Together they suggest the use of components and
composition to hierarchically represent systems parts and relations.

From An M&S Perspective Modelers use model components to manage complexity in
modeling (i.e., for complexity reduction) and to enhance reuse (HOFMANN 2004, MOSER

2006, PAGE 2007, VALENTIN 2011). Thereby, simulation models do not have to be de-
veloped from scratch. Components are for composition (SZYPERSKI 2011). The aggreg-
ation of simpler components can form more complex components (GÖSSLER and SI-
FAKIS 2005). Model components can be used as basic building blocks or aggregated
building blocks in constructing simulation models (VERBRAECK et al. 2002). Various
combinations of model component aggregation bring out different simulation models.
ZEIGLER et al. (2000) makes the following comment on components. A component can

(a) be developed and tested as a stand-alone unit,

(b) be placed in a model repository and reactivated at will, and

(c) be reused in any application context in which its behavior is appropriate and its
relation to other components makes sense.

An essence of component-based modeling is composability. Composability is the
capability to select and assemble simulation components in various combinations into
valid simulation systems to satisfy specific user requirements (PETTY and WEISEL 2003a).
It contents with the alignment of concepts by the consistent representation of inter-
pretations of truth in all participating systems (PAGE et al. 2004, TOLK et al. 2013a). An
important property that makes models composable is modularity (ZEIGLER et al. 2000),
i.e., the self-containedness of a model. To be modular, the model components need to
fulfill at least two requirements:

(1) they are the outcomes of a meaningful systems decomposition (HOFMANN 2004);

(2) they are expressed by an appropriate modeling formalism (SARJOUGHIAN 2006).

The first requirement is related to semantics. Whether the designed model compon-
ents can be meaningfully composed (PETTY and WEISEL 2003b) is largely determined
by whether the original system is meaningfully decomposed. The issue of decomposi-
tion is again related to systems knowledge as discussed in § 2.1. Although component-
based modeling is widely known and is encouraged for its considerable benefits, it is
shown difficult to apply (YILMAZ 2004, SZABO and TEO 2007, TOLK et al. 2010). There is
limited literature on, e.g., good ways for systems decomposition (HOFMANN 2004). SI-

24

2

2.4 Modeling Formalisms and Model Specifications

MON (1996) introduces the term near-decomposability to refer to a property of complex
systems which may give us some general idea of decomposition:

(a) the interactions between sub-systems in a complex system are weaker than the
interactions within them, and

(b) each sub-system in a decomposed system is almost autonomous, i.e., each has
independent functionality but still provides value to the overall system by main-
taining a weak connection with it.

The second requirement of applying an appropriate modeling formalism is related
to syntactics, i.e., whether the components can be correctly connected, which requires
that the components are constructed such that their parameter passing mechanisms,
external data accesses, etc., are compatible for all of the different configurations that
might be composed (PETTY and WEISEL 2003b).

Additionally, an appropriate modeling formalism can support the component-based
modeling concept. This means that it can support a clear definition of components,
aggregated components and their composite relations, and it can support the con-
struction of models through compositional variations of components (NIERSTRASZ and
MEIJLER 1995, NIERSTRASZ and TSICHRITZIS 1995, ACHERMANN et al. 2001). One can
achieve this by a careful choice of modeling formalisms which are discussed next.

2.4 Modeling Formalisms and Model Specifications

A simulation model is a special piece of software. It is a set of instructions, rules, equa-
tions, or constrains for generating I/O behavior; see § 2.1.4. There are many constrains
on how it should be designed and developed. These constrains partly concern the mor-
phisms between the systems knowledge and the systems specification as discussed in §
2.1.4. The constrains also concern the non-functional requirements for the model and
the model components, e.g., composability, modularity, reusability and extensibility.

Systems specifications need to be expressed in a certain modeling formalism. A
formalism has the advantages that it has a sound mathematical foundation and it has
rigorously defined semantics (ZEIGLER et al. 2000). A formalism can largely influence
model design. We next present basic classes of modeling formalisms and give the ra-
tionale for our formalism choice.

2.4.1 Formalisms and Formalism Classes

Modeling formalisms are also known as systems specification formalisms. They are
shorthand means of delineating a particular system within a subclass of all systems
(ibid.). In this context, a formalism is mathematical9. More specifically, a modeling

9A mathematical formalism refers to a — mathematically formulated and physically interpreted — nota-
tional system of locally applicable rules that derive from (but need not be reducible to) fundamental theory
(GELFERT 2011).

25

2

Foundations of Systems and Simulation Modeling

formalism is a mathematical structure10 composed of sets, relations on sets, and ax-
ioms on relations, for expressing simulation models.

2.4.1.1 Three Classes of Formalisms

There is a variety of modeling formalisms in M&S literature, e.g., differential algebraic
equations, bond graphs, cellular automata, petri nets, just to name a few. Figure 2.4
shows a subset of modeling formalisms where many commonly used formalisms are
included. The arrows denote transformation relations that are discussed in § 2.4.2. To
give an overview of the formalisms, we do not discuss each in detail but in terms of
classes following ZEIGLER et al. (2000). There is a vertical dashed line in the middle
of Figure 2.4 that separates the formalisms into two classes: formalisms for discrete
models on the right side, and formalisms for continuous models on the other side.

In traditional mainstream M&S paradigms, (dynamic) systems are delineated with
discrete or continuous time. This means that the state changes of the systems are spe-
cified on a discrete or continuous time base11. The resulting models are discrete time

PDE

KTG

Bond Graph a-causal

DAE non-causal set

System Dynamics

Bond Graph causal

Cellular Automata

DAE causal set

DAE causal sequence

Transfer function

Petri Nets
3 Phase Approach

Process Interaction

DEVSDEVS&DESS

Differential Equations

scheduling-hybrid DAE

Timed Automata

Activity Scanning

Event scheduling

continuous formalisms discrete formalisms

Statecharts

Fig. 4.5: Formalism transformation graph (Vangheluwe and de Lara, 2002)

52

Figure 2.4: Formalism Transformation Graph (VANGHELUWE 2000, modified by JACOBS 2005)

10A mathematical structure is a generic name for unifying concepts whose general characteristic is that
they can be applied to sets whose elements are of an indefinite nature; in order to define a structure, rela-
tions are given in which the elements of the set appear (the type characteristic of a structure), and it is then
postulated that these relations satisfy certain conditions — axioms of the structure (EOM 2011).

11A time base is defined as a structure time = (T ,<) where T is a set and < is a transitive, irreflexive, and
antisymmetric ordering relation on elements of T , i.e.,∀t ∈ T (ZEIGLER et al. 2000). In M&S, time is conceived

26

2

2.4 Modeling Formalisms and Model Specifications

models or continuous time models. As the continuous time models also have continu-
ous states, we can simply call them continuous models without any ambiguity in mean-
ing. The formalisms used to specify these models are discrete time formalisms or con-
tinuous formalisms respectively. These are the two traditional classes of modeling
formalisms. Examples are formalisms for difference equations and differential equa-
tions.

There is a third class of modeling formalisms, the discrete event formalisms, that
is “the new guy on the block” using ZEIGLER et al. (ibid.)’s expression. In fact, the dis-
crete event world view is rather natural and intuitive in many situations. Consider the
following simple case.

Example 2.2 My phone was ringing when I was home one evening and I picked up the
call. It was a friend asking if we could meet in an hour in the city. I was free that evening
so I agreed to meet. As I would need 20 minutes to get to the city, I left home in 40 minutes.

Remarks The actions in the example may be roughly segmented into two: (i) picked
up the call and agreed to meet a friend, and (ii) left home. The first action was ac-
tivated by an external event of “phone was ringing” by which the input value of the
event was “a friend asked if we could meet”. The response was determined by the
input value and my (internal) state of being “free that evening”. As a consequence,
the second action was scheduled in 40 minutes (i.e., an internal event) which was
deduced by the meeting time and the travel time.

The discrete event world view brought up a different modeling paradigm in which
the states (and actions, i.e., state-to-output mapping) of a system are determined by ex-
ternal and internal events. Despite the increased use of this world view in practice, the
modeling approaches based on this world view were not formalized until a few decades
ago (HO 1994) — much later than the former two classes of formalisms. An example of
a discrete event formalism is petri nets.

2.4.1.2 Three Basic Formalisms

The three classes of discrete time, continuous, and discrete event models and formal-
isms are not unrelated, neither are they mutually exclusive. Their relations are partic-
ularly shown by the work of ZEIGLER (1976) and ZEIGLER et al. (2000) where three basic
modeling formalisms (and some variations) are developed, each of which corresponds
to one of the three classes of formalisms just discussed. The three formalisms are:

◦ Discrete Time System Specification (DTSS),

◦ Differential Equation System Specification (DESS), and

◦ Discrete Event System Specification (DEVS).

They together form a unified systems theory based M&S framework. We next shortly
present the three basic modeling formalisms and then discuss their relations.

as flowing along independently, and all dynamic changes are ordered by this flow (ibid.).

27

2

Foundations of Systems and Simulation Modeling

Discrete Time System Specification (DTSS) for Discrete Time Models This formalism
represents systems over a discrete time base. It assumes a stepwise execution. At a
particular instant the model is in a particular state and it defines how this state changes,
i.e., what the state at the next instant will be. If the state at time t is q (t) and the input
at time t is x (t), then the state at time t +1 is q (t +1) =δ(q (t), x (t))where δ is the state
transition function.

Differential Equation System Specification (DESS) for Continuous Models This form-
alism represents systems with continuous state over a continuous time base. It does
not specify a next state directly through a state transition function but specifies the rate
of change of the state variables qi∈[1,n] through a derivative function f . This means that
at any particular instant, given a state and an input value, we know the rate of change of
the state, i.e., d qi∈[1,n](t)/d t = f (q1(t), q2(t), · · · , qn (t), x (t)), and can thus compute the
state at any instant in the future using integration methods.

Discrete Event System Specification (DEVS) for Discrete Event Models This formalism
represents systems as piecewise constant state trajectories over a continuous time base.
The state trajectories are produced by state transition functions δext and δint that are
activated by external or internal events. More details of the formalism is presented in §
2.4.3.

The other formalisms presented by ZEIGLER et al. (2000) are in principle variations
and combinations of the three basic formalisms. The choice of the underlying formal-
ism for systems specifications is often based on, e.g., the nature of the M&S problem
and the modeler’s experience and background.

2.4.1.3 Our Choice of Modeling Formalisms

In this research, we choose DEVS as the underlying modeling formalism. Our choice is
mainly based on two criteria.

◦ DEVS provides strong support for hierarchical component-based modeling, and

◦ DEVS can embed and represent many other formalisms.

The strong support of the DEVS formalism for hierarchical component-based mod-
eling can be shown by the formalism itself (which is soon presented in § 2.4.3) and by
the applications of the formalism (WAINER 2009). A basic motivation of discrete event
modeling in general is that it is intrinsically tuned to the capabilities and limitations of
digital computers (ZEIGLER et al. 2000). DEVS supports port-based modeling which is
proposed by a number of authors for its modular principle (PAREDIS et al. 2001, LIANG

and PAREDIS 2004, BREEDVELD 2009). In general, the interface of port-based models
only consists of input and output ports, through which all interactions with the envir-
onment occur. Thereby, direct dependencies between components are largely elimin-
ated (RÖHL and MORGENSTERN 2007).

28

2

2.4 Modeling Formalisms and Model Specifications

That DEVS can embed and represent other formalisms is argued by authors such as
DE LARA et al. (2004), VANGHELUWE (2000, 2008) and WAINER (2009). They show that
DEVS is a fairly general formalism and can play the role as a root formalism within the
class of discrete event formalisms. Additionally DEVS can be used to represent or ap-
proximate models using discrete time and continuous formalisms. These issues are ex-
plained in the following based on ZEIGLER et al. (2000) and VANGHELUWE (2000, 2008).

2.4.2 Formalism Transformations

DEVS Embedding The DEVS formalism has a fairly general form that underlies sys-
tems with discrete event behavior. As such, many other discrete event formalisms can
be embedded as sub-formalisms of DEVS. This is called DEVS embedding. According
to ZEIGLER et al. (2000), one formalism can be embedded in another if any system in
the first can be simulated by some system in the second. The formalism embedding
relations (i.e., transformation relations from other discrete event formalisms to DEVS)
are shown by the arrows on the right half side of Figure 2.4.

DEVS Representation The DEVS formalism supports the specification of all three ba-
sic classes of models discussed in § 2.4.1. In other words, DEVS can also be used to
represent models specified by discrete time formalisms and continuous formalisms.
This is called DEVS representation. The formalism representation relations (i.e., trans-
formation relations from discrete time and continuous formalisms to DEVS) are shown
in Figure 2.4 by the arrows pointing from the left hand side to DEVS.

As depicted in Figure 2.4, the formalism transformations can eventually converge
to the DEVS formalism. This confirms that DEVS is a general modeling formalism.
VANGHELUWE (2000) argues that DEVS is a common denominator of modeling form-
alisms as it unifies continuous and discrete representations.

Demonstrated by ZEIGLER et al. (2000), DEVS can strongly represent the DTSS form-
alism by constraining the time advance to be constant. This strong representation em-
beds DTSS in DEVS. Since continuous models are traditionally simulated in discrete
time, the embedding of DTSS in DEVS offers an immediate path to the DEVS represent-
ation of DESS (approximations) through discretization (of time). Approximation can,
however, also be achieved through quantization (of state variables).

Discretization and Quantization Discretization refers to the more traditional way of
discretizing the time base in order to represent continuous systems with approxima-
tion. ZEIGLER (1998) proposes the theoretical foundation of an alternative approxima-
tion approach in M&S, namely quantization, by which the state variables of continuous
systems are discretized (or partitioned) rather than the time base. Discretization leads
to discrete time models while quantization leads to discrete event models. The work of
ZEIGLER et al. (2000) also shows that quantized DEVS representation can provide more
efficient simulation at lower error cost than the traditional integration methods of dif-
ferential equation systems.

29

2

Foundations of Systems and Simulation Modeling

2.4.3 DEVS Formalism

The DEVS formalism specified by ZEIGLER et al. (2000) exhibits the concepts of systems
knowledge and specification as discussed in § 2.1.3 and § 2.1.4, and supports hierarch-
ical component-based modeling as discussed in § 2.3.

2.4.3.1 General Description

It is mentioned earlier that DEVS models are port-based. The interfaces of the models
only consist of input and output ports , through which all interactions take place. The
interaction relations of the models are defined by couplings where the model ports are
connected from one to another. A DEVS model can place a value on one of its ports
but the actual destination of the output is not determined until the model becomes a
component in a larger model and the coupling relation is specified (ibid.). Composition
in DEVS is achieved through couplings. DEVS models can be coupled together (when
appropriate) to form a larger model component which is called a coupled model. The
ability to incrementally compose larger coupled models from previously constructed
components leads to hierarchical model construction. When we view the hierarchical
composition as a tree structure, the nodes in the tree are the coupled models whereas
each leaf in the tree is an atomic model. An atomic model is not a resultant of compos-
ition. It generates the behavior of a system at an elementary level. More specifically, an
atomic model possesses states and state transition mechanisms (dictating how inputs
transform current states into subsequent states) as well as the state-to-output mapping
(ibid.). Hierarchical DEVS models are coupled models with components which may be
atomic or coupled models. Atomic models are expressed in the basic DEVS formalism;
coupled models are expressed in the DEVS coupled model formalism providing com-
ponent and coupling information. The following description of the formalism is based
on ZEIGLER et al. (ibid.).

2.4.3.2 Basic DEVS Formalism for Atomic Models

A basic discrete event system specification is a structure

M = (X , Y ,S ,δext,δint,δcon,λ, ta) (2.3)

where

X = {(p , v)|p ∈ IPorts, v ∈ Xp } is the set of input ports and values
Y = {(p , v)|p ∈OPorts, v ∈ Yp } is the set of output ports and values
S is the set of sequential states
δext : Q ×X b → S is the external state transition function, where

Q = {(s , e)|s ∈ S , e ∈ [0, ta (s)]} is the set of total states
e is the elapsed time since last transition

δint : S → S is the internal state transition function
δcon : Q ×X b → S is the confluent state transition function

30

2

2.4 Modeling Formalisms and Model Specifications

λ : S → Y b is the output function
ta : S →R+0 ∪∞ is the time advance function

The superscript b in the specification indicates a bag of input or output values in stead
of a single value. A bag is a set with possible multiple occurrences of its elements.
The interpretation of the formalism is illustrated in Figure 2.5. For simplicity, we first
discuss the state transition mechanism without the confluent state transition function
δcon(s , x).

In principle, an atomic model can change its state s ∈ S by the external state trans-
ition function δext (s , e , x) and the internal state transition function δint (s). The ex-
ternal state transitions are determined by s , e ∈ [0,τ] and x ∈ X b where e is the elapsed
time since the last external or internal state transition12, and x is the input which can
have a bag of values13. The time advance function ta (s) determines the designated life
time τ ∈ R+0 ∪∞ of a state s . It is the time a certain state is supposed to last. A time
advance is determined right after an external or internal state transition.

An external state transition is activated by an external event (or input event), i.e.,
each time when there is an input placed on one of the input ports. The internal state

s=δext(s,e,x)

input event x

interrupt

output event y

s=δint(s)

[e=τ]

s=δcon(s,x)

y=λ(s)

τ=ta(s)

wait τ
Éinternal transition first (default):
δcon(s , x) =δext (δint (s), 0, x)

Éexternal transition first:
δcon(s , x) =δint (δext (s ,τ, x))

Figure 2.5: State transition mechan-
ism of a DEVS atomic model

12This means that the elapsed time e starts to count from zero right after each transition.
13The values are often associated with ports which are not shown in Figure 2.5.

31

2

Foundations of Systems and Simulation Modeling

transitions are self-triggered (or time-triggered). This means that when the elapsed
time reaches the life time of a state, referred to as an internal event, an internal state
transition is activated. Right before the internal state transition, based on the present
yet right-to-be-changed state, the output functionλ(s) places output values y ∈ Y b on
one or more output ports.

As just mentioned, an external state transition is set off when an external event ar-
rives. This entails that an external event causes an external transition which further
causes a reset of elapsed time, hence also interrupts a “planned” internal transition.
What happens when an external event arrives right at the time of an internal event?
This is where the confluent state transition function δcon(s , x) comes into play. When
there is a collision between external and internal events, the confluent state transition
decides the next state. In general, the modeler is unrestricted in defining the conflu-
ent state transition function. There are, however, two commonly used definitions. The
default definition is to have an internal transition followed by an external transition,
i.e., δcon(s , x) = δext (δint (s), 0, x); another possibility is to have an external transition
followed by an internal transition, i.e., δcon(s , x) =δint (δext (s ,τ, x)).

The basic DEVS formalism corresponds to systems knowledge at the generative level
where state transitions of systems can be specified (§ 2.1.3 and § 2.1.4). Taking into
account the duality of generative and structure systems discussed in § 2.1.3, some may
view the basic formalism as being at the structure level of the knowledge hierarchy. The
basic DEVS formalism is consistent with the definition of systems by WYMORE (1967),
§ 2.1 Eq. 2.1, and can be considered as a refinement or extension of the definition (ÖREN

and ZEIGLER 2012).

2.4.3.3 DEVS Coupled Systems Specification Formalism for Coupled Models

A DEVS coupled model is also a structure

N = (X , Y , D ,{Md∈D }, EIC, EOC, IC) (2.4)

where

X = {(p , v)|p ∈ IPorts, v ∈ Xp } is the set of (external) input ports and values
Y = {(p , v)|p ∈OPorts, v ∈ Yp } is the set of (external) output ports and values
D is the set of component names
{Md∈D } is the set of components, each of which can be an

atomic model or a coupled model
EIC⊆ X ×∪Xd∈D is a set of external input couplings that connects ex-

ternal inputs to component inputs, where
Xd∈D is the set of inputs of Md∈D

EOC⊆∪Yd∈D ×Y is a set of external output couplings that connects
component outputs with external outputs, where
Yd∈D is the set of outputs of Md∈D

IC⊆∪Yd∈D ×∪Xd ′∈D∧d 6=d ′ is a set of internal couplings that connects compon-
ent outputs to component inputs

32

2

2.4 Modeling Formalisms and Model Specifications

eic1

1

2

3

eic2

ic1

ic2

eoc1

p1

p2

p3

p4 p5

p6 p7

p8

p9
p10

IPorts= {p1, p2}, OPorts= {p3}
{Md∈D }= {M1, M2, M3}
IPorts1 = {p4}, IPorts2 = {p6}, IPorts3 = {p8, p9}
OPorts1 = {p5}, OPorts2 = {p7}, OPorts3 = {p10}
EIC= {eic1 = (p1, p4), eic2 = (p2, p6)}
EOC= {eoc1 = (p10, p3)}
IC= {ic1 = (p5, p8), ic2 = (p7, p9)}

Figure 2.6: DEVS coupled model: an example

A coupled model represents a sub-system at a non-elementary level. It is a resultant
of composition. This means that a coupled model does not generate behavior per se, as
that of an atomic model, but it specifies its constituent components and their coupling
relations. The components are systems specifications on their own. A component in
this context may be an atomic model specified using the basic DEVS formalism (Eq. 2.3)
or a coupled model specified using the DEVS coupled model formalism (Eq. 2.4). The
behavior of a coupled model is determined by the collective behavior of its compon-
ents.

Couplings in DEVS can be of three types. The couplings from (the input ports of) the
coupled model to (the input ports of) its components or from (the output ports of) its
components to (the output ports of) the coupled model are the external input coup-
lings (EICs) and external output couplings (EOCs) respectively. The coupled model
and its components are also called the parent model and the child models. The coup-
lings from (the output ports of) a child model to (the input ports of) another child model
are the internal couplings (ICs).

In DEVS, self-couplings (or direct feedback loops) are impermissible, i.e., a model’s
output ports can not be directly connected to its own input ports. One-to-many (1 : n)
and many-to-one (n : 1) couplings are possible in DEVS. (The indexes refer to ports.)
For example, in specifying ICs, a single output port may be coupled to multiple input
ports, and similarly multiple output ports may be coupled to a single input port.

Figure 2.6 gives a simple example of a DEVS coupled model. The coupled model N
consists of three components Md∈{1,2,3}. Each component may be specified by Eq. 2.3
or Eq. 2.4. The coupled model also specifies five coupling relations, two EICs, one EOC,
and two ICs. The example only shows one-to-one couplings. However, it is possible to
have, e.g, the couplings ic1 and ic2 both connect to p8 or p9. Couplings such as connect-
ing p10 to p8 or p9 are not allowed.

The DEVS coupled systems specification formalism corresponds to systems know-
ledge at the structure level where a set of systems and their interrelations can be spe-
cified (§ 2.1.3 and § 2.1.4). It is apparent that varying the coupling relations of the child
models can alter the behavior of their parent model. In such cases, the parent model
has been changed (to be another model) as its structure has been changed to another.

33

2

Foundations of Systems and Simulation Modeling

2.4.3.4 Remarks On DEVS Model Composition

The structure change at the coupled model level leads to different model composition.
It is a useful model generation strategy because it links to the essence of design as un-
derstood in systems theoretical terms. In ZEIGLER et al. (2000), systems design is un-
derstood as the process of going from a lower to a higher level of systems epistemology,
namely from the generative (or lower order level) systems to that of a higher order level
system (§ 2.1.3 and § 2.1.4).

Modelers use components, with the knowledge of their inner structure and outer
behavior as his or her basic vocabulary, and connect the components within new struc-
tures, encoding new knowledge that was not available in the previous step. The result
of this modeling activity can in turn be analyzed by simulating it, which corresponds to
automatically translating the structure system to a data system (§ 2.1.3).

With the closure under coupling property14 of DEVS, the resultant of couplings of
DEVS models is also a DEVS model, making it possible to incrementally develop a hier-
archy of more and more complex model components, whose patterns of state changes
could not have been specified all at once, or the modeler choose not to specify them all
at once.

Furthermore, the hierarchical composition of models makes it possible to separate
the different levels of organization which are relevant for systems design and systems
analysis (§ 2.1.3). This makes model understanding easier as long as the world view
guiding the component (library) specifications coincide with the world view of the end
users, i.e., when the morphisms between the systems knowledge (of the users) and the
systems specifications at different levels are respected (§ 2.1.2 and § 2.1.4).

There is, however, a challenge in hierarchical composition of models: model com-
ponents must be developed in the first place. This development requires a top-down
hierarchical decomposition of the system (or the class of systems) under modeling in-
terest, in order to identify the different parts and relations relevant in the domain of
application. As mentioned in § 2.3, there is a limited number of literature on scientific
methodologies for systems decomposition for model component development (HOF-
MANN 2004). Decomposition in practice is often done according to a certain functional
perspective, which per definition excludes many aspects of the system. This will result
in certain components that can not be used to compose a useful model in some other
context. Therefore, the decomposition strategy must be strongly communicated to the
end users of the model component library.

14A modeling formalism has the property that it is closed under coupling if the resultant of couplings of sys-
tems specified in this formalism is itself a system specified in the formalism, i.e., the resultant defines a basic
system in the same formalism; closure under coupling allows us to use couplings of systems as components
in a larger coupled system, leading to hierarchical, modular construction (ZEIGLER et al. 2000).

34

3
An Outlook on Automated

Simulation Model
Generation

O
UR STANDPOINT OF AMG is within a certain domain of application. As dis-

cussed in § 1.1, many organizations are facing the situation that they often
need simulation studies where the models take a long time to develop. Since
more and more data has become available in organizations, it could provide

useful information for modeling. But constrained by time and cost, much of the data
is currently unused for modeling. To improve the situation and benefit from the data,
there is a need for a method that can use existing data to automatically generate simu-
lation models.

The method proposed by this research is presented throughout § 4, § 5 and § 6. In
this chapter, we intend to provide an outlook on AMG as well as the content of the next
three chapters. In § 3.1, we discuss the research questions in § 1.2 and identify a set
of constructs for the AMG method based on the concepts and theories presented in
§ 2. The relations between the domain, model, research questions and constructs are
illustrated.

To elucidate data quality issues that one may encounter in using existing data for

35

3

An Outlook on Automated Simulation Model Generation

AMG, a modeling example is given in § 3.2 to show the difference between the inform-
ation contained in the existing data and that of the a simulation model. In § 3.3, we
discuss data quality categories and criteria that are pertinent to the context of this re-
search.

Starting from existing data to simulation models, we propose to divide an AMG pro-
cess into three steps. These steps and their relations to the proposed constructs are
briefly discussed in § 3.4.

3.1 Proposed Constructs on Research Questions

In this section, we discuss the research questions (RQs) specified in § 1.2 and propose
a set of constructs1 that can be used in an AMG method. The identification of these
constructs is a first step towards tackling the research problem. Recall that our research
objective is to provide a method that automatically generates simulation models using
existing data. Given a class of potential referents within a domain of application and
existing data about the referents, we shall find a method that can automatically generate
simulation models of the referents according to the data.

On Research Question 1
What is a good way to define flexible structures for simulation models in order to achieve
the research objective?

RQ1 is concerned with simulation model structures. As argued in § 1.1, we aim at
generating simulation models whose structures are not pre-defined (before model gen-
eration). A simulation model is a token model that has a concrete referent in a domain
of interest. Because pre-defining structures on concrete simulation model instances
is inefficient, inflexible and sometimes impossible, we need to specify an abstraction
of the structures of a class of simulation models within a certain domain. Following
the discussion in § 2.2, a Type-II meta-model of the domain is desirable as a basis for
generating the desired simulation model (structure) through instantiation.

Construct 1 A Type-II meta-model (i.e., a type model) of the systems of interest.

As indicated by the RQ1 arrow in Figure 3.1, starting from a class of potentially infin-
ite but similar modeling problems (i.e., source systems or referents) within a domain,
we shall define a Type-II meta-model that provides an abstraction of the structures of
the potential simulation models.

The discussion in § 2.2.1 points out that a type model captures the types of system
parts and the relations among the types only. It is a necessary but yet insufficient mod-
eling basis for AMG. We still need appropriate modeling representations for the parts,

1Constructs are representations of the entities of interest in a theory; they are the basic building blocks
or components of a theory (DUBIN 1978, GREGOR and JONES 2007, KUECHLER and VAISHNAVI 2008). We use
the term construct instead of building block or component in order to differentiate it from the term model
component.

36

3

3.1 Proposed Constructs on Research Questions

RQ1

RQ2

RQ3

RQ4

 Data Model

Model
Component
Library

RQ1 What is a good way to define flexible structures
for simulation models in order to achieve the re-
search objective?

RQ2 What are the requirements for the data in order
to achieve the research objective?

RQ3 What functionalities should a method provide
in order to automatically generate simulation mod-
els with flexible structures using existing data?

RQ4 What is the quality of the simulation model
generated by the method?

Figure 3.1: Research questions in relation with
domain, model and meta-models

and a convenient way to assemble the model parts and to set up their relations. In this
regard, we propose the use of hierarchical component-based modeling and an appro-
priate underlying modeling formalism, for the reasons presented in § 2.3 and § 2.4. A
model component library can be developed to fulfil these conditions.

Construct 2 A model component library that implements the concept of hierarchical com-
ponent-based modeling and uses an appropriate underlying modeling formalism.

Although we choose and recommend the DEVS formalism because of its fair gen-
eralness and its other characteristics reasoned in § 2.4, modelers could best decide on
the formalism that suits the nature of the M&S problems.

On Research Question 2
What are the requirements for the data in order to achieve the research objective?

RQ2 is concerned with data issues. When we have an appropriate domain meta-
model and a suitable model component library as just proposed, how to generate simu-
lation models from them? We need concrete information on how to instantiate a simula-
tion model, i.e., the information about the model structure and the model parameteriz-
ation. This means that we need to have good data. For the research objective, good data
would be those that could provide or potentially provide sufficient information about
the model structure and parameterization for the instantiation of simulation models
given the meta-model and the model component library.

This suggests that RQ1 and RQ2 are not independent of each other. The existing
data is obtained from a referent or it describes a referent. We call them systems obser-
vation and systems description in § 2.1.2. If the data is to give certain information about
the model of the referent, we logically want to create a parallelism between the refer-
ent and its model. This parallelism can be achieved by creating morphisms between

37

3

An Outlook on Automated Simulation Model Generation

the model component hierarchy and different systems knowledge levels as discussed
in § 2.1.3 and § 2.1.4. Accordingly, the meta-model and the model component library
should represent corresponding systems knowledge levels. Hence, we revise the first
two constructs as follows.

Construct 1 (Revised) A Type-II meta-model (i.e., a type model) that represents corres-
ponding knowledge levels of the systems of interest.

Construct 2 (Revised) A model component library that conforms to the domain meta-
model, implements the concept of hierarchical component-based modeling, and uses an
appropriate underlying modeling formalism.

When the domain meta-model and the model component library are designed to
support the morphisms at different levels, the existing data can be used to provide the
information about the model structure and parameterization. As explained in § 1.1 and
§ 1.2, data that is (appropriately) specified for AMG would contain sufficient informa-
tion ready for AMG; while in the existing data, the information of the right content and
structure is often not readily available, i.e., the data has quality issues. We need to find
out what information the existing data contains or could contain, what information is
necessary, and how to cover the information gap. This relation is indicated by the RQ2
arrow in Figure 3.1.

The existing data needs to be transformed (or rewritten) in order to obtain a repres-
entation according to which a simulation model can be generated. In this regard, the
transformation rules shall be specified. The data is obviously on concrete referents in a
domain. Therefore, we need a meta-model of the data, i.e., a data model, on which the
transformation rules can be specified.

Construct 3 A data model of the existing data of interest; or multiple data models if the
existing data has multiple data sources.

According to the discussion in § 2.2, the data model is a type model, a Type-II meta-
model of the existing data (as the data can be seen as a model of a referent).

On Research Question 3
What functionalities a method should provide in order to automatically generate simu-
lation models with flexible structures using existing data?

Built on the previous two RQs, RQ3 is concerned with the AMG method itself. Given
a data model of the existing data, a domain meta-model and a suitable model com-
ponent library as just discussed, the goal is to generate a simulation model according
to the existing data. The method is bound to model transformation. The transforma-
tion definition should be specified on the meta-models (see § 3.4.1), i.e., from the data
model to the domain meta-model; and the transformations are performed on concrete
(model) instances, i.e., from the existing data with the (instantiations of) model com-
ponents to the simulation model.

38

3

3.1 Proposed Constructs on Research Questions

Construct 4 A model transformation definition specified on the data model(s) defined by
Construct 3 and on the Type-II meta-model defined by Construct 1.

These relations are indicated by the RQ3 arrow and the dotted arrows in Figure 3.1.
It should be clear that the more information gap the data model and the Type-II meta-
model have, the more complex the model transformations would be.

The AMG method should be able to perform a full instantiation of the simulation
model (including model structure and model parametrization). The model transforma-
tion rules, if appropriately specified, shall be able to instantiate model structures. Model
parameterization is possible when the parameters are the observables. When some
parameters are unobservable, they can be configured manually or with default values.
We may wish to automatically calibrate these parameters if the empirical data exists. In
such cases, we need an automated procedure for model calibration.

Construct 5 A procedure for model calibration after initial generation of simulation mod-
els when empirical data of the systems of interest exists.

This construct is proposed as a complement to the AMG method. The subject of
model calibration, however, is not a major focus of this thesis.

On Research Question 4
What is the quality of the simulation model generated by the method?

RQ4 is concerned with the quality of the simulation model generated. The quality of
the simulation model reflects the quality of the AMG method. Hence, RQ4 is also con-
cerned with the evaluation of the AMG method. The most important quality of a sim-
ulation model is its validity, a relation indicated by the RQ4 arrow in Figure 3.1. Model
validity is not an issue that only comes into sight after the overall simulation model is
built. Discussed extensively in M&S literature, it is an outcome of joint efforts of design,
test, verification and validation, among others, at each model development stage. We
use the arrow between the model and the referent simply to indicate the last stage of
validation. In this research, the final model validation is organized with an expert panel.

We summate the five constructs proposed.

1. Domain Meta-Model A Type-II meta-model (i.e., a type model) that represents cor-
responding knowledge levels of the systems of interest.

2. Domain Model Component Library A model component library that conforms to
the domain meta-model, implements the concept of hierarchical component-
based modeling, and uses an appropriate underlying modeling formalism.

3. Data Model A data model of the existing data of interest; or multiple data models if
the existing data has multiple data sources.

4. Model Transformation A model transformation definition specified on the data mod-
els defined by Construct 3 and on the Type-II meta-model defined by Construct 1.

39

3

An Outlook on Automated Simulation Model Generation

5. Model Calibration A procedure for model calibration after initial generation of sim-
ulation models when empirical data of the systems of interest exists.

Hereafter, when we use the term meta-model, it only refers to Type-II meta-models
if not otherwise indicated.

3.2 A Modeling Example

To make further discussion more concrete, we give a modeling example.

3.2.1 Vignette: A Tram Crossing

Example 3.1 Suppose we need to simulate a tram crossing to study trams’ driving time
and waiting time. The infrastructure at the crossing is given by a CAD drawing (in metric)
as shown by Figure 3.2. The lines represent the rail tracks. Each orange labeled circle
(source#) indicates a stop. Each red labeled circle (H#) indicates where the trams are to
be generated. The “rules” of the model are of common sense:

1. Trams shall be generated with service line numbers (SLNs) at scheduled time ac-
cording to given timetables.

2. A tram shall drive in a realistic manner along a designated SLN route and it shall
halt at each stop along the route according to a given halting time distribution.

3. A realistic manner means, e.g., trams wait for one another when necessary and they
drive with acceleration and deceleration respecting traffic rules.

4. When there is a conflict at the crossing, trams shall pass according to standard pri-
ority rules.

The following four types of data are provided: (i) a CAD drawing of the rail infrastruc-
tures, (ii) timetables, (iii) service routes, and (iv) halting time distributions.

What is a good method to automatically generate a simulation model from the data
taking into account that the data can change its content and scale?

We do not intend to propose a solution in this section but to elucidate some data
quality issues that we may encounter in AMG or in modeling in general. For AMG, it is
reasonable to first ask “what need to be transformed into what” (MENS and VAN GORP

2006). Not until we make clear the input and output of a transformation and their differ-
ences, could we design and specify a transformation that should leverage these differ-
ences. The first what asks about the syntactics, semantics and pragmatics of the data,
i.e., what information the data directly or indirectly conveys. The second what asks
about the simulation model. More specifically, in the case of component-based mod-
eling proposed by Construct 2, we need to know what model components are needed,
what composition they have, and how to configure them.

It can be convenient to consider the input and output of a transformation in a re-
versed order. Therefore, we next first discuss the components and composition in the

40

3

3.2 A Modeling Example

The CAD Dataset:

Entity 1: line, start point, end point, color, ...;
Entity 2: line, start point, end point, color, ...;
Entity 3: arc, start point, end point, center, radius, ...;
Entity 4: circle, center, radius, color, name, ...;

...
Entity n : line, start point, end point, color, ...;

Figure 3.2: A CAD drawing of the tram
crossing

simulation model of the example, and then compare them with the data available on
hand.

3.2.2 Model Components and Composition

The AMG method is intended for a class of potential referents in a certain domain.
As such, we should design a model component library that provides sufficient flexib-
ility and generality to accommodate a predefined scope of possible changes of refer-
ents. This can be achieved, among others, through alteration of model composition
and parameterization. We leave further discussion about model component library
for § 4, and for now assume that the required components for Example 3.1 are read-
ily available. We use the terms atomic model and coupled model in the DEVS formalism
referring to the model components at elementary and non-elementary levels. For Ex-
ample 3.1, these components are:

1. source (SR) −→ coupled: vehicle generator,

2. vehicle generator (VG),

3. sink (SK),

4. vehicle (V),

5. track (T),

41

3

An Outlook on Automated Simulation Model Generation

6. stop (ST) −→ coupled: track, sensor,

7. sensor (S),

8. switch (SW),

9. traffic light (TL),

10. control unit (CU), and

11. crossing (CR) −→ coupled: track, switch, traffic light, control unit.

The components 1, 6, and 11 are coupled models whose component members are
indicated. The other components listed are atomic. Using these components, we may
obtain a model composition whose schema is shown by Figure 3.3. Each circle in the
schema corresponds to a model component instance — circles with thin lines for atomic
models or thick lines for coupled models. For simplicity of the illustration, the labeled
(“tracks”) arrows do not represent direct coupling relations but a sequence of “track”
component instances coupled one after another in which the first track and the last
track are coupled to the component instances indicated. The “tracks” arrows denote
the directions of the traffic flow. The schema on the left of Figure 3.3 gives a top level
view of the model composition. The two smaller ones on the right show the inner struc-
tures of the two coupled models “stop” (ST) and “crossing” (CR) respectively.

The “vehicle” instances (i.e., trams, not shown in the schema) are dynamically gen-
erated during a simulation run by the “vehicle generators” in the “sources” (SR) accord-
ing to the timetables. They then drive on the “tracks” along designated routes. Their
driving behaviors, e.g., the last three rules specified in Example 3.1 (p. 40), are encoded
in the “vehicle” component (see § 4.3.3). Once they reach the “sink” (SK) component
instances, the “vehicles” are removed from the simulation model.

tracks

tracks

trackstracks

tracks

tracks

tracks tracks

tracks

SW
TLSW

SW
TL

TL trackstracks
tracks

tracks

tracks

tracks

tracks

tracks

CU
CR

Figure 3.3: A schema of a simulation model composition of the tram crossing

42

3

3.2 A Modeling Example

3.2.3 Data Models

Four types of data are available for the model generation in Example 3.1: (i) a CAD draw-
ing of the rail infrastructures, (ii) timetables, (iii) service routes, and (iv) halting time
distributions. Table 3.1 summates how they are to be used for the simulation model.
The infrastructure data is a basis for model composition and the other three are for
model configuration. Model configuration refers to

◦ the setting of the values of a set of invariables or constants, i.e., parameters in a
model, and/or

◦ the setting of the initial values of a set of variables in a model,

where the constants and/or the variables can be in primitive data types or have more
advanced data structures. Model configuration can be straightforward when the values
to be set are known, and the constants and/or the invariables to be set are locatable
in the simulation model. If the values to be set are unknown, we may perform model
calibration, which is discussed in § 3.4.3 and § 6.

Figure 3.4 shows the data models of the four data types. The use of data (ii), (iii),
and (iv) in the simulation model is therefore rather simple as we have unique identifiers
(IDs) to locate and allocate the relevant data.

Comparing Figure 3.2 (p. 41) with Figure 3.3 (p. 42), we can see that the model com-
position largely resembles the infrastructure layout visualized by the CAD system. In
fact, the CAD dataset only contains a list of geometric primitives that describe each ob-
ject2 (FLYNN and JAIN 1991). Figure 3.2 shows an example of the list on the right side.
The list of entities contains geometric descriptions such as the start and end points of
an entity, but the relations between the entities are not represented by data structures.
Figure 3.4 (left) shows the infrastructure data model. As expected, it does not directly
contain any logical relations. The data model is flat.

Based on a flat data model, we want to construct a simulation model that has a hier-
archical compositional structure. This is a major challenge in AMG. Existing data is of-
ten poor in content and structure while a simulation model often has rich content and

Data Type How to be used in the simulation model
(i) Infrastructures Determine the model composition.
(ii) Timetables Configure the timetables at each stop and source:

one timetable per service line.
(iii) Service routes Configure the switch movements at the crossing:

one switch position per service line per switch.
(iv) Halting time distributions Configure the halting time distributions at each

stop: one distribution per service line.

Table 3.1: The data types and their usages for the simulation model for Example 3.1

2A CAD object is termed as entity in AutoCAD® (www.autocad.com), and as element in MicroStation®

(www.microstation.com).

43

http://www.autocad.com
http://www.microstation.com

3

An Outlook on Automated Simulation Model Generation

type={line,arc,circle}
start point
end point
center
radius
...

entity
stop ID
...

stop
service line ID
arrival times

timetable

1

-has

1..*

service line ID
service direction

route
switch ID
switch position

direction

1

-has

*

stop ID
...

stop
service line ID
distribution

halting time

1

-has

1..*

Halting time distributions:

Service routes:

Timetables:Infrastructures:

Figure 3.4: Data models for Example 3.1

structure. The content here refers to the portion of information that is related to the
system (or model) parts. The structure is related to the relations on the parts.

3.3 Data Quality Issues

In this section, we discuss some issues that one may encounter due to differences of
the information contained in data models and simulation models. Data quality issues
are often discussed in literature. We focus our discussion on AMG in how well the in-
formation in existing data represents the parts and relations of the simulation models
under interest.

3.3.1 Background

Some authors make no distinction between data (quality) and information (quality)
(e.g., WAND and WANG 1996, PIPINO et al. 2002, LOSHIN 2011) while some others see
the difference as being crucial (e.g., ACKOFF 1989, LILLRANK 2003, PRICE and SHANKS

2005). The latter argues that data is merely a set of invariant, unprocessed and unstruc-
tured symbols recorded in some media (nowadays many of which are digital) whereas
information is data ascribed with contextual “meaning attribution”3.

Information can be inferred from data. The data-to-information transformation
process is not viable without semiotic clarifications, namely syntactic clarity (i.e., com-
prehensibility), semantic clarity (i.e., meaning) and pragmatic clarity (i.e., relevance)
(CHECKLAND and HOLWELL 1998, ULRICH 2001, ZINS 2007, ROWLEY 2007). In this thesis,

3Attributing meaning to data is indeed a human ability; it is done in a context which may well be shared
by some but may also be unique to an individual, i.e., the same data may have a different meaning to different
people (CHECKLAND and HOLWELL 1998, ULRICH 2001, ZINS 2007, ROWLEY 2007).

44

3

3.3 Data Quality Issues

we use the term data (quality) in a broad sense since the use of data is intended to ex-
tract information instead of uses purely on a symbolic or syntactic level.

In general, data is deemed as of high quality when it is fit for the intended use (JURAN

1988) and/or when it conforms to its correspondent real-world objects and phenom-
ena (WANG and STRONG 1996, PRICE and SHANKS 2005). In literature, the former view
of data quality is known as subjective, user/customer-defined or service-based, focus-
ing on business-world alignment; the latter is known as objective, system-defined or
product-based, focusing on real-world alignment. The two views are often seen as com-
peting. PRICE and SHANKS (2005) argue that data quality can be defined and evaluated
without sacrificing scope, that is, definition of data quality can and should incorporate
both subjective service-based and objective product-based perspectives in one coher-
ent framework. This combined view is also supported by many other authors such as
VAN DER PIJL (1994), PIPINO et al. (2002), KNIGHT and BURN (2005) and PETTER et al.
(2008). It is the approach we take dealing with data quality issues in AMG.

3.3.2 Data Quality Categories and Criteria

Quality of data is an elusive concept (LILLRANK 2003). It has been investigated and
reported extensively in prior research, and a number of data quality frameworks and
methodologies has been proposed in literature; see, e.g., surveys from LEE et al. (2002),
KNIGHT and BURN (2005), BATINI et al. (2009) and SIDI et al. (2012). Nevertheless, there
are many discrepancies in the definitions of data quality criteria (sometimes called di-
mensions) and in the grouping of criteria into categories, presumably due to the con-
textual nature of data quality (BATINI et al. 2009). In the following, with respect to the
context of AMG we propose data quality categories and criteria selected and adapted
from literature.

3.3.2.1 Quality Categories

The work of PRICE and SHANKS (2005) and TEJAY et al. (2006) calls for using semiotics as
a theoretical basis for defining data quality categories. MORRIS (1938, 1971) introduces
the terminology of syntactics 4, semantics, and pragmatics in semiotics5. These three
dimensions of semiotics are used in other fields often with broader definitions than they
originally are in language signs (NÖTH 1995). It is not hard to observe correspondences
between semiotics and data (quality) at syntactic, semantic and pragmatic levels. After
all, data is a stored representation of a represented external object and/or phenomenon
as the referent, which awaits human or machine interpretation and use, i.e., the data
under interest has (1) form, (2) meaning and (3) application (PRICE and SHANKS 2005).

4Syntactics is renamed by some followers as syntax according to NÖTH (1995).
5MORRIS (1938) identifies three main factors involved in semiotics: “that which acts as a sign, that which

the sign refers to, and that effect on some interpreter in virtue of which the thing in question is a sign to
that interpreter”; they are called respectively as the sign vehicle, the designatum, and the interpretant (NÖTH

1995). Syntactics studies the relation between a given sign vehicle and other sign vehicles. Semantics studies
the relations between sigh vehicles and their designata. And pragmatics studies the relation between sign
vehicles and their interpreters (MORRIS 1938, NÖTH 1995).

45

3

An Outlook on Automated Simulation Model Generation

The three semiotic levels are used to define the corresponding data quality categories
(2005):

(A) Syntactic quality category The degree to which stored data conforms to database
rules, i.e., data models.

(B) Semantic quality category The degree to which stored data corresponds to repres-
ented referents that are relevant to the purposes for which the data is stored.

(C) Pragmatic quality category The degree to which stored data is suitable for a given
use.

The syntactic and semantic categories are related to the objective quality view, and
the pragmatic category is related to the subjective quality view as discussed in § 3.3.1.
Incorporating both views (i) provides a comprehensive description of data quality, (ii) fa-
cilitates comparison between different quality perspectives, helping check for discrep-
ancies that are likely to signify a quality issue (that may not be immediately obvious
from only one view), and (iii) may help in the analysis of the sources of the issues (ibid.).

3.3.2.2 Quality Criteria

For each quality category, we choose, adapt and define data quality criteria that are
pertinent6 to the context of AMG based on theory, literature and pragmatism.

Accuracy Although many data quality studies include accuracy as a key criterion, there
is no commonly accepted definition of what it means exactly7, in particular its differ-
ence to quality criteria such as correctness (WAND and WANG 1996, PRICE and SHANKS

2005). We deem data as being accurate when the data values stored in the database are
in conformity with the actual or defined values following BALLOU and PAZER (1985) and
FOX et al. (1994). Moreover, we distinguish syntactic accuracy from semantic accur-
acy (SCANNAPIECO et al. 2005, BATINI et al. 2009). Syntactic accuracy is the conformity
of a data value v to the corresponding definition domain D of the data value (BATINI

et al. 2009). Semantic accuracy is the conformity of a data value v to its real-world
value v ′ that is considered correct (FOX et al. 1994, REDMAN 1996, BATINI et al. 2009).
For example, that v=“Yilin” when v ′=“Chris” is considered syntactically accurate but
semantically inaccurate if the definition domain is specified as, e.g., character string.
Precision as a data quality criterion does not pertain to semantic accuracy according to
this definition, as the conformity can be defined to be an approximation, i.e., v ≈ v ′, to
tolerate imprecision.

Completeness WAND and WANG (1996) and BATINI et al. (2009) define completeness
as the degree to which a given data collection includes data describing the correspond-
ing set of real-world objects and phenomena. Returning to the definitions of quality

6Criteria such as accessibility, believability, privacy and security are important but are not considered
relevant for this research.

7For example, GELBSTEIN (2003) defines accuracy as the opposite of an error.

46

3

3.3 Data Quality Issues

categories in § 3.3.2.1, we can see that data completeness can be both semantic and
pragmatic. Semantic completeness is the degree to which existing values are included
in a data collection relevant to the purpose for which the data is stored8 (REDMAN 1996,
BOVEE et al. 2003, PRICE and SHANKS 2005). Consider a data collection of employees’
birth dates and driving license numbers. A null value signifies incompleteness for a
birth date, but not necessarily for a driving license number as not everyone by default
has a driving license. On the other hand, the nonoccurrence of null values does not
necessarily entail semantic completeness. When, e.g., a new employee’s data does not
appear in the database at all, the data is incomplete although there is nonull value that
signifies this incompleteness. We may call missing values of this nature missing record.
Data completeness is largely related to the purpose of data use. Pragmatic complete-
ness is considered in relation with the purpose of data use rather than the (original)
purpose for which the data is collected. WANG and STRONG (1996) define this as the
degree to which data is of sufficient breadth, depth, and scope for the purpose of data
use, i.e., whether there is missing information for a given use of the stored data.

Consistency Intuitively, data is deemed consistent when there is no contradiction or
disagreement in the stored data (ibid.). Data consistency issues can be found in syn-
tactic and semantic categories. Syntactic consistency refers to uniformity in the (syn-
tactic) representation of data values that have same or similar semantics (PIPINO et al.
2002, LOSHIN 2011). This means that data with same semantics should best share the
same underlying syntactic formats and structures. Semantic consistency refers to the
conformity of (explicit or implicit) semantic rules over a set of data attributes and values
(BATINI et al. 2009). Ideally, similar data attributes should share consistent names and
meanings (LOSHIN 2011) and inter-related attribute values should not have conflicting
or unaccountable meanings. PRICE and SHANKS (2005) further differentiate consistency
in key values with that in non-key values9.

Semantic consistency in key values – let us call it mapping consistency – refers to
the uniformity in the key values of data representing the same external instance (ibid.).
More specifically, when keys assigned with different values indeed intend to map the
same external instance, these keys are considered semantically inconsistent although
they may be syntactically consistent. Mapping inconsistency often occurs across data-
bases or data repositories. Some authors call it identifiablility or object identification
problem (e.g., BATINI and SCANNAPIECO 2006, LOSHIN 2011).

Semantic consistency in non-key values10 is frequently mentioned in literature, and
evidently it often appears in data. Nonetheless, we exclude it as a data quality criterion.

8Semantic completeness is often related to the null values in a database; a null value connotes a miss-
ing data value (i) that exists but is not known, (ii) that does not exist, or (iii) that is not known whether it
exists or not (REDMAN 1996, PRICE and SHANKS 2005, BATINI et al. 2009). Only the first case is seen as being
semantic incomplete by our definition.

9A key (or mapping) value maps a (non-key) data value (or units) to a represented external (e.g., real
world) instance; a non-key value is a representation (of an attribute) of the external instance itself (PRICE and
SHANKS 2005).

10For example, when person A’s marital status is “married” and person A’s spouse is person B , there would
be a semantic inconsistency if person B ’s marital status is “single”.

47

3

An Outlook on Automated Simulation Model Generation

Inconsistency often occurs in real world objects and phenomena. It does not necessar-
ily indicate erroneous data values and is therefore not a valid criterion for data quality.
For those data values that do require semantic consistency11, the data quality is covered
by the semantic accuracy criterion, as these values can not be accurate when they are
not consistent.

Referring back to the accuracy criteria, they concern both key values and non-key
values. Semantic accuracy in non-key values implies semantic accuracy in mapping
(i.e., the associated key-values), not vice versa. More specifically, when a non-key value
is semantically accurate, it has a meaningful and unambiguous mapping12.

Timeliness There are many definitions of timeliness of data. It may refer to the time
expectation for accessibility of data (e.g., LOSHIN 2011), the delay between a change of
a real world state and the resulting modification of the information system state (e.g.,
WAND and WANG 1996), or how up-to-date the data is with respect to the task it is used
for (e.g., WANG and STRONG 1996, PIPINO et al. 2002), etc. Some authors (e.g., FOX et
al. 1994, CATARCI and SCANNAPIECO 2002, BOVEE et al. 2003, BATINI and SCANNAPIECO

2006, BATINI et al. 2009) characterize timeliness with sub-criteria such as currency (i.e.,
how recent is the data, or how promptly the data is updated) and volatility (i.e., how
long the data remains valid, or how frequently the data varies in time). Timeliness in
this thesis is in the pragmatic category and it refers to the extent to which data is within
a valid time frame with respect to the purpose of data use (PRICE and SHANKS 2005).

Presentation Suitability This criterion is in the pragmatic quality category and it refers
to the degree to which the data format, unit, precision and type-sufficiency are appro-
priate for the purpose of data use (PRICE and SHANKS 2005, MCGILVRAY 2008). Data
precision13 is defined as the degree to which each data value expresses sufficient detail
that is appropriate for the purpose of data use (PIPINO et al. 2002, PRICE and SHANKS

2005); type-sufficiency refers to the degree to which the data includes all the types of
information useful for the purpose of data use (PRICE and SHANKS 2005).

To provide an overview, Table 3.2 numerates the proposed data quality categories
and criteria. Table 3.3 summarizes the definitions of the eight criteria ordered to the
three categories.

11For example, an under-age child can not be “married”, neither does the child have a driving license.
12A non-key value is meaningfully mapped when it refers to at least one specific external instance; it is

unambiguously mapped when it refers to at most one specific external instance (PRICE and SHANKS 2005).
13When precision is related to measurement systems, it is the degree to which repeated measurements

under unchanged conditions show the same results (TAYLOR 1999). As for data quality, we support the view
that data precision should be considered with respect to data use (FOX et al. 1994, LEVITIN and REDMAN 1995,
PRICE and SHANKS 2005). Data precision without context is often meaningless. After all, no real measurement
is infinitely precise.

48

3

3.3 Data Quality Issues

Accuracy Completeness Consistency Timeliness
Presentation
Suitability

A. Syntactics #1. - #2. - -
B. Semantics #3. #4. #5. (mapping) - -
C. Pragmatics - #6. - #7. #8.

Table 3.2: Proposed data quality categories and criteria

3.3.3 Discussion On Data Quality Issues and Measures

In the context of AMG with respect to component-based modeling (i.e., the pragmatic
use of data in this thesis), we assess data quality according to how well the data provides
information for model component identification, composition and configuration. The
pragmatic use of data influences the perceptions of syntactics and semantic criteria is
argued by PRICE and SHANKS (2005) whose work includes this as a quality criterion in
the pragmatic category. We support this view but do not explicitly include this criterion.
We assume that the data use for AMG is a given goal, and data users shall consider the
syntactics and semantic criteria with the application domain.

Detecting and solving data quality issues need domain understanding and data un-
derstanding. The purpose of defining the data quality categories and criteria is to help
detect and solve data quality issues for AMG. In literature, methodologies for data qual-
ity assessment and improvement are discussed in the general context of information
systems and data management (see, e.g., the survey by BATINI et al. 2009). In this re-
search, as stated earlier, data quality is assessed in relation with how well it provides
information about model parts and relations for AMG.

To give examples, we refer back to Example 3.1 in § 3.2 (pp. 40∼44) where data from
four sources is available for generating the tram crossing model. The model schema
(Figure 3.3) and the data models (Figure 3.4) show that the parts and relations in the
former is richer than those in the latter. In Table 3.4, we list the major data issues ap-
pearing in Example 3.1.

Data issues in the syntactic category are often straightforward. Syntactic accuracy
(#1.) is related to the lawfulness, rather than the correctness, of data values (WAND and
WANG 1996). In many information systems, it can be automatically checked by compar-
ison functions (BATINI and SCANNAPIECO 2006). Syntactic consistency (#2.) is particu-
larly relevant when data is being sourced from multiple information systems (SHANKS

and CORBITT 1999). Syntactic inconsistency can be typically solved through data type
and format conversion.

In order to measure semantic accuracy (#3.) of a data value v , (i) the correspond-
ing true value v ′ has to be known, or (ii) it should be possible, considering additional
knowledge, to deduce whether v is or is not v ′ (BATINI and SCANNAPIECO 2006). The
first option is a non-option in a computational sense. If the “true value” is or can be
known digitally, that value should be used instead of v . Hence, semantic accuracy is

49

3

An Outlook on Automated Simulation Model Generation

C
atego

ry
#

C
riterio

n
D

efi
n

itio
n

R
eferen

ce
E

xam
p

le/E
xp

lan
atio

n

A
.Syn

tactics
1.

Syn
tactic

accu
racy

T
h

e
co

n
fo

rm
ity

o
fa

d
ata

valu
e

v
to

th
e

co
rresp

o
n

d
in

g
d

efi
n

itio
n

d
o

m
ain

D
o

f
th

e
d

ata
valu

e.

S
C

A
N

N
A

P
IE

C
O

etal.
(2005)

an
d

B
A

T
IN

I

etal.(2009)

A
ccu

rate:
v
=

“Y
ilin”,v

′=
“C

h
ris”

In
accu

rate:
v
=

“Y
ilin”,v

′=
2012

fo
r

D
=
v
a
r
c
h
a
r

2.
Syn

tactic
co

n
sisten

cy
T

h
e

u
n

ifo
rm

ity
in

th
e

syn
tactic

rep
res-

en
tatio

n
o

f
d

ata
valu

es
th

at
h

ave
th

e
sam

e
o

r
sim

ilar
sem

an
tics.

P
IP

IN
O

etal.(2002)
an

d
L

O
S

H
IN

(2011)
In

co
n

sisten
t:

in
tab

le-1
em

p
loyee.id=

1234
w

h
ile

in
tab

le-2
en

ro
llm

en
t.id=

“1234”.

B
.Sem

an
tics

3.
Sem

an
tic

accu
racy

T
h

e
co

n
fo

rm
ity

o
f

a
d

ata
valu

e
v

to
its

real-w
o

rld
valu

e
v
′

th
at

is
co

n
sid

ered
co

rrect.

F
O

X
etal.(1994),

R
E

D
M

A
N

(1996)
an

d
B

A
T

IN
Ietal.(2009)

A
ccu

rate:
v
=

10.1,v
′=

10
In

accu
rate:

v
=

11,v
′=

10
fo

r|v
−

v
′|≤

0.1
4.

Sem
an

tic
co

m
p

leten
ess

T
h

e
d

egree
to

w
h

ich
existin

g
valu

es
are

in
clu

d
ed

in
d

ata
relevan

t
to

th
e

p
u

r-
p

o
se

fo
r

w
h

ich
th

e
d

ata
is

sto
red

.

R
E

D
M

A
N

(1996),
B

O
V

E
E

etal.(2003)
an

d
P

R
IC

E
an

d
S

H
A

N
K

S
(2005)

In
co

m
p

lete:
th

ere
are

m
issin

g
valu

es
in

th
e

d
ata.

5.
M

ap
p

in
g

co
n

sisten
cy

T
h

e
u

n
ifo

rm
ity

in
th

e
key

valu
es

o
f

d
ata

rep
resen

tin
g

th
e

sam
e

extern
alin

-
stan

ce.

P
R

IC
E

an
d

S
H

A
N

K
S

(2005)
In

co
n

sisten
t:

keys
assign

ed
w

ith
d

ifferen
tvalu

es
in

ten
d

to
m

ap
th

e
sam

e
extern

alin
stan

ce.

C
.P

ragm
atics

6.
P

ragm
atic

co
m

p
leten

ess
T

h
e

d
egree

to
w

h
ich

d
ata

is
o

fsu
ffi

cien
t

b
read

th
,

d
ep

th
an

d
sco

p
e

fo
r

th
e

p
u

r-
p

o
se

o
fd

ata
u

se.

W
A

N
G

an
d

S
T

R
O

N
G

(1996)
In

co
m

p
lete:

th
ere

is
m

issin
g

in
-

fo
rm

atio
n

fo
r

a
given

u
se

o
f

th
e

sto
red

d
ata.

7.
T

im
elin

ess
T

h
e

exten
t

to
w

h
ich

d
ata

is
w

ith
in

a
valid

tim
e

fram
e

w
ith

resp
ect

to
th

e
p

u
rp

o
se

o
fd

ata
u

se.

W
A

N
G

an
d

S
T

R
O

N
G

(1996)
an

d
P

R
IC

E
an

d
S

H
A

N
K

S
(2005)

U
n

iversity
co

u
rse

sch
ed

u
les

are
valid

fo
r

a
given

tim
e

fram
e

(e.g.,
a

p
articu

lar
sem

ester).
8.

P
resen

tatio
n

su
itab

ility
T

h
e

d
egree

to
w

h
ich

th
e

d
ata

fo
rm

at,
u

n
it,p

recisio
n

an
d

typ
e-su

ffi
cien

cy
are

ap
p

ro
p

riate
fo

rth
e

p
u

rp
o

se
o

fd
ata

u
se.

P
R

IC
E

an
d

S
H

A
N

K
S

(2005)
an

d
M

CG
ILV

R
A

Y
(2008)

D
ata

fo
rm

at,
u

n
it,

p
recisio

n
an

d
typ

e-su
ffi

cien
cy

are
su

b
-criteria.

P
recision

T
h

e
d

egree
to

w
h

ich
each

d
ata

valu
e

ex-
p

resses
su

ffi
cien

t
d

etail
th

at
is

ap
p

ro
-

p
riate

fo
r

th
e

p
u

rp
o

se
o

fd
ata

u
se.

P
IP

IN
O

etal.(2002)
an

d
P

R
IC

E
an

d
S

H
A

N
K

S
(2005)

T
h

e
ap

p
ro

p
riaten

ess
o

fim
age

res-
o

lu
tio

n
is

d
ep

en
d

en
to

n
th

e
u

se
o

f
im

ages.
Typ

e-
su

ffi
cien

cy
T

h
e

d
egree

to
w

h
ich

d
ata

in
clu

d
es

allo
f

th
e

typ
es

o
f

in
fo

rm
atio

n
u

sefu
lfo

r
th

e
p

u
rp

o
se

o
fd

ata
u

se.

P
R

IC
E

an
d

S
H

A
N

K
S

(2005)

Tab
le

3.3:D
efi

n
itio

n
s

o
fd

ata
q

u
ality

criteria

50

3

3.3 Data Quality Issues

only computationally measurable and solvable with sufficient knowledge to reason the
deduction. The two issues of semantic accuracy listed in Table 3.4, e.g., can be meas-
ured and corrected (if inaccurate) with the support of domain knowledge.

Data completeness (#4. and #6.) issues can be found in both semantic and prag-
matic categories. In either case, when data is truly incomplete14, we can only complete
the data by acquisition of the missing parts. In dealing with the pragmatic incomplete-
ness in Table 3.4, e.g., the three missing vehicle generation points are added into the ex-
isting infrastructure data manually. Improving semantic completeness could increase
the chance of pragmatic completeness in potential data uses. Nonetheless, semantic
incompleteness does not necessarily signify pragmatic incompleteness.

Mapping consistency (#5.) issues typically occur among data across different sources.
Sometimes mapping consistency is broken because of erroneous schema changes (VELE-
GRAKIS et al. 2004). When key values intended to map to the same external instance are
inconsistent, a mapping table can be provided to clarify the relations among these keys.

Time can affect the validity of data. Given a time frame of data validity, timeliness
(#7.) is easy to measure if data has metadata or dedicated fields (i.e., timestamped) to
indicate its time attributes, e.g., when the data is collected or updated and how long it
is valid. In Example 3.1, there is no timeliness issues in the data; the timetable data, for
example, is timestamped, so the users only need to pay attention to querying the data

Criteria Data issues

1. Syntactic accuracy –
2. Syntactic consistency Data from different sources do not share coherent syn-

tactic rules.
3. Semantic accuracy Some track entities (in the infrastructure data) have dir-

ections that do not correspond to the direction of traffic
flow.
Some entities (in the infrastructure data) supposed to be
connected do not have the same coordinate values.

4. Semantic completeness –
5. Mapping consistency Some stop IDs in the infrastructure data are different from

the ones in the timetable data.
6. Pragmatic completeness The vehicle generation points are not contained in the in-

frastructure data.
7. Timeliness – (The data is timestamped.)
8. Presentation suitability The relations between entities (in the infrastructure data)

are not explicitely represented.
There are no entities (in the infrastructure data) that cor-
respond to model components 7∼11 (p. 41).

Table 3.4: Data issues in Example 3.1 in § 3.2

14Meaning that (i) the data values or records are unknown but do exist, (ii) they are not contained by other
accessible data sources, and (iii) they are not deducible from known data values or records.

51

3

An Outlook on Automated Simulation Model Generation

with the correct time expressions.
Presentation suitability (#8.), particularly type-sufficiency, poses many data issues

in AMG. As discussed in, e.g., § 1.1, § 3.1 and § 3.2, existing data often does not con-
tain the right content and structure of information required for model generation, i.e.,
the parts and relations in the simulation model is richer than those represented in the
data. We do not deem this problem as being semantic incomplete, because the missing
information can be deduced from the existing data with sufficient domain knowledge.
The data is not (truly) incomplete but the information directly contained is not of the
right type. When the domain knowledge and reasoning for deduction can be formal-
ized, we are able to obtain the right type of information automatically from the data.
This can be achieved through model transformation discussed in § 5.

Remarks To conclude, with regard to the information of model structure and para-
meterization, the data that is provided to the AMG as input should be assessed ac-
cording to how well the data provides information for model component identification,
composition and configuration. The requirements for the data (assume that the date
has syntactic accuracy and timeliness) should have:

(1) semantic and pragmatic completeness, and

(2) syntactic and mapping consistency, or conversion rules or mapping tables or alike
that can solve the inconsistency in the data.

Transformation rules for the AMG can be defined when modelers have sufficient do-
main knowledge and deductive reasoning to solve issues related to semantic accuracy
and presentation suitability.

3.4 From Data to Simulation Model

Domain Model Component Library The goal of AMG in this research is to generate sim-
ulation models according to existing data. As a prerequisite for an AMG process, model
components need to be developed in the first place. As discussed in § 3.1, we need a
model component library (Construct 2) that:

◦ conforms to the domain meta-model (Construct 1),

◦ implements the concept of hierarchical component-based modeling (§ 2.3), and

◦ uses an appropriate underlying modeling formalism (§ 2.4).

As we will show in § 4, the specifications of the domain meta-model are defined as
a part of the domain model component library we developed for this research.

An AMG Process Starting from the existing data to a simulation model as a final out-
come, we need to design an AMG process that:

◦ executes a model transformation definition (Construct 4) specified on the data
models (Construct 3) and the domain meta-model (Construct 1),

52

3

3.4 From Data to Simulation Model

◦ generates (or instantiates) a simulation model using the predefined model com-
ponents (Construct 2), and

◦ performs model calibration (Construct 5) after the initial generation of the simu-
lation model.

Accordingly, we propose to divide an AMG process into three steps: model transforma-
tion, model instantiation and model calibration, as shown by Figure 3.5.

Some Terms in Model Transformation SYRIANI (2011) considers a model transforma-
tion as the automatic manipulation of a model with a specific intention. According to
KLEPPE et al. (2003) and MENS and VAN GORP (2006), a model transformation is the
automatic generation of a target model from a source model according to a transform-
ation definition; a transformation definition is a set of transformation rules (and units)
that together describe how a model in the source language can be transformed into a
model in the target language. A transformation rule describes a small unit used to
specify a transformation (CZARNECKI and HELSEN 2006). A model transformation may
have multiple source models and multiple target models (MENS and VAN GORP 2006). In
AMG, it is possible and likely to have multiple source models, which are data from dif-
ferent sources, but the target model is in principle a single simulation model (for each
referent of interest).

Basic Elements in Model Transformation The model transformation rules are defined
on meta-models whereas the model transformations are performed on concrete mod-
els according to the predefined rules. Following CZARNECKI and HELSEN (2006), the
basic elements involved in model transformation are shown in Figure 3.6:

◦ a source (or input) model that conforms to a source meta-model;

◦ a target (or output) model that conforms to a target meta-model;

Data

Hierarchical
Graph

Simulation
Model

Calibrated
Simulation

Model

Model
Components

Model
Instantiation

Model
Calibration

Model
Transforma‐

tion

Figure 3.5: Proposed steps in an AMG process

53

3

An Outlook on Automated Simulation Model Generation

◦ a transformation definition that is specified referring to the source and target
meta-models; and

◦ a transformation engine that reads the source model, executes the transforma-
tion definition on it, and writes the target mode.

In our research, the (first) source meta-model is the data model (Construct 3), and
the (last) target meta-model is the domain meta-model of interest (Construct 1), on
which the transformation rules (Construct 4) are defined. The source and target models
are respectively the existing data of a referent and the to be generated simulation model
of the referent. Both conform to their meta-models accordingly as the meta-models
are their type models (§ 2.2.1). The transformation engine reads the data, executes the
transformation rules on the data, and then generates the simulation model using the
predefined model components (Construct 2).

Vertical and Horizontal Transformations Model transformations can be characterized
as vertical, horizontal or oblique, as illustrated in Figure 3.7 (CZARNECKI and EISENECKER

2000). In a vertical transformation, the source and target models reside at different ab-
straction levels; the model often has content refinement; a horizontal transformation
is a transformation in which the models reside at the same abstraction level; the struc-
ture of the model is redefined (ibid., MENS and VAN GORP 2006). Formal refinement
and code generation are typical examples of vertical transformations (ibid.); the trans-
formation of a UML data model to the corresponding relational database schema is
horizontal (CZARNECKI and HELSEN 2006). Refactoring (FOWLER 1999) is widely known
for its horizontal transformations (MENS and VAN GORP 2006), though its transforma-
tions can be vertical as well (CORNÉLIO 2004). An oblique transformation combines
vertical and horizontal transformations.

Transformations in AMG are often oblique. As stated in § 1.1, existing data fre-
quently does not contain the right type of information for AMG and needs to be trans-
formed both in content and structure. In an AMG process, the model transformation
step is mainly concerned with horizontal transformation by which a model compos-
ite structure should be generated. The model instantiation step is mainly concerned
with vertical transformation by which a simulation model is generated according to the

Source
Meta‐Model

conformsTo

Target
Meta‐Model

Transformation
Definition

Source
Model

Target
Model

conformsTo

refersTo refersTo

writesreads Transformation
Engine

executes

Figure 3.6: Basic elements in model transformation (ibid.)

54

3

3.4 From Data to Simulation Model

model composite structure.

3.4.1 Model Transformation

The step of model transformation concerns Construct 1, 3 and 4: a meta-model of the
domain of interest, data models of the data of interest, and a model transformation
definition specified on the former two. In this first step, based on relevant data consid-
ering data quality issues discussed in § 3.3, we need to construct a hierarchical graph
that is a homomorphic representation (see § A.1) of the simulation model to be gen-
erated. Since we use hierarchical component-based modeling and the DEVS formal-
ism, the model composition can be conveniently represented by a directed hierarch-
ical graph. The theoretical works in graph transformations are in this case applicable
to model transformations.

Intermediate Transformation Steps As just stated, transformations in AMG are typic-
ally oblique because existing data often needs to be transformed both in content and
structure for AMG. The model transformation can be of considerable heavy-duty when
the information gap between the data model and the domain meta-model is large (MENS

and VAN GORP 2006). The transformation of some parts and relations may be depend-
ent on the transformation of some other parts and relations. Consequently, the model
transformation may itself need intermediate steps. The application of intermediate
transformation steps is sometimes called transformation composition or transforma-
tion chain (ASZTALOS et al. 2011). The steps should incrementally transform the data
into a hierarchical graph that is homomorphic or isomorphic to the simulation model
composition. Each intermediate step constructs an intermediate structure which re-
quire its own meta-model (CZARNECKI and HELSEN 2006).

Meta-Models and Graph Patterns In § 2.2, the roles and types of meta-models were
explained. In § 3.1, we explained the reasons why meta-models are needed in this re-
search. In § 3.4, we showed that meta-models are basic elements in model transform-

Horizontal
Transformation

Vertical
Transformation

Oblique
Transformation

Figure 3.7: Vertical and horizontal
transformations (CZARNECKI and
EISENECKER 2000)

55

3

An Outlook on Automated Simulation Model Generation

ation. When model composition is represented by graphs, model transformations can
be treated as graph transformations. In graph transformation, graph pattern matching
precedes graph rewriting, both of which have wide applications (KAHL 2002, GALLA-
GHER 2006). Graph patterns are meta-models too. They can be assembled into more
complex patterns by pattern composition (BALOGH and VARRÓ 2006, ASZTALOS et al.
2011) which is sometimes termed pattern call (VARRÓ and BALOGH 2007, VARRÓ et al.
2008). Graph pattern composition suits well with the component-based modeling con-
cept and is therefore used in this research. The composition of graph pattern matching
in this thesis is performed in a stepwise bottom-up manner.

Transformation Rules and Rule Application Control Transformation rules need to be
carefully designed to identify and correct or tolerate data quality issues (if any) dis-
cussed in § 3.3. Although data quality issues also appear in model instantiation and
calibration, they often post more problems in the model transformation step, as the
transformation in this step is mainly horizontal and involves structural changes (CZAR-
NECKI and EISENECKER 2000).

A transformation rule should specify the elements or a pattern of elements in the
source model (and target model), and expresses logics (e.g., relations, constraints and
computations) on the elements (CZARNECKI and HELSEN 2006). At the same time, a rule
may also have application conditions (which must be true in order for the rule to be ex-
ecuted) and control parameters, etc., to make it more flexible (ibid.). A rule application
control specifies where the transformation rules are executed on the source model and
in what order the rules are applied (SYRIANI 2011). The former is called location determ-
ination and the latter called rule scheduling (CZARNECKI and HELSEN 2006). Depending
on the goal of the transformation, rule application control can be deterministic or non-
deterministic (ibid.). There may be multiple locations, i.e., more than one match, for
applying a rule. Rule scheduling mechanisms can determine the application order of
rules implicitly, e.g., through designing the patterns and logic of the rules to ensure cer-
tain execution orders, or explicitly, e.g., by specifying conditions for rule selection or
iteration (ibid., SYRIANI 2011).

We choose to design transformations that are deterministic in the AMG method.
The rules are defined in a deterministic order (partially ordered). Each rule is executed
sequentially for matching and rewriting in the source graph. Therefore, no rules would
compete for the same source location and the transformation shall produce the same
hierarchical graph given the same input data.

3.4.2 Model Instantiation

The second step starts with the hierarchical graph produced by the model transform-
ation step and a set of predefined model components (Construct 2). The hierarchical
graph serves as the blueprint that guides the model composition for model instanti-
ation, where the model components are the building blocks.

A simulation model is constructed according to the hierarchical graph according

56

3

3.4 From Data to Simulation Model

to which model components are instantiated and coupled. Each node (or edge, de-
pending on whether the graph is node-oriented or edge-oriented) in the hierarchical
graph should have a corresponding atomic or coupled model component that can be
identified. Relevant data is used to configure the model component instances. Model
configuration (i.e., setting the initial values of variables and the values of parameters,
§ 3.2.3) takes place at the elementary level of the model components (i.e., in the atomic
models). The parameters whose values are not provided by the data are configured by
predefined default values.

3.4.3 Model Calibration

To complement the AMG method, the generated simulation model can be calibrated
(Construct 5) when empirical data from the system is available. This can be performed
as a third step of the AMG process. In this research, model calibration is an experi-
mental process by which some model parameters whose values are unknown are ad-
justed in each simulation experiment to match simulation output (data) with relevant
systems observation or measurement given prespecified acceptance criteria. Compar-
ing simulation output with relevant systems measurement (i.e., empirical data, § 2.1.2),
if the latter exists, is a model validation method (BALCI 1998). Together with this valid-
ation method, the parameters configured by default values (in the previous step) can
be calibrated to obtain a reasonable agreement between the simulated system and the
actual system in terms of their behaviors (MUSSELMAN 1998).

The AMG method proposed by this research is presented with three parts: domain
simulation library (§ 4), model generation (§ 5), and model calibration (§ 6). In § 4, we
discuss the theory and the research findings related to developing a domain simulation
library for AMG. In § 5, model transformation and instantiation (i.e, the transformation
rules) are discussed based on graph transformation theory. In § 6, a model calibration
procedure is presented.

57

3

4
Domain Simulation

Library

A
FTER THE DISCUSSION in § 2 and § 3, it should be clear that a model compon-

ent library of the application domain needs to be developed in the first place
so as to provide reusable building blocks for the AMG process proposed. In
order to obtain functional and usable simulation models, we also need com-

ponents that allow for the use of the model components. Examples are those for model
execution (i.e., a simulator), output collection and model/simulation visualization. All
these components together constitute a simulation library.

In software engineering, the reuse of components has been an important devel-
opment goal (SOMMERVILLE 1996, BRAUDE and BERNSTEIN 2010). The software com-
munity learned that frameworks such as Java APIs lend themselves to highly successful
reuse (BRAUDE and BERNSTEIN 2010). A software framework, sometimes called a lib-
rary, is a collection of software artifacts usable by several applications1 (ibid.). The mo-
tivation of developing a simulation library is congenial, despite that a simulation library
is specialized in or tailored to particular uses of M&S.

In this chapter, we present the theory, our experience and research findings related
to developing a simulation library that is fit for use for AMG. The cases in develop-

1In other words, libraries are collections (or packages) of reusable components designed to implement a
general solution to a general problem (BRAUDE and BERNSTEIN 2010). A library typically begins to emerge by
the time a development organization develops its second to fourth application (ibid.).

59

4

Domain Simulation Library

ing a library (called LIBROS) for the rail transportation domain are used as examples
through the chapter. LIBROS started forming after a number of M&S studies in the
light-rail domain since 2008, e.g., network design studies of RegioTram (in Groningen)
and RijnGouwelijn (in South Holland) in The Netherlands. It is then progressively de-
veloped and extended along with more studies for this research. In § 4.1, we discuss the
application context, challenges and functional elements of the LIBROS simulation lib-
rary. Thereafter, the conceptual and refined design of the library is presented through
the rest of this chapter. The focus of this chapter is § 4.2 and § 4.3 which discuss the
model components.

4.1 Towards Developing A Rail Simulation Library

M&S of transport systems is recognized by many transport organizations as an effect-
ive decision support instrument (ORTÚZAR and WILLUMSEN 2001). In order to success-
fully support detailed design and operation, a microscopic rail network model is often
deemed not only suitable but also mandatory (HANSEN and PACHL 2008). A rail model
should have sufficient detail and accuracy to represent the complex and often large-
scale system, yet still be computationally efficient. Apart from these criteria, consider-
ing the life span of railway systems, the number of studies demanded and the time and
cost induced, reusability and extensibility of simulation models is often an issue that
should be addressed during model design.

4.1.1 Application Context and Challenges

Briefly introduced in § 1.1.2, HTM is a public transport organization that provides light-
rail transport (and other public transport) services in Haaglanden region. In close co-
operation with HTM, a Java L

¯
i
¯

b
¯

rary for R
¯

ail O
¯

peration S
¯

imulation (LIBROS) is developed
within the context of this research. The organization’s interest in this simulation library
is manifold:

Modeling Driving-On-Sight Many rail simulation tools exist2, yet very few3 support
modeling of urban railway such as tramway or light-rail. Heavy-rail vehicles generally
operate in block systems that provide strict safe spacing control by signaling4, whereas
light-rail vehicles also drive-on-sight (OVERTON 1989). In the latter case, modeling the

2For example, models of stations or terminals (CAREY and LOCKWOOD 1995, RIZZOLI et al. 2002, CAREY and
CARVILLE 2002, 2003), and train network simulators such as Simon/TTS (WAHLBORG 1996), TOPSim (SAND-
BLAD et al. 2000), RailSys (BENDFELDT et al. 2000), UX-SIMU (KAAS 2000), VirtuOS (KAVICKA and KLIMA 2000),
SIMONE (MIDDELKOOP and BOUWMAN 2001), Multi-train simulator (HO et al. 2002), OpenTrack (NASH and
HUERLIMANN 2004), SimMETRO (KOUTSOPOULOS and WANG 2007).

3To the author’s knowledge, one of the few is RailSys (RUDOLPH 2000).
4Non signal-controlled modern railway operation (i.e., the communication between the dispatcher and

the train crew is made via telephone or radio) is quite rare in Europe, and can only be found on branch lines
with a very low density of traffic (PACHL 2002).

60

4

4.1 Towards Developing A Rail Simulation Library

interactive movement of vehicles is necessary as the vehicles do not only drive accord-
ing to signals (RUDOLPH 2000). HTM operates urban railway in Haaglanden region and
provides rail related consultancy nationally and internationally. Given the large num-
ber of urban areas with light-rail systems and the increasing acceptance of M&S as a
method of inquiry (SOL 1982, KEEN and SOL 2008), there is a growing need for tools that
allow for light-rail modeling.

Microscopic Modeling of Rail Operation Many rail simulation tools are specialized
in a certain aspect of the railway, e.g., to study stations (CAREY and CARVILLE 2002,
2003), to assess timetables (MIDDELKOOP and BOUWMAN 2001), or to analyze rail phys-
ics and energy consumption (HO et al. 2002). Some models have high abstraction levels
(VROMANS et al. 2006), i.e., they are macroscopic, which can be applied for high-level
tasks like vehicle scheduling or planning for traffic demand and allocation (HANSEN and
PACHL 2008). To the contrary, running time calculation, timetable assessment and rail
operational simulation requires detailed infrastructure models (ibid.). This is the type
of model required by HTM. The model should allow for the overall analysis of the design
and operation considering the impact of factors such as infrastructure layout, signaling
systems, timetables and driving behaviors and travel time. Rail simulation models can
be of large-scale. The simulation of large-scale microscopic models is often computa-
tionally intensive. In this regard, the choice of modeling formalism and the design of
models can contribute to the computational performance.

Reusability and Extensibility The components (particularly the model components)
in the library are meant to have long life cycles5. As stated in § 1.1.2 and § 1.1.3, HTM
often uses models which take long to develop. For a certain domain, simulation mod-
els can be designed such that a new model may reuse some of the previous modeling
solutions. In this research, reuse is focused on the component level6. Closely related
to reusability, extensibility7 is required by long-life-cycle models for changes and ex-
pansions of functionality (CRNKOVIC et al. 2011). Each system in the domain is similar
yet different from one another, and each system itself may and is likely to have changes
during its life cycle.

5ULGAN and GUNAL (1998) state that a simulation model may have a short or long life cycle based on
the use through the life of the system of interest. Short-life-cycle models are for a single decision making
purpose; once the decision is made, the model is discarded. Long-life-cycle models are used at many points
in time during the life of the system and are maintained and re-validated as conditions change in the system.
Such models are generally built for the purpose of (i) training, (ii) reuse at the launch phase, and (iii) reuse at
the fully operational phase for changes in design and operation of the system (ibid.).

6ROBINSON et al. (2004) recognize a spectrum of different reuses, namely code scavenging, function reuse,
component reuse and full model reuse, from a low abstraction level to a high abstraction level. Reuse can
also be performed on requirement specifications, tests, among many others (e.g. LUBARS 1988) which are not
discussed here.

7Instead of sufficiency or completeness which is usually an elusive goal (BRAUDE and BERNSTEIN 2010).

61

4

Domain Simulation Library

4.1.2 Basic Functionality and Elements

Modern simulation software may have rich functionality8 (BANKS 1998, ROBINSON 2004,
PIDD and CARVALHO 2006, LAW 2007, BANKS et al. 2010). There is, however, a set of ba-
sic functionality that should be provided, i.e., the ability to construct, run and report
simulation models.

Functionality For Model Specification It refers to the ways or supports for constructing
simulation models, or simply, for modeling. A simulation study needs at least a model
on which the simulation experiments are carried out. Models can be specified using
simulation languages, parametric models, model components, etc., possibly through
graphical user interfaces (ÖREN 1981, PIDD and CARVALHO 2006, BANKS et al. 2010).
In our case, as we are interested in hierarchical component-based modeling, we need
model components that specify the elementary level of model building blocks and the
possible composition of components.

Functionality For Model Experimentation It refers to the supports for model exper-
imentation which includes (1) model execution and (2) specification of experiments
(ÖREN 1981). The former is achieved through an adequate simulation engine or a sim-
ulator; the latter is defined by experimental frames following ZEIGLER et al. (2000).

ZEIGLER et al. (ibid.) identify four basic entities for their M&S framework: source sys-
tem, model, simulator9 and experimental frame, three of which are discussed in § 2.1.
Figure 4.1 shows these entities and their relations. Recall that an experimental frame
is a specification of the conditions under which a system is observed or experimented

Source
system

Experimental frame

Simulation
model

Modeling
relation

Simulator

Simulation
relation

Figure 4.1: Basic elements in M&S and
their relations (ibid.)

8For example, it may be web-based, support online simulation, or can be integrated into larger environ-
ments.

9A simulator is any computation system capable of executing a simulation model to generate the model’s
behavior (ZEIGLER et al. 2000).

62

4

4.1 Towards Developing A Rail Simulation Library

with10 (ibid.). Validity refers to the modeling relation between a model, a system and an
experimental frame. When considered valid, a model can be used in place of its (ori-
ginal) system for the intended purpose of experimentation (§ 2.1.1). The simulation
relation is a relation between a simulator and a model. A simulator should correctly
execute a given class of models according to their specifications, i.e., it faithfully gener-
ates a model’s output trajectory given its initial state, input trajectory and specification
(ibid.).

Functionality For Model/Simulation Presentation It refers to the ways or supports for
presenting the models and simulation results. Virtually all modern simulation software
provides functionality for visualization and statistics to support the presentation (and
communication) of simulation output to model users as well as to support the verifica-
tion and validation of simulation models (BANKS 1998, CHIN 2007, LAW 2007, BANKS et
al. 2010, FUMAROLA 2011). The use of M&S entails the collection of output data during
simulation runs. System performance is typically measured by Key Performance Indic-
ators (KPIs) (FUMAROLA 2011) that are aggregated from model output variables whose
values are computed during simulation runs (ZEIGLER et al. 2000). It is often conveni-
ent11 to record (or log) output values, e.g., into a database. For this purpose, compon-
ents related to data output are needed.

Basic Functional Elements Based on the foregoing discussion, a set of elements are
proposed to be included or whose specification should be supported by a simulation
library:

1. model components (and composition),

2. simulator,

3. experimental frame,

4. data output components,

5. simulation visualization components, and

6. statistics components.

A domain simulation library should provide a set of model components with which
usable models can be composed to simulate a given class of potentially infinite num-
ber of systems in the domain. In § 4.2 and § 4.3, we first discuss the modeling concept
and then the model components (#1) in LIBROS. As for the simulator (#2) and the ex-
perimental frame (#3), we used the previous works of JACOBS (2005) and SECK and VER-
BRAECK (2009)12 which will not be discussed in length in this thesis. The components
for model/simulation presentation, i.e., model output, visualization and statistics (#4,
5, 6) in LIBROS are briefly discussed in § 4.5.

10The running of a simulation experiment is the process of running the model so as to observe and analyze
the result to obtain the desired answers (SHANNON 1975).

11This can (i) decouple simulation (output) with operations on the output, (ii) reduce the demand for
memory space during simulation runs, and (iii) allow users to use the output data at a later point in time.

12For completeness, § A.2 shortly presents the simulator used by this research, i.e., DSOL and ESDEVS.

63

4

Domain Simulation Library

Loose Coupling and Composability A number of literature discusses issues such as
qualities of M&S products (e.g., BALCI 2004), criteria for good models (e.g., SHANNON

1975), properties of component software (e.g., SZYPERSKI 2011), or principles of soft-
ware design in general (e.g., SOMMERVILLE 1996, BRAUDE and BERNSTEIN 2010). Among
those, loose coupling and composability are particularly important for hierarchical com-
ponent-based modeling with respect to AMG.

Out of general software design principle (SOMMERVILLE 1996, BRAUDE and BERN-
STEIN 2010), the functional elements in the library should be loosely coupled to one
another. The coupling relations refer to the relations between the model components
and the other elements, and also the relations between model components themselves.
Coupling describes the degree of interconnectedness between components in a design
(SOMMERVILLE 1996). The tighter the coupling the harder it is to understand and change
the system (BRAUDE and BERNSTEIN 2010). In FUMAROLA (2011), the author argues the
importance of loose coupling between simulation models and components that deal
with model presentation, e.g., those for animation and statistics. High coupling dis-
advantages flexibility and clarity (ibid.). When models contain too much information
other than model specifications, complicated models become even harder to under-
stand (ibid.). Similar arguments are made by FOWLER (1999) and BRAUDE and BERN-
STEIN (2010) who refer to this as separate domain from representation.

Separate modeling from simulation is often discussed in M&S literature (e.g., BANKS

1998, ZEIGLER et al. 2000, FUJIMOTO 2000, WAINER 2009). Since developing a simulator
is not within the scope of this thesis (see § A.2) we do not present related issues. The
only point we shall mention is that a simulator should support the simulation of the
chosen modeling formalism(s) of model components in a loosely coupled manner.

Components should support composition (CRNKOVIC et al. 2011). This claim seems
redundant, but it is acknowledged by many authors that model composability is diffi-
cult to apply (YILMAZ 2004, SZABO and TEO 2007, TOLK et al. 2010). In § 2.3, composab-
ility is briefly discussed, so is modularity. Modularity is a prerequisite for component
technology; many modularity criteria date back to PARNAS 1972 (SZYPERSKI 2011). Un-
fortunately, the vast majority of software solutions today are not even modular (ibid.).
In software design, the principle for modularization is coined by DIJKSTRA (1982) as
separation of concerns:

This is what I mean by “focusing one’s attention upon some aspect”: it does not
mean ignoring the other aspects, it is just doing justice to the fact that from this
aspect’s point of view, the other is irrelevant. It is being one- and multiple-track
minded simultaneously.

To modularize effectively, one tries to maximize cohesion and minimize coupling
(PARNAS 1972, SOMMERVILLE 1996, BRAUDE and BERNSTEIN 2010). However, besides
modularity, composability also requires the adoption of principles of independence
and controlled explicit dependencies (SZYPERSKI 2011). In this regard, the DEVS form-
alism (§ 2.4.3) provides a strong support for hierarchical composition with coupling
constrains.

64

4

4.2 Systems Modeling

4.2 Systems Modeling

Given a modeling problem, modelers start from a problem situation, move through
requirements, and work towards a definition of what is going to be modeled and how
(ROBINSON 2010). Many challenges in modeling13 are in the process of simplification
(and abstraction)14. Simplification entails the stripping away of unimportant details, or
the assumptions of simpler relations (SHANNON 1975). Abstraction comprises or con-
centrates in itself the essential qualities or behavior of a thing but not necessarily in the
same form or manner as in the original (ibid.). Successful modeling can be seen as valid
simplification (and abstraction) (ZEIGLER et al. 2000), taking into consideration other
relevant factors such as cost, performance, reusability and extensibility.

Model Components and Compositions Model component specification can be divided
into two related parts:

1. the specification of the (behavior of) model components at the elementary com-
positional level, and

2. the definition of the permissible (structure of) model compositions at the non-
elementary compositional levels.

The former provides the basic units in constructing hierarchical component-based
models which subsequently generate the overall model behavior. In DEVS, model be-
haviors at the elementary level are specified in atomic models by means of transition
functions, time advance functions, etc.

The behavior of a composed model (component) is determined by the collective
(interactive) behavior of its sub-components. Not only the behavior of the constitu-
ent components but also the alterable composite structure alter the behavior of the
composed model. In DEVS, compositions are specified in coupled models by means of
couplings. Following the concept of closure under coupling in DEVS (ibid.), the result-
ant of coupling is also a DEVS model, which can be again used for composition and so
recursively.

“The definition of the permissible model compositions” advocates abstract defini-
tions of model composites in order to allow for certain flexibility of composition under
predefined constraints. In this sense, the abstract definitions of model compositions
are not classic DEVS coupled model specifications. They are defined by patterns of
DEVS coupled models through meta-models, and are accompanied by necessary func-
tions that can create (classic) DEVS coupled models with permissible compositions
(§ 4.3.5 and § 5.3).

13Some M&S literature states that modeling is deemed more of art than science (e.g., SHANNON 1975).
14Some literature prefers not to differentiate simplification from abstraction. For example, in ZEIGLER et

al. (2000): abstraction is a general process and includes various simplification approaches; the word “abstrac-
tion” is not mentioned in ROBINSON (2004).

65

4

Domain Simulation Library

Systems Decomposition In § 2.1.1.2 and § 2.3, we had some discussion about systems
decomposition and related concepts. Modelers typically view systems as interacting
parts and relations using the golden rule of separation of concerns (DIJKSTRA 1982).
Even if not perfectly possible, it is yet the only available technique for effective ordering
of one’s thoughts (ibid.). Although supported by the near-decomposability principle of
SIMON (1996), some decisions for decomposition are not easy to make, especially when
the systems are of natural kinds where there are non or indistinct sub-system boundar-
ies. A typical example is fluids, viz., liquids and gases. HOFMANN (2004) discusses differ-
ent terrain representations, e.g., decomposition with quadratic or hexagonal cells, and
ways to represent visibility, soil and surface, etc. The author states that none is superior
to all the others in every aspect (ibid.). In such cases, it may be beneficial to consider
whether the resulting design is compatible to or interoperable15 with other simulation
systems. After all, modeling choices should be strongly problem solving oriented, the
problem being defined for the purpose of model use or higher level goals such as co-
hesion, low coupling or composability. Here is how BREEDVELD (2009) comments on
modeling choices.

A key aspect of the physical world around us is that “nature knows no domains”.
In other words, all boundaries between disciplines are man-made, but highly influ-
ence the way humans interact with their environment. A key point each modeler
should be aware of is that any property of a model that is a result of one of his own
choices, should not affect the results of the model. Examples of modeler’s choices
are: relevance of time and space scales, references, system boundaries, domain
boundaries, coordinates and metrics. If a variation in one of these choices leads
to completely different conclusions about the problem for which the model is con-
structed, the model obviously does not serve its purpose as it tells us more about the
modeler than about the problem to be solved. Again, when the issue is phrased in
this manner, it is hard to disagree, but practice shows that this modeling principle
is often violated.

Modeling decisions should be strongly backed with a good understanding of the
problem situation and sufficient domain knowledge. The way how an original system
is decomposed by modelers determines model composition and interaction. The level
of resolution, or when to stop recursively decomposing a system, again depends on
the purpose of analysis. We aim at decomposing a system into less complex parts and
interacting relations such that they capture the essence of a system to serve the inten-
ded simulation goal and at the same time provide certain flexibility for other composite
combinations in order to represent a class of systems in a certain domain. This natur-
ally requires modelers to consider the class of possible applications of the prospective
model components instead of only one application.

A reasonable question to ask is what are the similarities and differences among the
potential target systems or what are their possible changes. This kind of decomposition
criteria is advocated as early as in PARNAS (1972) in a more systems design oriented
context. The author argues that one should begin with a list of different design decisions

15TOLK et al. (2010) have discussion on the interoperability and standardization of model components.

66

4

4.2 Systems Modeling

or design decisions which are likely to change, and then design each component to hide
such a decision from the others (ibid.). The word “hide” should not be understood in
a narrow sense of encapsulation in object-orientation. As we will try to show later in
this chapter, there are many ways that could provide flexibility by the design of model
components to “hide changes”.

Source of Rail Domain Knowledge In developing LIBROS, which we use for cases in
this chapter, part of the domain knowledge is obtained from well established theor-
ies (in rail and public transport) presented in books16 and articles such as those from
the TRB (www.trb.org) journal and meetings. During the research, formal and informal
meetings were conducted regularly with experts from or affiliated to HTM. The author
was present at the organization on a weekly basis, visited different departments (e.g.,
planning, operation, control, maintenance, infrastructure, depot and ICT), met and in-
terviewed specialists from these departments, and collected internal documents when
available.

According to PACHL (2002), a railway system consists of three essential elements17:

1. the infrastructure with the trackwork, signaling equipment, stations, etc.;

2. the rolling stock with locomotives and cars; and

3. the system of operating rules and procedures for a safe and efficient operation.

This provides a guideline in how to decompose a railway system. For example, we
need to model things such as rolling stocks (hereafter called vehicles), tracks, signals
and different operating procedures. There are specific modeling choices that need to
be decided upon.

4.2.1 Modeling Vehicles

The first modeling choice concerns whether we represent the vehicles as inputs and out-
puts of some other models or represent them as models that have autonomous behavior.
More specifically, in the former case, the vehicles are to be represented as messages (or
events) being transmitted from one model, e.g., infrastructure, to another (LEE et al.
2004, WAINER 2006). In the latter case, they are to be represented as models that can act
on their own. We choose to do the latter basically for the following reasons.

A rich vehicle representation Represented as a model component, a vehicle can have
dynamic autonomous behavior. This eases modeling driving-on-sight and allows
for a rich representation of vehicles as required by the modeling needs discussed
in § 4.1.1.

16The major domain text books used are the following:
◦ Railway Operation and Control (PACHL 2002)
◦ Railway Timetable & Traffic: Analysis-Modelling-Simulation (HANSEN and PACHL 2008)
◦ Railway Signalling & Interlocking: International Compendium (THEEG and VLASENKO 2009)
◦ Urban Transit: Operations, Planning, and Economics (VUCHIC 2005)

17The first two are regarded as the “hardware” and the third as the “software” of railways (PACHL 2002).

67

http://www.trb.org

4

Domain Simulation Library

Modularity and extensibility Message representations are in principle static; i.e., a mes-
sage does not have behavior per se. Although behavior may be mimicked by
modifying the message content, the modification is dependent on the behavi-
oral units (i.e., atomic models in case of DEVS) that hold the message. This design
choice raises dependency as opposed to modularity. Furthermore, when we wish
to change or extend the vehicle behavior, we would have to change the aforemen-
tioned behavioral units instead of the vehicle “itself”. This affirms the advantage
of the choice from the aspect of modularity and extensibility through separation
of concerns. Their importance are discussed in § 4.1.1 and § 4.1.2.

A follow-up question is whether we model the locomotives and cars separately. We
choose not to do so because such a separation is not required by the intended model
use. The vehicle model in LIBROS thus has “an inseparable body”. This solution is how-
ever open for extension. When a separation is needed18, the vehicle model can be used
as “a locomotive” without change, and a car model may be added.

Choosing a simple but modular design is a principle we used often in LIBROS com-
ponent design. Some other examples are: how to choose units and boundaries of in-
frastructures, weather and how to separate operating rules and infrastructures, some
of which we will soon discuss.

Note 1 Among competing modeling choices in model component design, choose a simple
solution that is modular so that it can be extended when needed.

Modeling vehicle movement is the base element to estimate running time (HANSEN

and PACHL 2008). It calculates the speed-distance profile of a vehicle traveling from one
point to another (LI and GAO 2007). Different modeling styles (continuous, discrete
time or discrete event abstraction) can be used; each has pros and cons in terms of
model detail, accuracy, modularity, and computational efficiency19.

A basic idea in designing the vehicle model in LIBROS is that the movement is rep-
resented by a changing relation of the vehicle model to where the vehicle is situated in

18A separation may be needed when modeling, e.g., operations of marshaling yards, which is for the mar-
shaling of trains, exchange of wagons between trains and splitting up of trains (THEEG and VLASENKO 2009).

19A continuous abstraction of vehicle behavior is obtained by assuming a continuous time base and defin-
ing the rate of state (e.g., location, speed and acceleration) changes of a vehicle using differential equations.
A numerical integrator executes the model. Some examples of continuous vehicle models are discussed in
HANSEN and PACHL (2008).

A discrete time abstraction of vehicle movement is obtained through the definition of a time-invariant
recurrence relation between the current state of a vehicle and the successive state after a predefined time
interval has elapsed. Discrete time models of vehicle behavior are developed, e.g., with difference equations
and cellular automata (LI et al. 2005, LI and GAO 2007).

A discrete event abstraction of vehicle movement is obtained through the definition of events which trigger
significant state changes of a vehicle being modeled. The choice and definition of events are based on the
purpose of model use and the interest of modelers. Some examples of discrete event vehicle models are
presented by MIDDELKOOP and BOUWMAN (2001), LU et al. (2004) and LI et al. (2009).

The choice of (the length of) the time interval or integration step in the discrete time or continuous model-
ing approach is basically a trade-off between computational efficiency and simulation accuracy. The smaller
the time step, the more accurate and more computationally demanding. Owing to a longer tradition, the con-
tinuous modeling style of vehicle movement appears to be the most intuitive. Well known equations such as
the equations of motion can be directly applied without much further modeling effort.

68

4

4.2 Systems Modeling

a rail network. We need to design how a vehicle model communicates with its envir-
onment (including the infrastructure and other vehicles) and decides on its movement
accordingly. To proceed, we next discuss some concepts related to modeling infrastruc-
tures.

4.2.2 Modeling Infrastructures

Many factors in the railway infrastructure influence vehicle movement, e.g., track cur-
vatures, control signals and speed restrictions. It is best practice in the modeling of
railway infrastructure to use structures derived from graph theory (HANSEN and PACHL

2008). We can decompose the rail network into parts and represent the rail network as
a directed graph.

A choice here is whether we represent the rail network as a data structure or as simu-
lation models. A data structure representation of a rail network would be an infrastruc-
ture map or graph without behavior, while a simulation model has behavior. The al-
ternatives of the choice need further elaboration. In the former case, a behavioral unit
needs to hold the infrastructure map and perform the appropriate actions. We may,
e.g., have a design of letting each vehicle know the complete network.

1. Each vehicle holds an infrastructure map and knows its own locations. It an-
nounces itself to other vehicles so that it can be “seen”.

This option, Figure 4.2–1, results in strongly connected (vehicle) components which
need broadcast like communications. This solution is not scalable with regard to the
growth of map size and vehicle number. A direct improvement of this is to use a cent-
ralized solution.

2. A behavioral unit — let us call it a coordinator — holds the infrastructure map,
and maintains a list regarding the vehicles and their locations. The coordinator
communicates with the vehicles and informs them about the situation of their
environment.

In this option, Figure 4.2–2, all vehicles are connected to one coordinator instead
of to each other. This reduces the communication cost, i.e., 1 : n as opposed to n :
n in the previous option. But the vehicle models are now largely dependent on the
coordinator and the latter is a singleton component that is loaded with heavy duty. It
needs to, e.g., maintain the states and positions of the vehicles, find which vehicles may
affect the others, and inform the potentially affected vehicles so that they may adapt
their movement accordingly.

Although the discrete event approach is often the most efficient among the three modeling style (ZEIGLER

and LEE 1998, GIAMBIASI et al. 2000, KOFMAN 2003a), it requires a careful analysis and design of the simulation
model. A good design of a discrete event representation of a continuous or hybrid system can render sim-
ulation more efficient than using discrete time or continuous representations. However, using the discrete
event modeling style per se does not guarantee efficient simulation.

69

4

Domain Simulation Library

In both ways, we have not yet mentioned that the infrastructure also has behavioral
parts. The sensors, switches, and signals in a rail network are non static20. They “work”
together in some areas in the rail network to safeguard the vehicle movement. They
too need to interact with the vehicles. Similar to what is described in option 2, this
interaction can be managed through the coordinator.

2*. A coordinator also holds a list of the behavioral infrastructure parts and their loc-
ations in the map. It manages the communications among these infrastructure
parts and the vehicles.

This, Figure 4.2–2*, results in a more complex singleton component which has to
handle all the communications among the vehicles and dynamic infrastructure parts
(and to detect communication relations among them). To reduce the complexity of the
coordinator, we can again use the principle of separation of concerns: divide and distrib-
ute the responsibilities, for instance, to some sub-coordinators. An intuitive choice of
the division would be a “geographical partition” in which a sub-coordinator is respons-
ible for one partitioned geographical area. In this regard, the communications may still
be handled through a coordinator or only by the sub-coordinators themselves. As such,
we may have the following two options when we partition a rail infrastructure network
into some sub-areas.

3. Each sub-coordinator holds a sub-map and manages a partitioned area. The sub-
coordinators communicate with a higher level coordinator who has a global view
of the vehicle locations.

4. Each sub-coordinator holds a sub-map and manages a partitioned area. It has a
local view of the vehicle locations. The sub-coordinators communicate with one
another.

At first glance, the difference between the two options may be only the degrees of
centralization in communications. For example, in option 3, Figure 4.2–3, vehicles com-
municate with each other through the coordinator (as in option 2 or 2*), and they com-
municate with the dynamic infrastructure parts through sub-coordinators21. In option
4, Figure 4.2–4, the central coordinator is left out. Each sub-coordinator shall locally
handle the communications among the vehicles and the dynamic infrastructure parts
within its area. When two vehicles in two partitioned areas want to communicate, the
two corresponding sub-coordinators shall together handle the communications.

An important difference between the two options, however, is that option 3 has a
static model structure while option 4 would require dynamic model structure. A model
having a dynamic structure is a model that is designed to change its structure during

20Sensors are used to refer to different vehicle detection and track clear detection devices used in rail op-
erations and controls (PACHL 2002, THEEG and VLASENKO 2009). Switches (also called switchpoints or points)
are movable track elements that are used to transfer rolling stocks from one track to another (THEEG and
VLASENKO 2009). Signals indicate if a movement may enter the section of track behind (i.e., beyond) the sig-
naling equipment (PACHL 2002).

21Without a central coordinator, we may directly connect each vehicle model to each sub-coordinators.
But this setting of connections may be less desirable.

70

4

4.2 Systems Modeling

Figure 4.2: Modeling options for infrastructure models

simulation. The dynamic structure in option 4 is related to the vehicle models. As they
“move” in the infrastructure network, they need to be connected to the corresponding
sub-coordinators when appropriate. Since only the sub-coordinators at the adjacent
areas need to be connected to each other, a meaningful partition of the infrastructure
network in option 4 can lead to a simpler structure of sub-coordinators that is homo-
morphic to the infrastructure network.

The vehicle models in option 4 are connected to the sub-coordinators instead of one
central coordinator, which is a less centralized solution compared to option 3. We may
take this decentralization one step further by leaving out the sub-coordinators. The idea
is that vehicle models can be directly connected to infrastructure models. In the previ-
ous modeling options, the infrastructure network is represented by maps or sub-maps
(i.e., data structures) in which only the behavioral parts are represented by infrastruc-
ture models. In other words, the infrastructure is represented partly static and partly
dynamic (which is indeed the case in reality). We can, however, represent the infra-
structure solely with (dynamic) models to achieve uniformity in infrastructure repres-
entation. In this way, the connectedness of the infrastructure parts itself represents the
network structure. As in option 4, the vehicle models can be dynamically connected to
the infrastructure models in order to model their movement.

5. The infrastructure is represented by a network of connected infrastructure mod-

71

4

Domain Simulation Library

els. The vehicle models are dynamically connected to the successive infrastruc-
ture models in the moving trajectories to represent the vehicle movement.

We are in favor of this modeling concept, Figure 4.2–5, firstly for the uniformity in
infrastructure representation. This uniformity increases cohesion in the affected mod-
els and potentially improves their composability. Second, the coordinators or sub-
coordinators are left out in this design, which reduces the number of artifacts that are
constructed purely for the purpose of modeling. This potentially leads to simpler and
more understandable morphisms. Third, the decentralized communications allow for
convenient modeling of autonomous behavior. Given the requirement in vehicle mod-
eling, this infrastructure representation is a suitable choice. Fourth, representing the
infrastructure network as connected models permits flexibility in the sense that model-
ers may change model behavior by changing (infrastructure) model structure. As we
will show in § 5, this flexibility is positively accounted for in model generation.

Note 2 Using less artifacts which are constructed purely for the purpose of modeling po-
tentially leads to simpler and more understandable morphisms.

Note 3 In modeling communications, when a decentralized design results in strongly or
almost strongly connected model components and broadcast like communications, cent-
ralization can be a beneficial alternative in terms of communication cost. The latter,
however, can be less convenient in modeling the autonomy of aforementioned compon-
ents.

As discussed in § 4.1.1, a microscopic model is needed for running time calcula-
tion, timetable assessment and rail operational simulation. The granularity of the in-
frastructure model in LIBROS is in accordance with a common sense decomposition of
the engineered system. At its lowest description level, the rail infrastructure model is a
network of Rail Infrastructure Elements (RIEs) such as track segments, sensors, switches
and signals (the last three are hereinafter abbreviated as 3S). The RIEs can be used to re-
cursively compose higher-level infrastructure components22. This recursive composi-
tion makes up an infrastructure network that has a (multilevel) Compositional Contain-
ment Hierarchy (CCH)23. For example, a tram stop (or halting place) model is composed
of track segments and a sensor; an intersection (or crossing) is composed of track seg-
ments and 3S; and the two composed models can further be composed.

In controlled areas such as an intersection (or crossing), the 3S models need to com-
municate with one another. More specifically, the signals (or signaling), e.g., at an in-
tersection, need to be coordinated for safety control, during which the sensors in the
area are for vehicle detection, and the switches change positions if necessary in order to
allow vehicles to move from one track to another. This coordination (or control) is car-
ried out by a control unit in the area. The use of (locally) centralized communications
(and control) through the control unit is a logical outcome of informed modeling rather
than a deliberate design choice between centralized or decentralized communications
as previously discussed.

22In DEVS, the former would be specified in atomic models and the latter in coupled models.
23We have more explanation on this in § 5.1.1.

72

4

4.2 Systems Modeling

4.2.3 Modeling Vehicle Communications

A vehicle model needs to communicate with its “environment” in order to decide upon
its own actions. The discussion in the previous section presents a general concept of
representing the infrastructure as a network of connected infrastructure model parts,
and connecting vehicle models dynamically to the infrastructure models where they
are located. This section discusses this design in more detail. We address two issues:

i. How to connect a vehicle model with an infrastructure model?

ii. How does a vehicle model communicate with another model?

Suppose the following simple scenario: a vehicle drives along a rail track composed
of four track segments. A model of this would have four successively connected track
segments (T 1 ∼ T 4), as shown in Figure 4.3–1; a vehicle model (V) can be connected
to T 1∼ T 4 one after another at four time instances corresponding to the time24 that is
needed by the vehicle moving from one track segment to the next.

Suppose that T 2 and T 3 together form a composed infrastructure model T ′. The
model V can be connected with T 2 or T 3 in two ways:

(a) place V in the composed model T ′, and connect V directly with T 2 or T 3, as
shown in Figure 4.3–2; or

(b) place V outside of T ′, connect V with T ′ at port p , and connect port p with T 2
or T 3, as shown in Figure 4.3–3.

Which way is better? We cannot yet decide as such. Let us take a look at both ways
how a vehicle model can communicate with another model. Suppose now there is an-
other vehicle model (V ′) connected to T 1. How can V communicate with V ′? Corres-
ponding to the previous two ways of connection, we can also connect the two vehicles
in two ways:

(a) connect V with V ′ through a port of T ′, as shown in Figure 4.3–4 as an outcome
of 4.3–2; or

(b) directly connect V with V ′, as shown in Figure 4.3–5 as an outcome of 4.3–3.

Suppose again that at the position of T 4 there is a signal (S) instead and we want to
connect V with S . The resulting connections would be similar to those that connect V
and V ′ in both ways.

Apparently, neither way is insofar better than the other in terms of easiness of con-
nection. Both would have direct and indirect connections25 of model components de-
pending on whether the components have the same parent model. As the vehicles in
principle can be anywhere in the infrastructure network which has a CCH, we often
need to connect (and disconnect) models that belong to different levels. These con-
nections can be costly.

24This time is calculated, e.g., based on the length of the track segment and the vehicle’s speed and accel-
eration.

25Two components are indirectly connected when there are more than one link connecting them. A link
(or connection) directly joints two ports of two components.

73

4

Domain Simulation Library

Figure 4.3: Modeling options for vehicle and infrastructure model connections

In order to further our discussion on the design of vehicle communications, we shall
first look at with whom the vehicle models communicate. Basically vehicle models need
to communicate with RIE models (i.e., vehicle-to-infrastructure or V2I) and with other
vehicle models (i.e., vehicle-to-vehicle or V2V). We choose to focus on the most relevant
meaning that a vehicle model at a certain instant only communicates (1) with its next
closest RIE, and (2) with its closest preceding and following vehicles (if any) within a
distance range. For example, when a vehicle is approaching an intersection, the move-
ment is computed based on the distance and the state of the signal at the intersection;
if there is another vehicle ahead, the vehicle needs to adapt its speed to avoid collision.
Since a vehicle’s location is not static, neither are its connections to its next closest RIE
and its preceding vehicle (i.e., the V2I and V2V connections). Our interest in reducing
the cost of dynamic connections naturally brings out the following question: can we
use static connections for vehicle communications?

An aforehand setup of all possible connections is not an acceptable option. There
is, nonetheless, an option worth considering. The infrastructure model is a (statically)
connected network. When a vehicle model is connected to the network, it practically
has connections to any models that are as well connected to the network, despite that
the connections are mediated in the sense that there are RIE models in-between. The
basic idea is that: we can use the infrastructure network as the backbone of vehicle com-
munications.

Take Figure 4.3–4 (p. 74) as an example. In this setting, vehicle V ′ is connected with
V through track segments T 1 and T 2. It is possible to establish communications be-
tween V ′ and V through the two intermediates without setting up new dedicated con-

74

4

4.2 Systems Modeling

nections between the two vehicles. When V ′ needs to send a message to V or vice versa,
T 1 and T 2 shall pass on the message.

Following this principle, any vehicle model can communicate with any other vehicle
and RIE via the infrastructure network. We only need to dynamically connect each
vehicle to the RIE model corresponding to where the vehicle is located. In this case,
it makes sense to directly connect a vehicle with a RIE, as shown, e.g., in Figure 4.3–2
and 4. The number of direct dynamic connections, therefore, is equal to the number of
vehicles in the simulation model. We call this mediated message passing mechanism
message propagation. How is message propagation compared to communications using
dedicated dynamic connections? The next section tries to answer this question.

4.2.3.1 Dedicated Dynamic Connections vs. Message Propagation

In the case of Dedicated Dynamic Connections (DDCs), point-to-point V2V and V2I con-
nections are established through which vehicles can exchange messages directly with
the other vehicles or RIEs. As stated, when one vehicle needs to compute its movement
at a certain instant, it needs to know its next closest RIE and preceding vehicle (if any)26.
Each of the two communications at a certain instant generally requires three successive
steps:

(1) given a vehicle model, search for the next closest RIE or preceding vehicle;

(2) if found, establish a connection (or two connections if the connection is directed)
between the two models;

(3) and finally the two models can communicate.

In the case of Message Propagation (MP), the existing static connections of the infra-
structure network are used, and the message are exchanged indirect through the me-
diated RIE or RIEs. As such, new connections are not needed (step 2 above) between
the pairs of communicating models. This gives a simpler model structure. We can also
spare the search function (step 1 above) since the next closest RIE and preceding vehicle
can both be found during MP. In other words, the process of MP combines steps 1 and
3 above. The basic concept of MP can be simplified as following:

(1) at a certain instant, when a given vehicle model needs to know its next closest RIE
and preceding vehicle, it sends out a (request) message;

(2) the message is forwarded by the RIEs along the vehicle’s route;

(3) once the next closest RIE or preceding vehicle (if any) receives the message, it
sends a (response) message back;

(4) the message is forwarded by the RIEs back to the original vehicle.

After such a round of MP, a given vehicle model would receive at least one and at
most two response messages. To achieve the same result, the DDCs (of V2V and V2I)
need to run the steps 1∼3 for twice. However, there is a tradeoff. The MP introduces

26A vehicle always has a next closest RIE, but not necessarily a preceding vehicle.

75

4

Domain Simulation Library

Search Connections Communications
BFS LCA Setup Message sending Transitions

Dedicated
Connections

O
�

log n
�

O
�

log n
�

O
�

log n
�

O
�

log (n +ν log n)
�

O
�

δc

�

Message
Propagation

- - - O
�

log n
�

O
�

δp log n
�

Table 4.1: Time complexity per V2I or V2V communication with dedicated dynamic connections
or message propagation. The complexity denoted is per unit, which estimates how much total
communications cost is required for one vehicle movement computation at one instant. The com-
plexity in a whole simulation run raises over the total number of vehicles generated νT and the
number of RIEs n , e.g., the total time of BFS in a simulation run is O

�

νT n log n
�

.

the overhead of message forwarding by the mediated RIEs; each message forwarding
entails one extra model state transition.

In order to make an informed decision, the time complexity and space complex-
ity (see, e.g., KNUTH 1997, CORMEN et al. 2001) of both designs of communications are
estimated and compared27; see Table 4.1. The estimation uses one vehicle movement
computation as one unit. If not otherwise stated, the complexity hereinafter presented
is per unit, which estimates how much communications cost is required for one move-
ment computation at one instant, given that for each computation a vehicle needs to
know its next closest RIE and preceding vehicle.

Cost of Dedicated Dynamic Connections In the case of DDCs, step 1 can be solved by
a Breadth-First Search (BFS) in the infrastructure network28 starting from the RIE node
where the vehicle model is located. It is well known that BFS has linear time and space
complexities, denoted as T (fBFS) =O

�

n
�

or fBFS ∈O
�

n
�

(see, e.g., CORMEN et al. 2001)29.
Since the vehicles drive along predefined routes (i.e., paths), we can improve the search
cost to O

�

log n
�

. In both cases30, n is the number of nodes (or vertices), i.e., RIEs, in the
graph.

For step 2, setting up (or removing) a dedicated point-to-point connection between
two models requires the knowledge of the common parent of the two models. This
can be solved by a Lowest Common Ancestor (LCA) finding algorithm in the CCH29 of

27We are aware that high level designs can be concretized in many different ways even with the same
modeling concept in mind. Our estimation is theory based and is deemed appropriate since no detailed
model design is available at a high level design stage.

28The infrastructure network model, as how it is connected, is a directed graph with RIEs as nodes. The
infrastructure network model, as how it is composed, however, has a Compositional Containment Hierarchy
(CCH). We have more explanation on CCH in § 5.1.1.

29In literature, the BFS runs in O
�

n +m
�

time where n is the number of nodes and m is the number of

edges in a graph. We consider it to be O
�

n
�

as the infrastructure network is sparse, i.e., n ∼m .
30In order to keep the discussion as general as possible, search improvement with bound constrains is not

considered, as such bound modifications are not always applicable and are different from case to case.

76

4

4.2 Systems Modeling

the infrastructure model. The LCA has as well linear time and space complexities, but
to the tree height (see, e.g., ALSTRUP et al. 2004). The number of RIE nodes n in the
infrastructure network is the leaf number in the tree of CCH (hereinafter called model
composite tree or MCT). The number of inner nodes in relation to the leaf number n
in a full k -ary tree is (n − 1)/(k − 1); hence the number of total nodes in a tree is 2n − 1
in the worst case31, which has a tree height of log (2n − 1). The LCA, therefore, has a
complexity of O

�

log n
�

, i.e., T (fLCA) =O
�

log n
�

.
The connection setup (or removal) basically has the same time and space complex-

ities as LCA since it uses the (intermediate and final) result of the latter. To set up the
connection we first need to create ports. The ports and connection themselves create
extra space complexity of O

�

log n
�

for each connection. Because each vehicle always
has one or two connections during its (simulation) lifetime, the total space complexity
of the connections at a certain instant is O

�

ν log n
�

where ν is the vehicle number in a
simulation at an instant. Note that ν is smaller than νT which is the total number of
vehicles (generated) in a simulation.

In step 3, the two models can communicate with each other. When a message is
sent, the reception of the message triggers the state transition of the receiver. Message
sending requires a search in the connections list where the existing vehicle connections
are stored. As just mentioned, the space complexity of the connections at an instant is
O
�

ν log n
�

. We hence estimate the time complexity of message sending to be O
�

log (n +
ν log n)

�

. The space complexity of one message is constant, i.e., O
�

1
�

. In using DDCs,
since there is only one receiver involved, the cost of the state transition is dependent
on the receiver model. We denote the transition function as δc (where c stands for
connection). See below for the discussion on O

�

δc

�

.

Note 4 Configuration (and reconfiguration) cost is a criterion in choosing communica-
tion mechanisms of model components that have dynamic structures.

Cost of Message Propagation MP relies on indirect communications. This has ad-
vantages as well as disadvantages. An obvious advantage is that extra dynamic connec-
tions are not required for the intended communications. Hence, the related search and
connection costs for (re-)configuration are spared. Message sending itself is easy be-
cause one vehicle is only connected to one RIE at any instant. The MP time complexity
grows with the distance, i.e., the number of intermediary RIE models along the route,
between the original sender and the final receiver, i.e., O

�

log n
�

.
For message passing, we have to impose overhead on the intermediary RIE models.

Upon the reception of a message, each intermediary RIE model needs to forward the
message. Once the message reaches its final receiver, be it a RIE or vehicle model, the re-
ceiver responds to the message and, if necessary, computes its state accordingly. In both
cases, state transitions are required. We denote the transition function as δp (where p

stands for propagation). An estimate of the total cost of the transitions is O
�

δp log n
�

as
each model along the route is engaged.

31A tree has a maximum node number of 2n −1 when it is binary, i.e., k = 2, given a leaf number n .

77

4

Domain Simulation Library

On Transitions δc and δp From the perspective of a sender or receiver, the outcome
of DDCs and MP (through functions δc and δp) should be comparable. In the case of
DDCs, a sender and a receiver communicate directly. In a modular design, they are
supposed to exchange information about their local states. The situation between the
two is not contained in the message per se. When latter information is needed, extra
communication is required. This extra cost shall be accounted for by δc .

In the case of MP, the models along the propagation route are also involved. Each
can participate as a communicating party rather than merely a messenger. Hence, δp

can be assigned with tasks beyond simple message forwarding. Modelers may design
rich behaviors that the intermediary models shall perform so long as these behaviors
are conceptually consistent with the purpose of the model components. In the context
of LIBROS, the intermediary RIE models are designed to perform the aforementioned
search function and to enrich the information contained in a message. To conclude,
the state transitions δp performed by the models in MP shall:

(a) fulfill the functionality of transitions δc in DDCs, and

(b) undertake the overhead Λ introduced by the use of MP.

MP can be a good choice when the function δc in DDCs can be replaced by simple
tasks performed by δ′p of the models in MP even after taking on the overhead Λ; that

is when O
�

δc

�

¦ O
�

δp log n
�

÷ O
�

(δ′p +Λ) log n
�

. In principle, O
�

δp

�

can be kept low by

low O
�

δ′p
�

and O
�

Λ
�

, meaning that a good decomposition of function δc into δ′p and
a good design of the transition functions which handle the overhead Λ. In LIBROS, the
transition functionδp in the RIE models have a constant time complexity, i.e.,δp ∈O

�

1
�

for each message forwarding. This makes MP an attractive design option.

4.2.3.2 A Joint Consideration

After a number of considerations, we choose to use MP for the modeling of vehicle com-
munications in LIBROS. We are in favor of MP, however, not only because it has a reas-
onable cost estimate in terms of computation (which is just discussed and shown in
Table 4.1) given our modeling context. The choice of MP in LIBROS is consistent with
the three previous notes stated in § 4.2.1 (p. 68) and § 4.2.2 (p. 72), and it has advantages
in terms of model design itself.

Simpler model structure The indirect communications in MP ask for a simpler model
structure compared to that in DDCs since dedicated connections are not required.
A direct outcome of this is that it needs less couplings, whose benefits are dis-
cussed in § 4.1.2.

Simpler model components The need of less functionality (in case of BFS, LCA and
connection setup) or the decomposition of large functionality into simpler ones
(in case of δc and δp) means that less model components or smaller compon-
ents are to be designed. Simpler components are easier to understand, develop,
test and document. They are also easier to be reused and extended, which are

78

4

4.3 Model Design in LIBROS

desirable features discussed in § 4.1.1.

4.3 Model Design in LIBROS

4.3.1 A Communication Mechanism: Message Propagation

MP in principle is a mechanism for decentralized indirect communications in a con-
nected network model. Designing communications should respect the corresponding
systems knowledge (§ 2.1.3 and § 2.1.4) while considering how components could com-
municate with each other efficiently with respect to modularity, strong cohesion and
weak coupling (§ 2.3 and § 4.1.2). Connecting locally each vehicle model with the RIE
model where the vehicle is located as discussed in § 4.2.3, is an effort to decrease dy-
namic couplings and to increase cohesion in the couplings.

As discussed in § 4.2.2, the rail infrastructure model in LIBROS, at the lowest de-
scription level, is a network of RIEs such as track segments and 3S. For MP, each RIE is
designed such that it is capable of message propagation, which can be in the direction
of the traffic or in the opposite direction.

Basic Concept A vehicle model’s main task in LIBROS is to correctly compute its move-
ment based on the information about its next closest RIE and the preceding vehicle
it is approaching. In using MP, if either type of information is absent before a move-
ment, a vehicle sends a message forward32 which requests this information. The vehicle
model’s next closest RIE and preceding vehicle responds to the message, which is then
propagated back to the original vehicle. Once obtaining the information, the vehicle is
able to compute its movement trajectory to reach the next infrastructure. After having
reached the RIE, a new iteration of this process starts again until the vehicle reaches its
final destination.

MP is also used when vehicles or RIEs change (or update) their states and want to
make the state changes known to some other (vehicle) models. A vehicle can change
its state during a movement trajectory when its velocity changes. A RIE model such as
a signal changes its state when its signaling sign changes. For such cases, a model an-
nounces its state change by sending a message backward33. In this way, an approaching
vehicle model would receive the message and change its movement accordingly when
necessary.

Example 4.1 Figure 4.4 illustrates a simple model example composed of four successively
connected track segments (T0 ∼ T3) and two vehicles (V0 and V1). Each track segment
has a length (L0 ∼ L3) and a speed limit (SL0 ∼ SL3). Each vehicle has a vehicle length
(VL0 and VL1), its position (P0 and P1) on the track segment34 it is coupled with, and its

32When a message is sent forward, it is propagated in the direction of the traffic.
33When a message is sent backward, it is propagated in a direction against the traffic flow.
34A vehicle’s position on a track segment is defined as the distance between the vehicle’s front end and the

start node of the track segment.

79

4

Domain Simulation Library

current speed limit (CSL0 and CSL1). Suppose that V0 is on T0 and V1 is on T3, i.e., V0 is
behind V1 given that the direction of the traffic is from left to right; and V0 does not have
the information about its next infrastructure nor about its preceding vehicle.

4.3.1.1 Request and Response Messages

Given the situation in the example, V 0 would send a message forward (
−→
M 0)35 to request

information. Two message prorogation sequences are generated upon this action:

(1)
−→
M 0,

−→
M 1,

−→
M 2,

←−
M 3,

←−
M 4,

←−
M 5, and

(2) (
−→
M 0,

−→
M 1,

−→
M 2,)

−−→
M 3′,

−−→
M 4′,

←−−
M 5′,

←−
M 6,

←−
M 7,

←−
M 8,

←−
M 9.

In our original design for MP, a closest RIE would respond to a request message (ori-
ginated from a vehicle). As such, T 1 would respond to V 0’s request in the example; and
V 0 should subsequently calculate its movement until T 1. This means that for each
vehicle, each RIE would require one round of MP. In order to reduce the frequency of
MP and of the consequent model transitions, the following rule is defined: a RIE model
responds to a request message only when the RIE requires or potentially requires a change
in movement of the requesting vehicle. We call such a RIE the next closest RIE of interest
(NCRI) of a vehicle. Here are some examples such RIEs:

(a) the RIE has a defined speed limit which is different to the current speed limit of
the requesting vehicle;

(b) the RIE is a signal;

(c) the RIE is (or is in) a stop, a station, a terminal, etc.

Referring back to Example 4.1, in MP sequence (1), we assume that

(S L1=∞∨C S L0= S L1)∧ (S L2 6=∞∧C S L0 6= S L2)

P0 P1
V0 (VL0, P0, CSL0)

M0

M1

M3M4

M5

M3'

M4' M5'

M6M7M8

T3 (L3, SL3)T2 (L2, SL2)T1 (L1, SL1)T0 (L0, SL0)

V1 (VL1, P1, CSL1)

M9

M2

Figure 4.4: Message propagation in Example 4.1

35We use an arrow over a message to indicate its direction forward (→) in case of a request message or
backward (←) in case of a response message.

80

4

4.3 Model Design in LIBROS

It means that the speed limit of T 1 is undefined, i.e., there is no speed limit (S L1=
∞) or it is the same as the current speed limit of V 0 (C S L0 = S L1), and the speed
limit of T 2 is defined (S L2 6=∞) and it is not the same as the current speed limit of V 0
(C S L0 6= S L2). This condition coheres with the example (a) given above. Therefore, T 0

and T 1 do not respond to the request message but propagate it forward (
−→
M 1 and

−→
M 2);

T 2 responds to the request originated from V 0 by a backward message
←−
M 3 which is

propagated back to V 0 through T 1 and T 0 (
←−
M 4 and

←−
M 5).

While responding to the request from V 0, T 2 also propagates the request further

forward to T 3 (
−−→
M 3′) because V 0’s preceding vehicle (PV) is not yet found. This gener-

ates MP sequence (2). For MP, there are two other rules defined: a RIE model forwards
a request message to the vehicle model closest to its start node when there is any vehicle
coupled with it; when a vehicle model receives a request message, it responds uncondi-
tionally. In the example, T 3 has V 1 coupled with it, so it forwards the request to V 1

(
−−→
M 4′). In response, V 1 sends back a message (

←−−
M 5′), addressed to V 0, which is propag-

ated back to V 0 (
←−
M 6∼←−M 9). By the time, T 3 stops propagating the message further be-

cause both the NCRI and the PV of V 0 are found. This concludes this round of message

propagation, which is initiated by V 0 sending out a request message
−→
M 0 and ended by

two response messages
←−
M 5 and

←−
M 9:

(1)
←−
M 5 is originated from T 3, V 0’s NCRI, and

(2)
←−
M 9 is originated from V 1, V 0’s PV.

In MP, the messages (thirteen in total in Example 4.1) shall contain sufficient in-
formation so that they can be propagated or used correctly. The following information
is included in the messages in LIBROS:

(i) the message type, e.g., forward, backward;

(ii) the original sender’s ID and type;

(iii) the information about the original sender, i.e., the values of the sender’s state vari-
ables at the instant of message sending, e.g., when the sender is a vehicle, this can
be its speed, acceleration, etc.; when the sender is a signal, this can be its signaling
state;

(iv) the final receiver’s ID (if applicable);

(v) the distance between the original sender and the receiver.

4.3.1.2 Distance Accumulation in Messages

The (v) distance between the original sender and the receiver is accumulated by the
vehicle and RIE models during MP. Table 4.2 gives an example of distance accumulation
step by step. As already illustrated in MP sequence (2) of Example 4.1 (Figure 4.4, p. 80),

in response to V 0’s request, message
←−−
M 5′ is created by V 1, addressed to V 0, and sent

to T 3. The distance d is counted backwards starting from the rear end of a vehicle

81

4

Domain Simulation Library

sender. When a vehicle model creates a backward message, the distance contained in
the message is set to the value of the vehicle’s position on the RIE model with which it is

coupled, deducted by the vehicle’s length. Thus, d in
←−−
M 5′ is of value P 1−VL1.

When a RIE model receives a backward message, it does not change the value of the
distance if the original sender is a vehicle that is coupled to the RIE; otherwise the RIE
increases the value by its own length. Following this rule, T 3 does not need to change

d in
←−
M 6, while T 2, T 1 and T 0 add their own lengths respectively to d in the three suc-

cessive messages (
←−
M 7 ∼←−M 9). Since

←−
M 9 is addressed to V 0 which is coupled with T 0,

T 0 forwards it to V 0. This action concludes this backward propagation.

As a result, V 0 holds the response
←−
M 9 with d = P 1−VL1+ L2+ L1+ L0 which is

the distance from the rear end of V 1 till and include T 0. When V 0 needs to know its
distance to V 1, it simply shall deduct d with its own position on T 0.

4.3.1.3 Update Messages

As mentioned, MP is not only used for requesting information and the subsequent re-
sponse, but also for announcing state updates by a vehicle or RIE model. Suppose that,
in Example 4.1 (Figure 4.4, p. 80), at a certain instant, V 1 did not receive any request
message but just had a state update for some reason. In order to announce its state
update, V 1 creates an update message, which will be propagated backward to the most
relevant, V 0, the vehicle driving behind V 1. As expected, the MP sequence and the dis-
tance accumulation for the update message would be the same as those described for
the response message in the example.

An update message is created, without an addressed recipient, by a vehicle or RIE
model straight after an state transition, and is propagated backward to a vehicle model
closest to the original message sender within a predefined distance bound. The details
of message propagation rules can be found in § B.1.2.

Sender
Distance
Accumulation

Message Distance value (d) in Message Receiver

1. V 1 d ← P 1−VL1
←−−
M 5′ P 1−VL1 T 3

2. T 3 d
←−
M 6 P 1−VL1 T 2

3. T 2 d ← d + L2
←−
M 7 P 1−VL1+ L2 T 1

4. T 1 d ← d + L1
←−
M 8 P 1−VL1+ L2+ L1 T 0

5. T 0 d ← d + L0
←−
M 9 P 1−VL1+ L2+ L1+ L0 V 0

6. V 0 d ← d −P 0 - P 1−VL1+ L2+ L1+ L0−P 0 -

Table 4.2: Distance accumulation in the response of MP sequence (2) in Example 4.1

82

4

4.3 Model Design in LIBROS

Remark The design of MP (and distance accumulation) supports a good level of mod-
ularity and composability of the model components in LIBROS. We deem the design
modular in the sense that each (vehicle or RIE) model only uses its local information
(viz., the state variables of the model component itself) and the information contained
in the messages it receives to determine its own behavior. The direct dependency among
the (vehicle and RIE) models is limited to the couplings designated for MP and to the
messages being propagated.

Simple MP rules are defined (see § B.1) for cohesive model communications so that
messages can be created, understood, manipulated and routed by the communicating
parties. The models in LIBROS can be composed to work together in a modular manner
without prior knowledge of the infrastructure model layout (which is of importance for
the AMG presented in § 5) because of each model’s observance of the communication
protocol (or rules). The design of the model components and their inner working are
presented from § 4.3.2 to § 4.3.5.

Note that MP is performed in LIBROS with zero time advance. This means when
a vehicle model sends out a request message, it receives at least one and at most two
response messages in zero simulation time.

4.3.2 An Overview on Infrastructure Models

The infrastructure models in LIBROS are characterized at a high level by whether the
model is atomic or coupled and whether it has only one inflow and outflow of traffic
or more. The former is related to the modeling formalism, and the latter to the domain
specificity. Such an orthogonal abstraction can be designed as multiple inheritance and
is designed as mixin in LIBROS (see, e.g., GAMMA et al. 1994, VIEGA et al. 1998).

4.3.2.1 High Level Infrastructure Model Classes

As shown in Figure 4.5 (note that the classes are abstract), we define the RIE models as
InfraElement and the composed infrastructure models as CoupledInfraModel firstly
by the respective specialization of the AtomicModel and CoupledModel classes provided
by the ESDEVS library (see § A.2). Both infrastructure classes also implement InfraIn-
terface which defines a number of common functions mainly concerning operations
on the model ports and couplings; details see § 4.3.5.1.

The CoupledInfraModel class in LIBROS is used to define domain meta-models. It
has two specializations. The root infrastructure model is declared as a (singleton) Top-
LevelModel with no parent. It serves as a container for the simulation model to be
constructed (manual or automated) interfacing the simulator with the specification of
the inner working of the model. It is the final outcome of the AMG described by § 5.

The second specialization of CoupledInfraModel is InfraComponent which is for
defining meta-models of infrastructure compositions that are meant to be component
units for model construction. By component units, we mean that the sub-components
in an InfraComponent (as an unit) are strongly related such that their composition of-
ten reoccurs and can be reused as an assembled whole. An InfraComponent is defined

83

4

Domain Simulation Library

Figure 4.5: High level infrastructure model classes in LIBROS

for the convenience of model assemblance and reuse. We shall show in § 5 that Infra-
Component definitions are used to match the graph patterns for AMG.

The InfraElement and InfraComponent classes each has a specialization (Simple-
InfraElement and SimpleInfraComponent) that implements SimpleInfraInterface.
The prefix Simple- indicates that the component being addressed has only one inflow
and outflow of traffic. In other words, the component is not a switch or has no switch
as a sub-component.

Model Class Description

InfraElement The RIE components, i.e., the atomic infrastructure
models.

SimpleInfraElement An InfraElement that has only one inflow and outflow of
traffic.

CoupledInfraModel The composed infrastructure models.
TopLevelModel The root infrastructure model, a CoupledInfraModel that

has no parent.
InfraComponent An infrastructure component (unit) that is not atomic.
SimpleInfraComponent An InfraComponent that has only one inflow and outflow

of traffic.

Table 4.3: Infrastructure model class description

84

4

4.3 Model Design in LIBROS

The reason we define InfraInterface and SimpleInfraInterface is twofold. On
the one hand, we need to specify the models adhering to the chosen formalism whose
template is provided by the chosen simulator. This naturally suggests a strong (special-
ization) relation of the models to the provided template as defined by the AtomicModel
and CoupledModel classes (see § A.2). On the other hand, in order to refine the form-
alism outlined model behavior to meet the modeling needs of a domain, we need to
add or “mix-in” more specific behavior that can be shared by some models. This can be
achieved, e.g., by means of an interface.

4.3.2.2 A Design Pattern for Shared Alterable Mixin Behavior

A model wishes to have behavior refinement (or extension) may extend and implement
a baseModeland aMixinBehavior interface respectively, as shown in Figure 4.6. The in-
terface allows for different versions of concretization of the declared behavior through
delegation (see, e.g., GAMMA et al. 1994, VIEGA et al. 1998). More specifically, a Model-

WithMixinBehavior acts as a delegator who delegates the mixin behavior to its delegate
of type MixinBehavior. The latter carries out the concrete behavior. In Figure 4.6, two
versions of mixin behavior (Behavior1 andBehavior2) are shown. TheMixinBehavior,
if so wished, can be altered from a behavior concretization to another (cf. the Adapter,
Strategy and Bridge patterns in GAMMA et al. 1994).

The Shared Alterable Mixin (SAM) pattern is type safe in the sense that both the del-
egator and the delegate(s) must conform to the set of behavior signatures declared by
the MixinBehavior interface. A model has the flexibility of having more than one inter-
faces each of which can have multiple delegates. At the same time, different models can
have delegates of the same interface type, affirming that delegation is a way of making
composition36 as powerful for reuse as inheritance (ibid.).

Figure 4.6: SAM pattern – a design pattern of components with shared alterable mixin behavior

36It refers to the object composition of strong “has a” not the model composition.

85

4

Domain Simulation Library

Figu
re

4.7:In
frastru

ctu
re

m
o

d
elclasses

in
L

IB
R

O
S

86

4

4.3 Model Design in LIBROS

In the design of infrastructure models in LIBROS, the SAM pattern is used at three
places. Figure 4.7 gives an overview of the design. Three mixin behavior interfaces are
declared: InfraInterface, SimpleInfraInterface and SensorInterface. The first
two mainly concern the operations on model ports and couplings (§ 5.3.1.4) that all in-
frastructure models in LIBROS would need. The third interface declares the operations
that trigger and release some RIE models that also function as sensors (§ 4.3.4.4). The
details about the infrastructure models are presented in § 4.3.4 and § 4.3.5.

Remark The SAM pattern can be used when a number of (atomic) model components
need to have behavior or function composition, reuse and extension at the elementary
level.

4.3.3 Vehicle Model

We prefer a discrete event representation of vehicle movement over a continuous or
discrete time representation. The reason is stated in § 4.2.137. Classic discrete event
simulation models represent systems as piecewise constant state trajectory segments
over a continuous time base (§ 2.4). This often does not produce satisfactory results for
continuous and hybrid systems. In M&S literature, there are two approaches that per-
mit modeling of continuous and hybrid systems based on the discrete event paradigm
and the DEVS formalism in particular (KOFMAN et al. 2001, WAINER 2009): the Quant-
ized DEVS (QDEVS) and the Generalized DEVS (GDEVS).

4.3.3.1 QDEVS vs. GDEVS

Quantization is briefly discussed in § 2.4.2. It discretizes (or quantizes) the state space
rather than the time base as in discretization. The QDEVS (ZEIGLER 1998) provides a
DEVS theory of quantized systems in which the space of state variables are quantized
using an usually fixed value called the quantum (WAINER 2009). A state change occurs
when the state variable crosses the threshold defined by the quantum (ibid.). The prin-
ciple of conversion is similar to that of an analog-to-digital converter.

The Quantized State System (QSS) combines quantization with hysteresis (KOFMAN

2003a,b). Hysteresis is a technique that defines “buffer zones” (i.e., the hysteresis win-
dows) around quantum thresholds which eliminate (possible infinitely) fast oscillations
when a state variable “wanders around” a threshold.

The quantization approach is an alternative to the more traditional discretization
approach. Both are able to simulate systems expressed in ordinary differential equa-
tions (ODEs) or differential algebraic equations (DAEs).

GDEVS (GIAMBIASI et al. 2000), on the other hand, is an approach that supports dis-
crete event modeling of continuous and hybrid systems (WAINER 2009). It is, however,
more general than classic DEVS in the sense that the state trajectory segments can be

37See § 4.2.1, fn. 19, p. 87.

87

4

Domain Simulation Library

polynomial instead of constant. In GDEVS, systems are represented as piecewise poly-
nomial state trajectory segments over a continuous time base, in which the coefficients
of the polynomial segments are piecewise constant (more see § 4.3.3.2).

Note 5 The choice between QDEVS (or QSS) and GDEVS is in principle a choice between
continuous and discrete event modeling styles.

We choose GDEVS for vehicle movement modeling. Vehicle movement can be con-
veniently organized through piecewise polynomial segments where state changes oc-
cur when a vehicle changes its acceleration. The events that correspond with such state
changes are well understood and can be rigorously defined.

Remark Modelers may prefer one style over another based on the nature of the real
system and their personal preferences. When some systems can be more conveni-
ently expressed in differential equations, QDEVS would be a good choice. GDEVS al-
lows modelers to decompose a modeling problem into less complex ones and express
them in polynomials which otherwise have to be expressed as a whole in differential
equations. This is an advantage both for modeling and for model understandability. In
order to model in GDVS, modelers have to know how a system responds to input events
which are deemed significant. This can be seen as a disadvantage as the information is
not always available or complete (WAINER 2009).

4.3.3.2 More On GDEVS

Following GIAMBIASI et al. (2000), GIAMBIASI and CARMONA (2006), a piecewise polyno-
mial trajectory w〈t0,tm 〉→ A ⊂R is a collection of individual segments over a continuous
time base with the following characteristics:

1. There exists a finite number of elements of instant {t1, t2, · · · , tm−1} in the time
interval 〈t0, tm 〉. Each element in {ti ∈ R+ | i ∈ [1, m − 1] ⊂ N} is associated with a
constant valued (n +1)-tuple (a0i , · · · , ani), k ∈ [0, n]⊂N0 ∧ak i ∈R, such that

∀t ∈ 〈ti , t j 〉, ti ≤ t j , where ti , t j ∈ {t1, t2, · · · , tm−1} : w (t) =
n
∑

k=0

ak i t k (4.1)

where n is the degree of the polynomial.

2. The trajectory satisfies the composition property (cf. Eq. 2.2 in § 2.1.1.1, p. 13)

w〈t0,tm 〉 =w〈t0,t1〉 •w〈t1,t2〉 • · · · •w〈tm−1,tm 〉 (4.2)

where • is the left concatenation operator over the segments.

An individual polynomial segment w〈ti ,t j 〉 over the time interval 〈ti , t j 〉 has coeffi-
cients E (t) = (a0i , · · · , ani) at a certain instant t ∈ 〈ti , t j 〉, where the origin of time, i.e.,
t = 0, is assumed to occur at the start of each segment. This means that a piecewise
polynomial trajectory can be represented through piecewise constant coefficients. As
such, an event in GDEVS can be considered as a coefficient-event that activates or po-
tentially activates a change of at least one of the coefficients (ibid.).

88

4

4.3 Model Design in LIBROS

4.3.3.3 Modeling Vehicle Movement

We apply equations of motion in polynomials with constant acceleration since the sim-
ulation studies do not require kinematics or tractive force38 considerations. Given a
vehicle’s velocity vi and its assumed constant acceleration ai at time ti , one can cal-
culate the vehicle’s velocity v j and movement distance si after a time interval 〈ti , t j 〉
(where ti ¶ t j) as follows

v j = ai ∆t + vi ; si =
�vi + v j

2

�

∆t = vi ∆t +
ai ∆t 2

2
(4.3)

where∆t = t j − ti . In the two polynomials,∆t or simply t is the variable, and vi and ai

are the coefficients that are constant in each polynomial segment.

Note 6 Vehicle movement can be represented by piecewise polynomial segments each of
which has a constant acceleration rate as a coefficient.

When a vehicle completed a certain movement of a time interval 〈ti , t j 〉, the value of
its v j , i.e., the new vi value for the next polynomial segment, is determined. It still has
to decide upon the new ai value for the next segment as well as the anticipated time (let
us call it∆t ′ or t ′) of the next segment. In order to do so, a vehicle sends a message to
request for information about its NCRI and PV, and it shall receive response messages
in zero simulation time, as shown in Figure 4.8. The information request and response
are accomplished by MP which is discussed in § 4.2.3 and § 4.3.1. In the following, we
explain how a vehicle model uses the NCRI and PV information at hand39 to compute
ai and t ′.

A vehicle model can compute its movement to a position so far forth as safe driv-
ing is assured. Ideally, it successively computes the movement to each NCRI that it ap-
proaches.

Example 4.2 Figure 4.9 illustrates an example of successive movement to the NCRIs. At
time ti position pi , vehicle V has velocity vi and acceleration ai . Through MP, V knows
that its NCRI is at distance dNCRI position pj with a speed limit lNCRI.

Accomplished by
message propagation

Send request
message

Receive response
message

Compute next
movement
(ai and Δt’)

Move

Zero simulation time

Figure 4.8: The action
steps in one round of
movement with mes-
sage request

38The relevant formulas can be found, e.g., in HANSEN and PACHL (2008) pp. 61∼80.
39The information includes a vehicle’s distance to its NCRI dNCRI, the speed limit or restriction lNCRI re-

quired by the NCRI, and if applicable, a vehicle’s distance to its PV dPV, and the velocity vPV and acceleration
aPV of the PV.

89

4

Domain Simulation Library

dNCRI V(vi, ai) at ti, pi

NCRINCRI

dNCRI V(vj, aj) at tj, pj

NCRI

Vehicle position p

S
pe

ed
 v

pi pj

lNCRI

lNCRI

pk

vi

vj

a=0

a=0

a>
0

a>
0

vj

a<0
a=0

lNCRI

Figure 4.9: Vehicle movement computation with NCRI – Example 4.2

The vehicle can therefore compute its movement until reaching the NCRI at posi-
tion pj , say at time t j . Because the value of vi , the current speed limit l (i.e., the previ-
ous lNCRI), and the current lNCRI are not necessarily the same, the movement until the
NCRI (from pi to pj in the example) can consist of more than one polynomial segment
in which the value of acceleration a changes. In Figure 4.9, two polynomial trajectories
of movement from pi to pj are shown in the speed-distance diagram for two different
cases:

1. Suppose that vi < l < lNCRI, the movement would consist of two polynomial seg-
ments, viz., (1) a > 0, (2) a = 0.

2. Suppose that vi < l > lNCRI, the movement would consist of three polynomial
segments, viz., (1) a > 0, (2) a = 0, (3) a < 0.

In the first case, a changes one time from a positive value to zero so that v remains
constant afterwards until pj . In the second case (shown in gray), a changes once more
and becomes negative with which v reduces to lNCRI at the moment when V reaches pj .
Once V is at pj time t j , the vehicle is dynamically coupled to the current NCRI instead
of the previous NCRI to represent its changing of position. This starts a next round of
MP and movement, and so iteratively in a similar manner until the vehicle reaches its
final destination.

Example 4.3 Suppose that the vehicle model in Example 4.2 has a PV in addition at dis-
tance dPV at time ti , as shown in Figure 4.10. The PV is not moving, i.e., vPVi = aPVi = 0,
and its position is closer than that of the NCRI, i.e., dPV < dNCRI.

When a vehicle model has a PV in addition, the computable movement to the NCRI
as described in Example 4.2 may need to be shortened. This means that the distance
dNCRI may have to be divided into parts, each of which is to be computed separately. As

90

4

4.3 Model Design in LIBROS

dNCRI V(vi, ai) at ti, pi

NCRINCRI

dPV PV(vPVi, aPVi) at ti, pPVi

NCRI

Vehicle position p

T
im

e
 t

pi p’PVi

ti

aPV>0

S
pe

ed
 v

vi

a=0 a<0

pj

lNCRI

a=0a>0

tk

tj

ta

pkpPVip’j

v P
V
=

a P
V
=

0

v=a=0

tb

t’j

tc

pa pc

Figure 4.10: Vehicle movement computation with NCRI and PV – Example 4.3

common sense dictates, how V can move towards its NCRI is dependent on how its PV
moves if the latter is close enough. Because the PV in the example is not moving and
it is closer than the NCRI, V has to stop behind the PV. In other words, at time ti , V
can only compute its movement no further than the PV’s rear end position p ′PVi . The
stop position is with some safety distance to p ′PVi , shown as p ′j . During the movement,
V must stop in time: it starts to brake at pa time ta , and after a time interval 〈ta , t ′j 〉 it
stops at p ′j . Hence, the movement from pi to p ′j consists of two segments:

(1) in interval 〈ti , ta 〉, V moves with a constant speed vi (a = 0) from pi to pa ;

(2) in interval 〈ta , t ′j 〉, V moves with a decreasing speed (a < 0) from pa to p ′j where
its end speed reaches zero.

When V can drive again, its further movement is computed according to the new
situation. This also means that V still needs to compute its movement to the NCRI.
Suppose that some time after t ′j , the PV starts driving and it drives fast enough so that
V can drive freely without considering the PV. In this situation, let us say that V can
start driving at tb . (We will soon come to the matter of how to obtain the value of tb .)
In principle, V can accelerate (a > 0) until the speed restriction lNCRI. If so, the acceler-

91

4

Domain Simulation Library

(ai Δt’)

interrupts

Figure 4.11: The action steps in
one round of movement with an
update message

ation would last for a time interval 〈tb , tc 〉, starting at position p ′j ending at pc . Suppose
that the position of NCRI pj is closer than the acceleration distance. The movement
can only be computed until pj where V has to be coupled to the NCRI at the time when
V reaches it. This movement therefore consists of one segment:

(1) in interval 〈tb , t j 〉, V moves with a increasing speed (a > 0) from p ′j to pj .

Once V arrives at pj , it is dynamically coupled to the NCRI, and this starts a next round
of MP and movement.

With the above two examples, we try to elaborate how a vehicle model can success-
ively compute its movement (which can consist of a number of piecewise polynomial
segments) to its NCRIs in a discrete event manner taking into account the movement of
its PV. In essence, a vehicle model computes the (internal) events of the following two
groups of actions:

(i) when it shall move from one NCRI to the next, and

(ii) when it shall change its acceleration rate.

The actions are autonomous in the sense that a vehicle model decides locally its ap-
propriate actions according to the information at hand. Every state change is handled
by the model’s internal transitions (§ 2.4.3). As explained in § 4.3.1, when a vehicle
model changes acceleration, it sends out an update message (backward) so that a fol-
lowing vehicle, if any, can be informed of this change. Consequently, the (external)
events of (the arrival of) update messages can be expected at any simulation time. This
means that the execution of an anticipated movement may be interrupted by an update
message from a PV, say at time text. If so, the movement after text has to be computed
anew, as illustrated in Figure 4.11. In this context, “movement” or “move” is used in
a general sense: it not only refers to a vehicle’s moving actions but also non-moving
actions such as scheduled or unscheduled waiting40.

40An unscheduled waiting has an undefined waiting time which can be interrupted, while a scheduled
waiting has a minimum waiting time which can not be interrupted.

92

4

4.3 Model Design in LIBROS

Referring back to the waiting between 〈t ′j , tb 〉 in Example 4.3 (Figure 4.10), from time
t ′j onwards, vehicle V is in an unscheduled waiting because its PV is on a halt. In this
case, V is in passivity (or a passive state) meaning that it will remain idle unless an
external event interrupts. When the PV starts driving some time after t ′j , V receives an
update message from the PV of this event, which activates V to compute its movement
according to the new situation. Time tb is V ’s decision when it restarts driving. It can,
e.g., wait until the PV has driven some distance.

The example shows that when an external event arrives, it interrupts and can di-
verge the anticipated state variable trajectories. Such interrupts often occur in the sim-
ulation of discrete event models and need to be treated with particular care when using
piecewise polynomial abstractions.

4.3.3.4 Handling External Events

When a state variable is expressed by polynomial segments, the variable is not meant to
be constant within a segment despite that each segment has constant coefficients. Its
values are only computed41 for chosen (external and internal) events. When an external
event (or interrupt) arrives at time text, a state variable still holds an old value that was
updated at the past event. Thus, the value must be updated for the present time text.

Note 7 In GDEVS, a state variable shall be updated after the arrival of an external event
before any state transition.

Example 4.4 Figure 4.12 depicts an example of state variable update in the vehicle model.
The two state variables being updated are (1) the speed v and (2) the position p . An anti-
cipated movement is computed from position pi to pk . It supposedly takes place in time
〈ti , t ′k 〉 and is consisted of two segments shown respectively with black lines in the speed-
distance and time-distance diagrams:

(1) in interval 〈ti , t ′j 〉, V moves with an increasing speed (a > 0) from pi to p ′j in which
the initial speed is vi and the final speed is v ′j ;

(2) in interval 〈t ′j , t ′k 〉, V moves with a constant speed v ′j (a = 0) from p ′j to pk .

Suppose that, during the first anticipated segment of 〈ti , t ′j 〉, an external event with an
update message arrives at time text. It diverges the movement trajectory away, shown
with gray lines, from the anticipated movement.

The value of acceleration a is a result of movement computation, so is time t except
for the arrivals of external events. Note that only a number of chosen points (or values)
on the polynomial trajectories are computed. They are at the start42 and the end of a

41Each polynomial has the form of Eq. 4.1 and satisfies Eq. 4.2. Expressed discretely, the i th segment
has the initial value of a0i (i.e., the coefficient of t 0). After an interval 〈ti , t j 〉, assuming within which the

polynomial is unchanged, the state variable would have a value of
∑n

k=0 ak i t k , which will be the initial value
of a0 j of the j th segment.

42The start point is computed by the previous movement computation.

93

4

Domain Simulation Library

Vehicle position p

T
im

e
 t

pi

ti

S
pe

ed
 v

vi

a=0

pj

a=0
a>

0

tk

tj

pkpext p’j

t’j

v’j

a<0

t’k

text

vext

vj

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5 P6

P6

Figure 4.12: State variable update
of speed v and position p in the
vehicle model with an update mes-
sage at text – Example 4.4

trajectory, and where the polynomial segments change coefficients (i.e., only some dots
not the lines). In the example, the values of three points are first computed. Shown
in black dots (•) from left to right, they are P1 = (ti , vi , pi), P2 = (t ′j , v ′j , p ′j), and P3 =

(t ′k , v ′j , pk)which pinpoint the trajectory of the anticipated movement P1
a > 0−−→ P2

a = 0−−→ P3.

If no external event arrives during time 〈ti , t ′k 〉, the vehicle would “move according
to the plan”. In this case, two internal transitions are scheduled successively at time t ′j
and time t ′k , by which the variables v and p are updated with the anticipated values of
P2 and P3. Further movement is computed as explained in Examples 4.2 and 4.3.

In case an external event arrives during 〈ti , t ′k 〉, say at text, the (anticipated) move-
ment is interrupted and the vehicle’s state variables must be first updated for the present
time text using the corresponding known polynomials for the time between 〈ti , text〉. If
the event contains an update message for the vehicle, further movement after text shall
be computed anew; if the event contains a request message for the vehicle, it only needs
to reply to the message.

94

4

4.3 Model Design in LIBROS

state updates caused by internal
events & state transitions

input event x

interrupt

output event y

[e=τ]

s=δint(s)

τ=ta(s)

wait τ

y=λ(s)

state updates caused
by external events

s=δext(s,e,x)
τ=0

s=δcon(s,x)
τ=0

Éinternal transition first:
δcon(s , x) =δext (δint (s), 0, x)

Figure 4.13: SUTM – state update and
transition mechanism of a DEVS atomic
model in LIBROS

In Example 4.4, when the external event arrives, the state variables still hold the
values of P1 = (ti , vi , pi) which have to be updated to those of P4 = (text, vext, pext), the
first gray dot (•) on the left. These values are subsequently used as the initial values
for the new movement computation. Suppose that given the content of the update
message, further movement is computed and we obtain discrete state variable points
P5 = (t j , v j , pj) and P6 = (tk , v j , pk). These two points are used instead of P2 and P3 for

the next two internal transitions. The new movement P4
a < 0−−→ P5

a = 0−−→ P6 would take
place in time 〈text, tk 〉. It is as well an anticipated movement which may be interrupted
by an external event as just discussed. If no external event arrives during this time, the

total movement trajectory from position pi to pk would be P1
a > 0−−→ P4

a < 0−−→ P5
a = 0−−→ P6,

in which the transition of P4 is activated by an external event and the other three by
internal events.

4.3.3.5 A State Update and Transition Mechanism

In § 2.4.3, we explained that an external event activates the external transition function
δext (s , e , x) in a model, which according to the definition in the DEVS formalism can
change a model’s state, i.e., s ′ = δext (s , e , x). Consistent with the DEVS formalism, the
external transition functions in LIBROS models do not handle the state transitions but
only the state updates caused by the external events. Figure 4.13 illustrates how the
DEVS atomic models in LIBROS handle state updates and transitions (cf. Figure 2.5 in
§ 2.4.3). Hereinafter, state transitions in a GDEVS model refer to the changes from one

95

4

Domain Simulation Library

polynomial segment to another; and state updates refer to the changes of state variable
values within one polynomial segment.

Note 8 The external transition functions in LIBROS models do not handle the “state trans-
itions” but only the “state updates” caused by the external events.

We also differentiate state updates caused by external events and internal events.
The former is peculiar in GDEVS. An external event arrives at a non predetermined time
(at least from the model’s perspective) so that the values to be updated are computed
instantaneously. In classic DEVS, as the state variables are constant between two suc-
cessive events, such updates are not needed. State updates caused by internal events
on the other hand are or can be predetermined as the internal events are determined
by the model itself.

We reuse Example 4.4 to demonstrate the concept of handling state updates and
transitions in LIBROS. Table 4.4 (p. 97) provides a list of the internal and external events
that take place in the example and the corresponding state transitions and explana-
tions. They are ordered by the movement trajectory P1 → P4 → P5 → P6 with the as-
sumption that no external event takes place after time text until tk . The state update
and transition mechanism (SUTM) can be summarized as following.

State update by δext At the arrival of an external event, the δext function updates the
state variables (as it interrupts an internal transition), processes the message re-
ceived, and if necessary it can have any other computation related to the external
event. In a vehicle model, for example, the δext may need to compute the anti-
cipated movement with the latest information at hand. Note that the δext only
computes how the vehicle can move; the move itself is performed by the internal
transition function δint not by the δext.

State transition by δint Theδext in principle is immediately followed by the output func-
tion λ and the internal transition function δint. This means the time advance ta
after the δext is zero. The λ sends output events. In a vehicle model, they can be
request, response and update messages. The δint handles all the state transitions
as well as the state updates caused by the internal events43; if necessary it can
have any other computation related to the internal event.

Benefits of SUTM The SUTM has a number of benefits. The state transitions of a
model take place only at one location (the δint) instead of two (the δext and δint), which
improves cohesion in state transition logic when a model has strongly interrelated states.
The λ directly follows the δext, which is useful for modeling interactions among models.
The fact that the δext only handles issues related to the external events and leaves the
state transitions to the δint, is a convenient way to model autonomous behaviors. This
also makes the internal structure of an atomic model rather simple and the execution

43In case of a collision between external and internal events, the confluent state transition δcon is con-
figured to first execute the internal transition then the external which again sets τ to zero.

96

4

4.3 Model Design in LIBROS
T

im
e

E
ve

n
t

E
la

p
se

d
ti

m
e

e
A

ct
iv

at
ed

fu
n

ct
io

n
s

M
ai

n
ac

ti
o

n
s

T
im

e
τ

o
f

n
ex

tδ
in

t
E

xp
la

n
at

io
n

P
1

t i
In

te
rn

al
–

λ
,δ

in
t

�
Se

n
d

u
p

d
at

e
m

es
sa

ge
∗

St
at

e
tr

an
si

ti
on

t′ j
−

t i
Su

p
p

o
se

th
e

st
at

e
is

al
re

ad
y

u
p

d
at

ed
.T

h
e
δ

in
t

w
o

u
ld

p
er

fo
rm

a
st

at
e

tr
an

si
ti

o
n

if
th

e
n

ex
ta

cc
el

er
at

io
n

is
d

if
fe

re
n

tf
ro

m
th

e
p

re
-

vi
o

u
s

o
n

e.
If

so
,a

n
u

p
d

at
e

m
es

sa
ge

is
se

n
tb

ac
kw

ar
d

.A
cc

o
rd

in
g

to
th

e
an

ti
ci

p
at

ed
m

ov
em

en
t

P 1
→

P 2
→

P 3
,t

h
e

n
ex

t
δ

in
t

w
ill

b
e

at
t′ j.

P
4

t e
xt

E
xt

er
n

al
t e

xt
−

t i
δ

ex
t

�
St

at
e

u
p

d
at

e
(f

ro
m

ex
te

rn
al

)
�

P
ro

ce
ss

u
p

d
at

e
m

es
sa

ge
�

C
o

m
p

u
te

m
ov

em
en

t

0
U

p
o

n
an

ex
te

rn
al

ev
en

t
at

t e
xt
∈
〈t

i,
t′ j〉

,t
h

e
m

ov
e

fr
o

m
p i

to
p
′ j

is
in

te
rr

u
p

te
d

an
d

th
e

p
la

n
ed
δ

in
t

is
ca

n
ce

le
d

.T
h

e
δ

ex
t

u
p

d
at

es
th

e
st

at
e,

i.e
.,

ca
lc

u
la

te
s

th
e

va
lu

es
o

fv
an

d
p

at
P 4

u
si

n
g

E
q

.4
.3

w
h

er
e

v i
,p

i,
∆

t
(t

h
e

el
ap

se
d

ti
m

e
e

),
an

d
a

i
ar

e
kn

ow
n

.T
h

e
u

p
-

d
at

e
m

es
sa

ge
re

su
lt

s
in

a
n

ew
an

ti
ci

p
at

ed
m

ov
em

en
tt

ra
je

ct
o

ry
P 4
→

P 5
→

P 6
.

In
te

rn
al

–
λ

,δ
in

t
�

Se
n

d
u

p
d

at
e

m
es

sa
ge

∗
St

at
e

tr
an

si
ti

o
n

t j
−

t e
xt

Im
m

ed
ia

te
ly

af
te

rt
h

e
δ

ex
t,

th
e
λ

an
d
δ

in
t

ta
ke

p
la

ce
.S

ta
te

tr
an

s-
it

io
n

is
p

er
fo

rm
ed

b
ec

au
se

o
f

th
e

ch
an

ge
o

f
ac

ce
le

ra
ti

o
n

(f
ro

m
p

o
si

ti
ve

to
n

eg
at

iv
e)

.
A

cc
o

rd
in

g
to

P 4
→

P 5
→

P 6
,t

h
e

n
ex

t
δ

in
t

w
ill

b
e

at
t j

.

P
5

t j
In

te
rn

al
–

λ
,δ

in
t

�
Se

n
d

u
p

d
at

e
m

es
sa

ge
þ

St
at

e
u

p
d

at
e

&
tr

an
si

ti
o

n
t k
−

t j
T

h
e
δ

in
t

ta
ke

s
p

la
ce

as
p

la
n

ed
.I

tu
p

d
at

es
th

e
st

at
e

va
ri

ab
le

s
u

s-
in

g
th

e
va

lu
es

o
f

P 5
.

St
at

e
tr

an
si

ti
o

n
is

p
er

fo
rm

ed
b

ec
au

se
o

f
th

e
ch

an
ge

o
fa

cc
el

er
at

io
n

(f
ro

m
n

eg
at

iv
e

to
ze

ro
).

A
cc

o
rd

in
g

to
P 4
→

P 5
→

P 6
,t

h
e

n
ex

tδ
in

t
w

ill
b

e
at

t k
.

P
6

t k
In

te
rn

al
–

λ
,δ

in
t

•
C

o
u

p
le

to
th

e
N

C
R

I
�

Se
n

d
re

q
u

es
tm

es
sa

ge
�

St
at

e
u

p
d

at
e

(f
ro

m
in

te
rn

al
)

∞
T

h
e
δ

in
t

ta
ke

s
p

la
ce

as
p

la
n

ed
.

T
h

e
an

ti
ci

p
at

ed
m

ov
em

en
t

is
co

m
p

le
te

d
.S

u
p

p
o

se
th

e
ve

h
ic

le
re

ac
h

es
th

e
N

C
R

I,
it

is
co

u
p

le
d

to
th

e
N

C
R

I.
T

h
e

in
fo

rm
at

io
n

fo
r

fu
rt

h
er

m
ov

em
en

t
is

n
o

t
at

h
an

d
;

th
u

s
th

e
ve

h
ic

le
s

se
n

d
s

a
re

q
u

es
t

m
es

sa
ge

fo
rw

ar
d

.
T

h
e

st
at

e
va

ri
ab

le
s

ar
e

u
p

d
at

ed
u

si
n

g
th

e
va

lu
es

o
fP

6
.F

u
rt

h
er

m
ov

e-
m

en
ti

s
u

n
kn

ow
n

so
th

e
ve

h
ic

le
m

o
d

el
is

p
as

si
va

te
d

,i
.e

.,
τ
=
∞

.

E
xt

er
n

al
0

δ
ex

t
�

P
ro

ce
ss

re
sp

o
n

se
m

es
sa

ge
�

C
o

m
p

u
te

m
ov

em
en

t
0

In
ze

ro
si

m
u

la
ti

o
n

ti
m

e,
th

e
ve

h
ic

le
re

ce
iv

es
a

re
sp

o
n

se
m

es
sa

ge
(o

r
m

ax
.t

w
o

)
w

h
ic

h
re

su
lt

s
in

a
n

ew
an

ti
ci

p
at

ed
m

ov
em

en
t.

In
te

rn
al

–
λ

,δ
in

t
�

Se
n

d
u

p
d

at
e

m
es

sa
ge

∗
St

at
e

tr
an

si
ti

on
n
/a

Im
m

ed
ia

te
ly

af
te

r
th

e
δ

ex
t,

th
e
λ

an
d
δ

in
t

ta
ke

p
la

ce
.

T
h

e
δ

in
t

w
o

u
ld

p
er

fo
rm

a
st

at
e

tr
an

si
ti

o
n

if
th

e
n

ex
t

ac
ce

le
ra

ti
o

n
is

d
if

-
fe

re
n

t
fr

o
m

th
e

p
re

vi
o

u
s

o
n

e.
If

so
,

an
u

p
d

at
e

m
es

sa
ge

is
se

n
t

b
ac

kw
ar

d
.

T
h

e
ti

m
e

o
fn

ex
t
δ

in
t

d
ep

en
d

s
o

n
th

e
n

ew
ly

an
ti

ci
p

-
at

ed
m

ov
em

en
t.

(C
f.

th
e

ex
p

la
n

at
io

n
o

fP
1

.)

Ta
b

le
4.

4:
T

h
e

ve
h

ic
le

m
o

d
el

st
at

e
tr

an
si

ti
o

n
s

in
E

xa
m

p
le

4.
4

97

4

Domain Simulation Library

1

2

 B1
δint

δint

 A1
δext

 B2 A2
δext

 A2
δint δint

State transitions
in classic DEVS

State transitions
in LIBROS

using DEVS

’

Figure 4.14: State transitions in a classic DEVS model vs. those in a LIBROS model

sequence of the state transition functions more predictable in the sense that the time
advance ta after the δext is always zero and the λ and δint are executed right after.

Costs of SUTM In a sense, the mechanism splits or separates one δext into a δext and
a δint each of which is assigned with specific tasks. Does this separation increase the
number of scheduling of the δint in a model?

Suppose that a model M1 defined with classic DEVS has a set A1 of transitions by the
δext and a set B1 by the δint in a simulation run, as illustrated in Figure 4.14. With the
same conditions, a comparable DEVS model M2 defined with the mechanism discussed
would have a set A2 of transitions by its δext and a set A′2 by its δint, where the three sets
related to external events have the same cardinality |A1| = |A2| = |A′2|, i.e., the same
number of transitions. That the δint in M2 shall also function as the δint in M1, would
require a set B2 by the δint in M2, where |B1|= |B2|.

The extra number of internal transitions in M2 compared to that in M1 is therefore
∆nint = nint,M2

−nint,M1
= |A′2 ∪ B2| − |B1| = (|A′2|+ |B2| − |A′2 ∩ B2|)− |B1| = |A1| − |A1 ∩ B1|

whose value depends on |A1| and how much A1 and B1 intersect44. This means that the
more A1 and B1 intersect the less extra scheduling cost there would be, given that |A1|
is fixed in a simulation run. This is the case when a model actively responses to other
models, where after the δext, the λ and δint are often directly activated.

Comparing the extra number of internal transitions with the total number of trans-
itions in M2, one gets the following:

∆nint

ntotal,M2

=
∆nint

∆nint+ |A1|+ |B1|
=
|A1| − |A1 ∩B1|
|A1|+ |A1 ∪B1|

This indicates that when |B1| is significantly larger than |A1|, the extra cost for internal
transitions compared to the total transition cost is insignificant. In many DEVS models,
the number of internal events are greater than the number of external events, i.e., |A1|<

44The intersection is at where the (transition) elements take place at the same simulation time, i.e., two
transitions have the same time index.

98

4

4.3 Model Design in LIBROS

|B1|, because it is often the case that the interactions between the models are weaker
than the interactions within them (the near-decomposability principle, SIMON 1996).
There are of course cases when some models are designed such that it would have more
external transitions, e.g., when a model is controlled by some other models or when a
model is passive or idle for some purpose.

Remark Modelers should decide whether to use the SUTM based on the modeling
context taking into account the benefits and the potential costs just discussed. We ap-
plied this mechanism often in the design of LIBROS models, as it suits the communic-
ation mechanism discussed in § 4.2.3 and § 4.3.1. We are in favor of simplicity and
cohesion in the design of state transitions. They improve the understandability and
potentially the extensibility of the model components. The SUTM is another example
where we use the principle of separation of concerns in model design.

4.3.3.6 Rail Vehicle Model

A RailVehicle model has three ports as shown in Figure 4.15:

(1) I/RIE – an i
¯
nput port that receives messages from a R

¯
I
¯
E
¯

,

(2) O/F/RIE – an o
¯

utput port that sends messages f
¯
orward to a R

¯
I
¯
E
¯

, and

(3) O/B/RIE – an o
¯

utput port that sends messages b
¯

ackward to a R
¯

I
¯
E
¯

.

All three ports are coupled to the RIE model where the vehicle is located. The vehicle
model specification is a structure

RailVehicle= (X , Y ,S ,δext,δint,δcon,λ, ta) (4.4)

where

X = {(p , m)|p ∈ {I/RIE}, m ∈ Xp } is the set of input port and messages,
Y = {(p , m)|p ∈ {O/F/RIE,O/B/RIE}, m ∈ Yp } is the set of output ports and messages,
S = S ′×S ′′× INCRI× IPV is the set of states, where

S ′ = {(ρ, a)|ρ ∈ {START, FOLLOW, MOVE_TO_NCRI, DWELL, STOP}, a ∈R}

RailVehicle

O/F/RIE

speed, acceleration
speed limit
distance to NCRI
distance to PV
position, length
movement
...

I/RIE

O/B/RIE

Figure 4.15: Rail vehicle model

99

4

Domain Simulation Library

is the set of the vehicle’s primary states
which consist of its phase and acceleration,

S ′′ = {(v, v̂ , M , p , l , · · ·)|0≤ v ≤ vma x ∈R+, p ∈R+0 }
is the set of secondary states which consist
of its speed, speed limit, anticipated
movement, position on the RIE where it is
located, length, etc.,

M = (M0, · · · , M j , · · · , Mk)where M j = (t j , v j , d j , a j), k ∈N∪∅, t j 6= 0, ai∈[0,k−1] 6= ai+1

is the anticipated movement consists of a
number of successive movement segments
each of which defined with the time
(duration), end speed, moving distance,
and acceleration of the segment,

INCRI = {(dNCRI, lNCRI, · · ·)|dNCRI, vNCRI ∈R+0 } is the set of information about the NCRI
consist of the distance, speed limit, etc., of
the NCRI,

IPV = {(dP V , vP V , aP V)} is the set of information about the PV
consist of the distance of the PV and its
speed and acceleration,

δext : Q ×X b → S\S ′ is the external transition function, where
Q = {(s , e)|s ∈ S , e ∈ [0, ta (s)]} is the set of total states with elapsed time

since last transition
δint : S → S is the internal transition function
δcon :=δext (δint (s)) is the confluent transition function
λ : S → Y b is the output function
ta : S →R+0 ∪∞ is the time advance function

Note that a vehicle model’s state is composed of its own state (primary and second-
ary) and the information it has at hand about its NCRI and PV. An external event only
updates the S ′′, INCRI and IPV, while the state transitions are performed by the internal
events which change the S ′. The details of the transition functions and how the vehicle
model updates its state and computes its movement trajectories can be found in § B.2.

4.3.4 Rail Infrastructure Element Models

There are mainly four types of atomic Rail Infrastructure Element (RIE) models in LIB-
ROS (cf. Figure 4.7, p. 86):

(1) tracks are of type TrackSegment,

(2) sensors are of type Sensor,

(3) signals are of type LinesideSignal, and

(4) switches45 are of type Point.

45Switches are also called points, often by North American literature.

100

4

4.3 Model Design in LIBROS

They all participate in MP (§ 4.2.3 and § 4.3.1). Because MP can be in forward and
backward directions, for the convenience of model construction (and generation), we
created type Node.

4.3.4.1 Nodes of Infrastructure Models

A Node is in principle a bundle of one input port and one output port dedicated for MP.
It has as well a direction which indicates the inflow or outflow of traffic at an (atomic or
coupled) infrastructure model, shown in Figure 4.16:

(1) a StartNode is a Node composed of one input port for message forward and one
output port for message backward, and

(2) an EndNode is a Node composed of one output port for message forward and one
input port for message backward.

When MP is in the direction of the traffic, it is in a forward direction, otherwise it is
backward. The StartNode and EndNode are also used by coupled infrastructure models
(§ 4.3.5.1). The port design of the RIE models is illustrated in Figure 4.17. The labels of
the ports have the following meaning:

(1) O/V – an o
¯

utput port that sends messages to a v
¯

ehicle model,

(2) O/C – an o
¯

utput port that sends messages to a c
¯
ontrol unit model,

(3) I/C – an i
¯
nput port that receives messages from a c

¯
ontrol unit model,

(4) S – a s
¯
tart node (at inflow of traffic) for MP at both directions, and

(5) E – an e
¯

nd node (at outflow of traffic) for MP at both directions.

From Figure 4.17, one can observe cohesion of the port design among the RIE mod-
els, as well as to the port design of the vehicle model (Figure 4.15). An O/V port is on
each model (A)∼(F). An O/C is on the 3S (sensor, signal and switch) models (B)∼(F). In
addition, a signal (C) or a facing point (D) has an I/C port because they are instructed
by a control unit (§ 4.3.4.5). Each RIE model has at least one start node S and one end
node E.

ES

O/F
I/B

I/F
O/B

Figure 4.16: Start and end nodes
of infrastructure models

101

4

Domain Simulation Library

The node-to-node coupling is a 1-to-1 relation. Note that the RIE-to-vehicle coup-
lings allow 1-to-n relations. As such, when a RIE sends a message to a vehicle, the re-
cipient is addressed. The same applies to the control-to-RIE couplings.

A RIE model has, among others, a length and a speed limit. (The 3S models are
of length zero.) The role of TrackSegments in MP is already explained. The 3S models
have similar roles in MP, but they always respond to request messages (except when the
requester is already coupled to it) as they are at important positions. Compared to the
TrackSegments, however, the 3S models have more interaction with the vehicle models.
Besides MP, they can be triggered and released by a vehicle model (§ 4.3.4.3).

4.3.4.2 Vehicle Detection

The detection of occupation and clearance of tracks is fundamental to railway oper-
ation and control (PACHL 2002). In real life, different technologies are used for many
types of detection devices (THEEG and VLASENKO 2009). To generalize the functionality

TrackSegment

length
speed limit
curvature
...

Sensor

length := 0
speed limit
...

O/V

FacingPoint

length := 0
speed limit
...

O/CO/V

(A) (C)

(D)

(B)

(E)

LinesideSignal

length := 0
speed limit
...

O/CO/V I/C

TrailingPoint

length := 0
speed limit
...

CrossingPoint

length := 0
speed limit
...

(F)

S S

S1

S

S

S2

S1

S2 E2E2

E1 E1

E E E

E

O/CO/V I/C O/CO/V O/CO/V

Figure 4.17: RIE models. With a facing point, the inflow traffic at S may exit at E1 or E2 depending
on the position of the point which can be toggled by the control unita. With a crossing point, the
inflow traffic at S1 only exits at E2, and the inflow traffic at S2 only exits at E1. A crossing point
models a location where two rail tracks cross each other.

aWe did not define three-way switches. They can be modeled by two two-way switches.

102

4

4.3 Model Design in LIBROS

and for simplification, the 3S models46 are designed to have detection capacity (there-
fore they are also called detectors):

(1) the Sensor for detection,

(2) the LinesideSignal for detection and signaling, and

(3) the Point(s) for detection and switching (if applicable).

According to THEEG and VLASENKO (ibid.), three important detection purposes are:

(i) detect a vehicle reaching a certain point with its front end,

(ii) detect a vehicle passing a certain point with its rear end, and

(iii) detect track occupancy.

With the 3S models, purpose (i) is fulfilled by triggering a detector, purpose (ii) by
releasing a detector, and purpose (iii) by two detectors at the two ends of a track. The
3S models can be coupled with the track segment models in different combinations to
form different rail infrastructure layouts.

4.3.4.3 Trigger and Release of Detectors

When a vehicle model is approaching a detector, the latter must respond to the former’s
request message. The vehicle can then compute its movement until reaching the de-
tector (which is its NCRI). Right after the movement, the vehicle’s couplings to the former
NCRI are replaced with the new couplings to the detector.

At this instant, the vehicle would initiate another request message in order to find
the next NCRI. When the detector receives this message, it propagates it. Additionally
the detector is triggered by the message and it shall compute the release (whose time
is based on the vehicle’s length, speed and acceleration) which is to take place at the
next internal transition. Before the release time expires, if the vehicle changes its ac-
celeration, it would send an update message to inform the succeeding vehicle. When
the detector receives the message (because of the MP), it shall recompute the release
time with the new information. If the detector receives other external events, it shall
respond accordingly and then resume the release event. A detector’s subsequent ac-
tion upon the trigger or release is typically to send out a message to inform a control
unit (§ 4.3.4.5). The detectors are used in combination with the control units to model
railway operation and control rules.

4.3.4.4 Model Behavior Reuse with SAM Pattern

The 3S models have shared behavior. One can specify the behavior in each model in-
dividually, but a more convenient way is to reuse the behavior specifications. The SAM
pattern (§ 4.3.2.2) is used for this purpose. Its application is illustrated in Figure 4.18
which is a subset of Figure 4.7 (p. 86).

46In real operation, the later two types do not have detection capacity per se, but there are detection
devices placed around them.

103

4

Domain Simulation Library

Figure 4.18: Sensor behavior reuse by the 3S models – a SAM pattern application

1 // base model:
2 abstract class InfraElement ... {
3 // transitions:
4 void deltaExternal(double e, Message m) { ...; }
5 void deltaInternal() { ...; } // ...
6 }
7 // mixin behavior:
8 interface SensorInterface {
9 void trigger();

10 void release(); // ...
11 }
12 // delegate:
13 class SensorInterfaceDelegate implements SensorInterface {
14 void trigger() { /*trigger action defined here*/ }
15 void release() { /*release action defined here*/ } // ...
16 }
17 // delegator:
18 abstract class Point extends InfraElement implements SensorInterface {
19 // has a delegate:
20 SensorInterface sensorDelegate = new SensorInterfaceDelegate();
21 // transitions:
22 void deltaExternal(double e, Message m) {
23 super.deltaExternal(e, m);
24 // ...
25 trigger(); // ...
26 }
27 void deltaInternal() {
28 super.deltaInternal();
29 // ...
30 release(); // ...
31 }
32 // delegation:
33 void trigger() { sensorDelegate.trigger(); }
34 void release() { sensorDelegate.release(); } // ...
35 }

104

4

4.3 Model Design in LIBROS

The SensorInterface is defined to specify the mixin behavior signatures that are
shared by theSensor, LinesideSignal, Point, and theSensorInterfaceDelegate. The
former three are delegators of the detector (or sensor) behavior. Each has a delegate (of
type SensorInterfaceDelegate) who indeed carries out the sensor actions, i.e., trigger
and release, release time computation and update, among others.

The listing under Figure 4.18 shows the skeleton of SAM pattern implementation
using Point as an example. The Point model (line 18) has InfraElement (line 2) as the
base model and implements SensorInterface (line 8) to mix in the sensor behavior. It
can reuse the transition functions (lines 4 and 5) of its base model in its own transition
functions δext (deltaExternal, line 22) and δint (deltaInternal, line 27) with which
the trigger (line 25) and release (line 30) actions are also invoked respectively. These ac-
tions are however not performed by itself but delegated (lines 33 and 34) to its sensor-
Delegate (line 20) of type SensorInterfaceDelegate (line 13) where the actions are
specified.

4.3.4.5 Control Unit

A Control Unit (CU) models the control logic of an area whose entrances are guarded
by signals. As mentioned earlier, when detectors obtain information about vehicle po-
sitions, they send the information to CUs. The latter evaluates the information and
permits vehicle movement via signals (THEEG and VLASENKO 2009).

The ControlUnitmodels in LIBROS are not coupled with TrackSegments; neither do
they participate in MP. They receive input events only from detectors, and send (con-
trol) messages to LinesideSignals or FacingPoints. A ControlUnit model hence has
two ports as shown, in Figure 4.19, cohesive to the ports of the RIE models:

(1) I/S – an i
¯
nput port that receives (sensor) messages from a s

¯
ensor (i.e., detector),

(2) O/LS/FP – an o
¯

utput port that sends (control) messages to a l
¯
ineside s

¯
ignal or a

f
¯
acing p

¯
oint.

A Crossing with Control Unit Suppose we need to model a simple tram crossing whose
layout is illustrated in Figure 4.20 (A). The layout is similar to that in Example 3.1 (Fig-
ure 3.2); some may prefer to regard them as the same. Let us call this kind of crossings
“Y crossing”.

ControlUnit

I/S ... O/LS/FP

Figure 4.19: Control unit model

105

4

Domain Simulation Library

Example 4.5 A Y crossing is guarded by three lineside signals (LS1 ∼ LS3). There are three
switches in the crossing: a trailing point (TP), a facing point (FP), and a crossing point
(CP). Four directions (or routes) of traffic are possible:

1. from point A to point F (A→ F),

2. from point B to point F (B → F),

3. from point C to point D (C →D), and

4. from point C to point E (C → E).

The control logic is common sense, i.e., when a track or switch is occupied, it can not
be accessed by others.

In a LIBROS model, a crossing is supervised by a CU which is responsible to grant
permissions to enter the crossing. The couplings of the 3S models with the CU at the
Y crossing are shown in Figure 4.20 (B). Note that the inputs or outputs to a CU are

3

1
TP

FP CP

A

B

F

C D

E

LS1

LS2

LS3

TP

FP CP

A

B

F

C D

LS1

LS2

LS3

tr
ig

ge
r/

re
le

as
e

sw
itch

 p
o

sitio
n

grant access

grant access

request access

re
qu

es
t a

cc
es

s
gr

an
t

ac
ce

ss

Control Unit

tr
ig

ge
r/

re
le

as
etrigger/release

tri
gger/r

ele
ase

trig
ger/r

elease

request a
ccess

(A) Layout

(B) Coupling with control unit

Figure 4.20: A Y crossing
– Example 4.5

106

4

4.3 Model Design in LIBROS

coupled with only one input or output port of the CU respectively. An input event from
a 3S model to a CU contains information about sensor trigger or release. In addition,
a signal can send a request to a CU on behalf of an approaching vehicle for the access
of the crossing. An output event from a CU to a signal takes place when a requested
access is granted. In addition, a CU can ask a facing point to change position (viz., left
or right) when necessary.

Example 4.6 Suppose that a vehicle V is approaching the Y crossing (as described in
Example 4.5) at some distance and wants to drive from C to D , i.e., route 3, as shown in
Figure 4.21.

At some instant, V would send a request message (to look for its NCRI) which is
received by the signal LS3. Knowing V is approaching, LS3 sends a message on behalf
of V to request for the access of route 3. Upon the request, the CU checks if the route is
accessible. The CU does so by consulting a “check table”.

Check Table in Control Unit A check table in a CU in principle maintains the notes or
records about the situation in an area the CU is supervising. For convenience, the CU
keeps in the table the information about the routes in the area, the required points (and
positions if applicable) by the routes, the states (whether reserved and/or occupied) of
the points, weather the routes are active or have queuing requests, etc. An example of
the table is shown in Table 4.5.

A route in a crossing is active when a request of the route is granted to a vehicle and
the vehicle has entered or is about to enter the route but has not yet left the route (i.e.,
the requesting vehicle is at the crossing). If so, when another vehicle requests the same
route, the request will be granted by the CU (by the default setting of the model). When
a route has queuing request(s), a new request for the route will also be queued.

tr
ig

ge
r/

re
le

as
e

TP

FP CP

A

B

F

C D

LS1

LS2

LS3

sw
itch

 p
o

sitio
n

grant access

request access

Control Unit

tr
ig

ge
r/

re
le

as
etrigger/release

E

3

Figure 4.21: Access of a route
in a Y crossing – Example 4.6

107

4

Domain Simulation Library

Route Entrance Signal Points required Active Queuing requests

1 LS1 TP

2 LS2 CP, TP

3 LS3 FP/L, CP

4 LS3 FP/R

Table 4.5: A check table in a control unit – Example 4.5, 4.6

Referring back to Example 4.6, when the CU receives the request to grant access
to route 3, it processes the request by first checking whether the route is active or has
queuing requests. Suppose both are negative, the CU then checks whether the points
required by the route (i.e., FP and CP) are reserved or occupied. If they are, then the
request will not be granted but is appended into the queuing requests of route 3. If not,
then the request will be granted. In the latter case, the CU marks route 3 as active and
the required points as reserved in its check table, and sends out a message to announce
this decision. Note that the CU has one output port O/LS/FP that is coupled to LS1 ∼ LS3

and the FP. Two recipients are addressed in this message:

(1) the FP whose position-to-be is noticed, and

(2) the LS3 (i.e., the entrance signal of route 3) who will give the requesting vehicle a
green signal (i.e., a message).

A vehicle who is permitted to enter a requested route will trigger and release the
detectors along the route. The CU then marks the detectors as being occupied and un-
occupied/unreserved respectively in its check table. Releasing a signal turns the signal
back to red (which is its default state). When all detectors along the route are released,
the CU marks the route as inactive. Once a point is released, the CU will also process
the queuing requests (if any) that require this point. They are processed in an order of
vehicle priorities (if any) and on a first-come first-served basis.

4.3.5 Coupled Infrastructure Models

The RIE (i.e., InfraElement) models discussed in § 4.3.4 are atomic. They can be used
to incrementally compose Coupled Infrastructure Models (CIMs), i.e., CoupledInfra-
Model in LIBROS. The CIMs can be used for composition as well. They are defined to
represent domain meta-models that allow for a set of model compositions.

4.3.5.1 Node Couplings and Operations of Infrastructure Models

A CIM can be seen as a placeholder or a container for a set of infrastructure models.
As shown in Figure 4.22, a CoupledInfraModel holds a list of coupling relations of its

108

4

4.3 Model Design in LIBROS

Figure 4.22: Coupled
infrastructure models

infrastructure sub-components. The coupling relations are specified in terms of nodes
(§ 4.3.4.1). Each node-coupling is comprised of two port-couplings. Figure 4.23 (cf. Fig-
ure 4.16) shows an example of a CIMMwith two (infrastructure) sub-componentsM1 and
M2. The rules for the EIC, EOC and IC couplings in DEVS models (§ 2.4.3.3) also apply
to node couplings.

A node-to-node coupling relation is strictly 1-to-1. For example, the outflow node of
an infrastructure model can only connect to one inflow node of another infrastructure
model (which is not the former’s parent model). An infrastructure layout that has only

M1

ES

M2

ES

M

S E

O/F

I/B

O/F

I/B

eoc
eic

I/F

O/B

I/F

O/B

eic
eoc

O/F

I/B

I/F

O/B

ic
ic Figure 4.23: Couplings of nodes

of infrastructure models

109

4

Domain Simulation Library

one inflow and one outflow of traffic is hence represented by a chain of successively
connected infrastructure models each of which has only one inflow node and one out-
flow node. We call this type of (atomic or coupled) infrastructure models SimpleInfra-
(§ 4.3.2.1). The models in Figure 4.23 are examples.

Note that the layout of “a sensor or a signal on (or along) a track” has to be repres-
ented by a chain of successive connections, similar to that shown in Figure 4.24 (A) and
(B). Connecting, e.g., M1 through one outflow node with Sensor (or LinesideSignal)
and with M2 at the same time will cause a non deterministic execution sequence of the
external transition functions δext in the two latter models when there is an output event
at M1. Bothδext shall be and will be executed at the same simulation time, but which one
is executed first is dependent on the simulator.

M1 M2Sensor

Facing
Point

Trailing
Point

Crossing
Point

M1 M2
Lineside

Signal

M2

M1

M3

M1

M2

M3

M1

M2

M3

M4

(A) Senor (1-to-1)

(B) Signal (1-to-1)

(C) Facing point (1-to-2)

(D) Trailing point (2-to-1)

(E) Crossing point (2-to-2)

Figure 4.24: 3S model coupling

110

4

4.3 Model Design in LIBROS

Non determinism is in general undesirable in M&S. A non deterministic execution
sequence of different external transition functions, which are supposedly to be executed
at the same simulation time, may cause but does not necessarily result in non determ-
inistic simulation results. If it is the case, measures have to be taken to make the ex-
ecution sequence deterministic. Because this non deterministic execution sequence
would have a negative effect on our simulation, a non 1-to-1 node-to-node coupling is
defined as impermissible in LIBROS. In this context, a sequential connection is a meas-
ure that forces a sequential activation of the aforementioned external transition func-
tions.

Note 9 One-to-more DEVS port couplings should be applied with caution because they
may cause a non deterministic execution sequence of the external transition functions
activated by the same external event.

Note 10 A non one-to-one node-to-node coupling is impermissible in LIBROS.

An infrastructure layout with more than 1-to-1 traffic is represented through the use
of Points. Illustrated in Figure 4.24 (cf. Figure 4.17), points may have 1-to-2, 2-to-1, or
2-to-2 inflow and outflow of traffic (C)∼(E). Combinations of them can represent an
n-to-n infrastructure layout.

A CoupledInfraModel needs a number of functions that can operate on the model
nodes and couplings as well as on its sub-components. For the convenience of model
construction (and generation), we defined operations to allow for, e.g., adding and re-
moving sub-components, as well as adding, removing and managing nodes and the
couplings of nodes dynamically at model generation time (§ 5.3). Since the node opera-
tions are also needed by the RIE models (i.e., InfraElement), the SAM pattern (§ 4.3.2.2
and § 4.3.4.4) is applied to reuse the definition of these operations among the infra-
structure models. As shown in Figure 4.22, the CoupledInfraModel implements the
InfraInterface (so does the InfraElement, cf. Figure 4.5) in order to delegate the op-
erations.

4.3.5.2 Infrastructure Components

In § 4.3.2.1, we explained the difference between the CoupledInfraModel and the In-

fraComponent. While the former can be any CIM, the later is a CIM with a specific layout
or setting which is meant to be reusable as a whole. An InfraComponent can be seen as
a component unit, whose sub-components are strongly related in the sense that they
have some common operation and/or need common control logic for the well func-
tioning of the component unit.

For example, the Y crossing discussed in Example 4.5 (Figure 4.20) is defined as an
InfraComponent (YCrossing; see Figure 4.7) first because it has a common infrastruc-
ture layout (pattern) and also because the 3S models in the crossing need to be super-
vised by the same control unit for the safe operation at the crossing.

An InfraComponent model in LIBROS is defined with possible compositions and
constrains in such a way that it serves as a meta-model (§ 2.2.1). Each sub-class of

111

4

Domain Simulation Library

the InfraComponent model class (see Figure 4.7) defines a meta-model of a certain in-
frastructure composition whose (infrastructure) compositional feature is described by
a corresponding graph pattern. The latter is used for graph pattern matching in the
infrastructure data for the AMG presented in § 5.

In the AMG, a graph pattern is a source meta-model of a subgraph in an infrastruc-
ture data graph; an InfraComponent model is a target meta-model of a sub-component
in a TopLevelModel (see § 3.4, Figure 3.6). An InfraComponent model also defines a set
of operations on how to use a matched subgraph to instantiate (and configure) a corres-
ponding model component. As this is closely related to the AMG, we will give examples
of infrastructure components in § 5.

4.3.5.3 Vehicle Coupling

In § 4.2.3, § 4.3.1 and § 4.3.3.3, we discussed the design of vehicle communications
and dynamic couplings. A vehicle model is generated (in a source model, see § 4.3.5.4)
at a certain instant during simulation, and then dynamically connected to a sequence
of NCRIs one at a time representing where the vehicle is located. When it reaches its
destination, it is removed (by a sink model, see § 4.3.5.4) from the simulation.

Dynamic structure DEVS (DSDEVS) allows for the change of model structure at sim-
ulation run time. There are two popular definitions of DSDEVS in literature (WAINER

2009), one by BARROS (1997) and the other by UHRMACHER (2001). The latter is used by
LIBROS as it is the definition that is implemented by the ESDEVS simulator (§ A.2).

Figure 4.25 gives an example of vehicle couplings. A vehicle model V is successively
coupled with the RIE models RIEs at time intervals corresponding to the time that is
needed by the vehicle moving from one NCRI to a next. It always has three couplings
with a RIE at any simulation time:

(1) one coupling for input messages – from RIE output port O/V to V input port
I/RIE,

Rail
Vehicle

O/F/RIE

I/RIE

O/B/RIE

Sensor Track
Segment

O/VO/V O/C

Track
Segment

O/V

Track
Segment

O/V

S:I/F E:I/B
... ...

Figure 4.25: Rail vehicle model coupling with RIE models – an example

112

4

4.3 Model Design in LIBROS

(2) one coupling for output messages forward – from V output port O/F/RIE to RIE
start node S input port I/F, and

(3) one coupling for output messages backward – from V output port O/B/RIE to RIE
end node E input port I/B.

All V-RIE couplings are designed in this manner since the RIE models47 are designed
to have the required ports. Therefore, the configuration function for the dynamic V-
RIE couplings can have cohesive operations. When a vehicle model reaches its NCRI, it
invokes by itself the configuration function COUPLETONCRI for its dynamic couplings,
in which the couplings with the previous NCRI are removed and new couplings with the
current NCRI are established. As discussed in § 4.3.3.3 and § 4.3.3.5, a vehicle model
alwasys reaches its NCRI at an internal event. If so, the COUPLETONCRI function is
invoked from the output function λ (see § B.2.2, line 10) after which a new round of MP
is initiated.

4.3.5.4 Source and Sink

A LIBROS model contains at least one source and one sink where vehicle models are
generated into and removed from the model during a simulation run. The source and
sink models are of a special type of infrastructure model in the sense that “no traffic
flows through” the model. This means that only one of the two nodes of a source or
sink model is connected. Their design is shown in Figure 4.26.

ASource is a coupled model that contains one virtual track and at lease one (atomic)
vehicle generator. One VehicleGenerator can generate vehicle models according to
one timetable or one time interval distribution. Once generated, a vehicle is coupled
to the TrackSegment in the source and assigned with a position closest possible to the
end of the track. The vehicle model then sends a request message at initialization48

after which it decides on its own movement (§ 4.3.1 and § 4.3.3). We use a track in a
source model for two reasons:

Source

E

Track
Segment

Vehicle
Generator

Rail
Vehicle

Sink

O/V

S
...

ES

Figure 4.26: Source
and sink models

47When a RIE model has more than one start or end node, a coupling with either will give correct results.
The default setting is to connect with the first start or end node.

48The initialization refers to the very first internal event of the DEVS atomic model; see Figure A.3.

113

4

Domain Simulation Library

(1) when there are more than one vehicle in the source, the track is a means to queue
the vehicles by the time they are created;

(2) the track is also a means that allows a vehicle to send out a request message and to
drive out from inside the source, which is cohesive with the other infrastructure
models.

To couple a newly generated vehicle directly with a track outside of a source, in-
stead of a track inside, would break the modularity of the source model. A track inside
a source model is virtual as it does not model any part of the “real” infrastructure and
the mileage inside a source is not accounted for statistics.

A Sink responds to a request message in the same manner as the RIE models. But
once a vehicle reaches a Sink, it is removed from the simulation: the vehicle’s coup-
lings are removed and the vehicle model is removed from the component list of the
parent model. Because the vehicle’s succeeding vehicle (if any) still holds the inform-
ation about its PV, which would cause unconscionable movement computation of the
latter, the Sink sends a backward message to inform the latter who then clears its PV
information.

4.4 A Study on LIBROS Model Performance

In this section, we present a study that compares a LIBROS model with a model that uses
continuous abstractions. The work reported by KANACILO and VERBRAECK (2005, 2006,
2007) also developed a rail simulation library in which vehicle movement is represen-
ted by differential equations. We hereinafter call this library LIBODE. We deem LIBODE

and LIBROS comparable because they are developed with similar modeling details and
purposes, and both libraries have the same underlying (event scheduling based) simu-
lator which is called DSOL (JACOBS 2005). LIBODE is based directly on DSOL and LIBROS

is based indirectly on DSOL through the ESDEVS library (SECK and VERBRAECK 2009).
The dependency relation is depicted in Figure 4.27. More information about DSOL and
ESDEVS can be found in § A.2.

IB DE IBROS

DEVS Simulator

Event‐Scheduling Simulator Figure 4.27: LIBODE and LIBROS

114

4

4.4 A Study on LIBROS Model Performance

4.4.1 Experimental Setup

Using the LIBODE and LIBROS libraries respectively, we created two models representing
the light-rail operation in The Hague city center tunnel in the Netherlands. This loca-
tion is chosen for its simpleness but suffices to show examples of LIBODE and LIBROS

models, and to compare them in terms of their performance.

4.4.1.1 LIBROS Model

The LIBROS model of the light-rail operation in the tunnel is shown in Figure 4.28. Only
one direction (from left to right) of traffic is illustrated; the other direction is modeled
similarly. In the tunnel, there is a stop with two halting places (T3 and T4). The stop is
guarded by a signal (LS) which signals vehicles to wait (i.e., red) when either T2 or the
second halting place (T3) is occupied by a vehicle. When the first halting place (T4) is
occupied and both T2 and T3 are not, the signal shows amber. The signal turns green
when the block section is completely cleared. The speed limit in this tunnel is 45 kmph
and it is reduced to 35 kmph when the signal is amber.

The MCT of the LIBROS tunnel model is illustrated in Figure 4.29. The four nodes
in the MCT are CoupledInfraModels, among which the root is a TopLevelModel. The
Tunnel Model is compose of a Block Section, two track segments T1 and T5, a Source and
a Sink. The Block Section is composed of a lineside signal LS, a Control Unit, and other
components as shown. Besides vehicle detection, the sensor S1 in the Stop is also used
by a vehicle to identify the position of the stop. Another sensor S2 is placed at the end
of the block section to detect clearance.

T5 (482 m)

Stop

Block Section with Stop

S1 S2

Control Unit

trigger/release

T4 (46 m)T3 (41 m)T2 (76 m)T1 (85 m)

LSSource Sink

grant access

request access

trigger/release

trigger/release

Figure 4.28: Light-rail operation in The Hague city center tunnel modeled with LIBROS

115

4

Domain Simulation Library

Source SinkT1 Block Section T5

LS T2 Stop S2

S1 T3 T4

Vehicle Generator Control UnitT0

Tunnel Model

Figure 4.29: Composite tree
of the LIBROS tunnel model

4.4.1.2 LIBODE Model

The same infrastructure and control logic are modeled with LIBODE. The LIBODE tun-
nel model has one track T that comprises the total length of T1 ∼ T5 in the LIBROS model.
The block section or the stop is defined with a position associated with the track; e.g.,
the block section is on T , offset 85 meters, length 163 meters. The positions of the signal
and sensors are defined in the same manner.

In LIBODE, communications are mainly accomplished through publish-subscribe49

which is implemented by DSOL. For example, when a vehicle is approaching a signal,
the state changes of the signal would be of the interest to the vehicle. The vehicle model
thus registers itself to the signal’s subscribers list and becomes a listener of its state
changes. Once the vehicle passes the signal, it unregisters itself from the list.

The vehicle movement is represented by differential equations solved by the Runge-
Kutta integrator contained in DSOL. In principle, at each integration step, a vehicle
model decides if it shall accelerate, cruise or brake based on the states of the objects
(i.e., vehicles, signals, sensors, etc.) associated with the track(s) ahead of it. If a new
object is in sight, the vehicle subscribes to the model so that it can be notified when the
model changes states.

4.4.1.3 Experiments

For each model, we ran experiments with different vehicle generation frequencies (VGFs),
viz., 15, 22, 30, 40, 50, 60 vehicles per hour (vph). Two measures are taken to ensure that
some vehicles do interact with another.

49The publish-subscribe (or event notification) interaction mechanism defines an asynchronous non
static one-to-many dependency between objects so that when one object changes state, all of its depend-
ents are notified and updated (GAMMA et al. 1994). More specifically, subscribers register their interests in an
event (or an event pattern) with publishers, and are subsequently notified each time when such an event is
generated by the publishers (EUGSTER et al. 2003).

116

4

4.4 A Study on LIBROS Model Performance

(1) The vehicle generation interval is not uniformly distributed but with time vari-
ations. When, e.g., the VGF is 15 vph, generating one vehicle every four minutes
would likely yield no interactions as the total driving time through the tunnel is
short (∼1 min in the best case without halting) and there exists only one stop that
can delay this time.

(2) The halting time at the stop is configured such that it is long enough (i.e., more
than the average vehicle generation interval) to yield vehicle interactions. When,
e.g., the VGF is 30 vph, the halting time would be more than two minutes.

Each pair of experiments is set with the same configurations for both models so that
the results are comparable. The LIBODE model is simulated with an integration step of
1/20 second which in the worst case has a vehicle position accuracy of 0.625 meter,
considering the speed limit of 45 kmph. The vehicle position in the LIBROS mode is
computed as described in § 4.3.3.3 (with floating point precision). The simulation run
length of each experiment is two hours. Each simulation run is profiled with the TPTP
tool50.

It is expected that the VGF and the computational cost of the simulation have a
positive correlation, since more vehicles create more communications in both mod-
els, more need for integration in case of the LIBODE model, and more state transitions
in case of the LIBROS model. The difference of degrees of this correlation in both models
is what the experiments want to find out.

4.4.2 Experiment Results and Discussion

The execution time measurement of the LIBODE and LIBROS tunnel models is presented
in Figure 4.30. In both cases, the results show that the model execution time increases
nearly linearly with the increase of VGF. However, the execution time of the latter is
consistently lower and increases slower compared to that of the former. Although the
model execution time in the experiments is not large, performance becomes important
for large-scale microscopic M&S.

We profiled the experiments with the VGFs of 15, 30 and 60 vph, and then categor-
ized the execution base time51 by the major functionality (with the highest base time)
used by the two models. The results are shown in Figure 4.31.

As mentioned earlier, both the LIBODE and LIBROS libraries are based on DSOL.
LIBODE uses DSOL for integration and model communications (i.e., publish-subscribe),
which need the event-scheduler in DSOL. LIBROS uses ESDEVS for model state trans-
itions and communications (i.e., port-based message passing); these events are sched-
uled by ESDEVS using the event-scheduler in DSOL as well.

Because the base time is taken as the time measure for the experiments, the time
spent for integration by the LIBODE model is “pushed” from the DSOL integrator cat-
egory to the LIBODE vehicle where the demand for integration is located. The data shows

50Eclipse Test & Performance Tools Platform www.eclipse.org/tptp/.
51According to the Eclipse TPTP Glossary, base time is the time spent executing a particular method, not

including the time spent in other methods that this method calls.

117

http://www.eclipse.org/tptp/

4

Domain Simulation Library

VGF (vph) 15 22 30 40 50 60

LIBODE model 1094 1563 1953 2797 3782 4266
LIBROS model 344 469 563 688 828 953

0

1000

2000

3000

4000

5000

10 20 30 40 50 60

Vehicle generation frequency (vph)

Ex
ec

u
ti

o
n
 t

im
e

(m
s)

LibOde model

Libros model

Figure 4.30: Execution time of the
LIBODE and LIBROS tunnel models in
milliseconds

the high computational demand of the integration as expected. The integration (or the
vehicle model as the primary component in the LIBODE library) needs a large portion
of the total execution time.

Compared with the LIBODE vehicle and LIBODE track categories, the LIBROS vehicle/
track category is light-weight. But the DSOL event-scheduling in the LIBROS model is
relatively heavy and the most demanding because all the DEVS model transitions and
communications managed by the ESDEVS library eventually use the event-scheduler.
Nevertheless, the data shows that the computational cost of this part is comparable to
the cost of DSOL event-scheduling in LIBODE.

Note that the model communications in both libraries are handled on the cost of
DSOL event-scheduling. The communication mechanism in LIBODE is based on publish-
subscribe, in LIBROS it is message propagation (§ 4.2.3 and § 4.3.1). This means that, for
the executed simulation experiments, the design of MP in LIBROS, despite extra (num-
ber of) message sending and state transitions, does not yield significantly more com-
putation cost than the publish-subscribe communications in LIBODE. (In the case of
60 vph in the DSOL event-scheduling category, the total cost of transitions and commu-
nications in LIBROS is even lower than the cost of communications alone in LIBODE.)
This result is consistent with the cost estimation of MP presented in § 4.2.3.

In general, the integrator and the use of it comprise the primary component for a

118

4

4.4 A Study on LIBROS Model Performance

LIBODE model LIBROS model

VGF (vph) 15 30 60 VGF (vph) 15 30 60

DSOL event-scheduling 140 237 505 DSOL event-scheduling 172 275 442
DSOL integrator 175 256 444 ESDEVS 16 43 88
LIBODE vehicle 539 1048 2383 LIBROS vehicle/track 6 15 31
LIBODE track 53 126 389
Others 188 285 544 Others 149 230 392

0

500

1000

1500

2000

2500

3000

3500

4000

4500

LibOde Libros LibOde Libros LibOde Libros

15 vph 30 vph 60 vph

Ex
ec

u
ti

o
n
 b

as
e

ti
m

e
(m

s)

DSOL event DSOL integrator

ESDEVS LibOde vehicle

Libros veh/track LibOde track

Others

Figure 4.31: Execution base time per category of the LIBODE and LIBROS tunnel models

continuous model. The event handler (e.g., ESDEVS in combination with DSOL event-
scheduler in case of LIBROS) and its use have comparable roles for a discrete-event
model. Given the same integrator, the design choices of a continuous model, however,
often have little influences on the efficiency of the numerical solution, since the integ-
rator solves the differential equations with a defined time step. On the contrary, with a
discrete-event model, the design choices (i.a., the choice of events and the state trans-
itions on the events) often have influences on the time advances and hence affect model
performance. This opens up possibilities for, but does not guarantee, improvement of
model performance, and requires modelers to make careful choices of model design.

119

4

Domain Simulation Library

The results of the experiments show that, with comparable modeling details and accur-
acy, the LIBROS model yields higher performance than the LIBODE. This is an example
that careful design of discrete-event models can yield high performance without loos-
ing model accuracy.

4.5 Model/Simulation Presentation

As discussed in § 4.1.2, components for model/simulation presentation (MSP) take
care of tasks such as model data output, visualization and statistics. In this section,
we briefly present the MSP components in LIBROS and comment on some issues that
are deemed important, particularly for modeling with DEVS. Figure 4.32 gives an over-
view of the MSP components in LIBROS. When a model is ran by a simulator, it becomes
simulation. In this sense, the model and simulation are two aspects of the same thing.
The former is a static system specification and the latter is the specified system in a dy-
namic running state. The two bold lines in the figure indicate the data flow during a
simulation run. The data is being animated and recorded in a database.

Loose Coupling to Simulation Model The DSOL library (JACOBS 2005) that ESDEVS is
based on has an animator as well. The animator is a simulator that supports concur-
rent animation52. When the simulator/animator is running a model, it can render the

Simulator/
Animatior

Statistics
Components

Model

Animation

become query

Animation
Components

Data Output
Components

write

generate

Output
Database

render

run

Simulation
(replications)

Figure 4.32: Model/simulation presentation components in LIBROS

52In concurrent animation the animation is being displayed at the same time that the simulation is run-
ning; in post-processed animation (or post-run animation), state changes in the simulation are saved to a
file and used to drive the graphics after the simulation is over (LAW 2007). Post-run animation is not suppor-
ted by the DSOL animator. A DSOL related work of post-run animation can be found in FUMAROLA (2011).
Tools available for visualization of CD++ (a C++ based toolkit for DEVS and Cell-DEVS) models can be found
in WAINER (2009).

120

4

4.5 Model/Simulation Presentation

animation of the simulation (at the same time) with Java 2D or 3D graphics. In order to
do so, a modeler must provide the required rendering information about the 2D or 3D
visual representation of the model and the location (and bound) of the visualization,
by using Renderable2D or Renderable3D and LocatableInterface in DSOL.

Figure 4.33 shows an example in which a model component Model1 can be anim-
ated by its 2D animation component Model1_Visualizationusing DSOL. The Render-
able2D contains apaint function that defines how to visualize the model (state) at a cer-
tain instant. The function is invoked at each animation time step. The Renderable2D

also contains a reference to the model component (i.e., the source) in order to access
the latest model state. The model component on the other hand contains functions
(i.e., getBounds andgetLocation) that are related to the animation, i.e., these functions
are also invoked at each animation time step. The approach results in tightly coupled
model components and animation components.

To loosen the coupling, a model image is created for many (atomic) model in LIB-
ROS to “portrait” the model’s state. It is a small object that holds the values of a sub-
set of the model’s state variables used by the animation. The model image instead of

Figure 4.33: Model visualization
with DSOL animator

Figure 4.34: LIBROS model visualization with DSOL animator

121

4

Domain Simulation Library

Abstract
DEVS Model

Model 1 Image

Model 2 Image

Model n Image

. . .

St
at

e
U

pd
at

e
Ev

en
t

publish

notify
subscribe

update
update

update

writenotify
subscribe

Model Image
Manager

Data Output
Manager

Publisher Subscriber

Output
Database

Figure 4.35: LIBROS model image update and data output with publish-subscribe

the model component itself is used with the corresponding animation component, as
shown in Figure 4.34. With this small design adaptation, the animation code is moved
away from the model components, and the animation components can only access the
model images. During a simulation run, a model publishes its state changes, and its
model image is subsequently updated with the changes through the publish-subscribe
mechanism53, as illustrated in Figure 4.35.

A model image manager takes the responsibility of updating all model images in a
simulation run. It subscribes to the state update event of all models (i.e., the abstract
DEVS model class) in LIBROS and is notified of the event each time a model state update
takes place. The key benefit of using publish-subscribe in this context is that we can
change either side the model components and animation components without much
affect on the other. The disabling (or replacement) of animation can be neatly done by
unsubscribing to the event (or the replacement of the subscriber).

For the same reasons, the publish-subscribe mechanism is also applied to the com-
munications between the model components and the data output components, shown
in Figure 4.35. A data output manager is notified of the model state updates and is re-
sponsible to prepare adequate database statements and subsequently write the data to
the output database.

The statistics components54 in LIBROS are responsible for querying data from the
output database (after simulation), and display and run statistics on them. Based on
user requirements, a number of statistics components are designed for KPIs such as
halting time, trip time/speed, delay, regularity, punctuality, distance-time chart, etc.,
and the data can be aggregated per vehicle, per stop, and per service line.

53See § 4.4.1, fn. 49, p. 116.
54Called reporting and graphics in some literature; e.g., BANKS (1998) and LAW (2007).

122

4

4.5 Model/Simulation Presentation

St
at

e
va

ri
ab

le
 v

t
Simulation time advance

Animation time step

ti ti+1 ti+2

tm tn tl

wi

wi+1

wi+2

vi

vi+1

vi+2

Figure 4.36: Smooth animation of discrete state variables

Animation of Discrete Event Models Concerning animating discrete event models,
there is another issue we would like to discuss. The time advances of the simulation
models are often much larger than the animation time step55. The direct visualization
of the stepwise state changes of a discrete event model thus may cause undesirable flash
or jump (LAW 2007) of the animated images. This is particularly true for GDEVS models
since the coefficients of the polynomial segments are constant and the state variables
often are not. Flashing or jumping images can result in erratic animation effects from an
aesthetic point of view. But they can have a more serious negative effect. Because differ-
ent discrete event model components do not have synchronized state transitions, this
quality of animation may give misguided impression of the interrelation of the model
states. When smooth animation is required, the presented state variables shall always
represent the “current state” of the simulation (REKAPALLI 2008) along with the anima-
tion time advance. This means that their values need to be updated at each animation
time step.

Let v be a state variable of a GDEVS model M and w (t) be a piecewise polynomial
representation of v , i.e., v := w (t). Suppose that M has a state transition at time ti ,
after which the polynomial becomes wi (t) and the value of v becomes vi . With a non
smooth animation, v remains constant at the animation time steps after ti until the
next state transition takes place, as illustrated in Figure 4.36. A smooth animation is
able to update the value of v at the animation time steps by using the corresponding
polynomial. Suppose that the animation time step right after ti is at tm , then the value

55The latter advances in small steps in a discrete time fashion.

123

4

Domain Simulation Library

of v at tm is determined by vm = vi +wi (tm − ti); see § 4.3.3.2. Similarly, further values
in this polynomial segment are determined by vm+1 = vi +wi (tm+1−ti) = vm+wi (tm+1−
tm), and so forth. The calculation is in a DTSS fashion (§ 2.4.1.2). When the next state
transition arrives at ti+1, the polynomial is updated to wi+1(t) (and v to vi+1). The value
at each animation time step is calculated with the new polynomial in the same manner.

Regardless whether smooth animation is required, the presentation of model states
often need transformations related to spatial, geometrical, and/or temporal informa-
tion, etc. These require careful design and are sometimes application specific. They
can have high computational demand as well. We will not discuss related issues as they
are not a focus of this thesis. Some examples of the animation in LIBROS can be found
in § B.3.

Smooth animation is costly. Loose coupling between the model and animation is
particularly desirable in such cases because one can easily disable the functions related
to animation when it is so wished. In LIBROS, the state variables’ values produced by
the models for simulation are contained in the models, while the smoothened values
for animation are produced by and contained in the corresponding model images. In
combination with the publish-subscribe mechanism described earlier in this section,
animation is activated only when the model image manager subscribes to the model
state update event.

124

5
Model Generation

T
HE DOMAIN MODEL COMPONENTS discussed in § 4 are used for model genera-

tion. An AMG process in this research should automatically combine these
components, instantiate and configure them so that they together constitute
a simulation model. In § 3.4, we separated an AMG process into three AMG

steps such that each step produces a major result. This chapter focuses on the first two
steps: mode transformation and instantiation.

In principle, transformation rules for the AMG can be defined when the data for
AMG input has semantic and pragmatic completeness, has definable measures for syn-
tactic and mapping inconsistency (if any), and when the modelers have sufficient do-
main knowledge and deductive reasoning for the definition of transformation rules that
can solve data issues related to semantic accuracy and presentation suitability (§ 3.3)
with regard to model structure and parameterization.

Since graph theory and graph transformation in particular are applied for model
transformation and instantiation in this research, the related theory is first presented
in § 5.1. In the model transformation step explained in § 5.2, transformation rules are
executed on the infrastructure data in order to construct a hierarchical graph that rep-
resents the compositional structure of the simulation model to be generated. The rules
are defined on the meta-models of the original data structure (Construct 3), of the in-
termediate structures, and of the domain simulation model (Construct 1). In the model
instantiation step explained in § 5.3, a simulation model is generated using the domain
model components based on the hierarchical graph from the previous step. In § 5.4, we
summarize the steps and sub-steps discussed in § 5.2 and § 5.3.

125

5

Model Generation

5.1 Graph Theory and Graph Transformation

In the AMG process, graphs are used to represent structures in data and model com-
position, to perform transformation step by step from the former to the latter, and to
generate simulation models based on the latter.

5.1.1 Structure Representation with Graphs

Data can be structured, semi-structured or unstructured. In Example 3.1 given in § 3.2,
the infrastructure data are unstructured. Simulation models, on the other hand, are
often structured. The models discussed in this thesis have hierarchical structures.

This hierarchical structure refers to a Compositional Containment Hierarchy (CCH),
which is a strictly nested component inclusion hierarchy. For example, component A is
composed of components B and C in which C is composed of D and E , etc., as shown
by the Model Composite Tree (MCT) in Figure 4.29.

Using a tree structure to represent CCH does not convey information about the in-
terrelations (i.e., coupling relations in case of DEVS) among the model components,
which comprises a graph (or network). For this reason, a hierarchical graph is needed
to represent model interrelations with a hierarchical structure.

5.1.1.1 Graph and Graph Pattern

A common mathematical notion of a graph is a finite set of nodes (or vertices) among
which some pairs of the vertices are connected by edges (or links). An enrichment of
this notion is to type and/or attribute the vertices and/or edges. The following defini-
tions are based on EHRIG et al. (2006a,b), GALLAGHER (2006) and FAN et al. (2010).

A directed graph (or digraph) is an ordered pair G = (V , E) where V is a finite set
of vertices and E ⊆ V × V is a set of edges in which e = (v, v ′) ∈ E denotes an edge
from vertex v to v ′ ∈ V . A graph hereinafter always refers to a digraph if not otherwise
indicated.

A similar definition of graph is a 4-tuple G = (V , E , s , t) where E is a set of edges
without indications of the (source and target) vertex pairs. They are specified by the
source function s and target function t such that s , t : E →V .

A path p in a graph G is a sequence of vertices (v1, v2, · · · , vn) such that ei∈[1,n−1] =
(vi , vi+1) ∈ E ∈G .

A typed graph T G = (G , TV , TE , tV , tE) has typed vertices and/or typed edges, where
G is a graph, TV and TE are two finite sets of vertex types and edge types, and tV and tE

are vertex type function and edge type function such that tV : V → TV and tE : E → TE .
A data graph D G = (T G , AV , AE ,aV ,aE) is a typed attributed graph, where T G is

a typed graph, AV and AE are two finite sets of vertex attributes and edge attributes,
and aV and aE are the vertex attribute function and edge attribute function such that
aV : V × AV → R and aE : V × AE → R. This means that a vertex v ∈ V can have a
number of vertex attributes ai ∈ AV , i ∈ [1, n] each of which has an attribute value ci ∈
R, i.e., aV (v, ai) = ci . Likewise, an edge e ∈ E can have a number of edge attributes

126

5

5.1 Graph Theory and Graph Transformation

a j ∈ AE , j ∈ [1, m] each of which has an attribute value c j ∈ R, i.e., aE (v, a j) = c j . As
such, a vertex or edge can be assigned with a set of attributes and values that carry the
content of the vertex or edge, e.g., label, rating, weight, and identifier.

Graphs can represent not only structure instances such as social networks or maps,
but also types or patterns of structure instances. The token and type models illustrated
in Figure 2.3, § 2.2.1, are examples. A type of graph structure instances can be expressed
by a graph pattern. A graph pattern is often used to describe the matching criteria of
occurrence(s) of homomorphic or isomorphic subgraph(s) in a host graph.

A (typed attributed) graph pattern can be defined as P = (Vp , Ep ,pp ,bp) where Vp

and Ep are two finite sets of vertices and edges, pp is the predicate function defined on
Vp and/or Ep as a (logical) conjunction of atomic formulas1 over the vertex and/or edge
types TV , TE , the vertex and/or edge attributes AV , AE , and the corresponding attribute
values, and bp is the bound function such that bp : Ep → R ∪∞. Note that an edge
in a graph pattern is often a path in a host graph. Intuitively, the predicate function
defines the search conditions on the vertices and/or edges in a host graph, and the
bound function defines the bound of a search path in the host graph, e.g., the upper
bound of a path length, and∞ simply means that there is no bound.

5.1.1.2 Hypergraph

The definitions given in § 5.1.1.1 do not yet support the direct expression of CCH. In
order to represent this hierarchy, we need a mathematical notion of composition. In
literature, hyperedges (e.g., BUSATTO and HOFFMANN 2001, DREWES et al. 2002, PALACZ

2004, BRUNI et al. 2010) are often used for this purpose.
A hyperedge is an edge in a hypergraph, a generalized graph whose edges are non

empty sets of finite vertices. To the author’s knowledge, it is first introduced by BERGE

(1973, 1989). BERGE (1989) has the following definitions2.

◦ Let V = {v1, v2, . . . , vn} be a finite set of vertices. A hypergraph on V is a family
H = (E1, E2, . . . , Em) of subsets of V such that the edges Ei ∈ H , i ∈ [1, m] satisfy
Ei 6=∅ ∧ ∪Ei =V .

◦ A simple hypergraph3 is a hypergraph such that no edge is contained by another,
i.e., Ei ⊂ E j ⇒ i = j .

◦ A simple graph4 is a simple hypergraph such that each edge has cardinality 2, i.e.,
|Ei |= 2.

1Atomic formulas, as opposed to composite formulas, are the simplest well-formed formulas in mathem-
atical logic. Variables and constants are (atomic) terms; if f is an operation of degree r and t1, · · · , tr are terms,
then f (t1, · · · , tr) is a term; if p is a (predicate) relation of degree r and t1, · · · , tr are terms, then p (t1, · · · , tr)
is an atomic formula, which has roughly the following meaning: the ordered r -tuple of objects denoted by
t1, · · · , tr has the property denoted by the r -ary predicate p (MANIN 2010, BEN-ARI 2012).

2A more detailed concept of hypergraph (and hyperedge) is presented, e.g., in HABEL (1992) and DREWES

et al. (1997) which include tentacles, attachment vertices and external vertices. We discuss them in § 5.1.2.4.
3Or Sperner family.
4The (ordinary) graphs that have edges connecting two vertices only, as those discussed in § 5.1.1.1.

127

5

Model Generation

1

2 3
4

5

6

7

8

1

23

4

5

6

Figure 5.1: Hypergraph – an example with
eight vertices and six edges (ibid.)

As proposed by BERGE (1989), a hyperedge Ei may be represented by a line connect-
ing the two vertices if |Ei |= 2 (similar to the case in a simple graph), by a loop if |Ei |= 1,
and by a closed circle enclosing the vertices if |Ei | ≥ 3, as illustrated in Figure 5.1.

One can see that a hypergraph is not per definition a CCH or strictly nested. For ex-
ample, a simple hypergraph does not have a CCH. A CCH shall not have hyperedges that
can freely share vertices. Nevertheless, constrains can be imposed on the hyperedges
in order to obtain CCHs by means of hypergraphs.

Hyperedges and Simple Edges In representing CCHs with hypergraphs, we need to
pay attention to the hyperedges that have cardinality 2. In literature, a hyperedge con-
necting two vertices is like an ordinary graph edge. When we use these hyperedges to
represent the compositional relations of two vertices, how to distinguish them with the
coupling relations of two vertices?

Take the hyperedge E2 in Figure 5.1 as an example. This edge connects v5 and v8. It
can represent a compositional relation, where v5 and v8 are composed together to form
a larger coupled component5; it can also represent a coupling relation, where v5 and
v8 are simply coupled together. This ambiguity in relation definition is undesirable for
model transformation.

It would therefore make sense in our graph representation to distinguish hyperedges
having cardinality 2 with simple edges, or at least type or label these edges, in order to
represent compositional relations and coupling relations differently.

5.1.1.3 A Hierarchical Graph for Model Composition

Because a CCH is a strictly nested component inclusion hierarchy, we define the fol-
lowing constrain for the hyperedges: for each pair of hyperedges in a CCH, one edge
can be a subset or superset of another edge but otherwise they must not intersect one
another. Based on the discussions and definitions presented, we propose a definition
of hierarchical graph that can be used to represent a CCH for model composition.

A model composite graph MCG= (G , HG) is an ordered pair of an ordinary digraph
G = (V , E) and a CCH HG specified on G . The graph G can be typed and/or attributed

5This is of course impermissible in case of DEVS as both vertices are also contained by other hyperedges.

128

5

5.1 Graph Theory and Graph Transformation

v1

v2

v4

v6

v5

v9

v3

v7

v8

v1

v2

v4

v6

v5

v9

v3

v7

v8C1 C2

C3
C4

G=(V,E) MCG=(G,HG)

HG = (C1, C2, C3, C4)
C1 = (v1, v8, v9, C2, C3)
C2 = (v2, v3)
C3 = (v4, v7, C4)
C4 = (v5, v6)

Figure 5.2: Model composite graph
– an example with four composi-
tions defined on a graph with nine
vertices

as defined in § 5.1.1.1. The CCH HG = (C1, C2, . . . , Cm) is a family of subsets of V ∈ G
such that the hyperedges Ci , i ∈ [1, m] satisfy,

(1) ∪Ci =V ∧ Ci 6=∅,

(2) ∃Ci =V , and

(3) ∀Ci , C j , j ∈ [1, m], i 6= j =⇒ Ci ∩C j =∅ ∨ Ci ⊂C j ∨ Ci ⊃C j .

We separate a graph G with its graph hierarchy HG in the definition6. The model
coupling relations are represented in the former by simple edges e ∈ E . The composi-
tional relations are represented in the latter by hyperedges Ci which are sets of compos-
ite members only. The vertices v ∈V and the hyperedges Ci represent the (elementary
and composed) components in model composition.

Figure 5.2 illustrates an example of MCG in which a hypergraph HG with four com-
positions C1 ∼ C4 are specified on a graph G with nine vertices v1 ∼ v9. The solid lines
denote simple edges and the dashed circles denote hyperedges.

Following the first condition in the definition (the same as in the hypergraph defin-
ition), each composition is a non empty set of vertices in graph G . The second condi-
tion states the existence of one component that contains all vertices in G . This is the
root component that is to be instantiated as the top level model (§ 4.3.2.1) in AMG. The
third condition in principle states that a CCH does not allow intersected compositions.
A component can be a subset or superset of another component. Otherwise, they shall
not share composite members. Note that the hyperedges can be as well typed and/or
attributed following definitions in § 5.1.1.1.

5.1.2 Basic Concepts of Graph Transformation

The main idea in graph transformation is rule-based graph pattern matching and re-
writing, where the application of different transformation rules leads to different graph
transformation steps (CORRADINI et al. 1997, EHRIG et al. 2006b).

6The definition is consistent with the hypergraph definition, e.g., in HABEL (1992) and DREWES et al.
(1997); see § 5.1.2.4. The information about attachment vertices of the hyperedges is however contained
(indirectly) in the ordinary graph G ; see § 5.2.

129

5

Model Generation

5.1.2.1 Rules, Matches and Rule Applications

A graph transformation step involves the following basic concepts: graph transforma-
tion rules, matches and rule applications (CORRADINI et al. 1997, KAHL 2002). They are
illustrated in Figure 5.3 (cf. Figure 3.6) and briefly discussed below (1997, 2002).

◦ A rule (or production) p : L R contains at least a left-hand side (LHS, or pattern
graph) and a right-hand side (RHS, or replacement graph), and some indications
of how instances of the RHS are to replace the matched instances of the LHS, e.g.,
which vertices and edges are to be preserved, deleted and/or created. The LHS
and RHS are the source and target meta-models (or subsets of them) discussed
in § 3.4.

◦ The application of a transformation rule to an application graph (or host graph)
G requires a match (or graph morphism) m : L →G for a production p . A match
occurs when the vertices and edges of L can be mapped to a subgraph in G such
that the defined graph structure, bound and/or the types and/or the attributes
(§ 5.1.1.1) are preserved. This subgraph is also called an image.
Following CORRADINI et al. (1997), a graph morphism f : G → G ′ is a pair f =
〈 fV : GV →G ′V , fE : GE →G ′E 〉 of functions which preserve sources, targets, types
and attributes, i.e., which satisfies fV ◦ t G = t G ′ ◦ fE , fV ◦ s G = s G ′ ◦ fE , tG ′

V ◦ fV = tG
V ,

tG ′
E ◦ fE = tG

E , aG ′
V ◦ fV = aG

V , aG ′
E ◦ fE = aG

E (see § 5.1.1.1). A graph morphism is an
isomorphism if both fV and fE are bijections. If there exists an isomorphism from
graph G to graph H , then we write G ∼=H . [G] denotes the isomorphic class of G ,
i.e., [G] = {H |H ∼=G }.

◦ The rule application to an application graph G , produces a result graph (or de-
rived graph) H . The transformation relation (also know as direct derivation) is
often called co-production p ∗ : G H . Roughly speaking, H is constructed as
G \(L\R)∪ (R\L). The rule application can be seen as an embedding into a con-
text which is the part of the host graph G that is not part of the match. The result

rule: LHS → RHS

Application
Graph

LHS

LHS

RHS

RHS

Result Graph

transformation

matching result embedding

Figure 5.3: Graph transformation
– rule-based modification of graphs
(CORRADINI et al. 1997, KAHL 2002,
EHRIG et al. 2006b)

130

5

5.1 Graph Theory and Graph Transformation

embedding (or co-match) m ∗ : R → H , maps R to its occurrence in the derived
graph H .

Figure 5.3 (right) illustrates a schematic representation of a direct derivation from

G to H , G
p ,m
=⇒H , resulting from an application of a production p at a match m (ibid.).

A graph grammarG consists of a set of productions P= {(pi |i ∈ [1, n]} and a start graph

G0. A sequence of direct derivations G0

p1

=⇒G1

p2

=⇒ ·· ·
pn

=⇒Gn constitutes a derivation of
the grammar, also denoted by G0 =⇒∗ Gn (ibid.).

5.1.2.2 Comments on Graph Pattern Matching

Graph Pattern Matching (GPM) is to find one or all matches in an arbitrary host graph
G for a given pattern P being the LHS of a rule (FAN et al. 2010). The problems in GPM
can range from the subgraph isomorphism problem, near isomorphism, to the finding
of inexact matches (GALLAGHER 2006). The variations of GPM generally occur along
with the strict or non strict matches on graph properties, viz., restrictions on structures,
types, and/or attributes (ibid.). As we will show in § 5.3.1, the GPM applied for the AMG
in this research is an isomorphism problem rather than an inexact matching problem.

Complexity of Subgraph Isomorphism It is well know that the subgraph isomorphism
problem is NP-complete (GAREY and JOHNSON 1979, EPPSTEIN 1999). In general, this
problem can not be solved in sub-exponential time (ULLMANN 1976, EPPSTEIN 1999,
GALLAGHER 2006). However, for some choices of G and P , better time complexities
are possible (SKIENA 1997, EPPSTEIN 1999, FAN et al. 2010). For example, according to
EPPSTEIN (1999), matching a fixed pattern P (with l vertices) can be solved in poly-
nomial time7, i.e., O

�

n l
�

; matching a fixed pattern P in a planar G (i.e., planar sub-

graph isomorphism) can be solved in linear time, i.e., O
�

n
�

. Therefore, the choices of
P and the type and pre-processing of G do have impact on the efficiency of the GPM
algorithms.

Approaches for Time Complexity Improvement With regard to the choices of P , an
ideal situation is to define patterns with possibly small sizes; the size refers to the vertex
size l . An alternative approach (but same in principle) is to set bounds on the search
paths when applicable. In general, type and/or attribute related constraints can sig-
nificantly speed up the search (SKIENA 1997). Sometimes, due to the nature of the
GPM problem, relative complex patterns need to be defined. We propose a graph pat-
tern (matching) composite method that performs GPM step by step in an incremental
bottom-up manner. Its principle is the same as using patterns with small sizes. The
method is simple but effective for patterns that have recurrence of sub-patterns; more
see § 5.2.3 and § 5.2.4.

7The induced subgraph isomorphism with a fixed pattern P can also be solved in polynomial time (CHEN

et al. 2008).

131

5

Model Generation

The type (and content) of the host graph G in relation with that of the pattern P
often gives good hints on how to pre-process G in order to render the search more ef-
ficient. The main goal of pre-processing8 in this context is to reduce the search space
and/or to fasten the search operation in the GPM algorithms. Common approaches in
literature are candidate selection and index construction based on some summary in-
formation of the data graph G (WASHIO and MOTODA 2003). The summary information
is computed on the given graph and is comprised of graph invariants, such as vertex
degrees, counts of adjacent vertices, path lengths, which are quantities useful to char-
acterize the graph (GALLAGHER 2006). The idea is that if two graphs (or subgraphs) are
isomorphic, they must have the same invariants; as such simple comparison or clas-
sification may already be able to preclude non-matches before the detailed matching
algorithms take place (WASHIO and MOTODA 2003, GALLAGHER 2006). Based on the in-
variant values, we may construct indexes into a graph (e.g., the vertices or some struc-
ture patterns) or partition the graph into non-overlapping sets of vertices in order to
potentially speed up the GPM algorithms (SKIENA 1997, GALLAGHER 2006).

5.1.2.3 Comments on Graph Rewriting

An application of a production needs to rewrite a matched subgraph with the replace-
ment graph defined in the production. Well discussed in literature, there are two prob-
lematic situations concerning graph rewriting (CORRADINI et al. 1997, KAHL 2002).

Conflict in a match Because matches in general do not have to be isomorphic, there
can be conflicts between deletion and preservation of elements in a match.

Dangling edges A vertex that shall be deleted is connected to an edge that is not a part
of the match.

Two common approaches to graph rewriting in literature are the so called double-
pushout (DPO) and single-pushout (SPO), whose basic difference lies in the way they
handle the above two situations (CORRADINI et al. 1997, EHRIG et al. 1997). The lat-
ter being a more recent approach allows to apply productions without any application
conditions, i.e., deletion has priority over preservation9; while the former has a build-
in application condition, i.e., rewriting is not allowed in the above two situations (COR-
RADINI et al. 1997). EHRIG et al. (1997) shows how to extend the SPO approach to handle
user-defined application conditions; thus the DPO approach could be considered as a
special case of SPO (ibid.). We therefore choose to use the SPO approach for the model
transformation in the AMG for three reasons:

(1) The GPM algorithms for the generation of MCG for LIBROS models only return
isomorphic matches.

(2) Deletion is not performed in the productions for the generation of MCG.

8The pre-processing of G can also deal with tasks such as data cleaning related to the data quality of G .
This is discussed in § 5.3.1, but not relevant to the discussion of pre-processing of G in this section.

9This is adequate in some application areas and problematic in other ones (EHRIG et al. 1997).

132

5

5.1 Graph Theory and Graph Transformation

(3) In case of changes in the above conditions, the SPO approache allows for exten-
sions of user-defined application conditions.

5.1.2.4 Hyperedge Replacement

Hyperedge replacement is the replacement of hyperedges of a hypergraph by hyper-
graphs (HABEL 1992). Following HABEL (1992) and DREWES et al. (1997), a directed hy-
peredge can be seen as a black-box or a placeholder with an ordered set of incoming
tentacles and an ordered set of outgoing tentacles, as shown in Figure 5.4-(A). HABEL

(1992) gives the following definitions.

◦ A hypergraph H with a finite set of vertices V and a finite set of hyperedges E has
source and target functions s : E → V ∗ and t : E → V ∗ 10 that assign a sequence
of sources s (e) and a sequence of targets t (e) to each e ∈ E .

◦ There is a (predefined) set of vertices occurring in the sequence extH ∈V ∗ which
is called the set of external vertices of H . They (also called the begin and end
vertices) correspond to the sequence of sources and targets of a hyperedge (/∈ E)
when H may replace this hyperedge (conditions see below). The set of all other
vertices is said to be the set of internal vertices of H .

◦ The set of vertices occurring in the sequence att (e) = s (e) · t (e) is called the set of
attachment vertices of an hyperedge e .

◦ A hyperedge e ∈ E is called an (m , n)-edge for some m , n ∈ N if |s (e)| = m and
|t (e)|= n . The pair (m , n) is the type of e , denoted by type (e).

Figure 5.4-(B) illustrates a hyperedge where type (e) = (m , n)whose attachment ver-
tices (i.e., source and target vertices) are denoted by dots (•).

Given hypergraphs H and R , a hyperedge e ∈ E ∈ H may be replaced by R when
e and R “fit together”; this means that when e and R are of the same type — if e is
an (m , n)-edge then R is an (m , n)-hypergraph — and whenever the i -th and the j -th
external vertices of R are the same then the i -th and the j -th attachment vertices of e
are the same (i.e., distinct tentacles of a hyperedge may be attached to the same vertex,
ibid.). The hyperedge replacement can be done by removing the hyperedge e , adding

m

n

m

n

(A) (B)

(A) A hyperedge with m incoming tentacles
and n outgoing tentacles

(B) A hyperedge with m sources and n targets

Figure 5.4: Hyperedge of type (m , n) (ibid.)

10For a set A, A∗ denotes the set of all strings over A including the empty string.

133

5

Model Generation

e

1

1

2
m

n

. . .

. . .

H\e H\e

R
Figure 5.5: Hyperedge Replacement
H =⇒H [e /R] (HABEL 1992)

the hypergraph R except its external vertices, and handing over each tentacle of each
hyperedge (in the replacing hypergraph R) which is attached to a begin or end vertex to
the corresponding source or target vertex of the replaced hyperedge (1992). Figure 5.5
illustrates the replacement construction.

A formal definition of hyperedge replacement can be found in HABEL (ibid.). AN-
DERSSON (2006) provides a simpler definition as following. Let H , R be hypergraphs,
e ∈ E ∈ H , type (e) = type (R). The replacement of e in H by R yields the hypergraph
H [e /R]which is obtained with three steps:

(1) build H \e by removing e from H ;

(2) take the disjoint union of H \e and R , i.e., H \e]R ;

(3) ∀i ∈ [1, type (e)], identify the i -th external vertex of R with the i -th attachment
vertex of e .

This means that when adding R to H \e , the sequence of external vertices of R is fused
with the sequence of attachment vertices of e in the right order (DREWES et al. 1997).

5.2 Model Transformation

The model composition for the AMG of LIBROS models is derived from the AutoCAD
data of the rail infrastructure layout, e.g., an intersection or some area, under modeling
interest. The data used for the studies are provided by HTM (§ 4.1.1). It was originally
produced as light-rail infrastructure blueprints of the Haaglanden region. Figure 5.6
shows a plot of the infrastructure of the region. (The plot in Figure 3.2 of Example 3.1
is a small subset of it.) As stated in Example 3.1, the data is unstructured and contains
a list of geometric primitives each of which describes a CAD entity.

With a CAD file as a start graph G0 (§ 5.1.2), taking into consideration the data qual-
ity issues discussed in § 3.3 (particularly in § 3.3.3), a set of productions (or transforma-
tion rules) P is defined to derive a model composite graph MCG (§ 5.1.1.3) for the AMG
of LIBROS models in the model transformation step. These transformation rules are
presented in this section. (The final production from the MCG to a LIBROS simulation
model is presented in § 5.3.)

134

5

5.2 Model Transformation

5.2.1 On Start Graph

The CAD infrastructure data contains a list of CAD entities each of which has a geomet-
ric shape with geometrical descriptions and possibly other descriptions such as color
and label (see, e.g., Figure 3.2). Although the CAD data plot visually appears to be a
network, the dataset itself does not contain descriptions about the relations of the en-
tities. As such, it is hardly a graph as a mathematical structure. When considered as a
graph, it has vertices which are the CAD entities but has no edges. The shape type of a
CAD entity is the vertex type, and the descriptions (including geometry and others) are
vertex attributes.

A model composite graph MCG= (G , HG), on the other hand, is structured. It needs
to provide sufficient information about the composite of the simulation model to be
generated. First of all, G shall be a digraph where the edges represent (directed) model
coupling relations. In case of LIBROS models, each edge indicates the direction of the
traffic that consists of two coupling relations (§ 4.3.4.1). Second, the hyperedges in
the MCG shall describe the structure of each component. They are the results of GPM
where different types of infrastructure layouts are defined as graph patterns.

5.2.1.1 Infrastructure Descriptions in Start Graph

The entities in the infrastructure CAD data are mainly lines and arcs that represent rail
tracks. There are also labeled circles that indicate the start locations (and lengths) of
the stops. From their geometric properties such as world coordinates and shapes, we
can determine the connectedness of the entities.

The CAD entities were drew manually as rail track blueprints. The major data quality

Figure 5.6: Light-rail infrastructure CAD data of the Haaglanden region

135

5

Model Generation

issues in this regard concern semantic accuracy (i.e., criterion #3, § 3.3.3).

(1) In a graphical CAD environment, two entities may appear to be connected visu-
ally when zoomed out with a relative high scale factor but are indeed unconnec-
ted11 which can be inspected only when zoomed in with a sufficiently low scale
factor. As such, the “connected” parts would not have the same world coordin-
ates.

(2) For similar reasons, there exist some small “invisible” entities, e.g., very short lines
and arcs, which shall not be considered as a part in graph transformation. For
geometry-based inference of entity interrelations, these small entities may lead
to misinterpretation12.

(3) Although the entities representing rail tracks have start and end points, they do
not correspond to the directions of the traffic.

In order to solve these issues, the following measures are applied. For issue (1), a
configurable parameter for snap tolerance is used13. This specified distance is how-
ever not for correcting or modifying the coordinates of “connected” parts (because the
aperture size is so small that it is not significant for distance calculation) but only for
evaluating the connectedness of the CAD properties.

For issue (2), we “traverse” the infrastructure entities for connectedness with the
defined snap tolerance. As such, the standalone entities (including the small entities)
are ignored. Among the connected ones, a small entity14 that only has one connected
end point is ignored.

As for issue (3), the direction of traffic is not an intrinsic track property that can be
inferred from the rail track geometry alone. However, if the origin of a traffic flow can
be indicated in some way, and given that a rail track has a unique direction of traffic,
it is possible to infer the direction of traffic of all the successively connected tracks.
Urban light-rail services largely operate on rails with dedicated directions (PACHL 2002,
VUCHIC 2005); this is the case in the Haaglanden region. The origins of traffic flows
would typically either be at the boundary of the modeled area or at some defined loc-
ations such as terminals in the area. In LIBROS models, they are represented by the
source components (§ 4.3.5.4). Since there is a low number of sources15, it is affordable
to manually specify where the sources are located. We did so by adding this informa-
tion into the original infrastructure CAD data using labeled circles16. Figure 3.2 shows
examples of these labeled source circles.

11This is can be caused, e.g., by a misuse of auto-snap as a drawing aid.
12In case of the LIBROS models, problems can occur when, e.g., a small entity is connected to two other

track entities, by which a normal one-to-one track entity connection will be mistakenly interpreted as a rail
switch.

13Many CAD tools and drawing tools have such a parameter; it is sometimes called, e.g., snap sensitivity
or aperture size.

14An entity is considered to be small when its length is within a predefined value. This value is by default
the same as the snap tolerance.

15For example, there are three sources in Figure 3.2 of Example 3.1 and fifteen in the whole Haaglanden
region (Figure 5.6).

16They are labeled Block entities in AutoCAD named as “source”.

136

5

5.2 Model Transformation

5.2.1.2 Information Types and Dependencies

With the basic measures in § 5.2.1, we start out to design the intermediate model trans-
formation steps. The major data quality issues that shall be solved by the transforma-
tion steps concern presentation suitability (i.e., criterion #8, cf., § 3.3.3). To solve the in-
formation gap, the types of information that are available in the CAD data are enumer-

Tracks contained
in intersections

Tracks contained
in stops

Locations & shapes
of line/arc entities

Locations of circles
as sources

Locations, shapes, directions &
connectedness (layout) of tracks

Locations & types
of points

Types of
intersections

Locations &
lengths of stops

Locations of
sources

Points belong to the
same intersections

Locations of
sensors in stops

Locations of signals
in intersections

Check tables of control
units in intersections

Possible routes in
intersections

G0

1 2 3

4 5

6

7

8 9

10 11

12

Locations & lengths
 of circles as stops

G1

G2

G3

Information in
infrastructure CAD

Figure 5.7: Composite information types and dependencies for the AMG of LIBROS models

137

5

Model Generation

ated against the information that is required for the MCG of LIBROS models. We then try
to arrange the information types (Info. Types) by their dependencies and to fill in the
gaps by adding information that can be inferred from those which are known or can be
known. Expert opinions and literature are consulted in order to complete and verify the
information dependencies and inference logic. A number of reviews and modifications
took place (during the design and also the development process). In the final version,
twelve information types are needed for the AMG of LIBROS models. Their dependen-
cies are illustrated in Figure 5.7. We arrange the information into groups, each of which
represents an intermediate transformation step. The information in one group can be
either inferred within one single graph traversal, or the types are so interrelated that we
choose not to divide them into different steps. The rest of this chapter explains how the
information is obtained through stepwise transformation.

5.2.2 Transformation Step 1

The start graph G0 is composed of a list of CAD entities. The first transform step shall
construct a digraph G1 whose vertices are of two types: sources or tracks (Info. Types
1 and 2). The geographical compositions of the tracks are indicants of locations and
types of points (Info. Type 4). Additionally, since a stop model contains a sequence of
connected tracks with a suitable total length (see e.g., § 4.4.1) and the required informa-
tion is already available at this step, hyperedges are defined on G1 to represent the stops
and their constituent tracks (Info. Types 3 and 5).

We pre-process17 G0 such that its entities are partitioned into three non overlap-
ping sets, viz., sources, tracks and stops18. The construction of G1 basically relies on
geometrical inference. The rail infrastructure has a number of intrinsic characteristics
that allow for a limited number of direct CAD entity-to-entity compositions in terms of
vertex types and degrees. Figure 5.8 illustrates the schema of these compositions. Note
that the white headed arrows (as in the figures hereafter) represent track entities which
are vertices but not edges, and their directions indicate permissible directions of the
traffic which are not contained in the CAD data as such but need to be inferred during
transformation.

The transformation in this step is completed with one “graph traversal” during which
the graph edges must to be created based on the entities’ geometrical connectedness.
We apply Depth-First Search (DFS) for the traversal since DFS can be used to classify the
edges (CORMEN et al. 2001) which suits our situation of exploring G0. In the traversal,
the search root of a new (depth-first) tree in the depth-first forest (ibid.) is always a
source vertex.

5.2.2.1 Search For Connectedness

The search of CAD entities’ geometrical connectedness to a reference point takes place
(along the traversal) with a given snap tolerance; both the start and end points of a

17The benefit of pre-processing and common approaches are discussed in § 5.1.2.2.
18Their properties in the CAD data can be found in § C.1.

138

5

5.2 Model Transformation

track entity are checked for connectedness19. In the search result, if there is a very short
connected track which has nothing else connected to it, it is simply ignored20.

An ordered pair of connected entities is an edge in digraph G1. A discovered/visited
edge, which would be a (source, track) pair or a (track, track) pair, is recorded in a map-
like data structure, let us call it track map T, in which the leading vertex is an index (or
key) and the following (track) vertex is an indexed value21.

Representing Graphs In literature, there are two standard ways to represent graphs:
using adjacency/incidence-lists or adjacency/incidence-matrices (ibid.). Since infrastruc-
ture data has potentially a large number of entities and the corresponding graph is
sparse (i.e., |E | � |V |2), matrices are not good choices because of its Θ (|V |2) memory
(ibid.). But adjacency/incidence-lists do not have fast edge search (ibid.). The track
map we use is adjacency-list alike while other data structures are used to support fast
edge search. These data structures are discussed in the following paragraphs.

source

track

stop

TP

CP

FP

(A) A source connected with a track

(B) A track without a descendant

(C) Two connected tracks

(D) Two connected tracks with a stop in between
∗a composition enhanced on (C)

(E) Three tracks with one shared connecting point
∗one track leads to two other tracks

(F) Three tracks with one shared connecting point
∗two tracks both lead to the third track

(G) Four tracks with one shared connecting point
∗tracks are paired, one only leads to one other track

Figure 5.8: CAD entity-to-entity compositions

19See § 5.2.1, data quality issues (1) and (3).
20See § 5.2.1, data quality issue (2).
21An index can be associated with more than one value.

139

5

Model Generation

5.2.2.2 Search From A Source

Starting from a source vertex, the connected track vertices are searched in the track
set. A valid source shall have exact one track connected to it22, shown in Figure 5.8
(A). This track entity (and any other track entities) shall have the start and end points
correspond to the permissible direction of the traffic; if not, the these two points must
be swapped23. We call this operation regulating track direction. A track with a regulated
direction is called a regulated track. The DFS continues with the found regulated track.

5.2.2.3 Search From A Regulated Track

Starting from a regulated track vertex (with its end point as the reference point), the
connected track vertices are again searched in the track set. We can encounter four
(valid) situations regarding the search result: the regulated track has non, one, two, or
three connected tracks.

Non The first situation, non connected track as shown in Figure 5.8 (B), is where a sink
model shall be later placed. The DFS cannot go deeper at the current branch and must
proceed with the closest non-fully-explored track vertex (in the current depth-first tree)
if any, or with the next source vertex if any, or otherwise the traverse terminates, so does
this transformation step.

One In the second situation, Figure 5.8 (C/D), the found connected track is first reg-
ulated and then the (track, track) pair is added into T. This is the only situation where
a stop entity can be present, so a search is performed in the stop set. If a connected
stop is found, a hyperedge shall be created to represent the stop. In either case, the DFS
continues with the found track.

A stop entity indicates the front, i.e., start location, of a stop, as shown in Figure 5.9
(c.f. Figure 3.2). Each stop has a defined length24 ls . The track vertices that fit into this

stop
ti tj tj+1

stop length

ti tj tj+1ti

ti-1

ti-1 ti+1

ti+1

estopj
1 2

Figure 5.9: Creating a stop
hyperedge

22A source without any track connected to it is simply ignored.
23In case the track is an arc, the start and end angles must also be swapped besides their coordinates.
24It is indicated by a label of “halting place number” which is often 1 or 2, see e.g., Figure 3.2. Each HTM

halting place is 37 meters in length.

140

5

5.2 Model Transformation

length shall be included in a “stop hyperedge”. Suppose that the traversal is at (t j , t j+1)
(j ∈N which is numbered in the order of the traversal) and a stop entity is found. The
track vertices that belong to the hyperedge are the just visited vertices. As such, we need
to trace back into the visited vertices25, i.e., t j , t j−1, · · · , until, say ti (i ≤ j), so that the
total length of the vertices can “cover” the stop length. Since the lengths unlikely fit
exactly, we would need to “split” ti into two, say ti1

and ti2
, the second of which shall

fit the stop length (i.e., lti1
=
∑ j

k=i ltk
− ls and lti2

= lti
− lti1

). Their geometric properties
such as the coordinates of start and end points (and start and end angles in case of
arcs) have to be configured accordingly. Here, we have a simple though first true sense
of graph rewriting, in which vertex ti is replaced by two vertices ti1

, ti2
and one edge

(ti1
, ti2
). Assume that ti1

and ti2
are already created as mentioned above, then we can

rewrite graph G1 as following:

1 REMOVE (ti−1, ti), (ti , ti+1) in T
2 WRITE (ti−1, ti1

), (ti1
, ti2
), (ti2

, ti+1) in T

A hyperedge estop j
composed of vertices (ti2

, ti+1, · · · , t j), or only vertex ti2
in case of

i = j , is created to represent the stop. According to HABEL (1992), it is a (1, 1)-edge with
ti1

and t j+1 as the (source and target) attachment vertices26. All created hyperedges are
recorded in a hyperedge map E, which is discussed in § 5.2.2.4.

Two A regulated track t j with two connected tracks t j+1, t j+2 can form two distinct
track compositions as shown in Figure 5.8 (E/F), cf. Figures 4.17 (D/E) and 4.24 (C/D), in
which t j always points towards the “center” of the composition. In case of a facing point
(FP) composition, t j connects “smoothly” to both t j+1 and t j+2. In case of a trailing
point (TP) composition, only one of the two connections is smooth; see, e.g., Figure 4.20
(A). Note that the tracks themselves are not constituents of the point models which will
be later generated. They only indicate the point location by their “center”.

Suppose we are at the FP case, i.e., Figure 5.8 (E), then t j+1 and t j+2 are regulated
such that both are pointing away from t j . The (t j , t j+1) and (t j , t j+2) pairs are added
into T, and the FP is recorded by adding t j (we call it facing track) into an FP set PF. The
DFS now has two possible branches, one of which is taken to continue the traversal,
and the other goes into the traversal stack.

Suppose we are in the TP case, i.e., Figure 5.8 (F), and t j connects smoothly to t j+1.
We regulate t j+1 and add the (t j , t j+1) pair into T. In addition, the (t j+1, t j) pair is added
into a TP map PT. The TP map is used to record the found TPs, in which the following
(track) vertex is an index and the leading one is an indexed value. This means that the
index-value pair is reversed as that in T, and when the DFS is terminated, each index in
PT has exactly two values. The DFS continues with t j+1 (we call it trailing track). Note
that t j+2 is left untouched, because it either was visited or will be visited by the traversal.

25A solution to have a fast trace back is to maintain a small vertices buffer.
26We hereinafter call the sources or source vertices of hyperedges (HABEL 1992) as source attachment ver-

tices to differentiate them with the source vertices in ordinary graphs, such as G1.

141

5

Model Generation

Three With three connected tracks t j+1, t j+2, t j+3, the only valid track composition is a
crossing point (CP), Figure 5.8 (G), in which the regulated track t j has only one smooth
connection, say to t j+1; see, e.g., Figure 4.20 (A). The same as in the TP case, we regulate
t j+1 and add the (t j , t j+1) pair into T. Of the two remaining tracks t j+2, t j+3, which one
is leading to the other only can be known after these two vertices were already visited.
If they were, there shall be a (t j+2, t j+3) or (t j+3, t j+2) entry in T. Suppose that an entry
can be found, say (t j+2, t j+3), then we can record this CP into a CP map PC. The CP is
recorded such that each of the two leading tracks is indexed by the other leading track.
This means that each CP shall have two entries in PC. The two entries in this case are
(t j , t j+2) and (t j+2, t j). The DFS continues with t j+1.

Remark The DFS proceeds each time when there is a connected track and terminates
when the conditions are met as described in the first situation (i.e., when there is non
connected track). After the traversal, the track map T holds the information about the
(source) track interrelations (Info. Types 1 and 2); together with the FP set PF, TP map PT

and CP map PC, they hold the information about the points (Info. Type 4). Figure 5.10

tj

tj+1

tp

tm

tp+1

tm+1

tj+2

tq

tn

tn+1

Track Map T

TP Map PT

CP Map PC

FP Set PF

ti ti+1 ti ti+1

tj tj+1 tj+2

tp tp+1

tq tp+1

tm tm+1

tn tn+1

tm

tmtn

tn

tj

tp+1 tp tq

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

sk tk

. . .

sk tk

TP

CP

FP

Figure 5.10: Representation of track composition information in set and maps

142

5

5.2 Model Transformation

Hyperedge Map E

u1

u2

ei

. . .

. . .

. . .

. . .

ei

v1

u2 um

vn

u1

as
as as

at at

1

1

2

n

m

ei

um ei

. . .

(A) (B)

As = (as1
, as2

, · · · , asm
)

At = (at1
, at2

, · · · , atn
)

Ben = (u1, u2, · · · , um)
Bex = (v1, v2, · · · , vn)

Figure 5.11: An (m , n)-edge represent-
ing a composite with m entry vertices
and n exit vertices. It has m entries in
the hyperedge map

illustrates the representation of the information in set and maps, with which which G1 is
described. The hyperedge map E (§ 5.2.2.4) shall hold information about all (potential)
components; at this stage it only holds information about the stops (Info. Types 3 and 5).
As the outcome of transformation step 1, G1 can be expressed such G1 = (T, PF, PT, PC, E).

5.2.2.4 Hyperedge Representation of Composition

Let e be an (m , n)-edge with a set of source attachment vertices As = (as1
, as2

, · · · , asm
)

and a set of target attachment vertices At = (at1
, at2

, · · · , atn
). The edge e can be replaced

with a given (m , n)-hypergraph, say He (§ 5.1.2.4). When we want to generate this He ,
we need to at least know the composition of He , without saying that the external ver-
tices of He shall match the attachment vertices of e . This composition is described as
a subgraph in G1. We need to yet still define the “boundary” of this subgraph.

Can we use the attachment vertices of e as the boundary of e ? Certainly we can.
But since the attachment vertices potentially have edges with vertices that shall not be
a part of He , we would need extra operations to check this through. Additionally, these
attachment vertices can take part in other hyperedges. It is conceptually not quite ex-
plicable to use members of some hyperedges as boundaries of some other hyperedges.
Therefore, we use an equally easy but more straightforward way to define the boundary,
that is to use the “outermost vertices in He ”. They are the vertices that shall27 belong to
He and have edges with vertices that shall be external vertices of He . We call these ver-
tices boundary vertices B of hyperedge e , where B ∈ V ∈ e . The boundary vertices that
are connected by source attachment vertices are entry vertices Ben; those that are con-
nected to target attachment vertices are exit vertices Bex, i.e., Ben∪Bex = B ∈V , Ben∩Bex =
∅.

Figure 5.11 (A) illustrates an (m , n)-edge with corresponding attachment and bound-
ary vertices. Although the figure only shows one-to-one attachment-boundary vertex

27We use “shall” because at the stage when we define the boundary, the hyperedge He does not yet exist.

143

5

Model Generation

connections for simplicity, this is not a vital condition. An attachment vertex can con-
nect with more than one boundary vertices and vice versa. The two sets Ben and Bex

specifying the boundary of a hyperedge e are needed for generating the replacement
graph He . We therefore extend the hyperedge definition in the MCG (§ 5.1.1.3) with
these two sets, while the incoming and outgoing tentacles connecting As with Ben and
Bex with At respectively are already specified in the track map T.

Hyperedge Map As mentioned in § 5.2.2.3, the hyperedges created during the trans-
formation steps are recorded in a hyperedge map E. The edges are indexed by their
entry vertices such that for each entry vertex ui ∈ Ben in a hyperedge e , there exists one
map-entry (ui , e) in E. This means that the entry vertices are not used as joint but inde-
pendent indexes, and each (m , n)-edge has m entries in E, as illustrated in Figure 5.11
(B). The stop hyperedge estop j

discussed in § 5.2.2.3, for example, has only one entry
(ti2

, estop j
) in E.

Note that a hyperedge is defined by its entry and exit vertex sets together with the
composite information about all the internal vertices which is already contained in G1,
i.e., the set and maps discussed in § 5.2.2.3. The hyperedge map E serves to fasten the
search of hyperedges during pattern composite (§ 5.2.3.2) and model generation (§ 5.3).
When the search is in the order of the traversal, or in the direction of the traffic in our
case, it is sufficient to index hyperedges with entry vertices. If modelers need to search
in a reversed order, hyperedges can be indexed by their exit vertices.

5.2.3 On Model Composite Graph

As discussed in § 5.1.1.3, the MCG is composed of an ordinary digraph G and a CCH hy-
pergraph HG specified on G . After transformation step 1 (§ 5.2.2), we already obtained
the ordinary digraph, which is T ∈G1, and a part of the CCH hypergraph, the latter be-
ing number of stop hyperedges contained in E ∈G1. In transformation step 2 (§ 5.2.4),
we need to create more hyperedges that represent the desired model components in
order to complete the CCH hypergraph. This hypergraph contains Info. Types 6 and 7
(see Figure 5.7).

Since the other hyperedges have compositions that are not as simple as that of the
stop hyperedges or as the point composites, we defined graph patterns to search for the
occurrences of these composites in G1. We observed recurrence of some small graph
patterns in lager patterns. In order to simplify and reuse the graph patterns and the cor-
responding search algorithms, we used graph pattern composition (recursive definition
and incremental search) in the transformation of the CCH hypergraph.

5.2.3.1 Choosing Graph Patterns and Pattern Composites

The rail infrastructure has a number of characteristics in its geometric (rail track) com-
position. Three basic composites are the FPs, TPs, and CPs discussed in § 5.2.2.3. They
are used as basic units to define the graph patterns in the GPM in transformation step
2 (§ 5.2.4).

144

5

5.2 Model Transformation

There are many different rail infrastructure layouts. Some have similarity in their
geometric arrangement but some do not. We shall, however, be able to describe a vari-
ety of layouts with a limited number of pattern definitions. How to choose the scope
and define these patterns? We use the similar method as in defining the information
types and dependencies discussed in § 5.2.1.2. We look at what composites ought to
be needed, write down a number of candidates and their relations, consult experts and
literature, review them and so forth, in order to complete the information.

Figure 5.12 shows the rail track composites we choose to define28. The gray boxes
denote different types of hyperedges that shall be specified for the composites (§ 5.2.4).
Each (m , n)-edge will be later transformed into a (coupled) model component (§ 5.3).
Note the not each type of the rail composite indeed needs a pattern. Types 6∼8, e.g., are
simply one-to-one mappings from the points, and Type 9 is so general that it is hardly
a pattern; we will explain them in § 5.2.4.

The information about the FP, TP and CP (in the center of the figure) is contained
in PF, PT and PC (i.e., the point locations are indicated by the corresponding track ver-
tices) after transformation step 1 (§ 5.2.2.3). The arrows denote composite (informa-
tion) dependencies or aggregation relations between the composites. It clearly shows
in Figure 5.12 that basically all other composite information depends on the informa-
tion about point composites, which is expected since the physical connections between
the rail tracks are enabled by points. In defining the composites, some composites are
reused in larger ones; e.g., the “Y” composite (Type 1) contains one FP, one TP and one
CP; the “T” composite (Type 3) contains three “Y” composites, while the butterfly union
composite (Type 4) contains four “Y” composites.

TP

CP

FP (3,3) Y

(3,3) T

(4,4) Half union
(4,4) Butterfly union

(4,4) Quad‐diamond

1

1

1
3

4

4

1
1(2,2) Diamond 1

(1,2) Facing turnout
1

(2,1) Trailing turnout 1
(m,n) Misc

*

*

* 2
2

3

2

1

2

3

4
5

6

7

8

9

Figure 5.12: Recurring rail composites and their dependencies

28They are not complete to define all rail infrastructure layouts but are deemed sufficient to define the
infrastructure of HTM light-rail services for our studies.

145

5

Model Generation

5.2.3.2 Representing Graph Patterns and Pattern Composites

The main task in transformation step 2 is looking for occurrences of the rail composites
in G1. In order to do so, we need to describe them in graph patterns. In the following,
we use the “Y” Composite as an example to explain the graph patterns.

“Y” Composite This composite is a (3, 3)-edge representing a common rail arrange-
ment29, which is already used two times in this thesis; see Example 3.1 (Figure 3.2) and
Example 4.5 (Figure 4.20). Its schema is illustrated in Figure 5.13. (The gray lines are the
tentacles which are not a part of the composite.) A solid-lined arrow denotes a track
vertex. A dot-lined arrow denotes a unique independent path that connects the two
corresponding terminal vertices.

In an independent path (also called path graph or liner graph) the internal vertices
of the path do not incident edges other than the edges in the path. In other words, if
the path has any internal nodes, the in-degree (d +) and out-degree (d −) of each internal
node are both 1.

The “Y” composite has two unique and independent paths pa and pb respectively
connecting tp (in the FP) to tq (in the CP), and tr (in the CP) to ts (in the TP).

Ordered Graph Isomorphism Note that the geometric arrangement of the composite
(as the other rail composites used in our study) has to be preserved in GMP. This means
that a matched image of the pattern can have, e.g., rotations, but there shall not be mir-
roring (or flipping) in the image or of the image as a whole. For example, if there exists
an “image” that has an “equivalent” of pa (Figure 5.13) which connects tp to t j instead
of tq , then this is not a match, which would be considered as a match in a general graph
where geometric information is typically not represented (JIANG and BUNKE 1996).

The composites we use belong to a special class of graphs. In graph theory, they are
called ordered graphs (JIANG and BUNKE 1996, 1999). In an ordered graph, the edges

TP

CP

FPti
tj

tk

tl

tm

tn

tp tq

trts

pa

pb

Figure 5.13: “Y” composite
(cf. Figures 3.2, 4.20 and 5.10)

29This arrangement is sometimes called double junction. It is where a double track railway splits into two
double track lines. A double track railway runs one track in each direction, compared to a single track railway
where trains in both directions share the same track. In our case, the double track is right hand running.

146

5

5.2 Model Transformation

incident to a vertex are uniquely ordered; in a plane graph, e.g., the order can be clock-
wise or counterclockwise (JIANG and BUNKE 1999). In our case, like in many other ap-
plications, the ordering is naturally derived from the underlying geometry of the pat-
terns represented by the graphs (ibid.). An ordered graph isomorphism is generally con-
strained, in which the ordering property is preserved (ibid.).

Following JIANG and BUNKE (ibid.), an ordered graph is a triple G = (V , E , L) where
(V , E) defines a graph; for each vertex v ∈ V , the edges (v, v1), (v, v2), · · · , (v, vk) incident
to v have a unique order which is represented by a cyclic list L (v).

Two ordered graphs G = (V , E , L) and G ′ = (V ′, E ′, L ′) are isomorphic if there exists
an isomorphism f between the two graphs (V , E) and (V ′, E ′) such that the order is
preserved; that is, if for any vertex v ∈V , we have L (v) = 〈(v, v1), (v, v2), · · · , (v, vk)〉, then
L ′(f (v)) =

(f (v), f (v1)), (f (v), f (v2)), · · · , (f (v), f (vk))
�

holds (ibid.).
JIANG and BUNKE (ibid.) propose an algorithm that can optimally solve the ordered

graph isomorphism problem30 (cf. § 5.1.2.2) in quadratic time, i.e., O
�

n 2
�

. In our case,
the rail composites have more constraints than general ordered graphs: the rail com-
posites are planar and sparse (with specific geometry), and they have bounded vertex
degrees and bounded path distances. We therefore choose to take advantage of these
properties by designing an algorithm that walks the candidate subgraphs (which there-
fore only takes linear time) to solve the isomorphism problem. The algorithm is ex-
plained in § 5.2.3.3.

Ordering Track Compositions of Points In preparation, we set out to order the com-
posites by first ordering the track compositions of points. Figure 5.14 illustrates the
ordering. The tracks around the point center are simply ordered by their directions,
viz., entry (en) or exit (ex). When there are two entry or exit tracks, they must form an
angle. We take the non-reflex angle θ (i.e., 0 < θ < π) as reference, and number the
tracks (i.e., two angle sides) counterclockwise31 as 1 and 2. Note that the geometry of a
point naturally imposes unique orderings of the tracks surrounding it.

fpen

fpex1

fpex2 tpen1

tpen2

tpex
cpen1

cpen2 cpex1

cpex2
TP CPFP

Figure 5.14: Ordering of track compositions of points

30JIANG and BUNKE (1999)’s algorithm uses encoding of Eulerian circuits of ordered graphs starting with
an edge in an graph. Since the code depends on the choice of the starting edge, 2n codes can be generated
for some ordered graph of n edges, which can uniquely represent the graph. Ordered graph isomorphism
is determined by comparing the codes of two graphs (whether isomorphism exists) and checking the order-
preserving property of the two (ibid.).

31Since there is always one track on the right side and the other on the left when we rotate the angle θ
pointing downwards, we aliased the Nr. 1 track as “right” (R) and the Nr. 2 track as “left” (L).

147

5

Model Generation

Representing (Common) Composites with Ordering Using the above orderings, we can
define (common32) rail composites which would logically have unique orderings be-
cause the composites are planar, and the tracks surrounding the points are ordered,
and the paths between them (if any) are independent.

The graph pattern defined for the “Y” composite, e.g., contains two independent
paths connecting three points33 in a specific order. The pattern and its illustration are
shown in Table 5.1. The (3, 3) type implies the number of entry and exit vertices (see
§ 5.2.2.4) whose mapping relations (in case of a match) are specified. The (constituent)
composites and paths specify the matching conditions. In addition, a bound b is spe-
cified to constrain the search scope. In our case, this bound is the max search distance34

of each path.
A GPM algorithm only needs to search for the existence of the points and paths in

PF, PT, PC and T respectively (see § 5.2.2.3 Figure 5.10) according to the pattern defini-
tion. When there is a match, a hyperedge is created to represent the occurrence of the
composite by specifying the boundary vertices accordingly. A created hyperedge is re-
corded in the hyperedge map E indexed by its entry vertices as discussed in § 5.2.2.4
(Figure 5.11).

Planar composites defined by ordered planar composites and independent paths
are also uniquely ordered. The graph pattern defined for the “T” composite, e.g., shown
in Table 5.2, contains three “Y” composites connected by six paths in a specific order.
The pattern definition has the same form as the previous example, but the definition is

“Y” composite (3, 3) eY

Composites fp, cp, tp

Paths p1 fpex2 to cpen1

p2 cpex2 to tpen1

Bound b ∈N

Entry 1. eY en1 fpen

2. eY en2 cpen2

3. eY en3 tpen2

Exit 1. eY ex1 fpex1

2. eY ex2 cpex1

3. eY ex3 tpex

cpex1

tpen2

p1

p2

fpen fpex1

fpex2

tpen1

tpex

cpen1 cpen2

cpex2

(eYen1)
(eYen2)

(eYen3)
(eYex2)

(eYex3)

(eYex1)

Table 5.1: “Y” composite defined as a graph pattern %Y

32See next paragraph for why they are qualified as common.
33Points with ordering means that they are represented by ordered tracks, i.e., fp = (fpen, fpex1, fpex2), tp =

(tpen1, tpen2, tpex), cp= (cpen1, cpen2, cpex1, cpex2).
34This distance means the geometric distance of a path which is the sum of the lengths of all track vertices

in the path. We use “distance” to distinguish with the commonly used “length of a path” in graph theory
which refers to the number of edges in a path.

148

5

5.2 Model Transformation

“T” composite (3, 3) eT

Composites eY 1, eY 2, eY 3

Paths p1 eY 1ex1 to eY 2en3

p2 eY 2ex2 to eY 1en2

p3 eY 2ex1 to eY 3en3

p4 eY 3ex2 to eY 2en2

p5 eY 3ex1 to eY 1en3

p6 eY 1ex2 to eY 3en2

Bound b ∈N

Entry 1. eT en1 eY 1en1

2. eT en2 eY 2en1

3. eT en3 eY 3en1

Exit 1. eT ex1 eY 1ex3

2. eT ex2 eY 2ex3

3. eT ex3 eY 3ex3

eYex2

eYen3eYen1
eYex1

eYex3

eYen2

eYex2

eYen3

eYen1
eYex1 eYex3

eYen2

e Y
ex
2

e Y
en
3

e Y
en
1

e Y
ex
1

e Y
ex
3

e Y
en
2

eY1

p1 p3

p5

p2 p4

p6

eY2

eY3

(eTen1)

(eTen2)

(eTen3)

(eTex2)

(eTex3)
(eTex1)

Table 5.2: “T” composite defined as a graph pattern containing three “Y” composites

recursive using other composites. (In GMP, all composites are to be found in E). Com-
posites can be defined with both points and composites in the same way. More pattern
definitions can be found in § C.2.

Representing Unfixed Composites with Ordering We just presented two examples of
common or regular rail composites which have “fixed” geometric arrangements. This
means their (constituent) composites and paths are known a priori, and as such they
can be predefined and matched with some application graph. But not all parts of rail
infrastructure can be designed to have common composites. Figure 5.15 shows a prac-
tical example. Representing (automatically) this kind of uncommon rail infrastructure

Figure 5.15: Rail infrastructure
without common composites

149

5

Model Generation

arrangements, we need some composite that can have “unfixed” (constituent) compos-
ites with ordering. For this purpose, we use a misc (miscellaneous) composite. The misc
composite is an (m , n) type container. It has hardly a composite pattern since it does not
have any specific (constituent) composite. We designed an algorithm that can cluster
points that are close enough to one another (given a predefined distance), and each
cluster of points is put into a misc composite. The algorithm is explained in § 5.2.4.2.

5.2.3.3 An Algorithm for Composite Isomorphism

In § 5.2.3.2, we discussed two examples of defining common composites with graph
patterns (see Tables 5.1 and 5.2). We can define these composite patterns in a general
form. A composite pattern with boundary definition is % = (t , C , P, b , fen, fex)where

◦ t = (m , n), m , n ∈N is the type of %;

◦ C = (c1, c2, · · · , cw), w ∈ N, is a set of pairwise distinct (constituent) composites
whose entry and exit vertices are ordered;

◦ P = (p1, p2, · · · , pq), q ∈ N, is a set of paths, in which pi = (exi , eni), i ∈ [1, q] is
an independent path that connects an exit vertex of a composite ca ,exx

(i.e., exi =
ca ,exx

) to an entry vertex of another composite cb ,eny
(i.e., eni = cb ,eny

) where a 6=
b ∈ [1, w];

◦ b ∈ N is a fixed upper bound of the distance of a path pi denoted by d (pi), i.e.,
d (pi) ∈ [0, b].

◦ fen and fex are the entry and exit vertex mapping functions respectively that maps
some entry (or exit) vertices of some constituent composites in C to the entry (or
exit) vertices of this (defined) composite.

In a valid composite pattern definition, the size of the entry and exit vertex map-
ping (by fen and fex) must match the pattern type (m , n). In addition, all entry and exit
vertices of the constituent composites in a pattern must be either connected by a path
or mapped to the boundary vertices of the pattern. This means, a pattern% necessarily
has the two properties35

∑w
a=1 m (ca) = q +m and

∑w
a=1 n (ca) = q +n .

Path Sorting The paths P ∈ % shall be sorted such that a composite ca that contains
ex j ∈ pj ∈ P (j ∈ [2, q]) already “occurred” in a previous path p ∈ (p1, p2, · · · , pj−1) in the
sense that ca contains a terminal vertex of p . This means that the start vertex ex j of a
path pj (except for the first path p1) is known at the moment of searching for path pj .
This condition is not necessary for the validity of the composite pattern definition but
it does affect positively and significantly the performance of the search algorithm. The
path sorting problem can be reduced to the well known topological sort (CORMEN et al.
2001). A topological sort is possible if and only if the graph has no directed cycles (ibid.),

35For simplicity, we use m (c) and n (c) to denote the number of entry and exit vertices of c respectively,
where c can be a composite pattern or a match of a composite pattern.

150

5

5.2 Model Transformation

which is the case of all rail composites we defined. The paths in the “Y” composite and
“T” composite definitions, e.g., are topologically sorted (see Tables 5.1 and 5.2).

Given a composite pattern%whose path definition P is topologically sorted, a com-
posite pattern matching (CPM) algorithm is defined to search for all isomorphs of % in
a host graph G = (T, PF, PT, PC, E); see § 5.2.2. The pseudo-code of the algorithm is listed
in Alg. 5.1. In principle, it does not traverse G per se, but looks for the occurrences of the
(constituent) composites c ′1, c ′2, · · · , c ′w whose candidates are contained in PF, PT, PC, E36

through walking the independent paths (contained in T) that connect them.
Since P ∈% is topologically sorted and the non-match of a path excludes the match

of the whole pattern, the vertices that satisfy the conditions of the start vertex ex1 of the
first path p1 are chosen as candidates to start each pattern search. These candidates
are saved in T for iteration (ln. 3)37. A candidate vertex t j is used as the start vertex s of
the first search path p1 ∈ P (lns. 6, 7).

As mentioned in § 5.2.3.2, the internal vertices of an independent path must satisfy
d + = d − = 1. In our case, this means that the internal vertices shall not appear in the
composite maps but only in T. Leaving the search bound b aside, a sufficient condition
to consider a vertex t̂ to be in a path (including the target vertex) is that it is indexed by
an known vertex t in the path (lns. 11, 12). If in addition t̂ is not in the composite maps,
then we can accumulate the search distance d and continue the path walk (ln. 28). If a
known vertex t has no entry in T, then t is literally at the end of the path (with nothing
connected to it). In this case, and of course also when the path distance exceeds b, the
algorithm drops the current search and proceeds with the next candidate t j ∈ T (ln. 32).

In walking an independent path pi given a start vertex s (lns. 11∼30), once a follow-
ing vertex t appears in the composite maps, it means that there would be a match of
pi if t satisfies the target vertex eni specification of pi (i.e., the first two conditions in
ln. 14). However, this is not necessarily an isomorphism. We need to check whether the
found composite c (t), that contains the target vertex t of the (path) image, is pairwise
distinct with the other found composites (which are recorded in C ′). Note that C ∈% is
pairwise distinct, hence we have the third condition c (t) /∈C ′\c ′b in ln. 14.

If one of the three conditions above is not satisfied (i.e., a non-match) then we can
proceed with the next t j ∈ T (ln. 24). If these is an isomorphic path match of pi , the
composite c (t) is recorded in C ′ at the same position as its counterpart in C ∈% (ln. 15;
note that the index of c ′b ← c (t) is b as that of cb ∈C). In the second case, the algorithm
shall proceed with the next path pi+1 if there is any path left. Because P ∈ % is topo-
logically sorted, the composite that contains the start vertex s of pi+1 is already in C ′.
Since the composites in C ′ are reordered in the same order as in C , we can know s by
replacing the containing composite of exi+1 ∈ pi+1, say c f ∈ C , with its image c ′f ∈ C ′

(ln. 20). The path walk given a start vertex s is stated above.
There is an isomorphism if and only if all q paths are found as specified in P ∈ %

(ln. 16). If so, some actions can be performed. In our case, an (m , n)-type hyperedge

36We hereinafter use composite maps referring to the PF, PT, PC, E as a whole.
37Line is abbreviated as ln., lines as lns.

151

5

Model Generation

Algorithm 5.1 The CPM Algorithm

Require: %
1 C ′← (c ′1←∅, c ′2←∅, · · · , c ′w ←∅) . a set of empty elements the same size as C ∈%
2 . suppose ex1 = ca ,exx

∈ p1, ca ∈C , a ∈ [1, w]
3 T = (t1, t2, · · · , tr)← exx of all c from PF, PT, PC, or E according to the class of ca

4 for j = 1→ r do . check all possible candidates t j ∈ T
5 clear C ′ . reset C ′ to empty
6 s ← t j . start vertex s of the first search path p1

7 c ′a ← c (s) . see ln. 2, cf. ln. 15
8 for i = 1→ q do . check all paths pi ∈ P ∈%
9 d ← 0

10 t ← s
11 while t in T and d < b do . path search of pi within bound b ∈%
12 t ← T (t) . T has an entry (t , t̂)
13 if t in PF, PT, PC, or E then
14 if c (t) is in the same class as cb and t is eny of c (t) . see ln. 15

and c (t) /∈C ′\c ′b then . a match of pi

15 c ′b ← c (t) . suppose eni = cb ,eny
∈ pi , cb ∈C , b ∈ [1, w]

16 if i = q then . all q paths matched, i.e., a match of pattern %
17 RECORDMATCH(C ′,%) . do something related to the match
18 . the loop goes to next t j+1 (ln. 4) after ln. 26
19 else . suppose exi+1 = c f ,exx

∈ pi+1, c f ∈C
20 s ← exx of c ′f ∈C ′ . start vertex s of the next search path pi+1

21 . the loop goes to pi+1 (ln. 8) after ln. 26
22 end if
23 else . a non match of pi

24 i ← q . force the loop to go to next t j+1 (ln. 4) after ln. 26
25 end if
26 break
27 else
28 d ← d (t) +d . accumulate path distance; search continues at ln. 11
29 end if
30 end while
31 . a non match of pi because the path ended (with a sink) or bound b is reached
32 i ← q . force the loop to go to next t j (ln. 4)
33 end for
34 end for

◦ The text following a . symbol is comment.
◦ A prime sign (′) is used next to the original symbols of the elements in the pattern %, to denote a

placeholder for the images of the elements (in case of a match); e.g., C ′ holds images of elements in
C (ln. 1).

◦ The “class of composite c ”, e.g., ln. 3, refers to whether c is an fp, tp, cp or a hyperedge composite e .
◦ The “composite c that contains t ” is denoted by c (t), e.g., ln. 14.

152

5

5.2 Model Transformation

e that represents the match is created by RECORDMATCH(C ′,%) (ln. 17), and the hy-
peredge map E has to be updated correspondingly. The CPM algorithm continues with
the next t j ∈ T . The match is recorded in e ∈ E so that the algorithm only needs to
record the most recent match in C ′. Before a new search with the next candidate, C ′ is
cleared (ln. 5). The algorithm terminates after it iterates through all the candidates.

Since the host graph and the (planar) composite patterns are ordered, and the paths
in the composite patterns are topologically sorted, the CPM algorithm in the worst case
takes liner time O

�

n
�

to the (edge) size of the host graph, as it will walk the entire host
graph, by which the performance is comparable to that of a graph traversal. The average
performance is often substantially better than the worst case, because given the rail
infrastructure graph and composite patterns we use, the matches and partial matches
of patterns rarely spread densely over the whole host graph.

5.2.4 Transformation Step 2

Transformation step 1 produces a directed graph G1 = (T, PF, PT, PC, E) with bounded
vertex degrees (i.e., the in- or out-degrees are 1 or 2; § 5.2.2). As preparation for applying
CPM (§ 5.2.3.3), in this step, the track composites for points (in PF, PT, PC) are first
ordered as discussed in § 5.2.3.2. The orderings are saved as labels in the vertices. The
rail composite patterns (Figure 5.12, 1∼5) are defined as discussed in § 5.2.3.2, and the
paths in each pattern are topologically sorted as discussed in § 5.2.3.3.

5.2.4.1 Rule Application Control

The transformation in this step is composed of eight sub-steps (cf. Figure 5.12), among
which (i)∼(v) apply the CPM algorithm (§ 5.2.3.3):

(i) Detect “Y” composites (see § 5.2.3.2 Table 5.1)

(ii) Detect quad-diamond composites (see § C.2 Table C.2)

(iii) Detect “T” composites (see § 5.2.3.2 Table 5.2)

(iv) Detect butterfly unions (see § C.2 Table C.3)

(v) Detect half unions (see § C.2 Table C.4)

(vi) Decompose small “Y” composites

(vii) Transform (facing and trailing) turnouts and diamond composites (see § C.2 Tables
C.5∼C.7)

(viii) Detect misc composites (see § C.2 Table C.8)

Partial Order of Sub-Steps The sub-steps are partially ordered such that the required
composites in a step are prepared by one or more previous steps. One can find correl-
ations between Figure 5.12 and the order of the sub-steps; e.g., (i) and (ii) are ordered
before (iii)∼(v) as the dependencies that are shown in the figure. During the CPM in
(i)∼(v), a match is followed by a rewriting (performed by RECORDMATCH(C ′,%); see

153

5

Model Generation

§ 5.2.3.3) where an (m , n)-edge representing the match is created and the correspond-
ing constituent composites are removed from the composite maps.

Transforming matches into hyperedges allows us to simplify the pattern definitions,
match routines and to aggregate match results. In literature, works related to pattern/
transformation composition, incremental/recursive pattern matching can be found,
e.g., in BALOGH and VARRÓ (2006), VARRÓ et al. (2008), ASZTALOS et al. (2011) and BERG-
MANN et al. (2012). The first two works concern pattern compositions where a pattern
may call itself or other patterns recursively; the search plan is based on flattened graph
patterns. BERGMANN et al. (2012) studies the computation of transitive closure since it
is needed for recursively defined patterns. ASZTALOS et al. (2011) studies the procedure
of composing two transformation rules into a new rule; the application of the new rule
is equal to the sequential application of the two original rules.

Our approach starts with the matching of smaller graph patterns, i.e., sub-steps (i)
and (ii), during which the matches are transformed into intermediate structures (i.e.,
the hyperedges) based on which the matching of larger (higher-level) graph patterns are
performed, i.e., sub-steps (iii) to (v). The pattern definition takes into consideration and
takes advantage that the CCH of the MCG is strictly nested (§ 5.1.1) so that a bottom-
up approach of GPM can be performed on the rail infrastructure graph. In addition,
since the infrastructure graph is sparse and has bounded vertex degrees (and types and
orders) surrounding which the patterns occur (§ 5.2.3.2), the search space of the CPM
is reduced to the locations of points, the independent paths that connecting them, and
their composites (§ 5.2.3.3).

For example, in sub-step (i), detecting “Y” composites38, fp, tp, cp are contained in
PF, PT, PC, and the internal vertices of p1, p2 are contained in T. After sub-step (i), each
matched “Y” composite is transformed into a (3, 3)-edge of type eY and recorded in E.
As such, in sub-step (iii), detecting “T” composites, all the hyperedges of type eY are
the candidates. We only need to search for the paths between the boundary vertices of
the “Y” composites without stepping into the “Y” composites.

We use a hyperedge e to represent a match denoted by e = (C ′, P ′, Ben, Bex) where
all images of the constituent composites, paths, boundary (entry and exit)vertices are
stored according to the pattern definition %. The constituent composites are removed
from their original container, i.e., the composite maps. The newly constructed e is in-
dexed in E by its entry vertices Ben (§ 5.2.2.4). Note that since the matched constituent
composites in a previous sub-step are removed from their original container, they do
not appear in a later sub-step.

In sub-step (ii), detecting quad-diamond composites, the candidates are crossing
points. The candidates in sub-step (iv), detecting butterfly unions, are the hyperedges
of “Y” composite (type eY) and quad-diamond composite (type eQ). Similarly, the can-
didates in sub-step (iv), detecting half unions, are “Y” and quad-diamond composites
and points.

38The CPM algorithm is invoked with the “Y” composite pattern %Y (i.e., CMP(%Y), § 5.2.3.3). The bound
b is set to be 100 meters.

154

5

5.2 Model Transformation

Automorphism in Composite Patterns An automorphism of a graph G is a graph iso-
morphism from G to itself (WEISSTEIN 2009). An ordered automorphism is an auto-
morphism in which the ordering property is preserved. For example, each point (see
e.g., Figure 5.14) has automorphism but not ordered automorphism. There are (ordered)
automorphisms39 in the composite patterns we defined, viz., the quad-diamond com-
posite %Q , the “T” composite %T , and butterfly union %B (Tables C.2, 5.2, C.3).

How does this matter to CPM? It depends. When a composite pattern % has auto-
morphism, its matches or images certainly have automorphisms. Since each image is
ordered, it makes a difference how the image is ordered if this image is used further as
a constituent composite in a higher-level composite.

Consider a directed ordered square graph s with its four vertices numbered as 1 ∼
4 as shown in Figure 5.16. The graph s has automorphism, and each element of the
automorphism group Aut (s) = {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)} is isomorphic
to another40. When s is to be embedded into a larger graph, say s ′ (Figure 5.16), there
are four (|Aut (s)|) different ways to position s (as an ordered graph), i.e., with edges
(1, 2), (2, 3), (3, 4) or (4, 1). The question is do we want to deem them as the “same” in
ordered graph isomorphism?

Depending on the applications, some may need them being deemed as different
while some others not. The GPM in our application shall deem them as same. In this
case, automorphism poses a problem when a composite pattern% contains a (constitu-
ent) composite c that has automorphism. Note that it does not matter whether % itself
is automorphic so long that it is not in a higher-level pattern.

For example, in sub-step (iv), the butterfly union%B (Table C.3) contains a quad-
diamond composite %Q (Table C.2) which is automorphic; and similarly in sub-step
(v), the half union %H (Table C.4) contains %Q ; %B is automorphic while %H is not. We
are not able to match %B or %H correctly unless the automorphism of %Q is dealt with.

How to deal with this problem? Here are some possible solutions.

1. Use non-automorphic alternatives to replace the automorphic composite c .

2. Define multiple versions of the pattern %.

3. Reposition the matches of the automorphic composite, and reapply the GPM al-
gorithm.

s s ′

Figure 5.16: Automorphism of a
directed ordered square graph s
and its embedding s ′

39It means ordered automorphisms since the composite patterns are ordered.
40Note that the vertices has rotations.

155

5

Model Generation

4. Define GPM algorithms that can deal with automorphisms of the composites,
e.g., the GPM algorithm can reposition the automorphic composites.

№ 1 is a way around the problem. In defining%, we can avert an automorphic com-
posite c by, e.g., flattening it completely or decomposing it into smaller non-automorphic
composites.
№ 2 and№ 3 have similar underlying concept, which is to make use of the whole

automorphism group. In № 2, this means that each element in the automorphism
group of c , i.e., in Aut (c), is used once to define%. This results in |Aut (c)| versions of%.
In№ 3, each element in the automorphism group of each image c ′ of c , i.e., in Aut (c ′),
is tested once for matching. In other words, c ′ is repositioned for |Aut (c ′)| − 1 times.
Note that |Aut (c)| = |Aut (c ′)|. In both cases, the GPM algorithm needs to run |Aut (c)|
times. (We assume that algorithm does not by itself deal with the automorphism of c .)
If % has automorphism as well, then the number of running the GPM algorithm can be
reduced since the “different” versions of patterns or matches are isomorphic.
№ 4 is a generic solution but expensive in solution development compared with the

previous three. There are algorithms for ordered graph automorphism in literature, e.g.,
JIANG and BUNKE (1999). Once the automorphism group is detected, all its members
shall be considered as candidates of match41.

Since we want a simple solution at the first place for reasons explained in § 5.1.2.2
and § 5.2.3.2, we use solution № 3. Recall that our patterns are planar and ordered.
Reposition of the matches of%Q (Table C.2) simply means rotation (as described in the
square graph example, Figure 5.16) of the hyperedges of type eQ , EQ , which is to rotate
the entry and exit vertices respectively. This is very cheap in computation.

Given the geometry of %B (Table C.3) and %H (Table C.4), e ∈ EQ shall be rotated
once in sub-step (iv) and three times in sub-step (v). For example, the CPM algorithm
is first run with %B , on EQ (and other hyperedges). Then each element left42 in EQ is
rotated43, and the CPM algorithm is run on EQ again.

This makes the CPM algorithm run two times in sub-step (iv) and four times in sub-
step (v), if after each run EQ is not empty.

Composition and Decomposition in Transformation Pattern composition in transform-
ation allows modelers or designers to make stepwise bottom-up definition and applic-
ation of transformation rules. A good companion of pattern composition is decompos-
ition, which allows composition definitions to be more flexible. Some composites can
be useful as candidates for being a part in some higher-level composites. But once they
are disqualified as a match in those higher-level composites, we may not need them
as composites by themselves. These composites can be decomposed into lower-level
composites, which in turn may be used to compose other composites.

41The concept is same as described in№ 2 and№ 3 but the process is done automatically by the algorithm
itself.

42The matched elements had been removed.
43One rotation changes cyclically the positions of the entry or exit vertices in a hyperedge for one place.

156

5

5.2 Model Transformation

Sub-step (vi) of transformation step 2 is an example of this kind of decomposition.
In transformation step 1, points are composed based on track geometry. In sub-steps
(i)∼(v), a number of rail infrastructure composites are composed based on common
point compositions. Briefly stated in § 5.2.3.2, among the points that do not fit into
common compositions, those located in short distances (i.e., for a given bound b with
a small value) are clustered and placed into a misc composite. We need to do so be-
cause these points are interrelated; they shall be supervised by a same control unit (see
§ 4.3.4.5 and § 4.3.5.2). It turned out that some “Y” composites, even when not con-
tained by a larger composite (i.e., a “T” composite, a butterfly or half union), do not
constitute stand alone crossings (or intersections). Some points in these “Y” compos-
ites are closely surrounded by some other points which shall form misc composites.
These “Y” composites are therefore decomposed44 in sub-step (vi) in order to make the
constituent points available for further composition of misc composites.

The algorithm designed for composing misc composites (§ 5.2.4.2) operates on hy-
peredges. Therefore, in sub-step (vii), all points left in PF, PT, PC are transformed (which
is an direct mapping) into hyperedges of type eF , eTR, eC (see § C.2 Tables C.5∼C.7), and
they are indexed in the hyperedge map E (see § 5.2.2.4 Figure 5.11). Note that the point
composites, like the other composites, are ordered. Sub-step (viii) is an application of
the misc composite algorithm.

5.2.4.2 An Algorithm for Misc Composites

The misc composite finding (MCF) algorithm shall perform the following: given a set of
point composites EP (i.e., hyperedges of type eF , eTR, eC as stated above45), return a set
of misc composites EM such that the elements in EP that are connected by independent
paths each of which within a bounded distance b, are merged into the same element in
EM where each element in eM shall be ordered.

The main tasks here are (1) path search, (2) merging and (3) ordering. The search of
independent paths with bounded distance is straightforward. It is discussed in § 5.2.3.3.
This time, the terminal vertices must be boundary vertices of the point composites. We
use DFS46 to walk the paths (in subgraphs). Merging and ordering are performed along
the walk when a qualified path is found. The merge concept is similar to agglomerative
clustering with single linkage (MANNING et al. 2008), where the individual point com-
posites are merged by progressively merging misc composites. An element is always
merged to another element with ordering.

For effective merging and ordering, we designed the (m , n) misc composite such
that it manages its structure and order by itself. A misc composite eM contains

◦ a point composite map EP in which a set of an arbitrary number of point com-

44The rewriting of the decomposition is rather simple which is a reverse of creating eY : the hyperedge is
removed from E and the points are put back into PF, PT, PC respectively.

45We hereinafter use eP instead of eF , eTR and eC for simplicity.
46Again because DFS can be used to classify the edges (CORMEN et al. 2001); the same as in transformation

step 1 (§ 5.2.2).

157

5

Model Generation

posites EP = EF ∪ETR ∪EC are indexed independently by their entry vertices47,

◦ a set of paths P that connect the points,

◦ an ordered set of m entry vertices Ben, and

◦ an ordered set of n exit vertices Bex.

The boundary vertices of points in EP are either the terminal vertices of the paths or
the boundary vertices of the containing misc composite. An element of EP or EM can
be merged into another element of EM with ordering. Let eM 1 = (E1P, P1, B1en, B1ex) and
eM 2 = (E2P, P2, B2en, B2ex) be two distinct misc composites, where

◦ B1en = (u1, u2, · · · , um1
), B1ex = (v1, v2, · · · , vn1

);

◦ B2en = (w1, w2, · · · , wm2
), B2ex = (z1, z2, · · · , vn2

).

Suppose that a path from vi ∈ B1ex to w j ∈ B2en (Figure 5.17) is explored during a
walk. Then eM 2 can be merged into eM 1 with ordering by the MERGE function48, as lis-
ted in Alg. 5.2. Because the two terminal vertices of path (vi , w j) are no longer boundary
vertices in the merge, they are removed from the boundary vertex sets. Each removal
splits the respective entry or exit vertex set into two parts which are joined to the two
ends of the corresponding set of the other misc composite. This boundary vertex or-
dering49 is illustrated in Figure 5.17.

Suppose that the path (vi , w j) is from a misc composite eM to a point composite eP .
Then eP can be merged into eM by first merging eP into an empty misc composite, as
listed in Alg. 5.3. Merging a misc composite into a point composite can be performed

1

2 m

n

1

1

2 m

n

1 2

2

1

1i

j

1en

1ex

2en

2ex

i

j

Figure 5.17: Merge two misc composites eM 1

and eM 1 connected by a path (vi , w j)

47See § 5.2.2.4 Figure 5.11.
48For generality and readability of the Algorithms, we adapted the their signatures. In our design, these

functions are in the misc composite.
49Note that it preserves the original ordering which numbers the entry or exit vertices counterclockwise,

since the orderings of the point composites are counterclockwise.

158

5

5.2 Model Transformation

Algorithm 5.2 The MERGE Function of eM 2 to eM 1

1 function MERGE(eM 1, vi , w j , eM 2)
2 E1P←E1P ∪E2P

3 B1en← (w1, · · · , w j−1) ‖ B1en ‖ (w j+1, · · · , wm2
)

4 B1ex← (v1, · · · , vi−1) ‖ B2ex ‖ (vi+1, · · · , vn1
)

5 P1← P1 ∪P2 ∪ (vi , w j)
6 end function . The ‖ symbol denotes the concatenation of two ordered sets.

in the same manner.

Algorithm 5.3 The MERGE Function of eP to eM

1 function MERGE(eM , vi , w j , eP)
2 e ′M ←MERGE(eP)
3 MERGE(eM , vi , w j , e ′M)
4 end function
5

6 function MERGE(eP)
7 eM ← (EP←∅, P ←∅, Ben←∅, Bex←∅)
8 Ben← entry vertices of eP

9 Bex← exit vertices of eP

10 for all u ∈ Ben do
11 EP←EP ∪ (u , eP)
12 end for
13 return eM

14 end function

Suppose that the path (vi , w j) is from a misc composite eM to itself. Then a cycle
in eM is detected, i.e., (vi , w j) is a backward path50. The cycle can be closed as listed in
Alg. 5.4.

Algorithm 5.4 The CLOSECYCLE Function

1 function CLOSECYCLE(eM , vi , w j)
2 Ben← Ben\w j

3 Bex← Bex\vi

4 P ← P ∪ (vi , w j)
5 end function

These merge options combined with the DFS walk of the paths surrounding the
point composites make the MCF algorithm (Alg. 5.5). As stated earlier, EP is the set
of (hyperedges of) point composites under consideration and b is the bound of path

50See, e.g., CORMEN et al. (2001).

159

5

Model Generation

Algorithm 5.5 The MCF Algorithm

Require: EP , b
1 EM←∅ . the misc composite map
2 for eP ∈ EP do . each DFS walk is rooted with an unvisited eP

3 if eP in EM then
4 continue . go to the next eP

5 end if
6 EN← GETNEXTCONNECTEDPOINTENTRY(eP ,b) . the entry vertices are ordered
7 if EN is not empty then
8 eM ←MERGE(eP) . a new eM is created with eP , Alg. 5.3
9 EM←EM ∪ (eP , eM)
10 for en ∈ EN do
11 if en 6=∅ then . the entry vertex en of a connected point composite
12 i ← index of en in EN . the order of en
13 ex← Bex,i ∈ eP . the corresponding exit vertex ex of eP

14 WALKTREE(eM , ex, en) . Alg. 5.6
15 end if
16 end for
17 end if
18 end for

distance51. We use a misc composite map EM to keep traces of merging (ln. 1). This
map contains a set of (hyperedges of) misc composites EM indexed independently by
their constituent point composites eP ∈ eM ∈ EM , i.e., each entry in EM has the form
(eP , eM). At the start of the algorithm, EM is empty.

A DFS walk starts with an unvisited eP ∈ EP (lns. 2∼6). The GETNEXTCONNECTED-
POINTENTRY(eP , b) function searches for point composites that are connected (by in-
dependent paths within b, § 5.2.3.3) to the exit vertices of eP . It returns an ordered set
of the connected entry vertices EN. If an element52 in ENnext is empty, it simply means
that a qualified path is not found for the corresponding exit vertex of eP . If no path is
found, we continue with the next eP (ln. 2); otherwise, eP “becomes” a misc composite
eM (ln. 8), since the connected point composite will be later merged into it. The newly
created eM is recorded in EM indexed by eP (ln. 9). We shall walk deeper in the current
“depth-first tree” along the path(s) indicated by EN. (We are at the tree root.) We do so
by passing on the “subgraph” eM and the terminal vertices of the corresponding path
(ex, en) to the WALKTREE function (ln. 14).

The WALKTREE function (Alg. 5.6) walks deeper the tree branch until an unqualified
path or a backward or a cross tree path (CORMEN et al. 2001) is reached. Recall that
the function is invoked with a misc composite eM , an exit vertex v of eM , and an entry

51For example, this distance can be set to 10 or 20 meters.
52Note that ENnext has at most two elements since the number of exit vertices of a point composite is at

most two.

160

5

5.2 Model Transformation

Algorithm 5.6 The WALKTREE Function

1 function WALKTREE(eM , v, w)
2 eP ← the indexed value of w in E . the connected point composite
3 if eP in EM then . eP is in a misc composite
4 if eP in eM then . the misc composite is eM

5 CLOSECYCLE(eM , v, w) . Alg. 5.4
6 else
7 e ′M ← the indexed value of eP in EM

8 for all e ∈ EP ∈ e ′M do . the point composites that are merged into e ′M
9 EM←EM\(e , e ′M)

10 EM←EM ∪ (e , eM) . replace the indexed values
11 end for
12 MERGE(eM , v, w , e ′M) . Alg. 5.2
13 end if
14 else
15 MERGE(eM , v, w , eP) . Alg. 5.3
16 EM←EM ∪ (eP , eM)
17 EN← GETNEXTCONNECTEDPOINTENTRY(eP ,b) . the same as Alg. 5.5 ln. 6
18 for en ∈ EN do . the same as Alg. 5.5 lns. 10∼15
19 if en 6=∅ then
20 i ← index of en ∈ EN
21 ex← Bex,i ∈ eP

22 WALKTREE(eM , ex, en)
23 end if
24 end for
25 end if
26 end function

vertex w of a point composite, where (v, w) is a qualified path.
The point composite eP that cotaines w can be found in the hyperedge map E (ln. 2).

If eP is in the misc composite map EM (ln. 3), then it is visited and is already merged into
a misc composite. And if this misc composite is by chance eM itself (ln. 4), then (v, w)
is a backward path and we use CLOSECYCLE to include this path in eM . When eP is in
another e ′M , we merge e ′M into eM (ln. 12). Since e ′M is indexed in EM by all its point
composites e ∈ EP ∈ e ′M , we need to replace all indexed values to eM (lns. 8∼11). When
eP is not in any misc composite, we merge eP into eM and record this merge (lns. 15,
16). Now we can further explore the exit vertices of eP (ln. 17), the similar situation as at
a root vertex, but this time eP is already merged into a misc composite. The walk goes
on as explained until all possible branches are visited.

After all point composites are visited, the MCF algorithm terminates. We update the
hyperedge map E using the misc composite map EM:

(1) remove from E the point composites that are merged in to misc composites (i.e.,

161

5

Model Generation

∀eP ∈ eM ∈EM with their indexes ∀u ∈ Ben ∈ eP) , and

(2) add to E all misc composites indexed by their entry vertices (i.e., ∀eM ∈ EM with
their indexes ∀u ∈ Ben ∈ eM).

Note that there are likely point composites that remain in E. These point composites
will be transformed individually into model components according to the point types,
i.e., eF , eTR and eC , in transformation step 3.

Remark The misc composite detection is the last sub-step in transformation step 2.
After this step, we obtain graph G2 = (T, E), in which T (unchanged as in G1) is a map of
track vertices, and E is a map of hyperedges each of which represents a rail composite
with a corresponding type (Info. Type 7, cf., Figure 5.7). The information about point
composites (Info. Type 6) is contained in the corresponding hyperedges of the contain-
ing composites. The (track, track) edges in the independent paths connecting the hy-
peredges are represented by entries in T (§ 5.2.2). T is an ordinary graph that describes
vertex-vertex relations at the lowest level of the composition. E is insofar a sufficient
representation of the model composition as a CCH. The transformation from the rail
infrastructure data to the MCG is completed at G2 = (T, E) (cf., § 5.2.3).

The hyperedges (and the represented composites) are of the following types (cf.,
§ C.2):

◦ eS (1, 1) stop composite

◦ eY (3, 3) “Y” composite

◦ eQ (4, 4) quad-diamond composite

◦ eT (3, 3) “T” composite

◦ eB (4, 4) butterfly composite

◦ eH (4, 4) half union composite

◦ eF (1, 2) facing turnout composite

◦ eTR (2, 1) trailing turnout composite

◦ eC (2, 2) diamond composite

◦ eM (m , n)misc composite

Each hyperedge (i.e., composite) type has a corresponding model component (type) in
the LIBROS library (see, e.g., § 4.3.2 Figure 4.7 InfraComponent). During model instan-
tiation in the next step, each hyperedge e ∈E can be transformed into a coupled model
component instance according to its type.

5.3 Model Instantiation

In this step, we shall instantiate a simulation model G3 which is a TopLevelModel (see,
e.g., § 4.3.2 and § 4.3.5.2) using the LIBROS model components (§ 4.3.4 and § 4.3.5).

162

5

5.3 Model Instantiation

Through the last two transformation steps (§ 5.2.2 and § 5.2.4), starting from the infra-
structure data G0, we obtain G2, which is a MCG that contains sufficient information
about the model structure and composition.

For model instantiation, besides the information in G2, we also need other inform-
ation about model configuration. The latter information includes the setting of the
model parameter values and the initial values of model variables (§ 3.2.3). Note that
this is not discussed in § 5.2.1.2 since it does not concern model CCH.

Additional data sources are used for LIBROS model configuration53. They need to be
prepared such that the data issues related to syntactic consistency and mapping con-
sistency (i.e., criteria№ 5, 8 as discussed in § 3.3.3) are dealt with before model instan-
tiation54. From now on, we assume that these date sources are transformed into appro-
priate unit and structure, and they are indexed with identifiers that are consistent with
the identifiers55 contained in G2.

5.3.1 On Instantiation of LIBROS Models

The instantiation (or generation)56 of the LIBROS models in this step is completed along
with one DFS graph traversal of G2 = (T, E). The traversal, however, does not walk deeper
into the hyperedges e ∈ E except for the boundary vertices. Once reached an entry
vertex of a hyperedge, the walk “exits” the hyperedge and goes on further as usual. In
this sense, the hyperedges are treated like vertices in the walk.

Along the walk, model component instances are generated and configured. Each
vertex or hyperedge is transformed into a model component according to its type. The
vertices in T are only of type source or track; the former being a coupled model (§ 4.3.5.4)
and the latter being atomic (§ 4.3.4). Each hyperedge corresponds to a coupled model
(§ 4.3.5.2). The ordinary edges, i.e., the (vertex, vertex) pairs in T, indicate the coupling
relations between the model components. Model configuration in our case takes place
only at the elementary model level (i.e., in the atomic models).

5.3.1.1 Model Instantiation of Rail Infrastructure Elements

A vertex in T is transformed into a Source (§ 4.3.5.4) or a TrackSegment (§ 4.3.4). The
latter is an atomic RIE model. One can notice that the other RIE models discussed in
§ 4.3.4 (see, e.g., Figures 4.17 and 4.24) are not represented by individual vertices in T.

53We used the following data for LIBROS model configuration. They are provided by HTM.
(1) Timetables that schedule the services.
(2) The routes of the service lines.
(3) Vehicle types for the service lines.
(4) Service line transformation, i.e., the locations where a service line changes to another.
54Common approaches, such as data type and format conversion, data merging and mapping tables, are

used for the preparation. The implementations of the approaches are domain specific. Therefore we will not
discuss the details.

55Two types of identifiers appear in G2: the identifiers for stops and the identifiers for switches.
56We use instantiation and generation interchangeably hereinafter in this chapter since they mean the

same in the context of transformation step 3.

163

5

Model Generation

The 3S models, e.g, are represented by the vertex combinations that are contained in
the hyperedges in E. They are therefore generated when the hyperedges are generated
(see § 5.3.1.2); so are the control units.

The RIE models are defined with fixed structures (including port settings). Hence
their instantiation is rather straightforward. Each (atomic or coupled) model instan-
tiation shall specify the parent model of that model. For example, when G2 is (to be)
transformed into a TopLevelModel Mtop, any model that is placed directly under the
TopLevelModel has Mtop as the parent.

The configuration of a TrackSegment includes its length, radius (if applicable) and
speed limit (cf., § C.1) while the 3S models do not have lengths (i.e., length = 0). In
addition, for the purpose of animation, a model image is generated for each (atomic)
model instance that is to be animated, e.g., we do not animate control units (§ 4.5, Fig-
ure 4.34). After the model generation, the images are passed on to the model image
manager (Figure 4.35).

5.3.1.2 Model Instantiation From A Hyperedge

A hyperedge in E has specified constituent composites, paths and boundary vertices.
The transformation does not “traverse” the hyperedge but instantiates the correspond-
ing model according to the hyperedge in a particular manner. Since many of the com-
posites are intersections, we use a simple misc composite to explain how a coupled
model is instantiated from a hyperedge by the infrastructure component generation
(ICG) algorithm.

Note that the models generated are all ordered according to the order of the com-
posites. In particular this means that the start nodes and end nodes (cf., § 4.3.4.1 Fig-
ure 4.16) of each model are ordered respectively so that they can be matched with the
ordered composites.

Example 5.1 Transform a (2, 2)misc composite eM into an infrastructure model M . Let
eM (and its specification) be as shown in Figure 5.18.

Given the (2, 2)-edge eM , the ICG first creates a (coupled) model M of type Mis-

cCrossing57 as following:

en ex1

ex2

en1

en2 ex

1

Composites fp, tp
Paths p1 fpex1 to tpen1
Entry 1. eM en1 tpen2

2. eM en2 fpen
Exit 1. eM ex1 tpex

2. eM ex2 fpex2

Figure 5.18: A (2, 2)misc component eM

57It is an InfraComponent, cf., § 4.3.2 Figure 4.7.

164

5

5.3 Model Instantiation

(1) M is initialized with two start nodes SN1, SN2 and two end nodes EN1, EN2.

(2) Two lineside signals LS1, LS2 (cf., § 4.3.4 Figure 4.17) are added, one at each entry
(i.e., start node) of the intersection (see the explanation of Que below).

(3) A facing point FP and a trailing point TP (cf., § 4.3.4 Figure 4.17) are added to M .

(4) A control unit CU is added to M , with which LS1, LS2, FP and TP are coupled (cf.,
§ 4.3.4.5 Figure 4.20).

This is illustrated in Figure 5.19 (A). For the convenience of infrastructure coupling
(cf., § 4.3.5.1 Figure 4.23), a queue like structure Que is used to hold successive (1, 1)
infrastructure models58 (which together form an independent path) so that they can be
later coupled together at once. In a coupled infrastructure model IC , each start node of

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

3

4

5

6

1

2

1

2

1

2

1

2

3

4

5

6

1

2

1

2

1

2

(A) Initialization with start and end nodes; add

points, lineside signals and a control unit.

Que status:

QueSN1 = (LS1)
QueSN2 = (LS2)

(B) Generate track segments in the entry paths

and add to entry path Que s; couple the start

and end nodes of each entry path Que to their

corresponding attachment nodes.

Que status:

QueSN1 = (LS1, T1)
QueSN2 = (LS2, T2)

(C) Generate track segments in the internal and

exit paths and add to Que s; couple the start

and end nodes of each path Que.

Que status:

QueSN1 = (LS1, T1)
QueSN2 = (LS2, T2)
QueFP1 = (T3, · · · , T4)
QueFP2 = (T5)
QueTP = (T6)

(D) Couple the models in the Que s.

Que status: the same as above.

Figure 5.19: Steps of generating a coupled in-
frastructure model M – Example 5.1 (cf., Fig-
ure 5.18)

58They are components with prefix Simple-, § 4.3.2).

165

5

Model Generation

IC and each end node of a non-(1, 1) component in IC is associated with a Que. It means
that there are five Que s in M : two for its two start nodes, two for the two end nodes of
FP, and one for the end nodes of TP. LS1 is added to QueSN1, and LS2 is added to QueSN2

since signals are to guard the inflow traffic of the intersection.
Next, the ICG generates one track segment (cf., § 4.3.4 Figure 4.17) for each entry

vertex of the hyperedge eM , and adds them into the corresponding start nodes’ Que s.
If an entry vertex of eM is not an entry vertex of a point component in eM but holds a
path to the latter, then all (models of the) vertices in the path59 (including the target
vertex) are added into the corresponding Que (Info. Type 8, cf., Figure 5.7). (Hence the
start nodes’ Que s are also called entry path Que s.) To end this step, the (first) start
node and the (last) end node (of the models) of each entry path Que are coupled to
the corresponding attachment nodes. For example, Figure 5.19 (B), since fpen is the
first entry vertex of eM (and the entry vertex of fp), a TrackSegment T1 is generated and
added to QueSN1. The start node of LS1 (being the first element in QueSN1) and the end
node of T1 (being the last element in QueSN1) are coupled to SN1 and the start node of
FP correspondingly.

The next step, Figure 5.19 (C), is similar to the previous one, but the ICG generates
one track segment for each exit vertex of the point composites of the hyperedge eM

and add them to the corresponding Que s. Since the exist vertex may hold a path to
an entry vertex of another point composite, or to an exit vertex of eM (or be an exist
vertex of eM itself), these Que s are also called internal path Que s or exit path Que s
correspondingly. After these Que s are completed, their start and end nodes are coupled
to the corresponding attachment nodes as in the previous step.

In the last step, the (1, 1) infrastructure models in each (entry, internal or exit path)
Que are coupled sequentially to one another, i.e., the end node of a previous model is
coupled to the start node of a next model. The infrastructure model generation of the
hyperedge completes at this step; Figure 5.19 (D).

Remark Note that the shaded model components in Figure 5.19 (i.e., the lineside sig-
nals, points, and control unit) do not have corresponding vertices in the hyperedge.
The information contained in the hyperedge is sufficient to indicate the composition
of the coupled infrastructure model including these extra model components, by which
we obtain Info. Type 11 (cf., Figure 5.7). This means that the hyperedge (composite) is
injective homomorphic to the coupled infrastructure model.

The four-step model generation is applicable to all intersection hyperedge compos-
ites discussed in § 5.2.3 and § 5.2.4. The generation of a stop model needs to transform
one independent path (cf., § 5.2.2.3 Figure 5.9) with a sensor (cf., § 4.3.4 Figure 4.17)
placed at the entry of the stop model (Info. Type 9). This can be done in the same man-
ner as placing a lineside signal at an entry of an intersection.

59The terminal vertices of the path are specified in the hyperedge. The vertices between them are in T.

166

5

5.3 Model Instantiation

5.3.1.3 Configuration of Control Unit

Each intersection model component in LIBROS contains a control unit (CU). The CU
interacts with the detectors and signals in the intersection and supervises the safe op-
eration of the area. In this regard, the use of a check table is discussed in § 4.3.4.5.
The check table contains a list of all possible routes in the intersection (Info. Types 10
and 12); Table 4.5 shows an example. This information shall match the infrastructure
layout. Since the layout of a misc crossing is not known a priori, we need an algorithm
that can configure the routes in the check table automatically according to the layout60.
Otherwise, the generation of misc crossings is of little use.

Find All Routes in An Intersection A route, denoted by r = (s ,ρ1,ρ2, · · · ,ρi), is com-
posed of an entrance signal and the required points (and positions if applicable) along
the route in the intersection. For example, the model M (Figure 5.19) generated in Ex-
ample 5.1 (§ 5.3.1.2) has three routes, which are r1 = (LS1, FP/2), r2 = (LS1, FP/1, TP),
r3 = (LS2, TP). The number following FP is the position (i.e., ordering) of the facing point
required by the route.

Because all possible routes in an intersection are “rooted” from the entries of the
intersection, this finding-all-routes problem is essentially a finding-all-paths problem
with given start vertices in a directed acyclic graph. We again use DFS for the route
finding, but a search does not stop at a visited vertex. This can be optimized but we did
not do so, as an intersection has a bounded number of points (and independent paths)
so that the performance is not a concern. We use the Que s (§ 5.3.1.2) as “edges” in the
search since they represent the entry, internal and exit paths in the intersection.

A search starts at an entry path Que whose first element (which is a lineside signal)
is added to a new route, i.e., r = (s). The point that is coupled with the end of the Que
is added into r , e.g., r = (s , p1). The search walks deeper to an end node Que of the
point. In case of a trailing point (TP) or crossing point (CP), the route proceeds only in
one direction. But in case of a facing point (FP), the original route becomes two routes,
and the order of the end nodes in the FP are added into the corresponding route, e.g.,
r = (s , p1/1), r ′ = (s , p1/2). The search can walk deeper to either end node Que with the
corresponding route record. The route search continues in the same manner until it
reaches an exit path Que, and when all the entry path Que s are explored.

Assign Routes to Service Lines Each service line has a preassigned service route (from
terminal to terminal). This data is provided by HTM (fn. 53 p. 163). The data specifies
the direction (i.e., left or right which corresponds to order 2 or 1) of each service line
at each facing point. This information needs to be transformed into the correspond-
ing route of the intersection since the vehicle models would request the corresponding
route in the simulation. After this route configuration for service lines, the configura-
tion of a control unit is complete.

60The algorithm certainly also works on intersections with fixed layout, i.e., those match the composite
patterns (§ 5.2.3.2 and § C.2).

167

5

Model Generation

5.3.1.4 Model Instantiation and Setting Up Couplings

The model instantiation (and couplings) often concern operations of creating and man-
aging nodes and node-couplings61 that are needed by the infrastructure models in LIB-
ROS. We hence again used the SAM pattern (§ 4.3.2.2, cf., § 4.3.4.4) for the implementa-
tion of these operations through InfraInterface and SimpleInfraInterface (cf., Fig-
ure 4.7).

Setting up couplings among models is not as straightforward as it may appear. A
coupling relation is a port-to-port relation. Since a model may have more than one start
or end nodes, coupling relations often can not be directly translated from model-to-
model relations. In Example 5.1 (Figure 5.19), e.g., when TrackSegment T3 or T5 is to be
coupled to FP, we need to know the corresponding end node of FP. This can be known,
e.g., by keeping the order of the end nodes and of the to be coupled TrackSegments.

Additionally, the MCG G2 is injective homomorphic to the generated model G3 such
that a vertex-to-vertex relation in G2 may represent an indirect model-to-model relation
in G3. This is the case when only one of two connected vertices is a boundary vertex of
a hyperedge while the other vertex is not in that hyperedge, so that only one is trans-
formed to be a component of a higher level model. The two corresponding models (of
the vertices) as such can not be directly coupled to each other.

Example 5.2 Consider a simple G2, as shown in Figure 5.20, with two sources s1, s2, one
(2, 2)-edge e1, and a number of track vertices.

Suppose the DFS starts at s1, then it shall first walk through s1 → t1 → t2 because
these vertices have entries in T but not in E. At each step, a model is generated, say
S1, T1, T2, and since they do not have multiple start or end nodes, we can successively
couple them. At step (t2, u1), u1 has an entry (u1, e1) in E (i.e., u1 is an entry vertex of
hyperedge e1), which can be e.g., a (2, 2)diamond composite or a misc composite, hence
a coupled model, say M1, is generated according to e1 (as discussed in § 5.3.1.2). Note

T= {(s1, t1), (t1, t2), (t2, u1),
(s2, t3), (t3, u2),
(v1, t4), (t4, t5),
(v2, t6), (t6, t7), · · · }

E= {(u1, e1), (u2, e1)}

Figure 5.20: A simple G2 with two sources s1, s2

and one (2, 2)-edge e1

61A node-coupling is comprised of two port-couplings (on the same two ports) of opposite directions (cf.,
§ 4.3.5.1 Figure 4.23).

168

5

5.3 Model Instantiation

that M1 is the parent model of models of u1, u2, v1, v2, i.e., U1,U2, V1, V2 which are all
generated at once by generating M1.

At this point, we need to “couple T2 to U1” through a start node of M1 instead of
coupling them directly together. Suppose that M1 is a (2, 2) MiscCrossing as shown
in Example 5.1 (Figure 5.19 D). Whether T2 shall be coupled to EN1 or EN2 depends
on which node U1 is “coupled to” (through a lineside signal). This information can be
known, e.g., through the order of the Que that contains U1

62. Similarly, when the walk
“exists” e1 and goes to, e.g., v1 → t4 → t5, we use the order of the Que that contains V1

to know the order of the end node of M1 that shall couple to T4. Because t5 is the end
of the branch (i.e., it does not have an entry in T), we generate a sink model (§ 4.3.5.4),
SK1, and couple it to T5.

The DFS then starts at the second source s2 and continues with s2 → t3 → u2. Be-
cause there exits an entry (u2, e1) in E and a model M1 of e1 is already generated, we only
need to couple T3 to the corresponding start node of M1 (as discussed). The walk then
goes on to v2 → t6 → t7, couple T6 to the corresponding end node of M1, and ends by
generating SK2 after T7.

Model Map Through traversing a simple example of G2, we can also observe that some
mapping is needed to maintain a relation between G2 and G3 in order to trace back
which part of G2 has been transformed into which part of G3. A DFS in G2 anyway needs
some record to trace the visited vertices. But the model generation (and couplings) also
needs a mapping between the vertices (and hyperedges) and the generated models. For
example, in traversing the G2 in Figure 5.20, at step (t3, u2), we need to know the coun-
terpart of u2 in G3 or whether the model is generated at all in order to have further in-
formation about the parent model and the corresponding start port. We therefore use
a model map M of (vertex, model) pairs for the mapping between the vertices in G2 and
their direct counterpart models (not parent models) in G3. Since the source vertices
do not have “back walks”, they are not recorded in M. Hence M has only (track vertex,
TrackSegment) pairs. These pairs are added into M each time a track vertex (including
the ones in the hyperedges) is visited and the corresponding TrackSegment is gener-
ated. The information about the hyperedges (and their corresponding models) can be
obtained through the entry vertices.

5.3.2 Transformation Step 3

Through transformation step 2 (§ 5.2.4), the CCH (i.e., the hyperedge map E) of the MCG
G2 is defined bottom-up on the ordinary digraph (i.e., the track map T). In transforma-
tion step 3, as exemplified in § 5.3.1.2 and § 5.3.1.4, the model generation of G3 is partly
bottom-up, as when the graph traversal is at ordinary vertices of T, and partly top-down,
as when the traversal encounters a hyperedge in E based on which an InfraComponent

is generated.

62When the nodes are ordered, the Que s are ordered too.

169

5

Model Generation

Given G2 = (T, E), we use a model generation algorithm (MGA) to generate G3. The
pseudo-code of the algorithm is listed in Alg. 5.7. The algorithm is in principle explained
by the two examples in § 5.3.1. The model map M (ln. 1) is created before the model
generation. Its entries are added when a TrackSegment is generated either during the
DFS (ln. 16) or along with the model generation for a hyperedge (ln. 22).

At each DFS walk step, the GENERATEMODELTREE function is passed on with a vertex
v in T and an end node en (ln. 8). The vertex v has a generated model, say V , and it
leads the current branch of the tree walk. The end node en is either that of V 63 or an
end node of the parent model M of V (i.e., V is in M) to which V is connected with.
In both cases, en is the end node that the next generated model shall be coupled with.
We may encounter one of the four situations for a walk step (see also Example 5.2 in
5.3.1.4):

(1) When v does not have a descendant vertex, a sink is generated (lns. 10∼12).

(2) When v has a descendant vertex t that is not in a hyperedge64, a track segment is
generated and the walk goes one step further (lns. 15∼18).

(3) When v has a descendant vertex t in a hyperedge e , and a model for t is not
generated, a model M for e is generated and the walk goes one step further to
one of the branches, (lns. 21∼31).

(4) When v has a descendant vertex t in a hyperedge e , and a model for t is gener-
ated, there is a back walk (lns. 33∼35).

Note that v can have at most one descendant vertex since all the point composites
are in hyperedges where the DFS does not step into. Model generation for hyperedges
(ln. 22) is explained in § 5.3.1.2. In case of an intersection model, the configuration of
the control unit is included in the model generation. The MGA terminates when all the
DFS trees rooted from the source vertices are explored.

5.4 Model Generator

In LIBROS, there is a ModelGeneator component that implements the steps of model
transformation (steps 1 and 2) and instantiation (step 3) as discussed in § 5.2 and § 5.3.
It is placed in a package together with other model generation components such as dif-
ferent data readers, containers and rail composite patterns and definitions. The main
tasks performed by the model generator (Figure 5.21) can be summarized as following.

1. Read CAD data into G0 (see § 5.2.1.1)65. The CAD entities are the vertices in G0.
The entity types and descriptions are the vertex types and attributes.

2. Transformation step 1. Build a directed graph G1 = (T, PF, PT, PC, E) where track
compositions of points (in PF, PT, PC) and stop composites eS (in E) are detected.

63A source or track model can have only one end node.
64The only chance for a back walk is when t is in a hyperedge, i.e., a vertex that is not in a hyperedge can

not be revisited.
65A Java Ycad library (sourceforge.net/projects/ycad) is used to read AutoCAD DXF files.

170

http://sourceforge.net/projects/ycad

5

5.4 Model Generator

Algorithm 5.7 The MGA Algorithm

Require: T, E
1 M←∅ . the model map, see § 5.3.1.4
2 for all s do in source vertices in T . each DFS walk is rooted with a source vertex s
3 S ← generate a Source instance for s
4 en← the end node of S
5 GENERATEMODELTREE(s , en) . see ln 8
6 end for
7

8 function GENERATEMODELTREE(v , en) . cf., § 5.3.1.4
9 t ← T(v) . check whether T has an entry (v, t)
10 if t =∅ then . nothing is connected to v
11 SK← generate a Sink instance
12 couple en and the start node of SK . the tree walk ends at this branch
13 else
14 e ←E(t) . check whether E has an entry (t , e)
15 if e =∅ then . t is not an entry vertex of an hyperedge
16 T ← generate a TrackSegment instance for t
17 couple en and the start node of T
18 GENERATEMODELTREE(t , the end node of T) . the walk goes to next vertex
19 else
20 T ←M(t) . check whether t (hence e) has a model generated
21 if T =∅ then . generate a model M for hyperedge e ; cf., § 5.3.1.2
22 M ← generate an InfraComponent instance according to the type of e
23 T ←M(t) . the model T is newly generated along with M
24 sn← the start node to which T is connected in M
25 couple en and sn
26 for all i = 1→ the size of the end nodes of M do
27 v ← the i -th exit vertex of e
28 en← the i -th end node of M
29 . assume exit vertices and end nodes are simply ordered with indexes
30 GENERATEMODELTREE(v , en) . the walk goes to one of the branches
31 end for
32 else . a model for the hyperedge e is already generated
33 M ← parent model of T
34 sn← the start node to which T is connected in M
35 couple en and sn . a back walk: the walk ends at this tree branch
36 end if
37 end if
38 end if
39 end function

171

5

Model Generation

Model Generator

G0

G1

G2

G3

Step 1

Step 2

Step 3

Rail composite
patterns and

definitions

Infrastructure
Model

components

CAD data

Other
configuration

data

§ 5.2.1

§ 5.2.2

§ 5.2.3.2

§ 5.2.4

§ 5.3.2

§ 4.3.4

§ 4.3.5

Figure 5.21: Model generator

(a) Partition the vertices into three sets, viz., sources, tracks and stops (cf., § C.1).

(b) “Traverse” G0 based on the geometrical connectedness of the vertices in or-
der to create directed edges (in T), detect locations of points and create stop
hyperedges (based on stop length).

The transformation basically relies on the geometry and the geometrical relation
of the CAD entities, particularly those of the track entities, e.g., their positions,
connectedness and angles of connectedness.

3. Transformation step 2. Build a MCG G2 = (T, E) where T remains the same as in
G1 and E contains more infrastructure composites as hyperedges (§ C.2).

(a) Order track compositions of points (contained in PF, PT, PC). The track ver-
tices that are at one point location are ordered counterclockwise per direc-
tion. As such, the whole graph is ordered.
In sub-steps (b)∼(f), the CPM algorithm looks for ordered subgraph iso-
morphisms. A match is recorded in a hyperedge and placed in E indexed
by the entry vertices. The corresponding track compositions of points in
the composite are removed from PF, PT, PC.

(b) Detect “Y” composites eY with pattern%Y . As the other infrastructure com-
posite patterns used in (c)∼(f), %Y is predefined and ordered.

(c) Detect quad-diamond composites eQ with pattern %Q . A eQ composite is
automorphic.

(d) Detect “T” composites eT with pattern %T (based on eY).

172

5

5.4 Model Generator

(e) Detect butterfly unions eB with pattern %B (based on eY and eQ). The CPM
algorithm is ran twice with %B where the eQ hyperedges are rotated once
because of the automorphism.

(f) Detect half unions eH with pattern %H (based on eY and eQ and track com-
positions of points). The CPM algorithm is ran four times with%H where the
eQ hyperedges are rotated three times because of the automorphism.

(g) Decompose small “Y” composites. The “Y” composites which have points
close by are decomposed and the corresponding track compositions are put
back into PF, PT, PC.

(h) Create (facing and trailing) turnouts eF , eTR and diamond composites eC .
The track compositions of points that are left in PF, PT, PC are transformed
individually to hyperedges, viz., points in PF to eF , PT to eTR, PC to eC .

(i) Detect misc composites (based on eF , eTR and eC). The points that are close
to one another are clustered into the same misc composite with ordering.

The transformation starts with G1 and rewrites it incrementally at each sub-step.
These sub-steps are partially ordered. The composite matching (§ 5.2.3.3) or find-
ing (§ 5.2.4.2) algorithm in a sub-step does not traverse the whole graph but walks
the independent paths surrounding the candidate constituent composites.

4. Read in the other model configuration data such as timetables and service routes
(see p. 163).

5. Transformation step 3. Generate a TopLevelModelmodel G3 by traversing G2 and
creating infrastructure model components according to the vertex and hyperedge
types each of which has a corresponding model component (type) in LIBROS. The
components are configured and coupled accordingly. Model images (§ 4.5, Fig-
ure 4.34) are as well generated for the purpose of animation.

After these steps, we obtain a simulation model G3 where the model behavior at the
elementary level is pre-specified in the (atomic) model components in the LIBROS lib-
rary (§ 4), and the model structure is dynamically constructed using the coupled com-
ponents according to the infrastructure CAD data (§ 5). When empirical data is avail-
able, we can also calibrate the model with an automated routine (§ 6).

173

5

6
Model Calibration

I
N M&S LITERATURE, the definitions of model calibration are unequivocal1. Despite

that they all confirm calibration is an iterative process of model adjustment, they
are inconsistent in whether the adjustment is made to model parameters only
or also to model structure. In this thesis, model calibration is an experimental

process by which some model parameters (whose values are unknown) are adjusted
in a number of simulation experiments in order to match the simulation output (data)
with the relevant systems observation or measurement given pre-specified acceptance
criteria.

The concept of model validity is briefly discussed in § 2.1.4 and § 4.1.2. It refers to
the modeling relation between a model, a source system and an experimental frame
(ZEIGLER et al. 2000). The validity of a model is the degree to which the model repres-
ents its system counterpart to the extent demanded by the intended model use (ibid.).
Although model calibration and validation are two distinct concepts in M&S, they are
often conducted together (BANKS et al. 2010).

In general, model validation is the overall process of evaluating or testing a model for
validity, which includes, i.a., validation of conceptual model, model components and
component integration at different model development stages (e.g., KREUTZER 1986,

1For example, according to ZEIGLER et al. (2000), calibration is the process by which parameter values
are adjusted so that the model best fits the system data. LAW (2007) describes calibration as “. . . changes
are made to the model, somewhat without justification (e.g., some parameter is ‘tweaked’).” In BANKS et al.
(2010), calibration is the iterative process of comparing the model to the real system, making adjustments (or
even major changes) to the model, comparing the revised model to reality, making additional adjustments,
comparing again, and so on.

175

6

Model Calibration

BALCI and NANCE 1987, SARGENT 2001, LAW 2007, BALCI 2012, more see § 7). At the
stage of model calibration, the model shall be validated and verified for each of the pre-
vious stages. As such we can validate the simulation model behavior by comparing it
with the system behavior under the same experimental condition (BALCI 1998, ARTHUR

and NANCE 2007) — SARGENT (2001) calls this operational (results) validation — and
reasonably assume that if discrepancy is detected between the two, it is due to inaccur-
ate model parameter configurations. Some parameter values are then adjusted, and
the resulting simulation output is again compared with the source system and so forth
until the two have a reasonable agreement (MUSSELMAN 1998, LAW 2007). This iterat-
ive (operational validation and) calibration process can be automated when the system
behavior is recorded in data. Let us call this data empirical data (§ 2.1.2).

This chapter discusses automatic model calibration, which is a necessary compon-
ent for the completeness of model generation. In literature, parameter search or op-
timization algorithms for automatic model calibration are extensively discussed2. The
focus of our discussion is hence placed on an automatic model calibration procedure
(AMCP), which can work together with the model generator (§ 5.4) as integrated com-
ponent parts in LIBROS library. We do not aim at defining any specific AMCP, but let
users to choose the model calibration elements such as the goodness-of-fit measure or
parameter search algorithm according to the problem situation. The model calibration
component in LIBROS shall provide a basic underlying procedure that can link together
the elements and perform model calibration.

In § 6.1, we first discuss the statistical issues related to output estimates and data
comparison based on literature. We then explain the model calibration procedure of
LIBROS in § 6.2. Concrete issues about LIBROS calibration experiments are discussed in
§ 6.3. A test case is presented in § 6.4.

6.1 Output Estimation and Comparison

Model parameters can be viewed as model state variables and calibration as the state
identification (ZEIGLER et al. 2000). A model calibration procedure defines an iterative
experimental process where some parameter configuration in a model is adjusted in
each experiment in order to determine whether the model output reasonably agrees
with the corresponding empirical data. As such, the experiments3 in one model cal-
ibration procedure have the same experimental frame but different parameter config-
urations. Recall that an experimental frame is a specification of the conditions under
which a system is observed or experimented with (ibid., see § 4.1.2).

2Parameter search or estimation of complex simulation models is since long proposed as a non-linear
optimization problem (TALPAZ et al. 1987, FINLEY et al. 1998). In literature, automated model calibration is of-
ten discussed, particularly in terms of parameter search (or optimization) algorithms, e.g., Bayesian method
(KENNEDY and O’HAGAN 2001, CACUCI and IONESCU-BUJOR 2010), sequential fitting or iterative search (SO-
ROOSHIAN et al. 1983, ZHANG et al. 2012), genetic algorithm (CHENG et al. 2006, ZAGLAUER and KNOLL 2012),
shuffled complex evolution algorithm (YAPO et al. 1996, ECKHARDT et al. 2005), and many others.

3An experiment is a process whose outcome is not known with certainty (LAW 2007).

176

6

6.1 Output Estimation and Comparison

Although AMCPs are often discussed in literature2, to the best of our knowledge,
these discussions refer to equation based or deterministic models as applications. A
discrete event model, viewed as a black box, is calibrated essentially in the same way as
any other models. Nevertheless, the simulation of a discrete event model that contains
(pseudo) stochastic behavior4 requires output estimation by constructing confidence
intervals of the output data in order to obtain a specific precision of the simulation
output before the results shall be used for any purpose (LAW 2007, BANKS et al. 2010).
Since this is the type of model we use, we need to first estimate simulation output and
assure its convergence and then use the results for model calibration.

6.1.1 Output Estimation with Replication Method

In M&S literature (e.g., ALEXOPOULOS and SEILA 1998, LAW 2007, BANKS et al. 2010),
many approaches or methods are discussed for constructing the confidence interval of
the output data of a simulation experiment. Among those, the replication method is the
most straightforward and popular (HOAD et al. 2010), where independent replications
(or runs)5 are used to generate (a necessary amount of) output data so as to have a
desired precision of the output estimate (LAW 2007, BANKS et al. 2010).

Replications of an experiment are repeated runs of a simulation model (in a same
experimental frame) with different streams of random variables (JACOBS 2005, HOAD et
al. 2010). Multiple replications are generally required for terminating simulations and
can be used for non-terminating simulations (LAW 2007, HOAD et al. 2010, BANKS et al.
2010). Therefore, replications are used for the simulation of LIBROS models6.

6.1.1.1 Estimation of Mean and Confidence Interval

Let M be a model of a source system S , and Y be an output variable of M . When we
simulate M with r replications, we obtain output measures Y1, Y2, · · · , Yr where Yi , i ∈
[1, r] is the output realization of Y from i -th replication7. Since the replications are
independent, we can reasonably assume that the measures of Y across replications are
independent and identically distributed (i.i.d).

When a dataset Y1, Y2, · · · , Yr is i.i.d, the sample mean Y (r) =
∑r

i=1 Yi /r can be used
as an unbiased estimator of the population mean8 µ of Y , i.e., E [Y (r)] = µ; and sim-

4Discrete event simulation models represent stochastic processes through the use of random variables
ordered over time (LAW 2007, BANKS et al. 2010).

5This means that each replication has the same initial conditions, uses separate sets of different random
numbers, and resets the statistical counters (LAW 2007).

6The simulations of LIBROS models are terminating.
7The data Yi can be, e.g., the average vehicle driving time from stop A to stop B , or the number of vehicles

arrived at a terminal simulated by a LIBROS model in i -th replication. Initialization bias occurs in non-
terminating simulations and sometimes also in terminating systems (ROBINSON 2004). The statistics in this
section assumes that the initialization bias in the data (if any) already has been reduced to a negligible level,
e.g., through intelligent initialization and deletion (BANKS et al. 2010).

8In statistical analysis of output data, the mean as a measure of central tendency is a commonly used
measure of system performance. For simplicity, we only use estimating mean to exemplify the concept of
output estimation. Other useful measures such as quantiles, (expected) proportions can be estimated using

177

6

Model Calibration

ilarly, the sample variance S 2(r) =
∑r

i=1[Yi − Y (r)]2/(r − 1) can be used as an unbiased
estimator of the population variance σ2, i.e., E [S 2(r)] =σ2 (LAW 2007). Because of the
random nature in Y , Y (r) is random as well with variance Var[Y (r)]; an unbiased es-
timator of this variance isdVar[Y (r)] = S 2(r)/r (ibid.). The 100 (1−α) percent confidence
interval for µ is then expressed as such

Y (r)± tr−1,1−α/2

√

√S 2(r)
r

, (0<α< 1) (6.1)

where tr−1,1−α/2 is the upper 1−α/2 critical point for the Student’s t -distribution9 with

r −1 degrees of freedom, and HY (r) = tr−1,1−α/2
p

S 2(r)/r is the confidence interval half-
length (see, e.g., ALEXOPOULOS and SEILA 1998, LAW 2007, BANKS et al. 2010).

6.1.1.2 Sequential Procedure with Look Ahead

Suppose that the estimate Y (r) has a relative error10 of γ = |Y (r)−µ|/|µ| (0 < γ < 1);
we can make (more) replications until the half-length of the confidence interval (in Ex-
pression 6.1) divided by |Y (r)| is less than or equal to γ, so as to bring the actual relative
error to be at most γ/(1−γ)with a probability of approximately 1−α (LAW 2007). When
the first (mentioned) relative error is adjusted toγ′ = γ/(1+γ) to obtain an actual relative
error of γ, one obtains the following expression

tr−1,1−α/2

√

√S 2(r)
r

|Y (r)|
≤

γ

1+γ
(6.2)

which is a necessary and sufficient condition to determine with an 100 (1−α) percent
confidence interval (ibid.):

(1) whether the estimate Y (r) of the true mean µ resulted from r replications has a
desired precision containing a relative error of γ, and in turn

(2) whether the experiment has made a required number of replications.

Following this principle, the sequential procedure presented in ALEXOPOULOS and
SEILA (1998) and LAW (2007) first choose an initial number of replications r0, and more
replications are added with Expression 6.2 as the stopping rule, in order to obtain a suf-
ficiently large and smallest possible number of replications. LAW (2007) recommends
to use γ≤ 0.15 and r0 ≥ 10.

Additional replications, called look ahead, are used in HOAD et al. (2010) to avoid
potential early (or premature) convergence, i.e., after the condition in Expression 6.2
is satisfied in the sequential procedure, the convergence has to be stable for a number
of more successive replications before the the sequential procedure shall terminate.

other formulas; see, e.g., ALEXOPOULOS and SEILA (1998), LAW (2007) and BANKS et al. (2010).
9The t -value t = [Y (r)−µ]/

Ç

S 2(r)
r (LAW 2007).

10β = |Y (r)−µ|> 0 is called absolute error (ibid.).

178

6

6.1 Output Estimation and Comparison

HOAD et al. (ibid.) recommend a look ahead size k = 5 for a total replication number
less than 100 and otherwise k % of the total size.

We therefore use the sequence procedure with look ahead (γ = 0.1, r0 = 5, k = 5)
for the model calibrator in LIBROS to decide whether to add or stop replications of a
calibration experiment.

6.1.1.3 Confidence Interval for Multiple Measures of System Performance

Multiple output variables Y1, Y2, · · · , Yn of a model M are often used as measures of sys-
tem performance. In this case, each Yj , j ∈ [1, n] is treated as Y discussed afore in the
section, and the sequential procedure can be used to construct the confidence interval
I j = [Y j (r)−HY j (r), Y j (r) +HY j (r)] of each output estimate Y j (r) for the true mean µ j

individually (see, e.g., RAATIKAINEN 1993, ALEXOPOULOS and SEILA 1998, LAW 2007). For
a chosen α j for each Y j (r), this means that there is 1−α j probability that µ j is within
the confidence interval I j , i.e., P (µ j ∈ I j) ≥ 1− α j . However, the probability that all
n confidence intervals simultaneously contain their respective true measures, is lower
compared to the individual probabilities (see, e.g., LAW 2007). Its lower bound is given
by the Bonferroni Inequality such P (∩n

j=1µ j ∈ I j) ≥ 1−
∑n

j=1α j whether or not the Ii ’s
are independent (ibid.).

When n is small (no larger than about 10), thenαi ’s can be chosen so that
∑n

j=1αi =
α where 1−α is the desired overall confidence level; but when n is large, the only re-
source available is to construct the usual 90 or 95 percent confidence intervals but the
analysts need to be aware that one or more of these confidence intervals may not con-
tain its true value (ibid.). In applying the sequential procedure, we can evaluate indi-
vidually the Expression 6.2 for each output variable’s estimates across replications11.
The stopping rule of adding replications applies when all output estimates converge.

6.1.2 Operational Validation through Comparison

Suppose that through the sequential procedure, we obtain a dataset Y1, Y2, · · · , Yre
from

re replications of an experiment e , and that the corresponding data from the real sys-
tem S exists and let R1, R2, · · · , Rl be the dataset. There are different ways to compare
them. A number of statistical methods are discussed in literature (e.g., KLEIJNEN 1995,
GOLDSMAN and NELSON 1998, BANKS et al. 2010, LAW 2007, SARGENT 2013).

One approach is to use the t -statistic to either construct a confidence interval12 of
the mean difference of the two datasets µd = µY − µR or to test the null hypothesis
H0 : µd = 0 (KLEIJNEN 1995, 1999, LAW 2007). KLEIJNEN (1995) discusses some condi-
tions and potential problems of the hypothesis test due to its stringency, and LAW (2007)
recommends the confidence interval over the hypothesis test for the same reasons.

Other often used error (or goodness-of-fit) measures are, e.g, correlation coefficient
(KLEIJNEN 1995), mean squares, least squares (VANNI et al. 2011), Kolmogorov-Smirnov

11Depending on the practical cases, the α j ’s can be different to each other; so do the γi ’s.
12When the two datasets do not have paired-up samples, i.e., re 6= l , the modified two-sample-t confid-

ence interval (i.e., Welch confidence interval) can be used (LAW 2007).

179

6

Model Calibration

test (HOLLANDER and LIU 2008). Which one or combination to choose depends on the
properties of the data and the interest of the measure; reviews can be found, e.g., in
SCHUNN and WALLACH (2005) and HOLLANDER and LIU (2008).

6.2 Calibration Procedure

As mentioned earlier, we do not aim at defining any specific AMCP. This means that
users shall choose, e.g., the goodness-of-fit measure or parameter search algorithm ac-
cording to their problem situation, and the model calibration component in LIBROS

shall provide the basic underlying procedure that can link together the model calibra-
tion elements of users choices.

6.2.1 Basic Elements and Functions

According to SOROOSHIAN et al. (1983), YAPO et al. (1996) and VANNI et al. (2011), the
following basic elements are required by an AMCP:

(1) the set of parameters to be included in the calibration,

(2) the parameter space(s) to be searched (typically defined by allowable maximum
and minimum values)

(3) the calibration dataset (i.e., empirical data),

(4) the goodness-of-fit measure (i.e., objective function),

(5) the convergence (or acceptance) criteria and stop rule,

(6) the parameter search (or optimization) algorithm.

To carry out an AMCP, the following basic functions need to be performed.

(i) Start a calibration experiment with an initial number of replications (§ 6.1.1). The
calibration experiments in one AMCP have the same experimental frame but dif-
ferent parameter configurations, and each experiment is composed of a number
of replications that have different streams of random variables (§ 6.3). A new ex-
periment is started if the evaluation of the objective function from the previous
experiment is not accepted.

(ii) Add a replication to a calibration experiment if so is required by the sequential
procedure (with look ahead; § 6.1.1).

(iii) Read in the calibration dataset. The calibration data provided by HTM is in a
database, so we need to define queries to obtain the appropriate dataset.

(iv) Read in the model output dataset. The model state updates are recorded in an
output database (§ 4.5), so we need to define queries to obtain the appropriate
dataset after each replication.

(v) Perform the statistics defined by the sequential procedure in order to obtain the
desired confidence interval of the output estimates across the replications of an

180

6

6.2 Calibration Procedure

experiment (§ 6.1.1).

(vi) Evaluate the objective function, i.e., compare the output estimates with the cal-
ibration data (§ 6.1.2) after the necessary replications of an experiment are com-
pleted. Many parameter search or optimization algorithms (packages) includes
the evaluation.

(vii) Call the parameter search or optimization algorithm to generate new parameter
configuration if the convergence criteria and stop rule are not satisfied.

(viii) The ability to perform multistage calibration.

Multistage Calibration Many calibration procedures apply a stage-by-stage (i.e., multi-
stage) approach where each stage uses a different measure to calibrate a different set
of parameters (HOLLANDER and LIU 2008). Examples can be found in HOURDAKIS et
al. (2003), DOWLING et al. (2004), VILLA et al. (2004) and CHENG et al. (2005). The abil-
ity to perform multistage calibration (viii) means that when the calibration procedure
needs to switch from one stage to the next, the initialization conditions of the calibra-
tion (or some of them) shall be set anew. Above all, since another set of parameters is
to be calibrated, the responsible calibration component shall know the new indexes or
references to these parameters. The parameters may have different search spaces or a
new objective function. The other conditions that may change include the data quer-
ies, the critical values, the allowable relative errors, or even the search or optimization
algorithm may be changed.

6.2.2 Procedure Design

Figure 6.1 illustrates the LIBROS model calibration procedure. It consists of activities
that perform the functions discusses in § 6.2.1. The sequence of the activities in the
procedure is in principle the same as those in classic AMCPs (see, e.g., SOROOSHIAN et
al. (1983), YAPO et al. (1996) and HOLLANDER and LIU (2008) and others in fn. 2). The
LIBROS AMCP is supplemented with an automated sequential procedure of adding re-
quired replications (§ 6.1.1) before each evaluation of the objective function, and with
the multistage calibration ability (§ 6.2.1). (Recall that the activities of “evaluate ob-
jective function” and “· · · generate new parameter configuration” are sometimes both
included in search or optimization algorithms.)

In the LIBROS library, a number of calibration components are designed to carry out
the AMCP and to perform the relevant activities. Figure 6.2 gives an overview of these
components and their connection to the LIBROS model which can be a generated (§ 5)
or a user defined LibrosModel. The two major calibration components are Calibra-

tionControl and LibrosCalibration. The former controls and executes the overall
calibration procedure. The latter deals with concrete calibration issues such as data
query and organization, performing statistics and parameter search.

181

6

Model Calibration

6.2.2.1 Calibration Control

The CalibrationControl controls the activity flow of the AMCP. Its functions hence
can be seen as the control flow arrows in Figure 6.1, which determine the sequence of
the calibration activities (or tasks) and assign these tasks to the (other) corresponding
calibration components. These tasks are of two types: those relevant to the addition of
experiments and replications, which are assigned to theCalibrationExperimentHand-

Stage initialization, e.g.:
o Set data queries
o Set confidence level and allowable

relative error for the output estimate
o Set objective function
o Set convergence criteria and stop rule
o Set search or optimization algorithm,

and parameter search space and the
other parameters of the algorithm

Start replication

Query model output data

Estimate output

Replications finished?

Evaluate objective function

Output (all) converged?

Had look ahead?

Add replication(s)

Add look ahead replications

Convergence criteria or
stop rule satisfied?

More calibration stage?

[Y]

[N]

[Y]

[Y]

[N]

[N]

[Y]
[N]

Add experiment with initial number of replications;
(set model parameter configuration)

Query calibration data

Call search or optimization algorithm to
generate new parameter configuration

[N
ew

 o
r ch

an
ged

 q
u

ery]

[Y]
[N]

(run finished)nofity

Figure 6.1: LIB-
ROS model calib-
ration procedure

182

6

6.2 Calibration Procedure

ler, and those relevant to the concrete calibration issues, which are assigned to the
LibrosCalibration (§ 6.2.2.2).

Through the CalibrationExperimentHandler, a singleton experimental frame is
created for the AMCP (at the first initialization). The ExperimentalFrame, Experiment
and Replication are defined as components in the DSOL library (§ A.2); see JACOBS

(2005). In the AMCP, an experiment is added to the experimental frame at a stage ini-
tialization or when a new parameter configuration is generated for experimentation.
Replications are added to a corresponding experiment when the experiment is initial-
ized or when more runs are required by the sequential procedure (§ 6.1.1).

Note that the master seed (in the CalibrationExperimentHandler) is used to gen-
erate a stream for the random seeds of the replications in an experiment. (Each of the

Figure 6.2: Model calibration components connecting with LIBROS model

183

6

Model Calibration

latter seeds in turn generates a stream of random variables in a replication.) The mas-
ter seed synchronizes the random number streams (i.e., common random numbers)
across different model configurations on a particular replication, which is a simple vari-
ance reduction technique (LAW 2007; more variance reduction techniques can be found,
e.g., in ibid.).

TheCalibrationExperimentHandlerhas access to aLibrosModel through theMod-
elInterface in order to create an experiment where a relation between a model and a
simulator is set up. Both the ModelInterface and the simulator (which is not shown in
Figure 6.2) are defined in the DSOL library (§ A.2); see JACOBS (2005).

An experiment (run) is started by the CalibrationControl. Replications are ran
one after another (by the simulator § A.2), and the output data of interest is queried from
the output database (§ 6.2.2.2) after each replication run. In this regard, the publish-
subscribe asynchronous communications are again used (cf., § 4.4 and § 4.5), where
the CalibrationControl subscribes to the “end of replication and experiment events”
of the simulator and is subsequently notified of these events (note the notify method
in the CalibrationControl) by the simulator. The data query and statistics after a rep-
lication run are performed by the LibrosCalibration in order to decide whether a new
run is needed. Again, the control flow is decided by the CalibrationControl.

6.2.2.2 LIBROS Calibration

The LibrosCalibration holds two sets of data queries for a calibration experiment:
one for the model output database and one for the database that contains empirical
data (sometimes also referred to as calibration data or control data). The latter data-
base used for our calibration experimentation (provided by HTM) is called EBS. The
analysts shall choose in advance what and how output and empirical datasets are to be
compared and test the correctness of the corresponding queries of the two database
systems. Data transformations are often needed in order to obtain the desired compar-
able data units, types, etc.

The calibration dataset, i.e., R1, R2, · · · , Rl , in principle is queried once for one calib-
ration stage. But the analysts may also decide to use the same dataset in different stages.
If the statistics in the objective function requires balanced data length (i.e., when out-
put dataset is Y1, Y2, · · · , Yre

, then re = l), then query for more data points maybe needed
since the replication number across experiments may be different.

The output dataset is queried for each replication. Recall that a DataOutputManager
is used to record model state updates into an output database13 (§ 4.5). The output data
from one AMCP is in the same database file. Hence the query statement must specify
the corresponding experiment and replication IDs. The output dataset together with
the previous replication datasets in the corresponding experiment are then evaluated
for point estimate convergence across replications (§ 6.1.1). And if the sequential pro-
cedure (with look ahead) is completed, the datasets from the experiment are compared
with the calibration dataset using the given objective function.

13We choose to use the Java H2 database (www.h2database.com). It is a light-weight, fast, open source
database system suitable to be used for model output logs.

184

http://www.h2database.com

6

6.3 Calibration Experiments

The LibrosCalibration gives all the statistical computing tasks to the DataCom-

parater. The latter is a component designed to use the R environment14 for statistics.
The task of assigning a new parameter configuration is given to a user specified search
or optimization algorithm; an example can be found in § 6.3.2.3. When the LibrosCal-
ibration obtains the new configuration, the latter is passed on to the corresponding
model parameters in the LibrosModel for the next experiment. In the event of ending a
calibration stage, the next stage (if any) is started after a stage initialization where some
conditions for calibration are set anew. Some examples of these conditions are stated
in § 6.2.1.

6.3 Calibration Experiments

Consider that we have a fixed set of data about service infrastructure, routes and time-
tables. Given these data input and the LIBROS model components as described in § 4.3,
the repeated executions of model generation (§ 5) always produce the same models, in
the sense that these models have the same structure and parameter configuration, and
hence the same model behavior (§ 4.3).

In real urban transport operations, when the service infrastructure, routes and time-
tables remain the same, the service outcomes seldom remain the same due to many
factors, i.a., traffic situation, location, driving behavior (TAHMASSSEBY 2009, VAN OORT

2011). The dynamics of these factors are uncertain in a LIBROS model. However, when
measurements of the service outcomes are available, the parameters that represent the
unmeasurable dynamic factors can be calibrated.

Many modern transport systems, particularly railway systems, are equipped with
sensor and GPS devices that are able to automatically collect data. HTM has abund-
ant data about vehicle trips, travel times, etc., of vehicle daily operations in their EBS
(Exploitatie Beheersingssysteem in Dutch) database (VELDHOEN 2009).

6.3.1 Case Description

In § 4.3.3, we explained the principle of vehicle movement modeling in which a max-
imum speed limit is used to set the upper bound of velocity calculation. If the calcu-
lation is with strict respect to the maximum allowable speeds15 (or speed limits) set by
the regulations, then all vehicle models would drive in the same way, which is undesir-
able for modeling urban light-rail operations as required by HTM. With the suggestions
from domain experts, a variable called maximum speed ratio (MSR) is used to intro-
duce variations in vehicle movement; we denote it as φ. A value of φ, let it be ϕ, is
randomly assigned to each vehicle model when it is generated at a source (§ 4.3.5.4).

14R is a powerful, open source environment for statistical computing and graphics widely used among
statisticians (www.r-project.org). We use a Java/R interface (JRI, www.rforge.net/JRI) to pass data between
Java and R, and to access R from Java.

15There are three categories of speed restrictions, in the city 35 km/h, city center 15 km/h, outside of city
50 km/h.

185

http://www.r-project.org/
http://www.rforge.net/JRI/

6

Model Calibration

When an area has a speed limit m̄ , then the effective maximum speed of a vehicle is
determined by m =ϕm̄ . For example, when ϕ = 1, then the vehicle drives with a max-
imum speed equal to the speed limit, and when ϕ = 1.1 or 0.9 then the vehicle drives
with a maximum speed 10 percent higher or lower compared to the speed limit. The ex-
perts suggest to use a normal distribution with bounded tails assuming that the “fast”
and “slow” drivers are symmetrically distributed.

During simulation, ϕ is adjusted according to the location of the vehicle. For ex-
ample, at busier areas where vehicles tend to drive slower and the driving speeds have
larger variances,φ should have a smaller mean and a larger variance compared to less
busy areas. Because successive stop-to-stop (distance) interval is a convenient unit of
measure that decomposes a total trip distance (from start to end terminals) into areas,
the association of φ to different areas is in a stop-to-stop manner. In the model, for
each stop-to-stop interval, the value ofϕ shall be adjusted according to the situation of
that area.

Specifically, the value of φ is first randomly generated from a Probability Density
Function (PDF) when a vehicle is generated at a source (§ 4.3.5.4); let us call this random
variable φ′. Because the normal distribution N is suggested, we have φ′ sN (µ,σ2).
During simulation, the value of φ′ is adjusted for each stop-to-stop interval in terms
of the location and the scale of the PDF. This means that the adjusted value of φ′ shall
have the same z -score (because of the normal distribution) asφ′.

Letϕ′j be the generated value ofφ for vehicle v j , andϕj,p-q be the (desired) adjusted

value for v j from stop p to stop q . Suppose that the latter value is fromN (µ′,σ′ 2)where
µ′ = ap-q+µ andσ′ = bp-qσ, ap-q being the location parameter and bp-q being the scale
parameter for the trip interval from stop p to stop q , then

Z (ϕ′j) = Z (ϕj,p-q)

ϕ′j −µ
σ

=
ϕj,p-q−µ′

σ′

ϕ′j −µ=
ϕj,p-q−ap-q−µ

bp-q

ϕj,p-q = ap-q+µ+ bp-q (ϕ
′
j −µ) (6.3)

Thus, we can know ϕj,p-q when we know the variables on the right hand side of Eq. 6.3.
Good values of these variables can be approximated through calibration.

6.3.2 Two Stage Calibration

Recall that variable φ defines a vehicle’s effective maximum speed m = ϕm̄ on the
speed limits (set by the regulations) whose values are known. It is reasonable to sus-
pect that m̄ is positively correlated with a vehicle’s speed or trip time. Hence, we can
compare, e.g, the corresponding stop-to-stop speeds from the model and from the em-
pirical data, and attempt to adjust the values of φ (or more specifically the values of
ap-q, bp-q, µ andσ) using the results of the comparison.

186

6

6.3 Calibration Experiments

Suppose that there are n stop-to-stop trip intervals in a LIBROS model, and the i -
th stop-to-stop speed from the model and from the EBS data are respectively Yi and
Ri ,∀i ∈ [1, n]. Let ai and bi be the i -th location and scale parameters in the model.

A two-stage procedure is designed for the calibration. At the first stage, µ andσ are
calibrated, and ai and bi are fixed with ai = 0 and bi = 1. This means that for each
generated vehicle model v j , a valueϕ′j ∈φ

′ sN (µ,σ2) is assigned and this value is not
adjusted at the stop-to-stop intervals. After each simulation experiment, the pairs of Yi

and Ri are compared (§ 6.3.2.1), and if necessary µ and/orσ are adjusted correspond-
ingly (§ 6.3.2.2 and § 6.3.2.3) for the next experiment.

At the second stage, µ and σ are fixed with the calibrated values, and ai and bi

are calibrated. At each stop-to-stop interval, ϕ′j ,∀ j = 1, 2, · · · , are modified such that
ϕj,i = ai+µ+ bi (ϕ′j −µ),∀i ∈ [1, n] following Eq. 6.3. The same as in the previous stage,
after each experiment, the pairs of Yi and Ri are compared (§ 6.3.2.1). If necessary, the
individual ai and/or bi are adjusted (§ 6.3.2.2 and § 6.3.2.3).

6.3.2.1 Data Comparison

In the sequential procedure, we useαi = 0.05, γ= 0.1, r0 = 5, k = 5 (§ 6.1.1). For the com-
parison of the two datasets Yi and Ri , their PDFs are examined. In § 6.1.2, we stated that
hypothesis test with t -statistic is stringent for comparing simulation output data and
system measurement (KLEIJNEN 1995, LAW 2007). They can be particularly restrictive
for transport applications where traffic conditions often have large variability (KIM et
al. 2005). The confidence interval approach (e.g., paired-t or Welch approach) provides
information of the magnitude of the differences between Yi and Ri (LAW 2007), but is
less suitable for an automatic procedure. Examining the PDF of the datasets rather than
directly examining each individual observation is a way to avoid the effect of small er-
rors (HOLLANDER and LIU 2008).

KIM et al. (2005) propose nonparametric (i.e., distribution-free) methods since they
do not require a priori assumptions about the distribution of the underlying popula-
tion. The Kolmogorov-Smirnov (KS) test is a nonparametric test (CONOVER 1971) used
for calibration studies such as in KIM et al. (2005) and LEE and OZBAY (2008, 2009) and
found suitable to capture characteristics of the observed travel time data. The KS test
is therefore used to compare Yi and Ri and the p -value of the KS test is used in the
objective functions (§ 6.3.2.2).

Use the Right Data Comparable datasets need to be queried from the simulation out-
put and EBS databases. This may seems to be obvious but can be overlooked some-
times. As mentioned earlier, the successive stop-to-stop driving speeds of the simula-
tion are compared with EBS data. In this case, the stop-to-stop trip intervals shall first
match. In § 3.3.2, mapping consistency (#5.) is identified as a data quality criterion.
When the two compared measures do not have the same identifiers, e.g., the stop IDs
in the infrastructure data (or timetables) do not match with those in the EBS data, the
corresponding mapping information needs to be prepared in advance.

187

6

Model Calibration

The time interval of the two datasets is another issue. For example, if we simulate
the morning-peak 7:00∼9:00 (and use the corresponding timetable entries), we prob-
ably want to use calibration data with comparable time interval. When the data is
abundant with many repeated measurements, we may wish to select a subset accord-
ing to the situation of the analysis. For example, the EBS data we have contains over
one year daily operational data. Then we can choose, e.g., the data from different sea-
sons to calibrate driving times (with corresponding seasonal timetables) characterized
by that season. And similarly, weekend or non-weekend data, peak or non-peak hour
data can also be analyzed separately. Analysts should pay attention that the data used
for model generation, e.g., the timetable data, also needs to correspond with the calib-
ration data16.

6.3.2.2 Objective Functions

Two objective functions are used for the two model calibration stages. After an experi-
ment, Yi and Ri ,∀i ∈ [1, n] are compared by the KS test (§ 6.3.2.1) to obtain n p -values,
i.e., pi = ks (Yi , Ri) ∈ [0, 1]. In the first stage, since ϕ′j is carried by a vehicle model v j

through its whole trip in a simulation run, the objective function f1 aims at the overall
“best match” between the output and EBS datasets.

First Stage Let P1 = (p1,1, p1,2, · · · , p1,n) and P2 = (p2,1, p2,2, · · · , p2,n) be two n-tuples of p -
values from the KS tests of two calibration experiments. We define a pairwise evaluation
function fe (p1,i , p2,i), i ∈ [1, n] on the corresponding p -values such

fe (p1,i , p2,i) =

0 when p1,i ≥αp ∧p2,i ≥αp or p1,i = p2,i = 0

1 when p2,i > p1,i = 0 or p2,i ≥αp > p1,i > 0

−1 when p1,i > p2,i = 0 or p1,i ≥αp > p2,i > 0

f ′e (p1,i , p2,i) otherwise

(6.4)

f ′e (x1, x2) =

0 when |x1− x2| ≤ d̄

1 when x2− x1 > d̄

−1 otherwise

(6.5)

whereαp is a specified significance level of the individual p -values, and d is a specified
accuracy threshold used to directly compare two values. In the test case in § 6.4, these
two values are αp = 0.05 and d̄ = 0.001. Intuitively, value “1” indicates a higher p -value
of p2,i , value “−1” a lower p -value, and “0” being equal.

Suppose that we are at the first stage k -th experiment where the model is ran with
parameter setting θk = (µk ,σk). After this experiment, Pk = (pk ,1, pk ,2, · · · , pk ,n) is eval-
uated against Pk−1 from the previous experiment. Let Ek = (ek ,1, ek ,2, · · · , ek ,n) be the

16The data, specially sensor data, often need to be preprocessed such as transformation and cleaning. The
related issues can be found in relevant literature. The EBS data we use for model calibration are all prepro-
cessed by the company.

188

6

6.3 Calibration Experiments

evaluation result where ek ,i = fe (pk−1,i , pk ,i) as defined above. Then the objective func-
tion in the first stage is simply defined as f1 :

∑n
i=1 ek ,i > 0 which means that the count

of the improved p -values shall be larger than that of the worsened p -values. If this
objective holds, then the next experiment for θk+1 = (µk+1,σk+1) remains in the same
stage, otherwise the calibration switches to the second stage. Note that in the latter
case, θk−1 = (µk−1,σk−1) are taken as fixed µ and σ values since the latest experiment
did not improve the p -values.

Second Stage In the second stage, the location and scale parameters are calibrated
on a stop-to-stop basis. The parameter sets θk ,i = (ak ,i , bk ,i),∀i ∈ [1, n] in each k -th
experiment are calibrated independently. The p -values pk ,i ∈ Pk are compared indi-
vidually with the specified significance level αp to determine whether the location and
scale parameters for the i -th stop-to-stop trip interval shall continue to be calibrated
in the next experiment. This means that, as in the first stage, we do not go for an “op-
timal” but a good enough configuration. After each k -th experiment, we shall find new
parameter settings for Θk+1 = (θk+1,1,θk+1,2, · · · ,θk+1,m | j ∈ [1, m], pk , j <αp , pk , j ∈ Pk) for
those stop-to-stop speeds that do not have a significant p -value. We hope to improve
the pk+1, j value by using the new configuration (ak+1,i , bk+1,i). The objective function
is hence defined as f2 : |Θk+1| = 0∨ k = k̄ where k̄ is a specified value of the maximum
number of experiments.

6.3.2.3 Parameter Search Algorithm

A simple parameter search algorithm is designed for calibration. The underlying prin-
ciple is intuitive, similar to that of the control variates method used for variance reduc-
tion (LAW 2007). We take advantage of the (positive) correlation between the effect-
ive maximum speed m = φm̄ in stop-to-stop trip intervals and the respective driving
speed. It is reasonable to suspect that if the value of m is adjusted higher or lower, the
driving speed becomes higher or lower correspondingly.

Suppose that Yi is the i -th stop-to-stop speed from a calibration experiment and Ri

is the corresponding EBS data. Because the objective is to match the PDF of Yi to that
of Ri , we can try to bring the location and scale of Yi towards those of Ri by adjusting
the location and scale of φ. For example, if the location of Yi is to the left of Ri , we can
adjust the location of φ upwards (referring to the x -axis) by a certain amount; and if
the scale of Yi is larger than that of Ri , we can scale downφ.

To compare the location and scale of Yi and Ri , their mean (µ) and standard devi-
ation (σ) can be used because µ and σ are the location and scale parameters for the
normal distribution. This does not mean, however, we have to make any distribution
assumption, sinceµ andσ are only used to assess the “direction” of difference between
the two densities. At the same time, we suspect that the bandwidth h from kernel dens-
ity estimation (KDE) (SHEATHER and JONES 1991) of the PDF can also be a good measure
for scale parameter differences. Given the nature of KDE, h andσ are certainly correl-
ated. A comparison test of the two is presented in § 6.4.1.

189

6

Model Calibration

Suppose that after an experiment, the location and scale measures of Yi (from sim-
ulation data) are LY = (lY 1, lY 2, · · · , lY n), SY = (sY 1, sY 2, · · · , sY n). The corresponding Ri

(from EBS data) has LR = (lR 1, lR 2, · · · , lR n), SR = (sR 1, sR 2, · · · , sR n). We compute the dif-
ference measures DL = (dl 1, dl 2, · · · , dl n) and DS = (ds 1, ds 2, · · · , ds n) such that ∀i ∈ [1, n]

dl i = f ′e (lR i , lY i)

ds i = f ′e (sR i , sY i) (6.6)

in which f ′e is as defined in Eq. 6.5 with d̄ = 0.05. Simply put, lY i − lR i and sY i − sR i are
used to compute the direction of differences17.

First Stage In the first stage, since we want to adjust the location and scale of φ′ s
N (µ,σ2) to improve the overall p -value, we shall adjust them towards the “direction of
the majority”. For example, when there are more Yi ’s that have too right locations (dl =
−1) than too left locations (dl = 1), we shall moveµdownwards by a predefined amount
(we call this amount calibration step); on the other hand, when there are more Yi ’s that
have correct locations (dl = 0) than lefts and rights, then µ shall remain unchanged.

Let D = (di), i ∈ [1, n] be DL or DS . Two subsets of D are defined such that Dh =
(dp |dp = 1, dp ∈ D) and Dl = (dq |dq = −1, dq ∈ D) which contain elements that have
high value “1” or low value “−1” respectively. The direction of the adjustment of µ orσ
is defined such

f d (D) = (−y | cy =max{cx }, x , y ∈ {−1, 0, 1}) (6.7)

where c−1 = |Dl |, c1 = |Dh |, c0 = |D | − ch − cl . Intuitively, it means that the direction18

to adjust µ or σ shall be opposite to that of the most count of the high, low and equal
location or scale parameters. The parameter configuration for the next experiment is
then defined as

µk+1 =µk +∆µ f d (DL)

σk+1 =σk +∆σ f d (DS) (6.8)

where ∆µ and ∆σ are specified calibration steps for µ and σ. The values used in the
test case are ∆µ = 0.05 and ∆σ = 0.025. The initial values of µ and σ are µ1 = 0.8 and
σ1 = 0.1 (for the first experiment).

Second Stage In the second stage, the adjustments of µ andσ (or more precisely the
adjustments of ai and bi) for each stop-to-stop trip interval i are calibrated independ-
ently. Suppose that after the k -th experiment, we need to find parameter configuration
for Θk+1 = (θk+1,1,θk+1,2, · · · ,θk+1,m) where θk+1,i = (ak+1,i , bk+1,i),∀i ∈ [1, m]. The dir-
ection of the adjustments of ai or bi is opposite to the direction of the differences of

17Again, value “1” indicates a higher value of lY i or sY i (of simulation data) compared to lR i or sR i (of EBS
data), value “−1” indicates a lower lY i or sY i , and “0” being equal.

18“1” being larger values (i.e., move upwards or scale up), “−1” being smaller values (i.e., move downwards
or scale down), and “0” being no adjustment.

190

6

6.4 A Calibration Test Case

comparing Yi and Ri only, i.e., f d (di) =−di where di is dl i or ds i (see Eq. 6.6). The new
values of ai or bi for the next experiment are

ak+1,i = ak ,i +∆a f d (dl i)

bk+1,i = bk ,i +∆b f d (ds i) (6.9)

where ∆a and ∆b are specified calibration steps for a and b . The values used in the
test case are∆a = 0.05 and∆b = 0.1. The start values of a1i or b1i are a1i = 0 and b1i = 1
(for the first experiment in the second stage).

6.4 A Calibration Test Case

This section presents a calibration test case using the two stage procedure discussed in
§ 6.3.2. We choose a small model of the HTM service in The Hague composed of ten
stops and eight stop-to-stop trip intervals in two directions. The stop names and IDs
are listed below. Two sources are placed before Malieveld (2810) and Riouwstraat (505)
respectively which generate vehicle models according to the corresponding timetables.
Recall that, in a source, a vehicle model v j is assigned with a MSR ϕ′j ∈ φ

′ sN (µ,σ2)
and this ratio is modified by ai and bi at each stop-to-stop interval i ∈ [1, 8] so that
ϕj,i = ai +µ+ bi (ϕ′j −µ) (§ 6.3.1). After each calibration experiment, the distributions
of the eight interval driving speeds Yi from the model are compared with those of the
corresponding Ri from the EBS database.

Riouwstraat
Laan Copes v

Cattenburch Javabrug
Dr
Kuyperstraat Malieveld

506
4←− 513

3←− 519
2←− 2309

1←− 2810

505
5−→ 514

6−→ 520
7−→ 2310

8−→ 2811

6.4.1 Measures of Scale Parameter Differences

In § 6.3.2.3, we mentioned that standard deviationσ and kernel bandwidth h both can
be measures of scale parameter differences between Yi and Ri . To assess their differ-
ence, we ran two separate AMCPs with σ and h respectively while the other (model
and calibration) settings are identical. The simulation time19 is 7:00∼9:00 a.m., which
is however not particularly important in this case as we intend to compare the effect of
σ and h . Two weeks (week days only) driving speed EBS data of September 2011 that
corresponds to the simulation time and stop-to-stop intervals are queried for model
calibration.

19The simulation time refers to the effective simulation time which excludes the warmup. Since the vehicle
models are generated at the sources, they need some time to disperse over the network. The warmup length
depends on the size of the network. Small models with around 5∼10 successive stops needs around 10∼20
minutes. Larger models comparable to the size of the The Hague network model take around 1 hour. Because
we use an output database to log the state updates in the simulation, we can simply adjust (the start time in)
the queries to obtain the desired datasets for statistics.

For the test case, no warmup time is required since the model contains no crossings.

191

6

Model Calibration

The maximum number of experiments in an AMCP is set to be k̄ = 10 (§ 6.3.2.2).
It turned out that each AMCP indeed ran 10 experiments (cf., § 6.4.2). We therefore
obtained 80 p -values from 80 KS tests of Yi and Ri for each AMCP. The differences of
both 80 pairs of the datasets are plotted as shown in Figure 6.3; the difference meas-
ures are (in order of the legend labels) bandwidth, standard deviation, minimum, 25

‐4

‐3

‐2

‐1

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p‐value

Calibration with Standard Deviation

R
el

at
iv

e
Er

ro
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p‐value

Calibration with Bandwidth

bw

sd

min

25 per

mean

75 per

max

skewess

kurtosis

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

0 0.01 0.02 0.03 0.04 0.05

p‐value

Calibration with Standard Deviation

R
el

at
iv

e
Er

ro
r

0 0.01 0.02 0.03 0.04 0.05

p‐value

Calibration with Bandwidth

bw

sd

min

25 per

mean

75 per

max

skewess

kurtosis

Figure 6.3: Relative errors between the model output and the EBS data in the calibration with
standard deviationσ or kernel bandwidth h as a measure of scale parameter differences

192

6

6.4 A Calibration Test Case

percentile, mean, 75 percentile, maximum, skewness and kurtosis. A vertical line con-
nects the measures from the same experiment. It is aligned with the p -value from that
experiment. The first two plots have p ∈ [0, 1], and the last two zoom into p ∈ [0, 0.05]
since 0.05 is the significance level. Note that we did not use absolute values, i.e., Error=
(Model−EBS)/EBS, since the “direction” of the differences are of interest.

Similarities and Differences of Outputs In general, using σ or h as a measure of scale
parameter differences gives similar results in the test. In both cases, the model output
data has good central tendency. The mean, 25 percentile and 75 percentile are all piled
up (and somehow hidden) around the zero x -axis. This is understandable since the µ
difference is used to adjust the location parameter. The differences of maximum values
are also minor which can be explained by the physical constrains of vehicle driving.
The model, however, systematically has higher minimum values which make the largest
difference among all the measures (see the dark dots at the top of the plots) with a few
exceptions. This means that the EBS data20 has longer left tails. Since the model does
not simulate accident or exceptional situations, this outcome is not surprising either.
The EBS data indeed often has negative skews. As the model output data is less negative
skewed, the relative error of the skewness is negative too.

There are some differences among the two calibration results too. The relative error
of the minimum values in the calibration with standard deviation σ is slightly lower
than that in the calibration with bandwidth h , while the relative error of the kurtosis
in the former is slightly higher than that in the latter. This means that using σ is more
in favor of the tail values and using h is more in favor of the peakedness. This result is
consistent with the characteristics ofσ and h . A largeσ results from large variances. If
some data has large variances and long tails, the density curve would be more peaked,
which means a relative small h , compared to the data that has the same variances but
shorter tails. In such cases, it would make difference whether to useσ or h as a measure
of scale parameter differences.

More Discussion on Differences We can illustrate this analysis from the calibrated
parameter values and their outcomes in the test case. Table 6.1 lists the calibrated (µ,σ)
and (ai , bi) and the resulting p -values from KS tests, i.e., from the last (9-th) experiment
of each AMCP. Note that (µ′,σ′) are held in source models, and stop-to-stop intervals
hold (ai , bi) values. The (shaded) modified (µ,σ) values are listed for the convenience
of comparison. They are calculated with µ j =µ′+a j andσ j = b jσ

′.
Comparing the two (shaded) columns of modified (µ,σ), there are differences be-

tween the results of the two calibrations. For example, the 6-th interval, 514→ 520, has
(0.70, 0.12) calibrated withσ and (0.70, 0.09) calibrated with h , whereσ6 in the former is
greater. The p -value of the former is 0.026 while the latter has 0.613. The latter is better
evaluated by the KS test. Recall that αp = 0.05. (This however does not mean that the
latter result is better in a general sense. The KS test is known to be more sensitive near
the center of the PDF than at the tails.)

20Note that we queried four weeks data.

193

6

Model Calibration

Calibration with Standard Deviation Calibration with Bandwidth

MSR (µ,σ) (ai , bi) p (µ,σ) (ai , bi) p

(µ′,σ′) at source (0.8, 0.10) – – (0.75, 0.10) – –

M
o

d
ifi

ed
(µ

,σ
)

1 2810→2309 (0.75, 0.11) (-0.05, 1.10) 0.120 (0.75, 0.10) (0.00, 1.00) 0.817

2 2309→519 (0.75, 0.11) (-0.05, 1.10) 0.079 (0.75, 0.10) (0.00, 1.00) 0.473

3 519→513 (0.75, 0.11) (-0.05, 1.10) 0.074 (0.75, 0.09) (0.00, 0.90) 0.334

4 513→506 (1.20, 0.18) (0.40, 1.80) 0.000 (1.10, 0.14) (0.35, 1.40) 0.000

5 505→514 (0.80, 0.11) (0.00, 1.10) 0.211 (0.75, 0.10) (0.00, 1.00) 0.643

6 514→520 (0.70, 0.12) (-0.10, 1.20) 0.026 (0.70, 0.09) (-0.05, 0.90) 0.613

7 520→2310 (0.75, 0.11) (-0.05, 1.10) 0.313 (0.75, 0.10) (0.00, 1.00) 0.324

8 2310→2811 (0.80, 0.10) (0.00, 1.00) 0.288 (0.75, 0.10) (0.00, 1.00) 0.104

Table 6.1: Calibrated (µ,σ) and (ai , bi) and the p -values using standard deviation σ or kernel
bandwidth h as a measure of scale parameter differences

p=0.026 p=0.613

Figure 6.4: Density functions of the speed (m/s) of stop interval 514→ 520 compared with that of
the corresponding EBS data: model calibration with standard deviation σ or kernel bandwidth
h as a measure of scale parameter differences

194

6

6.4 A Calibration Test Case

Figure 6.4 shows the PDFs of the two model outputs (of interval speed) compared
with that of the EBS data. The PDF of the EBS data has its density peak at a bit over
0.6 (solid outlined). The model output confirms that the speed is positively correlated
with φ. Larger σ value of φ resulted in larger σ value of Y . The calibration with σ
pulls the model output density more towards the tail with a peak at around 0.4, while
the calibration with h pulls the density towards the peak at around 0.55. Comparing
the other output interval speed pairs shows similar results for EBS data that has large
variances and long tails.

Remark The choice of using standard deviationσ or kernel bandwidth h as a measure
of scale parameter differences should be made according to the goal of the simulation
study. σ can be good when the tail values shall be put into consideration for goodness-
of-fit. Examples are risk analysis and assessment, studies that shall include the “un-
common” situations. In such cases, a test statistic that is sensitive to the tail values
shall be used instead of the KS test, e.g., a modified KS test (MASON and SCHUENEMEYER

1983) or Anderson-Darling test (ANDERSON and DARLING 1952).
In the LIBROS simulation model, there are no “build-in” disturbances although they

can be introduced at a later stage as a model component. The vehicle models in the
test case are driving under undisturbed situations. In this case, it is reasonable not to
consider the tail values for the calibration of MSR. In general, using h can be good when
analysts choose not to include the tail values for analysis but concentrate on the values
which represent the “common” situations. In the design and analysis of timetables, e.g.,
percentile driving time values are often chosen as a reference (TAHMASSSEBY 2009, VAN

OORT 2011) where the disturbed situations are excluded.

6.4.2 Bounds of Parameter Configuration

Calibration tries to align the model outputs with the measurements of real systems
in order to obtain good parameter configurations. This is a two-way street which re-
quires analysts to respect the model and to respect the measurements at the same time
(COOLEY 1997). On the one hand, the parameter configuration should be set such that
the model behavior matches the features of the measured data in as many dimensions
as there are unknown parameters (ibid.). On the other hand, the configuration should
be restricted with bounds that are consistent with the existing theory and the domain
knowledge (LAW 2007). Essentially, the goal of calibration is to find good parameters;
trying to match outputs with measurements is a means.

Poor Match of Datasets In the previous comparison (§ 6.4.1), there is an example of
poor match of model output and system measurement. It is at the 4-th interval 513→
506 where p = 0 (Table 6.1). We will only discuss the case calibrated with h . (The σ
case is the same.) At the 4-th interval, µ and σ have large location shift and scaling
(a4 = 0.35, b4 = 1.40), but the output KS test match is very poor. This indeed can be

195

6

Model Calibration

h skew kurt µ σ min 25% 50% 75% max

Y4 0.089 -1.871 3.737 8.591 0.388 7.061 8.534 8.710 8.835 8.964
R4 0.196 0.620 2.787 8.843 0.840 5.707 8.348 8.885 9.280 12.217

Table 6.2: Data descriptions of Y4 (model, 10-th experiment) and R4 (EBS)

confirmed by the data descriptions of Y4 (model, 10-th experiment) and R4 (EBS) shown
in Table 6.2.

As stated in § 6.3.1, φ is defined as maximum speed ratio where m = φm̄ . The
“ideal” value of ϕ ∈ φ is 1, which means that drivers drive strictly according to speed
limit regulations. The randomness in φ is represented by N (µ,σ2) which has initial
values (0.8, 0.12) and then adjusted by (ai , bi) for location and scale. A question is then
what is the (upper) bound of φ. We got the information from experts that in free lane
driving areas (where the maximum allowable speed m̄ is 50 km/h; see § C.1) the actual
speed may get to as high as 60 ∼ 70 km/h. Therefore, for experimental purposes, we
used [0.5, 1.5] as the bounds ofφ in the test case such that if an modifiedϕ ∈φ exceeds
ϕmax = 1.5, it is set to ϕmax, i.e., the exceeded value is cut-off.

After running the AMCP, the result (Table 6.1, Calibration with Bandwidth) shows that
most values of ϕ ∈ φ do not exceed µ+ 3σ < 1.1, except for those in the 4-th interval
which has a large right shift of location and up-scaling, and poor match.

The PDFs of Y4 through the experiments (ϕ ∈ [0.5, 1.5]) are shown by the left plot in
Figure 6.5. The situation is that R4 has a location which the simulation model can not
produce with the specified bound ϕmax = 1.5. Since µY 4 is systemically smaller than
µR 4, the calibration tries to push Y4 upwards by a larger a4 in each experiment (in stage
two). But since the adjusted ϕ values that exceed ϕmax are cut-off, σY 4 gets smaller.
So the calibration also tries to scale up Y4 by a larger b4 in each experiment, obviously
without any success.

Discussion Is the upper bound of φ too low? The answer is positive if we only look
at the two datasets and try to match them. With the bound ϕmax = 1.5, the model can
produce Y4 whose highest value is just over the average of R4 (left plot, Figure 6.5). This
means that ϕmax has to be significantly larger if we want to match the two datasets.
Indeed, when we set ϕmax = 2.0 and ran the AMCP, the result has a better match (right
plot, Figure 6.5). But this loosened upper bound means a doubled speed limit, which is
questionable when we intuitively consider the reality.

Is the model wrong in some way? We calculated the speed analytically with the up-
per bound and the interval distance (which is ∼230 meters). The calculation agrees
with the model output. Then we checked the mapping consistency, e.g., whether the
output and EBS database queries use the corresponding driving time and stop interval,
and whether the two stop distances are the same. No sign of error was found.

This makes us wonder the correctness of the R4 dataset. We queried more R4 data-
sets for other times, e.g., evening-peak, off-peak, weekend. Their PDF locations are so

196

6

6.4 A Calibration Test Case

ϕ ∈ [0.5, 1.5] ϕ ∈ [0.5, 2.0]

Figure 6.5: Density functions of the speed (m/s) of stop interval 513→ 506 compared with that
of the corresponding EBS data: calibration with bound ϕ ∈ [0.5, 1.5] or ϕ ∈ [0.5, 2.0]

high that they cannot be matched by the model ifϕmax = 1.5. The high value is counter
intuitive, however, because when the distance is only 230 m, vehicles cannot drive too
fast if they halt at the stops.

We turned to the experts on this issue. The driving time of this interval according to
the (non EBS) information they have is∼30 seconds in average which makes an average
speed ∼7.7 m/s. This value is close to the model output (see the first density curve in
the left plot in Figure 6.5). As for the high values of R4, we may explain it as following.
When a vehicle does not halt at a stop, the detection of passing the stop will be only after
60 meters. This is also true for other stops, but since the distance of the 4-th interval
is very short (230 m), it makes a significant difference in this case whether the speed
is calculated with the time driven over 230 or 170 m. If we do a reversed calculation
with the two distances, the result supports our explanation, e.g., 11 m/s in EBS would
become 8.13 m/s which is a reasonable maximum speed.

Remark The bounds of parameter configuration constrain the search space. They
should be guided by and consistent with relevant theory and domain expertise. A loos-
ened bound may potentially improve the goodness-of-fit of model output data to sys-
tem observations. But analysts should be aware of the validity of the bound itself. This

197

6

Model Calibration

in some way also shows a potential danger of using free parameters, a subject often dis-
cussed in literature (COOLEY 1997, SCHUNN and WALLACH 2005), since some free para-
meters do not have known bound.

6.4.3 Validation of Calibration Results

After model calibration, modelers must ask whether the calibration produces a valid
model for the system or whether the model is only representative of the particular data-
set used for calibration (LAW 2007). One commonly used approach to validate the cal-
ibration results is to use two independent datasets, one for calibration, i.e. the calib-
ration dataset, and the other one for validation, i.e. the valiation dataset (ibid., BANKS

et al. 2010). We used this approach for the validation of the test case.

6.4.3.1 Experimental Setup

In this experiment, we again simulate the morning-peak 7:00∼9:00 a.m. The driving
speeds of the aforementioned stop-to-stop intervals from the model are compared with
those from the EBS data. The calibration dataset and the validation dataset are from the

Figure 6.6: Density functions of the delays of the vehicle arrival times (in second) at the stops
Maliveld (2810) and Riouwstraat (505) in the odd and even weeks of October 2011

198

6

6.4 A Calibration Test Case

two odd and the two even weeks (week days only) of October 2011 respectively. § D.1.1
shows the density function plots of the EBS data (the odd vs. even weeks per stop-to-
stop interval).

In both cases, the delays of the vehicle arrival times (tdelay = tactual− tscheduled) at the
stops Maliveld (2810) and Riouwstraat (505) of the corresponding time period in the
EBS are used to fit the PDFs of the delays of vehicle generation times in the two source
models. Figure 6.6 shows the plots of the density functions. Since there are two service
lines (8 and 9) operating between these stops, their PDFs are fitted separately. The stop
505 has shorter distances after the terminals than the stop 2810. Therefore the vehicles
arrived in the direction of the former are more punctual than those of the latter (the
lower two vs. the upper two plots). The PDFs are used to generate vehicle delay times
(with reference to the scheduled times) of the two service lines at the source models for
calibration and for validation respectively (the left two vs. the right two plots).

For the calibration, the kernel bandwidth is used as the measure of scale parameter
differences (§ 6.4.1). The parameter settings for the calibration experiments are: ∆µ=
0.025, ∆σ = 0.025 with initial values µ1 = 0.8 and σ1 = 0.1; ∆a = 0.025 and ∆b = 0.1
with initial values a1i = 0 and b1i = 1 (§ 6.3.2.3); the bound of ϕ is [0.5, 1.5] (§ 6.4.2).
The KS test is used as the goodness-of-fit measure in the calibration and the validation
(§ 6.1.2 and § 6.3.2.1).

6.4.3.2 Experiment Results

Table 6.3 shows the results of the experiments. (The density plots of the calibration ex-
periments can be found in § D.1.2). For the reasons explained in § 6.4.2, we shall not
consider the results of the 4-th interval 513→ 506. The p -values listed under calibra-

Calibration Validation

MSR (µ,σ) (ai , bi) p p

(µ′,σ′) at source (0.750, 0.10) – – –

M
o

d
ifi

ed
(µ

,σ
)

1 2810→2309 (0.725, 0.10) (-0.025, 1.00) 0.482 0.908

2 2309→519 (0.725, 0.10) (-0.025, 1.00) 0.090 0.067

3 519→513 (0.750, 0.10) (0.000, 1.00) 0.524 0.130

4 513→506 (0.925, 0.10) (0.175, 1.00) 0.000 0.000

5 505→514 (0.675, 0.08) (-0.075, 1.00) 0.326 0.269

6 514→520 (0.650, 0.09) (-0.100, 0.90) 0.279 0.098

7 520→2310 (0.675, 0.10) (-0.075, 1.00) 0.747 0.915

8 2310→2811 (0.750, 0.10) (0.000, 1.00) 0.054 0.479

Table 6.3: Calibrated (µ,σ) and (ai , bi) and the p -values using EBS data from the odd weeks;
validated with EBS data from the even weeks in October 2011

199

6

Model Calibration

tion are from the final calibration experiment. After the calibration, the resulting (µ′,σ′)
in the source models and (ai , bi) of the stop-to-stop intervals are used to set the model
parameters in the experiment for validation. The p -values of the KS tests from the val-
idation experiment support the null hypothesis that the interval speeds simulated by
the calibrated model for the test case have similar density functions (except for the 4-th
interval) as the corresponding EBS data.

200

7
Expert Validation and

Evaluation

D
URING THE RESEARCH and model development process, we closely followed

guidelines of ways to build valid and credible models as discussed in M&S
literature (e.g., LAW 2007, BANKS et al. 2010). On the one hand, we researched
established theories, e.g., in the domain of rail (and public) transport, graph

theory (and graph transformation in particular), and simulation modeling. On the other
hand, we actively interacted with subject-matter experts from HTM, take advantage of
their knowledge, and obtained first-hand high-quality information on the system struc-
ture and system behavior of modeling interest.

The author was present at HTM at a weekly basis, regularly met and interviewed ex-
perts from different departments, conducted formal and informal meetings and struc-
tured walk-through, where various issues concerning the system structure and beha-
vior and the corresponding model design had been discussed and revised. In this chap-
ter, we will not present the intermediate steps but the final results of the model valida-
tion and evaluation of this research.

Since the research objective is to provide a method that automatically generates
simulation models with flexible structures using existing data, the evaluation needs to
address two major issues:

1. Can the AMG method generate simulation models using data that represent dif-
ferent system structures?

201

7

Expert Validation and Evaluation

2. Are the generated models valid representations of the corresponding systems?

The first issue can be examined with the developed model generator (§ 5) provided
with different infrastructure data that complies with the representational conventions
discussed in § 5.2.2. As the main objective in this research, the AMG method is thought
of from the onset and is divided into research questions addressed by the fives con-
structs we proposed (§ 3.1), each of which being presented through the chapters.

The second issue, concerning the structural validity (§ 2.1.4) of the generated mod-
els, is also a way to evaluate the AMG method. We choose to use expert validation, since
domain experts have good knowledge of the system structure and behavior, and can
make good judgment on whether a model resembles an original system (BALCI 1998,
LAW 2007) .

7.1 Model Validation Procedure

Expert Panel For the purpose of model validation, the project management of HTM
chose a panel consists of nine domain experts. They are managers and senior staffs who
have extensive experience and solid knowledge of the HTM transport system including
policy, planning, process, product and operations (see § D.2).

Following the advices of the experts, five representative locations in the The Hague
light-rail network are chosen for model validation. Each location is supplied with the
corresponding infrastructure and service data as discussed in § 5.2 and § 5.3. We gener-
ated simulation models with these data and conducted a (final stage) model validation
session with the expert panel.

Model Description The five locations are chosen because of their representative or
complex infrastructure layouts and busyness in operations:

(1) Wouwermanstraat

(2) Station Hollandspoor (Station HS)

(3) Rijswijkseplein

(4) Bierkade

(5) Central Station (Station CS)

Their infrastructure layouts are shown as model animation snapshots in § C.3. Loc-
ations (1) and (4) are examples of “Y” and “T” crossings (§ 5.2.3.2) respectively, which
are two common urban rail infrastructure composites. Misc-crossings, turnouts and
diamond crossings (§ 5.2.4.1) are used in the model generation of the other three loc-
ations. Each crossing model has a control unit (§ 4.3.4.5) that coordinates signals and
points in that crossing (§ 5.3.1.3). The vehicle models (generated during simulation)
are as specified in § 4.3.3. The vehicle to vehicle and vehicle to infrastructure commu-
nication mechanism is as specified in § 4.3.1.

202

7

7.1 Model Validation Procedure

Model Animation and Legend Animation is an often used means of model present-
ation in expert validation (GONZALEZ 2010). Since the animation in LIBROS has good
rendering of model state transitions and interactions (§ 4.5), we chose to record the
model animations of the above mentioned five locations and present the videos to the
expert panel. An animation legend (§ B.3) is prepared to explain how certain animation
features are related to the model states.

Validation Questionnaire A questionnaire (§ D.3) is designed in connection with the
animation videos. It is composed of five sections each of which contains questions
about the model behaviors in the corresponding simulated locations. The questions
concern:

◦ vehicle models’ acceleration and deceleration behavior and stopping position,

◦ vehicle models’ driving and halting behavior (in terms of interaction),

◦ sensor and point models’ behavior, and

◦ general questions such as whether abnormal model behaviors are observed.

The infrastructure models have a generated CCH (§ 5.1.1). The misc-crossings do
not have pre-specified structural patterns (§ 5.2.4.2). The control units (§ 4.3.4.5) in
the crossing models have automatically configured check tables (§ 5.3.1.3). The vehicle
models use DSDEVS connecting to the infrastructure models (§ 4.3.5.3) which form the
backbone for the model communication mechanism (§ 4.3.1). All these elements are
relevant to model structures with affect model validity. Only the correct generation of
these elements with valid atomic model behaviors as a whole can yield valid model
behaviors and interactions as a whole. Therefore, we designed specific questions about
the model behaviors and interactions in order to evaluate the structural validity of the
models.

Validation Procedure The procedure of the validation session is the following. The
animation videos (§ C.3), legend (§ B.3) and questionnaire (§ D.3) were first sent to the
individual panelists. They had about two weeks time to complete the questionnaire.
Upon the return of the questionnaires, we studied their feedback.

Short after the questionnaire evaluation, a group meeting with the panelists was
carried out. We started with a short presentation, explained conceptually the model
generation procedure and the structure of the simulation model to the panelists. Some
small examples of model communications and crossing controls were also presented.
The meeting proceeded with in-depth discussions on the model behaviors and inter-
actions while demonstrating the animation videos, and then with open discussions on
the model’s structural validity. Although the objective of the session was validation,
through the meeting it was also possible to get some feedback from the panelists on
the further development and potential use of the simulation model.

203

7

Expert Validation and Evaluation

7.2 Expert Validation Results

This section reports the results of the session meeting with the panelists. The discus-
sion covers the content of the questionnaire, so we will not report the results of the
questionnaire in a separate part.

7.2.1 Driving Behind A Vehicle

Questions 1, 7 and 19 are related to a vehicle’s driving behavior in terms of deceler-
ating and stopping behind another vehicle (1) or following closely (7) or cruising (9)
behind another vehicle. (In § 4.3.3.3, the principle of vehicle movement computation
is explained.) The movements, as can be observed in the videos related to these ques-
tions, are in principle correct. But several panelists expressed their concern that in the
movement related to Question 7, the second vehicle follows too closely and perfectly
to the preceding vehicle. It is clearly caused by the “perfect” numerical calculation of
the movement. This closeness does not affect much the driving time but does negat-
ively affect the model credibility. The discussion was then extended to the configuration
of vehicles’ following-distance in the model in general. We agreed upon a following-
distance allowing two seconds reaction time and with a minimum of five meters.

Follow-up We adjusted the configuration of vehicles’ following-distance accordingly.

7.2.2 Double Halting at Stops

Vehicle models’ halting behaviors can be observed in the animation videos of all five
locations, and they are asked by questions 3 (b) and 4. The halting times at the stops
are modeled by the corresponding probability distributions whose configurations are
defined by HTM experts. Although the panelists all agree that the configurations could
be improved using EBS data, they also acknowledge that this refinement shall be at-
tributed to future work, while this research focuses on the AMG of model structure and
behavior. Then vehicles’ double halting behaviors are discussed. Double halting refers
to a vehicle’s halting for a second time at a stop which has more than one halting places.
Figure 7.1 shows an example at Wouwermanstraat (Location 1) where two vehicles (V1

and V2) are halting one after another. As we can observe, the stop has two halting places
such that the stop is longer than, e.g., the stop on the other side where a single vehicle
is halting.

When a vehicle arrives at a double-halting-place stop, it may only be able to halt at
the second halting place (which is the case of V2). Afterward, when the vehicle gains
access to first halting place (where V1 is), it may halt there for a second time for the
convenience of passenger boarding. According to the panelists, there are about 15 stops
that have more than one halting places in the The Hague light-rail network, but at the
time of this validation session there is still no formal regulation of whether the vehicles
must, should best or shall not have double halting at these locations. In practice drivers
often do so when there are passengers arriving.

204

7

7.2 Expert Validation Results

V1

V2

Figure 7.1: Double halt-
ing places: an example at
Wouwermanstraat

Follow-up We modified the vehicle model such that it has a configurable double halt-
ing behavior. The default configuration is to have double halting while this can also be
disabled.

7.2.3 Boundary Locations of Crossings

Questions 2, 8, 9, 10 and 18 ask about senor (or point) behaviors and vehicles’ waiting
positions at the corresponding crossings. The intention of these questions is to check
the suitability of the boundary locations of the generated crossings and the effect. In
§ 5.3.1.2, the principle of model instantiation of a crossing is explained with an exam-
ple. A lineside signal is added to each entry of a crossing model, i.e., it is right “at” the
start node of the track segment that leads to a (facing, trailing or crossing) point (see,
e.g., Figure 5.19 D). This means that the “physical position” of the signal depends on the
length (and location) of this track segment which is transformed from the correspond-
ing entry node of the hyperedge. Since a vehicle waits in front of a signal, the length of
this track segment affects the waiting position of the vehicles.

Does this matter? Sometimes. Figure 7.2 (A) illustrates an example at Bierkade (Loc-
ation 4). It is a “T” crossing with three lineside signals (LS1 ∼ LS3). The location differ-
ences of LS1 and LS2 (in terms of meters) obviously do not influence much the simula-
tion output. However, the location of LS3 can make a difference because it is short after
a stop (animated as red outlined track).

Why does this matter? When a vehicle waits at LS3 for another vehicle to pass, the
waiting time counts into the “gross” driving time between two stops. But in fact, the
vehicle shall wait at the stop (i.e., the location of LS3 shall be pulled backwards to LS′3),
by which this waiting time would be counted into the halting time instead of the “gross”
driving time. This time calculation difference can be significant when the stop is at a

205

7

Expert Validation and Evaluation

busy location. Figure 7.2 (B) illustrates another example at Station HS (Location 2), in
which the waiting vehicle (at LS) has a large part of its body outside of the stop. For
the same reason, the position of LS shall be at LS’, so do the lineside signals next to the
other three stops in this illustration.

Follow-up One way to solve this problem is to modify the model generation such that
for a crossing hyperedge that is short behind a stop hyperedge, the corresponding entry
(track) vertex of the former shall be replaced with the track vertex that is attached to
the exit vertex of the track hyperedge. This can be added into transformation step 2
(§ 5.2.4.1) as a final sub-step (ix).

1

2

3
3

(A) “T” crossing at Bierkade (B) Misc-crossings at Station HS

Figure 7.2: Boundary locations of crossings

Figure 7.3: Adjusted boundary loca-
tions of misc-crossings at Station HS

206

7

7.2 Expert Validation Results

Another way is to modify the CAD data. We can prolong the corresponding track
entity that will become the entry vertex of the crossing, and connect it directly with
the stop entity (§ 5.2.2) where we wish to place the signal. This means that any track
entity that was in between must be removed. We chose this solution since it is sim-
pler, and modified the CAD data accordingly. Figure 7.3 shows an example of the im-
proved model generation outcome at Station HS. The arrows in the figure indicates the
repositioned signals (gray dots) which are the adjusted boundary locations of the misc-
crossings. Compared to the corresponding signals shown in Figure 7.2 (B), the adjusted
positions were “pulled back” to be right at the ending positions of the stops.

7.2.4 Search Distance of Misc-Crossings

Question 8 refers to a situation that is a bit different than those of the other questions
mentioned in § 7.2.3. As illustrated in Figure 7.4 (A), at Station HS a vehicle is waiting
at a crossing (where the signal position is indicated by the arrow) for another vehicle to
pass first. As stated in § 7.2.3, the vehicle shall wait at the stop (behind it). But in this
case, the essential problem is not the same as those discussed in § 7.2.3.

In Figure 7.4 (A), one can observe that the waiting vehicle is lying on a crossing point
(where it would block other vehicles to pass), while it is waiting in front of a signal that
guards a trailing point. This means that the crossing point and the trailing point are not
merged into the same misc-crossing when they should. Similar problems are found
at Rijswijksplein (Location 3). We suspect that the value of the search distance in the
misc-composite finding (MCF) algorithm (§ 5.2.4.2, bounded path distance b = 10) is
too short.

(A) Misc-crossings at Station HS
Search distance 10 meters

(B) Adjusted misc-crossings at Station HS
Search distance 20 meters

Figure 7.4: Search distance difference of misc-crossings – an example at Station HS

207

7

Expert Validation and Evaluation

Follow-up We adjusted the configuration of the bounded path distance b in the MCF
algorithm from 10 to 20. Figure 7.4 (B) shows the improved model generation outcome
at Station HS as an example. We can see that the gray dots which indicates the signals
in the middle of this crossing are no longer present, which means that the points are
merged into the misc-crossings with an appropriate aggregation level. Together with
the improvement discussed in § 7.2.3, the vehicle models are waiting at the stops for
other vehicles to pass the crossing. This is the desired result.

Note that it is also possible to achieve a similar result by modifying the CAD data.
We can prolong the track entity that will become the exit vertex of a crossing. As such,
this crossing will have a “shorter” path distance to a connected crossing. When this
distance is within b, they will be merged into the same misc-crossing. This alternative
solution can be useful if certain search paths are longer than b, but we do not want to
increase b to affect the merge result of some other misc-crossings.

Since infrastructure layouts can have many varieties, there is no standard of the
“best” value of b. A safe way to assure appropriate misc-crossing merging is to inspect
the model generation outcome, and to adjust the b value or the CAD data according to
the particular situations.

7.2.5 Control Logic at Crossings

Questions 3(a), 9(b), 14, 15 and 20 concern the control logic (§ 4.3.4.5) at the crossings.
They ask about the corresponding interactions between vehicles, signals and switches
in order to check the correctness of the control units (logic) and check tables (§ 5.3.1.3).
The discussion was held in conjunction with the issues in § 7.2.3 and § 7.2.4 since they
are closely related.

For what can be observed from the animation videos related to the questions, the
control logic for the crossings are correct, except for the situation that is related to ques-
tion 9(b). In this question, two (successive) vehicles from the same direction want to
pass a crossing and drive towards the same direction. The second vehicle was waiting
for the first vehicle to pass first then enters the crossing. In this case, however, it shall
pass the crossing following the first vehicle without waiting. This is caused by the fol-
lowing reason. In processing an access request, the control unit checks whether the
points required by the requested route are free. When they are occupied, then the re-
quest is not granted until the points are freed again. This is the situation in the example
of question 9(b).

Follow-up To solve this problem, we introduced an active route variable into the check
table to register a granted request if the requesting vehicle has not yet left the route. The
control unit shall check this variable and grant access if a requested route is an active
route. This change made the relevant model behavior plausible. Note that the control
unit and check table presented in § 4.3.4.5 already figure the improved version.

208

7

7.2 Expert Validation Results

a

b

Figure 7.5: Short change of maximum
speed – an example at Station CS

7.2.6 Other Remarks

Some panelists pointed out that in the Station CS (Location 5) animation video, some
vehicles do not drive very smoothly. Figure 7.5 shows the scenario where at the upper
right corner there are a number of curved tracks. In the model, the maximum (allow-
able) speed in the city is in general m̄ = 50 km/h (13.89 m/s); for the curves, the max-
imum speed is calculated with m̄ = pr ·amax m/s where r is the curvature radius in
meters, and amax = 0.65 m/s2 is the allowable centrifugal acceleration based on pas-
senger comfort and wearing of the wheel and track1. This simply means that the max-
imum speed in curves is less than on straight tracks. The situation of unsmooth driving
in Station CS is that, as shown in Figure 7.5, after the curve b , there is a short straight
track a , where vehicles accelerate for a short while and then decelerate again because a
is followed by a stop. Such drivings in practice would be a little smoother. Some other
constructive comments on certain behavior details are also made, which we will not
elaborate one by one. Although many improvements in the model can be made, the
panelists also acknowledged that this type of behavioral details do not alter much the
simulation output.

The panelists also suggested further directions for model development. For exam-
ple, new model components for modeling tail tracks, disturbances, rerouting, transfer,
depot; using EBS information for model halting times, and OV-chipcard2 information
for passenger origin-destination, etc. They foresee a wide range of potential model uses
such as driving time analysis, timetable analysis, capacity study, optimization of oper-
ations, among many others.

1The formula and value of amax are based on HTM internal documents.
2The OV-chipkaart (in Dutch) is the electronic payment method for public transport in the Netherlands

(www.ov-chipkaart.nl).

209

https://www.ov-chipkaart.nl

7

Expert Validation and Evaluation

7.3 Reflection

In the validation session, the panelists showed genuine interests in the model as well as
the inner working of the model, and appreciated the fact that complex models as such
can be generated using infrastructure data. As follow-ups for the validation session,
minor adjustments in the model and parameters adjustments for the model generation
are made to fine-tune the AMG outcomes, which to a certain extend shows the flexibility
in the model and model generation design. Besides these minor adjustments, there
are no substantial modeling problems raised by the experts in the validation session.
Overall, the experts support the structural validity of the model for simulation studies
such as timetable and driving time analysis.

The validation session showed the structural validity of the LIBROS models gener-
ated by the AMG method. Founded on rich systems theory, M&S theory, graph and
hypergraph transformation theory, and accompanied by practical applications of the
method (and the generated models, § 8.2) in the domain of light-rail transport, we argue
that the method has a strong potential for applications to graph-representable systems
such as those in the infrastructure domain.

210

8
Epilogue

I
N THIS RESEARCH, we studied Automated Model Generation (AMG). The model-

ing of increasingly larger and more complex systems is one of today’s challenges
in the field of Modeling and Simulation (M&S) (CROSBIE 2010). Many examples
show that complex models take long to develop and incur high costs (e.g., WIE-

LAND and PRITCHETT 2007, LONGO 2011). While there is a rich history of efforts to im-
prove modeling processes, there is still considerable room for improvement (FOWLER

and ROSE 2004). Along with the advances in data collection technology and more popu-
lar use of computer-aided systems, more and more data has become available in many
organizations (GLOTZER et al. 2010). This allows for a higher degree of automation in
modeling. At the same time, the increased amount of data often requires a certain de-
gree of automation since the data can no longer be manually handled effectively and
efficiently (ibid.).

The research presented in this thesis developed a method that can use existing data
to automatically generate complex simulation models. The research objective is to pro-
vide a method that automatically generates simulation models with flexible structures
using existing data assuming that these simulation models are intended for a certain
domain. By “generating simulation models with flexible structures”, we mean that sim-
ulation models are not generated by parameter-based configuration on a pre-specified
model structure, but the model has a structure that is dynamically constructed accord-
ing to the existing data during the AMG.

As discussed in § 1, the AMG method in this thesis differs from other AMG research
in at least two aspects. First, the data used for the AMG does not contain specifications

211

8

Epilogue

of the model structure to be generated. Second, the generated models have structures
that are dynamically constructed. This entails that there is an information gap between
what is contained in the data as the AMG input and what is required by the AMG in
terms of model structure. The AMG method thus is in need of functionalities that can
close this gap. Additionally, to be able to dynamically structure model components
in various combinations into valid simulation systems (PETTY and WEISEL 2003a), the
AMG method must have composable model components at its disposal. Although the
statement of “components should support composition” (CRNKOVIC et al. 2011, SZYPER-
SKI 2011) may seem redundant, many researchers acknowledge that model composab-
ility is difficult to apply (YILMAZ 2004, SZABO and TEO 2007, TOLK et al. 2010). To tackle
these challenges in the research, we decomposed the research objective into four inter-
related tangible parts and defined the following research questions (RQs):

1. What is a good way to define flexible structures for simulation models in order to
achieve the research objective?

2. What are the requirements for the data in order to achieve the research objective?

3. What functionalities should a method provide in order to automatically generate
simulation models with flexible structures using existing data?

4. What is the quality of the simulation model generated by the method?

The first three questions concern the AMG method itself. Since the method aims at
generating domain simulation models from existing data, we have to know first what
are the AMG inputs and what has to be generated as an output, and then define the
functionalities the AMG method shall deliver. The last question concerns the quality of
the simulation model generated by the AMG method, through which the quality of the
method is also evaluated.

8.1 Research Findings

In § 3.1, based on the concepts and theories presented in § 2, we proposed five con-
structs for the AMG method as a first step towards tackling the research problem.

1. A domain meta-model (or meta-models).
It should represent corresponding knowledge levels of the systems of interest.

2. A domain model component library.
It should conform to the domain meta-models (construct 1), implement the con-
cept of hierarchical component-based modeling, and use an appropriate under-
lying modeling formalism.

3. A meta-model (or meta-models) of the data.
It should represent the existing data of interest.

4. A model transformation definition.
It should be specified on the meta-model of the data (construct 3) and the domain
meta-model (construct 1).

212

8

8.1 Research Findings

5. A model calibration procedure.
After initial generation, simulation models could be calibrated when empirical
data of the systems of interest exists.

Rationale To be able to define flexible model structures (RQ1), a domain meta-model
and a domain model component library (constructs 1 and 2) are proposed. The former
should allow for an abstract representation of model structures of a class of models.
The latter should specify model behaviors that are used as building blocks for model
composition. Note that, as shown in § 4, the domain meta-model is then also defined
as a part of the domain simulation library.

For the AMG method, existing data is supposed to provide concrete information
about model structures and parameterization (RQ2). Since the data should be trans-
formed to generate simulation models, the AMG method requires a meta-model of the
data (construct 3) based on which the transformations can be specified.

Existing data typically has quality issues (§ 3.3) and does not contain all types of
information, particularly in terms of model structure, that are required by the AMG.
This information gap should be first identified and then corresponding measures may
be determined to close this gap. The functionalities that should be provided by the AMG
method (RQ3) basically include the measures that are automatable. To automate these
measures, a model transformation definition (construct 4) should be specified on the
meta-models. This is a focus of the thesis.

Model calibration is often a necessary step in modeling. When operational data
from the real system is available, calibration could be automated as well. We therefore
complement the AMG Method with a model calibration procedure (construct 5). The
subject of model calibration, however, is not a focus of the thesis.

To study the AMG method, we used cases in the domain of light-rail transport.

Research Question 1 A good way to define flexible model structures is studied with
the first two constructs for the light-rail domain. We designed and developed a domain
model component library, LIBROS (Library for Rail Operations Simulation), § 4, that rep-
resents different knowledge levels of the systems of interest, implements the concept
of hierarchical component-based modeling, and uses an appropriate underlying mod-
eling formalism, where the DEVS (Discrete Event System Specification) formalism is
chosen for reasons explained in § 2.4.1.3. In LIBROS, the atomic models specify model
behaviors at the elementary level. The coupled models are defined to represent domain
meta-models that allow for a set of model compositions.

To achieve a meaningful systems decomposition, we researched relevant literature
and discussed and revised the design in an iterative manner with domain experts (§ 4.2).
A number of modeling choices and alternatives were evaluated with criteria such as
modularity, extensibility, simplicity and computational cost. To support a good level
of modularity and composability (§ 4.1), we designed cohesive model ports and coup-
ling relations and a communication mechanism (§ 4.2 and § 4.3). Based on message

213

8

Epilogue

propagation, the communication mechanism is suitable for decentralized communic-
ations in a connected network model (§ 4.2.3 and § 4.3.1).

A number of other modeling practices are also discussed. A SAM (shared alterable
mixin) design pattern (§ 4.3.2.2) is presented for atomic model behavior and function
composition, reuse and extension. The pattern is used at three places in LIBROS design,
for the sensor behavior (§ 4.3.4.4) and for the operations on constructing model ports
and setting up couplings (§ 5.3.1.4). In § 4.3.3.1, we discussed the choice between
Quantized DEVS (QDEVS) and Generalized DEVS (GDEVS), two approaches for model-
ing continuous and hybrid systems based on the DEVS formalism. We then explained
the use of GDEVS and the handling of interrupts in GDEVS with examples. Consistent
with the DEVS formalism but more constrained in the way an atomic model handles
state changes at the arrival of an external event, § 4.3.3.5 presented a state update and
transition mechanism (SUTM). The mechanism differentiates the concepts of state up-
date with state transition, and handles them separately with external and internal trans-
ition functions. Its benefits and potential computational costs are discussed.

A good design of flexible model structures is the outcome of joint considerations
of many modeling aspects: the representation of the knowledge levels of the systems
of interest (§ 2.1), the choice of modeling style and formalism (§ 2.4), and the design
choices of model structure, behavior and interaction. While the concepts of domain
meta-models and model components and the corresponding requirements could serve
as a general guidance, a number of practices in the design of LIBROS and the rationale
behind the design choices as well as their benefits and computational costs are dis-
cussed, which could be useful for modular and composable model design in many
other domains. To conclude, a good design of flexible model structures should have:

(1) a generic modeling formalism,

(2) definitions of model structures through meta-models,

(3) separation of concerns of model behaviors through model components,

(4) reusable definitions of model behaviors, and

(5) cohesive definition of model interfaces and interactions.

The following are not necessary but can be beneficial for the design of flexible model
structures or the design of simulation models in general:

(1) a modeling formalism that supports modeling discrete and continuous systems,

(2) hierarchical (component-based) modeling,

(3) separation of concerns of model state transition definitions of elementary model
behaviors, and

(4) efficient model communications.

Research Question 2 As stated previously and in § 3.1, existing data is supposed to
provide concrete information about model structures and parameterization for the AMG
method. Typically, existing data does not contain all types of information required by

214

8

8.1 Research Findings

the AMG, particularly in terms of model structure. We need to identify the information
gap, and ways (and relevant domain knowledge) to close this gap.

In § 3.3, we discussed data quality categories and criteria based on literature that
could help to detect data quality issues. We exemplified the issues in the data used for
the AMG of the light-rail models, and measures to solve the issues. A concrete example
of the requirements for the data is presented in § 5.2.1.

In principle, data issues related to (semantic and pragmatic) completeness for the
AMG are hard to solve automatically. For example, in the AMG of LIBROS models, minor
modifications, such as the locations where vehicle models shall be generated in the sim-
ulation, are made manually to the infrastructure data to solve the issue of pragmatic
completeness. To solve data issues related to (syntactic and mapping) consistency,
measures such as data type or format conversion or mapping tables should be pre-
pared in advance to the AMG. These measures can be integrated into the AMG method.
To solve semantic accuracy and presentation suitability1, when relevant domain know-
ledge and reasoning for deduction are available, they should be formalized and defined
as transformation rules in the AMG method. This is a major challenge in the method
design.

To conclude, with regard to the information of model structure and parameteriza-
tion, the data that is provided to the AMG as input should be assessed according to how
well the data provides information for model component identification, composition
and configuration. (The data quality criteria are discussed in detail in § 3.3.) The re-
quirements for the data (assuming that the data has syntactic accuracy and timeliness)
should have:

(1) semantic and pragmatic completeness, and

(2) syntactic and mapping consistency, or conversion rules or mapping tables or some-
thing alike that can solve the inconsistency in the data.

Research Question 3 In designing the AMG method, the information gap between the
data and the model, particularly in terms of model structure, should be carefully identi-
fied, and corresponding measures are then defined to close this gap. The functionalities
that should be provided by the AMG method basically include those measures that are
automatable.

In generating LIBROS simulation models, infrastructure data is used as a basis for
model structures (§ 5.2.1). The major challenge for the AMG method is the presenta-
tion suitability of model structures (including identification of model components and
compositional relations). To solve this problem, the types of information that are avail-
able in the data and those that can be inferred from the data (which are required for the
AMG) are arranged by their dependencies (§ 5.2.1.2). Based on these dependencies,
three transformation steps (with sub-steps) are designed to infer the required inform-
ation from the data and to finally generate the simulation models.

1Presentation suitability refers to the degree to which the data is appropriate for the purpose of data use
in terms of format, unit, precision and type-sufficiency, where type-sufficiency refers to the degree to which
the data includes all the types of useful information (§ 3.3.2.2).

215

8

Epilogue

The data structure representations (i.e., meta-models of the data) and transform-
ations are defined based on graph transformation theories (§ 5.1). A pair of an ordin-
ary digraph and a hypergraph is used to represent the Model Composite Graph (MCG)
which has a Compositional Containment Hierarchy (CCH) of the simulation model to
be generated (§ 5.1.1). A CCH is a strictly nested component inclusion hierarchy. A
set of transformation rules are specified on the meta-models of the data (including for
the intermediate steps) and the meta-model of the simulation model as a final out-
come (§ 5.1.2). The meta-models of the data and the data structure compositions of in-
terest (for transformation) are defined as graph patterns and pattern composites whose
matching instances are recorded as hyperedges in the MCG (§ 5.2).

In the first transformation step, a digraph that represents the rail infrastructure net-
work (as a flat graph) is constructed from the original infrastructure data (which does
not contain vertex relations) based on geometrical inferences (§ 5.2.1 and § 5.2.2). In the
second transformation step, graph pattern matching and hyperedge replacement are
performed incrementally (with partially ordered sub-steps where composition and de-
composition are both used) on the graphs which produce an MCG (§ 5.2.3 and § 5.2.4).
For the transformation, we defined a number of graph patterns and pattern compos-
ites, an algorithm for ordered composite isomorphism for the matching of the defined
graph patterns, and an algorithm for the merging of composites within a defined dis-
tance measure. The purpose of the MCG is to aggregate the vertices in the digraph into
a CCH such that the matched graph patterns can be transformed into corresponding
model components in the next step. In the third transformation step, the vertices and
hyperedges in the MCG are transformed into atomic and coupled model components
corresponding to the vertex and hyperedge types, and the vertex relations are trans-
formed into model coupling relations (§ 5.3.1 and § 5.3.2). In this context, a hyperedge
(composite) is injective homomorphic to the (generated) coupled infrastructure model,
where a number of sub-components are added into the model according to the meta-
model definitions. Among these sub-components, the control logic of each crossing
model component is generated according to the corresponding infrastructure layout.
After these steps, we obtain a simulation model where the model behavior at the ele-
mentary level is pre-specified in the atomic components in the domain model com-
ponent library, and the model structure is dynamically constructed using the coupled
components according to the infrastructure data.

In principle, transformation rules for the AMG can be defined when the data that
serve as input for AMG has semantic and pragmatic completeness, has definable meas-
ures for syntactic and mapping inconsistency (if any), and when modelers have suffi-
cient domain knowledge and deductive reasoning for the definition of transformation
rules that can solve data issues related to semantic accuracy and presentation suitabil-
ity (see Research Question 2) with regard to model structure and parameterization. The
functionalities an AMG method should provide are transformations defined on meta-
models of the original data structure (as the AMG input), of intermediate structures
and of the simulation model. Suppose that the original data structure is a non-graph,
meaning that the data items do not have specified relations (or they can be deemed as a
graph with vertices but without edges); and assume that the meta-model of the simula-

216

8

8.1 Research Findings

tion model and the model components are specified, e.g., in a domain model compon-
ent library. Then the transformations need three steps: from a non-graph to a digraph,
to an MCG, and finally to a simulation model, where the vertices and hyperedges of
the MCG should have corresponding (pre-specified) model components. To conclude,
the functionalities that an AMG method should provide are transformation rules: (The
data quality criteria in (1) are discussed in detail in § 3.3.)

(1) that can solve data quality issues related to semantic accuracy and presentation
suitability in terms of model structure and parameterization,

(2) that are defined on the meta-models of the original data structure, of the inde-
terminate structures, and of the simulation model,

(3) that can construct a representation of the (to be generated) model structure whose
components can be mapped to corresponding pre-specified simulation model
components,

(4) that can construct a simulation model according to the representation of the model
structure.

The following are not necessary but can be beneficial for the design of the transforma-
tion rules:

(1) graph and/or hypergraph-based structure representation and transformation,

(2) recursive definition and incremental search of model composite patterns, and

(3) using both composition and decomposition in the transformation rules.

To complement the AMG method, when operational data from the real system is
available, the simulation model can be calibrated by a model calibration procedure us-
ing user defined goodness-of-fit measures and parameter search algorithms (§ 6). In
the calibration test, a preliminary study was made to fit interval driving times of the gen-
erated LIBROS light-rail simulation model of The Hague. A number of issues related to
the calibration experiments are also discussed. Note that the goodness-of-fit measures
in the calibration procedure can serve as a way to validate the relevant model output
data (operational validation through comparison).

Research Question 4 During the research and model development process, we closely
followed guidelines discussed in M&S literature in order to build valid and creditable
models. Since the model component library is intended for the domain of light-rail
transport, as a final step of model validation in this research, and a way to evaluate
the AMG method, a validation session (with a combination of questionnaires and dis-
cussions) was organized with a panel of nine subject-matter experts in the domain of
light-rail transport (§ 7). Specific questions were designed to ask the panelists about the
model behaviors and interactions of the generated LIBROS light-rail simulation mod-
els of The Hague in order to evaluate the structural validity of the models. As follow-
ups for the validation session, minor adjustments in the model and parameters adjust-
ments for the model generation were made to fine-tune the AMG outcomes. The ex-

217

8

Epilogue

perts raised no substantial modeling problems in the validation session. Overall, the
experts appreciated the fact that complex simulation models can be generated using
infrastructure data, and showed support for the structural validity of the model for sim-
ulation studies such as timetable and driving time analysis. They also suggested further
directions for model development.

The validation session shows the structural validity of the LIBROS models gener-
ated by the AMG method. The infrastructure models have a generated CCH (§ 5.1.1)
as a result of graph pattern matching and replacement (§ 5.2 and § 5.3). The control
units (§ 4.3.4.5) in the crossing models have generated structure-based control logic
(§ 5.3.1.3). The vehicle models use DSDEVS connecting to the infrastructure models
(§ 4.3.5.3) which form the backbone of the model communication mechanism (§ 4.3.1).
All these elements are relevant to model structures which affect model validity. Only the
correct generation of these elements with valid atomic model behaviors as a whole, can
yield valid model behaviors and interactions as a whole. We argue that the design of the
AMG method is sound for the following reasons:

(1) the AMG method is founded on rich systems theory, M&S theory, graph and hy-
pergraph transformation theory;

(2) the application of the AMG method to the domain of light-rail transport generates
simulation models that were validated by a panel of domain experts; and

(3) the light-rail transport models generated by the AMG method have been used to
support real-life decision making, as is exemplified in § 8.2.

Although the models are intended for the domain of light-rail transport, the mod-
eling concepts and practices as discussed in § 4 could be useful for model design in
many other domains. The concepts of graph-based composite definitions and trans-
formations, and the algorithms used in the transformation steps § 5 could be applicable
to systems that can be represented with graph-based structures.

8.2 Practical Use of LIBROS Models

In this research, we did not focus on model uses. Hence we did not present practical
uses of LIBROS models. To show the practical relevance of this research, we name a
number of model uses which helped strategic, tactical and operational decision mak-
ings in light-rail transport systems.

In CAI (2011), key performance indicators such as deadhead kilometers and aver-
age delays were evaluated using LIBROS models to inform the choice of depot capa-
city and vehicle schedules. To reduce waiting times at the entrance of the tram tunnel
Grote Markt in The Hague (where the setup is similar to that discussed in § 4.4), simula-
tion experiments were ran with the models using different timetables and safety control
measures. The models were also used to study the impact of, e.g., merging two stations
and the new infrastructure construction at Station HS in the light-rail network of The
Hague.

218

8

8.3 Future Research

HTM, the public transport service provider in Haaglanden region, is interested in
further uses of the model generator and the model component library developed by
this research. A preliminary version of a graphical user interface was developed (VAN

ANTWERPEN 2011) to help end users changing parameter settings of the AMG tool. At
the time of writing this thesis, the organization is also in the process of developing a
web application to access the simulation models.

8.3 Future Research

With regard to model calibration, this research had a preliminary calibration study of
the generated LIBROS simulation models. Since the organization has abundant oper-
ational data from the real system, it is possible to conduct in-depth model calibration
studies. This is not only relevant to the LIBROS models but also to the research of calib-
ration methods and techniques in general. In M&S literature, calibration methods and
techniques, particularly those for large-scale microscopic models, are not often dis-
cussed. Many complex simulation models require a long time to simulate. When they
have a large number of unknown parameters, optimization-based calibration method
can be very costly in terms of computations. Therefore, alternative methods and tech-
niques can be useful for these models when the computational cost is an issue for model
users. Many design issues related to calibration experiments can be studied, e.g., how
to separate unknown parameters into calibration stages and what are the pros and cons
of making such design choices.

For the LIBROS library, model components and other components such as user in-
terfaces, statistics and reporting tools can be further developed. Current development
focused on a basic set of infrastructure model components. New components can be
developed, e.g., to model tail tracks, single tracks, block systems, disturbances, rerout-
ing, depot, and to model the origin-destination of passengers. Some of the components
can be linked with real data, such as the data from the EBS and OV-chipcard systems.

From the viewpoint of model generation, multi-resolution and multi-perspective
model generation can be an interesting and challenging future direction. The devel-
opment of a domain simulation model or a class of domain simulation models is often
intended for similar purposes of study. When simulation models can be generated with
different resolutions and/or perspectives from a library or a set of libraries, such librar-
ies will be highly reusable. This of course requires substantial research efforts. Above
all, we need libraries that contain sufficient domain knowledge and organize different
parts of this knowledge in an appropriate manner to allow users or automated agents
to query the knowledge with relevance.

Furthermore, the AMG method designed in this research can be applied for AMG
of other systems besides light-rail transport systems. Straightforward applications in-
clude those in the infrastructure domain such as heavy-rail and road transport, pipeline
and grid systems. A step further could be made to systems that can be represented with
graph-based structures such as production and supply chain systems.

219

Appendices

A
Background

A.1 Modeling Relation: Homomorphism

A system can be modeled in many ways depending on the purposes of the simulation
studies. Even with the same purpose, different modelers would often model a system
differently. In general, the relation between a model and its original system (that is
modeled) is homomorphic (SHANNON 1975, ZEIGLER et al. 2000, KLIR 2001).

Homomorphism (from Greek homoios morphe, “similar form”), a special corres-
pondence between the members (elements) of two algebraic systems, such as two
groups, two rings, or two fields. Two homomorphic systems have the same basic
structure, and, while their elements and operations may appear entirely different,
results on one system often apply as well to the other system. Thus, if a new system
can be shown to be homomorphic to a known system, certain known features of one
can be applied to the other, thereby simplifying the analysis of the new system.1

More specifically, what does homomorphism mean in M&S? Following KLIR (2001),
a homomorphic relation (homomorphism) between a model and its original system is
contingent upon a function from relevant entities of the original system onto the cor-
responding entities of the modeling system (i.e., the model) under which the relation
among the entities2 is preserved. The onto function in this definition implies that the

1Encyclopædia Britannica. Encyclopædia Britannica Online Academic Edition. 2012.
2The entities to which the homomorphic function is applied and the relation that is preserved under the

function depend on the type of systems involved (KLIR 2001). The “entities” and “relations” are meant in a
broad sense. Entities can be parts, states, inputs, etc. Relations can be couplings, state transitions, etc.

223

Background

entity mapping is surjective, which means that the model is supposedly to be simpler
than the original.

To formally state the relation, let S0 = (X ,φ) be an original system where X denotes
a set of entities and φ denotes a set of binary relations on X ; and let S1 = (Y ,ψ) be a
modeling system where ψ is binary relations on entities Y . S1 is a model of S0 if and
only if there exists a function h : X → Y such that3

∀x1, x2 ∈ X ∧〈x1, x2〉 ∈φ =⇒ 〈h (x1), h (x2) 〉 ∈ψ (A.1)

This modeling relation is weak (i.e., regular) homomorphic. An additional condition is
required for a strong homomorphism3:

∀y1, y2 ∈ Y ∧〈y1, y2〉 ∈ψ =⇒ ∃ x1 ∈ h−1(y1)∧ x2 ∈ h−1(y2) : 〈x1, x2 〉 ∈φ (A.2)

This means that a strong homomorphism requires that each relation in a modeling sys-
tem is invertible into the original system.

Figure A.1 exemplifies weak and strong homomorphisms from an original system
S0 to a modeling system S1 (KLIR 2001). In the example, S0 is a simple unlabeled state
transition system with a set of four states X = {a , b , c , d } and a set of state transitions
φ = {a → a , a → d , b → a , · · · }. The function h maps X to three states Y = {α,β ,γ}
where the states b and c are merged into β . Under the function, the original state
transitions φ are preserved inψ of S1. The model S1 would be weak homomorphic if it
contains all the state transitions (let them beψweak) shown in the S1 block. To be strong
homomorphic, S1 could only contain the state transitions without the ones that are in
dotted lines, i.e.,ψstrong =ψweak\{γ→α,γ→ γ}.

Homomorphisms can be composed as function compositions. The relation holds
because the composition of homomorphisms is again a homomorphism; see, e.g., CLARK

(1984) §60 and WARNER (1990) Theorem 12.4 for proofs. Although this is an algebraic
concept, it has analogies in M&S, i.e., a modeling system can be the origin of another
modeling system. We may denote this relation as following.

S0
h0−→ S1

h1−→ ·· ·Sn−1
hn−1−−→ Sn ⇒ S0

h0◦h1 ··· ◦hn−1−−−−−−−→ Sn (A.3)

S1 Y,ψS0 X,ф h : X→Y

α

γ

a α

b β

c β

d γ

β

a

c

b

d

Figure A.1: An example of
weak and strong homo-
morphism (ibid.): the dotted
state transitions violate the
condition required by a
strong homomorphism

3Adapted from KLIR (2001) and WALICKI et al. (2001).

224

A.2 A DEVS Simulator: DSOL and ESDEVS

A.2 A DEVS Simulator: DSOL and ESDEVS

In § 2.4.1.3, our choice of using DEVS as the underlying formalism for model compon-
ents is discussed. This section briefly presents the DEVS simulator that is used in this
research. The simulator has a DEVS simulation core which is defined on top of a gen-
eric event-scheduling based simulation core. Both are developed as Java libraries. The
former is called ESDEVS (Event-Scheduling DEVS, SECK and VERBRAECK 2009) and the
latter is called DSOL (Distributed Simulation Object Library, JACOBS 2005). Figure A.2
shows the relation of DSOL, ESDEVS and user defined DEVS components using ES-
DEVS.

In DSOL, a simulation event is scheduled as a method execution by a source object
on a target object (SECK and VERBRAECK 2009). The library provides components for
simulators (i.e., event-scheduling and execution), numerical integrators and probabil-
ity distributions, etc. ESDEVS implements a parallel DEVS compliant simulator using
the event-scheduling simulator in DSOL. It schedules the executions of internal trans-
ition functions according to the specified time advance functions, and unschedules
them at the reception of external events (except for confluent transition situations).

Dynamic structure DEVS (UHRMACHER 2001) is also implemented by the ESDEVS
library so that components and coupling relations can be added and removed dynamic-
ally during the simulation run-time. On the whole, the library specifies the meta struc-
ture of the DEVS atomic and coupled models, and handles the couplings, output func-
tions and transition functions at an abstract level, so that ESDEVS (together with DSOL)
serves as a DEVS simulator.

Following the definition template provided by the ESDEVS library, modelers can
specify their own DEVS model components by the inheritance of the AtomicModel and
CoupledModel classes in the library; the two classes are shown in Figure A.3. The separ-
ation of concerns between modeling and simulation is guaranteed from the perspect-
ive of modelers because simulation related issues such as time management and exe-
cutions of transition functions are not handled explicitly by modelers (SECK and VER-
BRAECK 2009) who can concentrate on the model specifications.

User Defined DEVS Components

DEVS Simulator

Event‐Scheduling Simulator

DEVS
COMPONENTS

Figure A.2: User defined components
and the DSOL and ESDEVS simulators

225

Background

Figure A.3: The atomic and
coupled model classes in
ESDEVS

226

B
LIBROS Library

B.1 Communication Mechanism

B.1.1 Message Initiators

A vehicle model can be a message initiator, i.e., it can initiate a round of MP. RIE models
are message propagators and deliverers. Table B.1 summarizes the possible message
types, directions and the triggering conditions of MP in LIBROS.

B.1.2 Message Propagation Rules

1. If a requesting vehicle has a preceding vehicle on the same RIE that it is coupled
with, the RIE model shall forward the request message to the preceding vehicle
model.

2. If a requesting vehicle’s preceding vehicle is not yet found and a RIE model is
not coupled with the requesting vehicle, the RIE model shall forward a request
message to the vehicle model closest to its start node when there is any vehicle
coupled to it.

3. If a requesting vehicle’s closest RIE is not yet found, a RIE model shall respond
to a request message when the RIE requires or potentially requires a change in
movement of the requesting vehicle.

4. A vehicle model shall respond to a request message unconditionally.

227

LIBROS Library

Initiator Type Direction Condition

Vehicle Request Forward When the vehicle model does not have informa-
tion about its next closest RIE of interest or the
preceding vehicle.

Response Backward When the vehicle model receives a request mes-
sage.

Update Backward When the vehicle model changes its acceleration.

Track
Segment

Response Backward When the track segment receives a request mes-
sage and the original (vehicle) sender’s next
closest RIE of interest is not yet found, and the
track segment has a different speed limit or the
message propagation distance exceeds a pre-
defined value.

3S Response Backward When the 3S model receives a request message
and the original (vehicle) sender’s next closest
RIE of interest is not yet found.

Signal Update Backward When the signal changes its signaling state.

Table B.1: Message initiators

5. After Rules 1. ∼ 3., a RIE model shall propagate a request message:

(a) when the closest RIE of the requesting vehicle is not found, or

(b) when the preceding vehicle of the requesting vehicle is not found and when
the propagation distance does not exceed a defined bound;

6. A RIE model shall forward a response message:

(a) to the recipient vehicle model when the message has an addressed recipient
that is coupled with the RIE, or

(b) to the following vehicle when the response message does not have an ad-
dressed recipient and the sender is a vehicle which has a following vehicle
coupled with the same RIE as the sender, or

(c) to the vehicle model closest to its end node when there is any vehicle coupled
to it and when the message does not have an addressed recipient.

7. If Rule 6. does not apply, a RIE model shall propagate a response message.

B.1.3 Distance Accumulation Rules

1. When a vehicle creates a backward message, the distance contained in the mes-
sage is set to the value of the vehicle’s position on the RIE model with which it is

228

B.2 Vehicle Model Specification

coupled, deducted by the vehicle’s length.

2. When a RIE model receives a backward message, it does not change the value of
the distance if the original sender is a vehicle that is coupled to the RIE; otherwise
the RIE increases the value by its own length.

3. When a vehicle receives a backward message, its distance to the original sender
of the message is the distance contained in the message deducted by its position
on the RIE model with which it is coupled.

B.2 Vehicle Model Specification

The vehicle model specification is a structure

RailVehicle= (X , Y ,S ,δext,δint,δcon,λ, ta) (B.1)

where

X = {(p , m)|p ∈ {I/RIE}, m ∈ Xp } is the set of input port and messages,
Y = {(p , m)|p ∈ {O/F/RIE,O/B/RIE}, m ∈ Yp }

is the set of output ports and messages,
S = S ′×S ′′× INCRI× IPV is the set of states, where

S ′ = {(ρ, a)|ρ ∈ {START, FOLLOW, MOVE_TO_NCRI, DWELL, STOP}, a ∈R}
is the set of the vehicle’s primary states
consist of its phase and acceleration,

S ′′ = {(v, v̂ , M , p , l , dtotal, · · ·)|0≤ v ≤ vma x ∈R+, p , l , dtotal ∈R+0 }
is the set of secondary states that consist of its
speed, speed limit, anticipated movement,
position on the RIE where it is located,
length, total distance traveled, etc.,

M = (M0, · · · , M j , · · · , Mk), M j = (t j , v j , d j , a j), k ∈N∪∅, t j 6= 0, ai∈[0,k−1] 6= ai+1

is the anticipated movement that consists of
a number of successive movement segments
each of which defined with the time
(duration), end speed, moving distance, and
acceleration of the segment,

INCRI = {(dNCRI, lNCRI, · · ·)|dNCRI, vNCRI ∈R+0 }
is the set of information about the NCRI that
consists of the distance, speed limit, etc., of
the NCRI,

IPV = {(dP V , vP V , aP V)} is the set of information about the PV that
consists of the distance of the PV and its
speed and acceleration

δext : Q ×X b → S\S ′,τ= 0 is the external transition function, where

229

LIBROS Library

Q = {(s , e)|s ∈ S , e ∈ [0, ta (s)]} is the set of total states with the elapsed time
since last transition

δint : S → S is the internal transition function
δcon :=δext (δint (s)) is the confluent transition function
λ : S → Y b is the output function
ta : S →R+0 ∪∞ := Return τ is the time advance function

B.2.1 External Transition Function

Require: The arrival of an external event m at port I/RIE
1 function δext(e , m)
2 UPDATESTATE(e)
3 if m is not sent to this vehicle then
4 τ←τ− e
5 return
6 end if
7 τ← 0
8 if m is a request message then
9 PREPAREBACKWARDMESSAGE(p − l , sender of m) . a response message

10 else .m is a backward message
11 if m is from a vehicle then
12 IPV← information contained in m
13 else
14 INCRI← information contained in m
15 end if
16 if ρ is not WAIT or DWELL then
17 M ← COMPUTEMOVEMENT

18 end if
19 end if
20 end function

B.2.2 Output Function

1 function λ
2 if is finished M0 then . finished one movement segment
3 if M1 exists then . has a next movement segment
4 PREPAREBACKWARDMESSAGE(p +d0− l) . d0 ∈M0, an update message
5 if is to brake approaching an Interlocking then
6 PREPAREFORWARDMESSAGE(−p +d0) . request to access the interlocking
7 end if
8 else . completed one movement
9 if ρ is MOVE_TO_NCRI then

230

B.2 Vehicle Model Specification

10 COUPLETONCRI
11 PREPAREFORWARDMESSAGE(0) . a request message
12 if NCRI is a trailing point then
13 PREPAREBACKWARDMESSAGE(p +d0− l)
14 end if
15 else if ρ is STOP then . the vehicle is just stopped
16 PREPAREBACKWARDMESSAGE(p +d0− l)
17 else if ρ is START and (INCRI or IPV unknown) then
18 PREPAREFORWARDMESSAGE(−p)
19 end if
20 end if
21 else if is to change a then . can only be true when a 6= a0 after the δext

22 PREPAREBACKWARDMESSAGE(p − l)
23 end if
24 SENDFORWARDMESSAGE

25 SENDBACKWARDMESSAGE

26 end function

1 function PREPAREFORWARDMESSAGE(d)
2 create new message −→m with distance d
3 m f ← true
4 end function

1 function PREPAREBACKWARDMESSAGE(d, r)
2 create new message←−m with distance d and receiver r
3 mb ← true
4 end function

1 function SENDFORWARDMESSAGE

2 if m f is true then
3 send −→m through O/RIE/F

4 m f ← false
5 end if
6 end function

1 function SENDBACKWARDMESSAGE

2 if mb is true then
3 send←−m through O/RIE/B

4 mb ← false
5 end if
6 end function

231

LIBROS Library

B.2.3 Internal Transition Function

1 function δint

2 if is finished M0 then . finished one movement segment
3 UPDATESTATE

4 remove M0 from M . by which M j 6=0 if any becomes M j−1

5 if M0 exists then . has a next movement segment
6 a ← a0

7 τ← t0 . continue with the next movement segment
8 else . completed one movement
9 if ρ is MOVE_TO_NCRI then
10 dtotal← dtotal+dNCRI

11 p ← 0
12 if is entered a stopping place then
13 <do something related to the stopping place>
14 end if
15 if is entered a stopping place and is to dwell then
16 lNCRI← 0 . the vehicle is going to stop
17 else
18 INCRI← empty
19 end if
20 else if ρ is DWELL then . the vehicle just finished dwelling
21 if is to dwell again then . in case of double halting at the stopping place
22 ρ← MOVE_TO_NCRI

23 else
24 INCRI← empty
25 end if
26 end if
27 if ρ is MOVE_TO_NCRI or START or FOLLOW then
28 if INCRI is not empty then
29 COMPUTEMOVEMENT

30 τ← 0 . continue with the next movement
31 else
32 τ←∞ .wait for a response message; a request message is already sent
33 end if
34 else if ρ is STOP then . the vehicle just stopped driving
35 if is at stopping place then . the vehicle just stopped at the halting place
36 <do something related to the halting>
37 t ← calculate dwell time
38 M0← (t , 0, 0, 0)
39 ρ← DWELL

40 τ← t
41 else
42 τ←∞

232

B.3 Animation Legend

43 end if
44 else if ρ is DWELL then . the vehicle just finished dwelling
45 M0← (0, 0, 0, 0)
46 ρ← START

47 τ← 0 . still need to send a request message
48 end if
49 end if
50 else if M is empty then . it can be true only after the δext

51 τ←∞
52 else . it is true only after the δext when M is not empty
53 a ← a0

54 τ← t0

55 end if
56 end function

B.3 Animation Legend

Animation Window

“Time of day” of the simulation

“Simulation time”: count from 0 each time when the simulation starts

“Scale” of the map “Background map”: not a part of the simulation

“Terminal” of service with “line number”

A “service line”

233

LIBROS Library

A Stop

“Stop ID”
“Stop name”

“Line ID”: service lines halting at the stop

Red outlined: a normal stop
Green outlined: a buffer stop

Sensors

A “sensor” (triggered)

A “sensor” (not triggered)

Points

A “facing point” (triggered) with a position
on the left (relative to the traffic flow)

A “crossing point” (not triggered)

A “trailing point” (not triggered) with a position
on the right (relative to the traffic flow)

A Vehicle

“Speed” (m/s)

“Acceleration” (m/s2)

“Deviation of arrival time” (in second) at the last stop
compared with the scheduled time (>0 late, <0 early)

“Vehicle ID”
“Service line ID”

A dot indicates punctuality (compared with the scheduled
time at the last stop):
o “Red”: when the vehicle is late for more than 2 minutes;
o “Rose”: when the vehicle is early for more than 1 minute;
o “Blue”: otherwise.

234

B.4 Infrastructure Composite Examples

B.4 Infrastructure Composite Examples

Some animation videos can be found at www.youtube.com/shanghaielaine.

A “Y” Crossing A Quad-Diamond Crossing

A “T” Crossing

A Butterfly Union A Half Union

235

http://www.youtube.com/shanghaielaine

Model Generation

C
Model Generation

C.1 Infrastructure CAD Entities

A short description of the CAD Entities – see Figure 3.2 for examples.

Infrastruc-
ture Name

CAD Entity Geometry Label

Source A labeled block entity
named as “source”
containing a circle

The center of the circle
is the location of the
source.

Source name

Track A colored line or arc
entity

The shape and loca-
tion of the line or arc is
the shape and location
of the track segment.

–

Stop A labeled block entity
named as “stop”
containing a circle

The center of the circle
is the start location of
the stop.

Stop ID, name, #halt-
ing places (one halt-
ing place is 37 meters
in length)

The color of tracks represents a speed limit in the following category:

◦ orange – free lane (50 km/h),
◦ blue – street track (35 km/h),
◦ green – city track (15 km/h).

236

C.2 Infrastructure Composites

C.2 Infrastructure Composites

Stop Composite It represents one or a number of successive stopping (i.e., halting)
placings.

Stop Composite (1, 1) eS

Composites t1, t2, · · · , tn

Entry 1. eSen1 t1

Exit 1. eSex1 tn

Table C.1: Stop Composite

“Y” Composite See § 5.2.3.2 Table 5.1.

“T” Composite See § 5.2.3.2 Table 5.2.

Quad-Diamond Composite

Quad-diamond composite (4, 4) eQ

Composites cp1, cp2, cp3, cp4

Paths p1 cp1ex2 to cp2en1

p2 cp2ex2 to cp3en1

p3 cp3ex2 to cp4en1

p4 cp4ex2 to cp1en1

Bound b ∈N

Entry 1. eQ en1 cp1en2

2. eQ en2 cp2en2

3. eQ en3 cp3en2

4. eQ en4 cp4en2

Exit 1. eQ ex1 cp1ex1

2. eQ ex2 cp2ex1

3. eQ ex3 cp3ex1

4. eQ ex4 cp4ex1

cp4ex1

cp4en2

cp2ex1

cp3en2

cp2en2

cp1en2

cp4en1

p1

p2

p3

p4

(Qex2)

cp1en1

cp2en1

cp3en1
cp4ex2

cp1ex2
cp1ex1

cp2ex2

cp3ex1
cp3ex2

(Qex1)

(Qex3)
(Qex4)

(Qen1)
(Qen2)

(Qen3)
(Qen4)

Table C.2: Quad-diamond composite defined as a graph pattern

237

Model Generation

Butterfly Union Composite

eYex2

eYen3

eYen1
eYex1

eYex3

eYen2

e Y
ex
2

e Y
en
3

e Y
en
1

e Y
ex
1

e Y
ex
3

e Y
en
2eY1

p1

p3

p5

p2
p4

p6

eY2

(eBen1)

(eBen2)(eBex2)

(eBex1)

eYex2

eYen3

eYen1
eYex1 eYex3

eYen2

eYex2
eYen3

eYen1
eYex1

eYex3

eYen2

eQen4

eQex4

eQex3eQen3

eQex2

eQen2eQen1
eQex1

eY3

eY4

eQ

p7

p8

p9

p10

p11

p12

(eBen3)

(eBex3)

(eBex4)(eBen4)

Butterfly Union composite (4, 4) eB

Composites eQ , eY 1, eY 2, eY 3, eY 4

Paths p1 eQ ex1 to eY 2en3 p7 eQ ex3 to eY 4en3

p2 eY 2ex2 to eQ en2 p8 eY 4ex2 to eQ en4

p3 eY 2ex1 to eY 3en3 p9 eY 4ex1 to eY 1en3

p4 eY 3ex2 to eY 2en2 p10 eY 1ex2 to eY 4en2

p5 eY 3ex1 to eQ en3 p11 eY 1ex1 to eQ en1

p6 eQ ex2 to eY 3en2 p12 eQ ex4 to eY 1en3

Bound b ∈N

Entry 1. eB en1 eY 1en1 3. eB en3 eY 3en1

2. eB en2 eY 2en1 4. eB en4 eY 4en1

Exit 1. eB ex1 eY 1ex3 3. eB ex3 eY 3ex3

2. eB ex2 eY 2ex3 4. eB en4 eY 4ex3

Table C.3: Butterfly union composite defined as a graph pattern containing one quad-diamond
and four “Y” composites

238

C.2 Infrastructure Composites

Half Union Composite

fp
en

fp
ex

1
fp

ex
2

tp
en

1
tp

ex
tp

en
2

eYex2

eYen3

eYen1
eYex1 eYex3

eYen2

eYex2

eYen3

eYen1 eYex1

eYex3
eYen2eY1

p1

p3

p2

p4

eY2

(eBen1)

(eBex2)

(eBex1)

eQen4

eQex4

eQex3eQen3

eQex2

eQen2eQen1
eQex1

eQ
p7

p8

p9

p11

(eBen3)

(eBex3)

fp
en

fp
ex

1
fp

ex
2

tp
en

1
tp

ex
tp

en
2

cp
ex1 cp

ex2

cp
en2 cp

en1

cp
ex1 cp

ex2
cp

en2 cp
en1

cp
ex1 cp

ex2

cp
en2 cp

en1

(eBex4)
(eBen4)

p6

p5

p10

p12

p13p14

p15

p16 p17

p18

fp1

fp2
tp1

tp2

cp1

cp2 cp3

(eBen2)

Half Union composite (4, 4) eB

Composites eQ , eY 1, eY 2, fp1, fp2, tp1, tp2, cp1, cp2, cp3

Paths p1 eQ ex1 to eY 2en3 p7 eQ ex3 to eY 4en3

p2 eY 2ex2 to eQ en2 p8 eY 4ex2 to eQ en4

p3 eY 2ex1 to eY 3en3 p9 eY 4ex1 to eY 1en3

p4 eY 3ex2 to eY 2en2 p10 eY 1ex2 to eY 4en2

p5 eY 3ex1 to eQ en3 p11 eY 1ex1 to eQ en1

p6 eQ ex2 to eY 3en2 p12 eQ ex4 to eY 1en3

p6 eQ ex2 to eY 3en2 p12 eQ ex4 to eY 1en3

p6 eQ ex2 to eY 3en2 p12 eQ ex4 to eY 1en3

p6 eQ ex2 to eY 3en2 p12 eQ ex4 to eY 1en3

Bound b ∈N

Entry 1. eB en1 eY 1en1 3. eB en3 eY 3en1

2. eB en2 eY 2en1 4. eB en4 eY 4en1

Exit 1. eB ex1 eY 1ex3 3. eB ex3 eY 3ex3

2. eB ex2 eY 2ex3 4. eB en4 eY 4ex3

Table C.4: Half union composite defined as a graph pattern containing one quad-diamond and
two “Y” composites and seven points

239

Model Generation

Facing Turnout Composite It represents a (diverging) turnout that allows a facing-
point movement.

Facing Turnout composite (1, 2) eF

Composites fpen, fpex1, fpex2

Entry 1. eF en1 fpen

Exit 1. eF ex1 fpex1

2. eF ex2 fpex2

Table C.5: Facing Turnout Composite

Trailing Turnout Composite It represents a (converging) turnout for a trailing-point
movement.

Trailing Turnout composite (2, 1) eTR

Composites tpen1, tpen2, tpex

Entry 1. eT en1 tpen1

2. eT en2 tpen2

Exit 1. eT ex1 tpex

Table C.6: Trailing Turnout Composite

Diamond Composite It represents of a fixed diamond (crossing).

Diamond composite (2, 2) eC

Composites cpen1, cpen2, cpex1, cpex2

Entry 1. eC en1 cpen1

2. eC en2 cpen2

Exit 1. eC ex1 cpex1

2. eC ex2 cpex2

Table C.7: Diamond Composite

240

C.3 Infrastructure Model Examples

Misc Composite

Misc composite (m, n) eM

Composites eF 1, eF 2, · · · , eF,a ,
eTR1, eTR2, · · · , eTR,b ,
eC 1, eC 2, · · · , eC ,c

Paths p1 · · · to · · ·

p2 · · · to · · ·

· · · · · · to · · ·

pd · · · to · · ·

Bound b ∈N

Entry 1. eM en1 · · ·
2. eM en2 · · ·
· · · · · ·
m . eM en,m · · ·

Exit 1. eM ex1 · · ·
2. eM ex2 · · ·
· · · · · ·
n . eM ex,n · · ·

Table C.8: Misc composite

C.3 Infrastructure Model Examples

Some animation videos can be found at www.youtube.com/shanghaielaine.

Wouwermanstraat

241

http://www.youtube.com/shanghaielaine

Model Generation

Station HS

Rijswijkseplein

242

C.3 Infrastructure Model Examples

Bierkade

Station CS

243

Model Validation

D
Model Validation

D.1 Validation of Calibration Results

D.1.1 Calibration vs. Validation Datasets

The density functions of the driving speeds (in m/s) from the EBS data per stop-to-stop
interval used in the test case in § 6.4.3: the odd weeks vs. the even weeks of October
2011. The datasets from the odd weeks are used for the calibration and the datasets
from the even weeks are used for the validation.

2810→2309 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

2309→519 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

244

D.1 Validation of Calibration Results

519→513 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

513→506 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

505→514 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

514→520 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

520→2310 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

2310→2811 speed

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.2 11.4

Odd weeks

Even weeks

245

Model Validation

D.1.2 Calibration Results

The density functions of the driving speeds (in m/s) from the model calibration exper-
iments in § 6.4.3 vs. the EBS data.

246

D.2 Expertise of Panelists

D.2 Expertise of Panelists

The nine experts participated in the LIBROS model validation have the following expert-
ise related to public transport.

1. An expert in public transport network design and timetable optimization, with
special interests in service reliability.

2. An expert in transport planning and optimization of the planning process and
public transport economics.

3. An expert in design and development of public transport networks and public
transport economics.

4. An expert in public transport planning and scheduling (vehicles, timetables and
duties), working conditions, finance, transport development, trip-time and pas-
senger analysis.

5. An expert in the EBS database system. The system contains information about
the operational status of vehicles and the passenger information. The expert is
also responsible for the central information system used by the dispatchers.

6. An expert in transport planning and optimization of light rail operations.

7. An expert in operations of the public rail and light-rail transport systems.

8. An expert in light-rail transport systems design and maintenance, rail-wheel in-
terface, safety issues and exploitation issues.

9. An expert in strategic urban transport network and schedule design based on
transport modeling.

D.3 Validation Questionnaire

This questionnaire is meant to be answered with your observations of the provided
model animation videos. An animation legend is provided to explain the visualization.

247

Model Validation

The time reference in the questions refer to the “time of day” of the simulation (at the
up left corner of the animation window). The animation speed in the videos is twice
the real time, except for the ones explicitly clarified as ten times the real time in the
videos. You may need to pause and replay the videos in order to answer the questions.
We thank you in advance for your time, patience and support.

Location I. Wouwermanstraat

1. A line 12 vehicle (V49 pink) is halting at stop 2922 at 07:38. When the second
vehicle (line 11 V48 brown) arrives at this stop, are the second vehicle’s decelerat-
ing behavior and stopping position correct?

2. When the vehicle (line 8 V65 green) at stop 2924 leaves the stop and drives through
the converging tracks, are the two sensors triggered and released on time?

3. At 07:39 when the two vehicles depart from stop 2922 one after the other:

(a) Is the converging switch correctly pushed by the first vehicle?

(b) Does the second vehicle halt and drive according to the organization’s reg-
ulations?

4. At 07:53 when the two vehicles depart at from stop 2921, do they drive according
to the organization’s regulations? Please specify the errors if they are not men-
tioned be-fore.

5. In this video clip, do the vehicles arrive and depart stops in a realistic manner in
terms of their speed, acceleration and deceleration? Please specify the errors if
they are not mentioned before.

6. In this video clip, are there any abnormal behaviors of the vehicles, sensors or
switches, or in any other aspects besides the ones already motioned before?

Location II. Station HS

7. At stop 2730, a line 17 vehicle is halting (V203 dark green). A line 16 vehicle (V181
gold) enters the scene at 08:30 approaching the stop. Before V181 stops behind
V203, V203 starts driving. Is the cruising and following movement of V181 cor-
rectly modeled?

8. At 08:45 the line 8 vehicle (V238 green) at stop 2720 and the line 17 vehicle (V240
dark green) at stop 2730 depart at about the same time. When they drive towards
the converging tracks, V238 passes first.

(a) Is V240’s waiting position correct?

(b) In such cases, does the waiting position affect the simulation output such as
waiting time and total trip time?

9. At stop 2721, the line 12 vehicle (V270 pink) and the line 8 vehicle (V271 green)
are halting. When they drive towards the converging tracks successively:

248

D.3 Validation Questionnaire

(a) Is V271’s waiting position correct?

(b) Shall V271 wait until V270 passes the intersection in this case?

10. At 08:50 the line 18 vehicle (V275 dark red) at stop 2731 departs from stop 2730
and drives towards the converging tracks. A line 11 vehicle (V278 brown) is at this
intersection.

(a) Is V275’s waiting position correct?

(b) In such cases, does the waiting position affect the simulation output such as
waiting time and total trip time?

11. In this video clip, do the vehicles pass the intersections according to safety meas-
ures? Please specify the errors if they are not mentioned before.

12. In this video clip, do the vehicles arrive and depart stops in a realistic manner in
terms of their speed, acceleration and deceleration? Please specify the errors if
they are not mentioned before.

13. In this video clip, are there any abnormal behaviors of the vehicles, sensors or
switches, or in any other aspects besides the ones already motioned before?

Location III. Rijswijkseplein

14. At stop 2707 a line 17 vehicle (V2 dark green) is halting. Short before the vehicle
starts driving, the switch in front of the vehicle turned from left to right (relative
to the vehicle’s position).

(a) Does the switch turn at the about right time?

(b) Are the two sensors triggered and released on time?

15. At 07:29, a line 17 vehicle (V47 dark green) enters the scene and drives over a di-
verging switch. Soon after V47, a line 9 vehicle (V49 green) approaches the same
switch. The switch turned from right to left (relative to the vehicle’s position).

(a) Does the switch turn at about the right time?

(b) Are the sensors triggered and released on time?

16. In this video clip, do the vehicles pass the intersections according to safety meas-
ures? Please specify the errors if they are not mentioned before.

17. In this video clip, are there any abnormal behaviors of the vehicles, sensors or
switches, or in any other aspects besides the ones already motioned before?

Location IV. Bierkade

18. At 07:31 a line 10 vehicle (V46 grey) enters the intersection. A line 15 vehicle (V59
pink) at stop 2852 is about to depart. Is V59’s waiting position correct?

19. When V46 arrives at stop 2851, a line 1 vehicle (dark red) starts to leave. Is V46’s
cruising and following movement correct?

249

Model Validation

20. After 07:32 a line 10 vehicle (V58 grey) and a line 16 vehicle (V63 gold) arrives and
departs stop 2852 successively. V58 turns right and V63 drives straight.

(a) Does the switch turn at about the right time?

(b) Are the sensors triggered and released on time?

21. In this video clip, do the vehicles pass the intersection according to safety meas-
ures? Please specify the errors if they are not mentioned before.

22. In this video clip, do the vehicles arrive and depart stops in a realistic manner in
terms of their speed, acceleration and deceleration? Please specify the errors if
they are not mentioned before.

23. In this video clip, are there any abnormal behaviors of the vehicles, sensors or
switches, or in any other aspects besides the ones already motioned before?

Location V. Station CS

24. In this video clip, do the vehicles pass the intersections according to safety meas-
ures? Please specify the errors if they are not mentioned before.

25. In this video clip, do the vehicles arrive and depart stops in a realistic manner in
terms of their speed, acceleration and deceleration? Please specify the errors if
they are not mentioned before.

26. In this video clip, are there any abnormal behaviors of the vehicles, sensors or
switches, or in any other aspects besides the ones already motioned before?

250

References

ACHERMANN, F., M. LUMPE, J.-G. SCHNEIDER and O. NIERSTRASZ (2001). PICCOLA – a Small Com-
position Language. Formal Methods for Distributed Processing – A Survery of Object-Oriented
Appraoches. Ed. by H. Bowman and J. Derrick. Cambridge University Press, pp. 403–426 (cit.
on p. 25).

ACKOFF, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, pp. 3–9 (cit. on
p. 44).

ACKOFF, R. L. (1973). Science in the Systems Age: Beyond IE, OR, and MS. Operations Research,
21(3), pp. 661–671 (cit. on p. 12).

ACKOFF, R. L. (1978). The Art of Problem Solving: accompanied by Ackoff ’s Fables. John Wiley &
Sons (cit. on p. 13).

ALEXOPOULOS, C. and A. F. SEILA (1998). Handbook of Simulation: Principles, Methodology, Ad-
vances, Applications and Practice. Ed. by J. Banks. New York: John Wiley. Chap. Output data
analysis (cit. on pp. 177–179).

ALSTRUP, S., C. GAVOILLE, H. KAPLAN and T. RAUHE (2004). Nearest Common Ancestors: A Survey
and a New Algorithm for a Distributed Environment. Theory of Computing Systems, 37 (3),
pp. 441–456 (cit. on p. 77).

AMSTERDAM, J. (1993). Automated Qualitative Modeling of Dynamic Physical Systems. PhD thesis.
Artifical Intelligence Laboratory, Massachusetts Institue of Technology (cit. on p. 2).

ANDERSON, T. W. and D. A. DARLING (1952). Asymptotic theory of certain “goodness-of-fit” criteria
based on stochastic processes. Annals of Mathematical Statistics, 23, pp. 193 –212 (cit. on
p. 195).

ANDERSSON, P. (2006). Hyperedge Replacement Grammars. Final versions of lecture notes, Formal
Languages, Department of Computing Science, Umeå University, Sweden (cit. on p. 134).

ARTHUR, J. D. and R. E. NANCE (2007). Investigating the use of software requirements engineering
techniques in simulation modelling. Journal of Simulation, 1, pp. 159–174 (cit. on p. 176).

ASZTALOS, M., E. SYRIANI, M. WIMMER and M. KESSENTINI (2011). Towards Transformation Rule
Composition. Electronic Communications of the EASST - Proceedings of the 4th International
Workshop on Multi-Paradigm Modeling. 42 (cit. on pp. 55, 56, 154).

ATKINSON, C. and T. KÜHNE (2003). Model-driven development: a metamodeling foundation.
IEEE Software, 20(5), pp. 36–41 (cit. on p. 22).

BALCI, O. (1998). Verification, Validation, and Testing. Handbook of Simulation: Principles, Meth-
odology, Advances, Applications, and Practice. Ed. by J. Banks. Wiley Interscience, pp. 335–393
(cit. on pp. 57, 176, 202).

BALCI, O. (2004). Quality assessment, verification, and validation of modeling and simulation ap-
plications. Proceedings of the 2004 Winter Simulation Conference. Vol. 1, pp. 122 –129 (cit. on
p. 64).

251

BALCI, O. and R. E. NANCE (1987). Simulation model development environments: a research pro-
totype. Journal of the Operational Research Society, 38(8), pp. 753–763 (cit. on p. 175).

BALCI, O. (2012). A life cycle for modeling and simulation. Simulation, 88(7), pp. 870–883 (cit. on
pp. 15, 176).

BALLOU, D. P. and H. L. PAZER (1985). Modeling Data and Process Quality in Multi-Input, Multi-
Output Information Systems. Management Science, 31(2), pp. 150 –162 (cit. on p. 46).

BALOGH, A. and D. VARRÓ (2006). Pattern Composition in Graph Transformation Rules. European
Workshop on Composition of Model Transformations (cit. on pp. 56, 154).

BANKS, J., ed. (1998). Handbook of Simulation: Principles, Methodology, Advances, Applications,
and Practice. Wiley Interscience (cit. on pp. 62–64, 122).

BANKS, J., J. S. CARSON II, B. L. NELSON and D. M. NICOL (2010). Discrete-Event System Simulation.
5th. Pearson Education (cit. on pp. 1, 2, 62, 63, 175, 177–179, 198, 201).

BARROS, F. J. (1997). Modeling formalisms for dynamic structure systems. ACM Transactions on
Modeling and Computer Simulation, 7(4), pp. 501 –515 (cit. on p. 112).

BATINI, C. and M. SCANNAPIECO (2006). Data Quality: Concepts, Methodologies and Techniques.
Data-Centric Systems and Applications. Springer-Verlag Berlin Heidelberg (cit. on pp. 47–49).

BATINI, C., C. CAPPIELLO, C. FRANCALANCI and A. MAURINO (2009). Methodologies for data quality
assessment and improvement. ACM Computing Surveys, 41(3), 16:1 –16:52 (cit. on pp. 45–50).

BEN-ARI, M. (2012). Mathematical Logic for Computer Science. Springer-Verlag London (cit. on
p. 127).

BENDFELDT, J.-P., U. MOHR and L. MÜLLER (2000). RailSys, a system to plan future railway needs.
Advances in Transport, 7, pp. 249–255 (cit. on p. 60).

BERGE, C. (1973). Graphs and Hypergraphs. Translation and revised edition of Graphes et Hyper-
graphes 1970. North-Holland Publishing Company (cit. on p. 127).

BERGE, C. (1989). Hypergraphs: Combinatorics of Finite Sets. Vol. 45. North-Holland Mathematical
Library. Elsevier Science Publishers (cit. on pp. 127, 128).

BERGMANN, G., I. RÁTH, T. SZABÓ, P. TORRINI and D. VARRÓ (2012). Incremental pattern matching
for the efficient computation of transitive closure. Graph Transformations. Springer Berlin
Heidelberg, pp. 386 –400 (cit. on p. 154).

BERGMANN, S. and S. STRASSBURGER (2010). Challenges for the Automatic Generation of Simula-
tion Models for Production Systems. Proceedings of the 2010 Summer Simulation Multicon-
ference. Ottawa, Canada, pp. 545–549 (cit. on p. 2).

BLANCHARD, B. S. and W. J. FABRYCKY (2011). Systems Engineering and Analysis. 5th. Prentice Hall
(cit. on p. 8).

BOEHM, B. W. (1988). A Spiral Model of Software Development and Enhancement. Computer,
pp. 61–72 (cit. on p. 8).

BOVEE, M., R. P. SRIVASTAVA and B. MAK (2003). A conceptual framework and belief-function ap-
proach to assessing overall information quality. International Journal of Intelligent Systems,
18(1), pp. 51 –74 (cit. on pp. 47, 48, 50).

BRAUDE, E. J. and M. E. BERNSTEIN (2010). Software Engineering: Modern Approaches. 2nd. John
Wiley & Sons (cit. on pp. 59, 61, 64).

BRAUSE, R. (2004). Model selection and adaptation for biochemical pathways. Lecture Notes in
Computer Science, 3337, pp. 439–449 (cit. on pp. 3, 4).

BREEDVELD, P. (2009). Modeling and Control of Complex Physical Systems - The Port-Hamiltonian
Approach. Ed. by V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx. Springer Verlag.
Chap. Port-Based Modeling of Dynamic Systems, pp. 1–52 (cit. on pp. 28, 66).

252

BRUNI, R., F. GADDUCCI and A. LLUCH LAFUENTE (2010). An Algebra of Hierarchical Graphs. Trust-
worthly Global Computing. Ed. by M. Wirsing, M. Hofmann and A. Rauschmayer. Vol. 6084.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 205 –221 (cit. on p. 127).

BUSATTO, G. and B. HOFFMANN (2001). Comparing notions of hierarchical graph transformation.
Electronic Notes in Theoretical Computer Science, 50(3), pp. 310 –317 (cit. on p. 127).

COBP (2002). NATO code of best practice for command and control assessment. DoD Command
and Control Research Program (CCRP). SAS-026 (cit. on p. 4).

CACUCI, D. and M. IONESCU-BUJOR (2010). Sensitivity and Uncertainty Analysis, Data Assimila-
tion, and Predictive Best-Estimate Model Calibration. Handbook of Nuclear Engineering. Ed.
by C. D. Springer-Verlag Berlin Heidelberg (cit. on p. 176).

CAI, J. (2011). Assessing The Impact of Capacity of Depots and Vehicle Schedule in Transporta-
tion Systems. MA thesis. Delft University Of Technology, Faculty Of Technology, Policy And
Management (cit. on pp. 3, 218).

CAO, Y., Y. LIU, H. FAN and B. FAN (2012). SysML-based uniform behavior modeling and auto-
mated mapping of design and simulation model for complex mechatronics. CAD Computer
Aided Design. Article in Press (cit. on p. 2).

CAREY, M. and S. CARVILLE (2002). Testing schedule performance and reliability for train stations.
Journal of the Operational Research Society, 51(6), pp. 666–682 (cit. on pp. 60, 61).

CAREY, M. and S. CARVILLE (2003). Scheduling and platforming trains at busy complex stations.
Transportation Research Part A: Policy and Practice, 37(3), pp. 195–224 (cit. on pp. 60, 61).

CAREY, M. and D. LOCKWOOD (1995). A Model, Algorithms and Strategy for Train Pathing. The
Journal of the Operational Research Society, 46(8), pp. 988–1005 (cit. on p. 60).

CATARCI, T. and M. SCANNAPIECO (2002). Data Quality under the Computer Science Perspective.
Archivi & Computer, 2 (cit. on p. 48).

CETINKAYA, D. and A. VERBRAECK (2011). Metamodeling and Model Transformations in Modeling
and Simulation. Proceedings of the 2011 Winter Simulation Conference. Ed. by S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White and M. Fu. Phoenix, AZ: IEEE, pp. 3048–3058 (cit. on
p. 22).

CHECKLAND, P. (1981). Systems Thinking, Systems Practice. John Wiley & Sons (cit. on p. 12).
CHECKLAND, P. (1999). Systems Thinking, Systems Practice: Includes a 30-Year Retrospective. John

Wiley & Sons (cit. on p. 13).
CHECKLAND, P. and S. HOLWELL (1998). Information, Systems and Information Systems - making

sense of the field. John Wiley & Sons (cit. on p. 44).
CHEN, Y., M. THURLEY and M. WEYER (2008). Understanding the Complexity of Induced Subgraph

Isomorphisms. Proceedings of the 35th international colloquium on Automata, Languages
and Programming, Part I. Reykjavik, Iceland: Springer-Verlag, pp. 587 –596 (cit. on p. 131).

CHENG, C.-T., X.-Y. WU and K. W. CHAU (2005). Multiple criteria rainfall–runoff model calibration
using a parallel genetic algorithm in a cluster of computers. Hydrological Sciences–Journal–des
Sciences Hydrologiques, 50(6), pp. 1069 –1087 (cit. on p. 181).

CHENG, C.-T., M.-Y. ZHAO, K. W. CHAU and X.-Y. WU (2006). Using genetic algorithm and TOP-
SIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1–4),
pp. 129 –140 (cit. on p. 176).

CHIN, R. (2007). Mainport Planning Suite: Software Services to Support Mainpoart Planning. PhD
thesis. Delft University of Technology (cit. on p. 63).

CLARK, A. (1984). Elements of Abstract Algebra. Courier Dover Publications (cit. on p. 224).
CONOVER, W. J. (1971). Practical Nonparametric Statistics. New York: John Wiley & Sons (cit. on

p. 187).

253

COOLEY, T. F. (1997). Calibrated models. Oxford Review of Economic Policy, 13(3), pp. 55–69 (cit.
on pp. 195, 198).

CORMEN, T. H., C. E. LEISERSON, R. L. RIVEST and C. STEIN (2001). Introduction to Algorithms. 3rd.
MIT Press and McGraw-Hill (cit. on pp. 76, 138, 139, 150, 157, 159, 160).

CORNÉLIO, M. L. (2004). Refactorings as Formal Refinements. PhD thesis. Universidade Federal
de Pernambuco, Centro de Informática (cit. on p. 54).

CORRADINI, A., U. MONTANARI, F. ROSSI, H. EHRIG, R. HECKEL and M. LÖWE (1997). Algebraic Ap-
proaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach.
Handbook of Graph Grammars and computing by graph transformation. Ed. by G. Rozenberg.
Vol. 1: Foundations. World Scientific Publishing, pp. 163 –246 (cit. on pp. 129–132).

CRAIK, K. (1943). The Nature of Explanation. Cambridge University Press (cit. on p. 12).
CRESWELL, J. W. (2003). Research design: Qualitative, quantitative, and mixed method approaches.

2nd. Sage Publications (cit. on pp. 6, 9).
CRNKOVIC, I., J. STAFFORD and C. SZYPERSKI (2011). Software Components beyond Programming:

From Routines to Services. IEEE Software, 28(3), pp. 22 –26 (cit. on pp. 61, 64, 212).
CROSBIE, R. E. (2010). Grand Challenges in Modeling and Simulation. SCS M&S Magazine, 1(1),

pp. 1–8 (cit. on pp. 1, 211).
CROSSAN, F. (2003). Research philosophy: towards an understanding. Nurse Researcher, 11(1),

pp. 46–55 (cit. on pp. 6, 7).
CZARNECKI, K. and U. EISENECKER (2000). Generative Programming: Methods, Tools, and Applic-

ations. Addison-Wesley (cit. on pp. 54–56).
CZARNECKI, K. and S. HELSEN (2006). Feature-based survey of model transformation approaches.

IBM Systems Journal, 45(3), pp. 621 –645 (cit. on pp. 53–56).
DE LARA, J., H. VANGHELUWE and M. ALFONSECA (2004). Meta-modelling and graph grammars

for multi-paradigm modelling in AToM3. Software and Systems Modeling, 3(3), pp. 194 –209
(cit. on p. 29).

DECROP, A. (2006). Vacation Decision Making. CABI Publishing Series. CABI (cit. on p. 7).
DIJKSTRA, E. W. (1982). On the role of scientific thought, 1974. Selected Writings on Computing: A

Personal Perspective. Springer, pp. 60 –66 (cit. on pp. 64, 66).
DOWLING, R, A SKABARDONIS, J HALKIAS, G MCHALE and G ZAMMIT (2004). Guidelines For Cal-

ibration Of Microsimulation Models: Framework And Applications. Transportation Research
Record: Journal of the Transportation Research Board, (1876), pp. 1–9 (cit. on p. 181).

DREWES, F., H.-J. KREOWSKI and A. HABEL (1997). Hyperedge Replacement Graph Grammars.
Handbook of Graph Grammars and Computing by Graph Transformation. Ed. by G. Rozen-
berg. Vol. 1: Foundations. World Scientific Publishing, pp. 95 –162 (cit. on pp. 127, 129, 133,
134).

DREWES, F., B. HOFFMANN and D. PLUMP (2002). Hierarchical Graph Transformation. Journal of
Computer and System Sciences, 64(2), pp. 249 –283 (cit. on p. 127).

DUBIN, R. (1978). Theory Building. revised edition. London: Free Press (cit. on p. 36).
EASTERBY-SMITH, M., R. THORPE and A. LOWE (2001). Management Research: An Introduction.

2nd. SAGE Series in Management Research. Sage Publications (cit. on p. 6).
ECKHARDT, K., N. FOHRER and H.-G. FREDE (2005). Automatic model calibration. Hydrological

Processes, 19(3), pp. 651 –658 (cit. on p. 176).
EECKELAERT, T., W. DAEMS, G. GIELEN and W. SANSEN (2004). Generalized simulation-based posy-

nomial model generation for analog integrated circuits. Analog Integrated Circuits and Signal
Processing, 40(3), pp. 193–203 (cit. on p. 2).

254

EHRIG, H., R. HECKEL, M. LÖWE, L. RIBEIRO, A. WAGNER and A. CORRADINI (1997). Algebraic Ap-
proaches to Graph Transformation - Part II: Single Pushout Approach and Comparison with
Double Pushout Approach. Handbook of Graph Grammars and computing by graph trans-
formation. Ed. by G. Rozenberg. Vol. 1: Foundations. World Scientific Publishing, pp. 247 –
312 (cit. on p. 132).

EHRIG, H., K. EHRIG, U. PRANGE and G. TAENTZER (2006a). Fundamental Theory for Typed At-
tributed Graphs and Graph Transformation based on Adhesive HLR Categories. Fundamenta
Informaticae, 74(1), pp. 31 –61 (cit. on p. 126).

EHRIG, H., K. EHRIG, U. PRANGE and G. TAENTZER (2006b). Fundamentals of Algebraic Graph
Transformation. Ed. by W. Brauer, G. Rozenberg and A. Salomaa. Monographs in Theoret-
ical Computer Science, An EATCS Series. Springer-Verlag Berlin Heidelberg (cit. on pp. 126,
129, 130).

EOM (2011). Encyclopedia of Mathematics. www.encyclopediaofmath.org, Springer & European
Mathematical Society (cit. on p. 26).

EPPSTEIN, D. (1999). Subgraph isomorphism in planar graphs and related problem. Journal of
Graph Algorithms and Applications, 3(3), pp. 1–27 (cit. on p. 131).

ESTEFAN, J. (2008). Survey of Model-Based Systems Engineering (MBSE) methodologies. Tech. rep.
International Council on Systems Engineering ((INCOSE)) (cit. on p. 8).

EUGSTER, P. T., P. A. FELBER, R. GUERRAOUI and A.-M. KERMARREC (2003). The many faces of pub-
lish/subscribe. ACM Computing Surveys, 35(2), pp. 114–131 (cit. on p. 116).

FAN, W., J. LI, S. MA, N. TANG, Y. WU and Y. WU (2010). Graph pattern matching: from intractable
to polynomial time. Proceedings of the VLDB Endowment, 3(1-2), pp. 264 –275 (cit. on pp. 126,
131).

FERNEY, M. (2000). Modelling and controlling product manufacturing systems using bond-graphs
and state equations: Continuous systems and discrete systems which can be represented by
continuous models. Production Planning and Control, 11(1), pp. 7–19 (cit. on pp. 3, 4).

FINLEY, J., J. PINTÉR and M. SATISH (1998). Automatic model calibration applying global optimiz-
ation techniques. English. Environmental Modeling & Assessment, 3(1-2), pp. 117–126 (cit. on
p. 176).

FLOOD, R. L. (1990). Liberating Systems Theory. New York: Plenum Press (cit. on pp. 12, 13).
FLOOD, R. L. and E. R. CARSON (1993). Dealing with Complexity: An Introduction to the Theory

and Application of Systems Science. 2nd. Springer (cit. on pp. 6, 13, 14).
FLYNN, P. J. and A. K. JAIN (1991). CAD-Based Computer Vision: From CAD Models to Relational

Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2), pp. 114–132
(cit. on p. 43).

FORRESTER, J. W. (1976). Principles of Systems. 2nd Preliminary. Wright-Allen Press (cit. on p. 12).
FORSBERG, K. and H. MOOZ (1992). The Relationship of Systems Engineering to the Project Cycle.

Engineering Management Journal, 4, pp. 36 –43 (cit. on p. 8).
FOWLER, J. W. and O. ROSE (2004). Grand Challenges in Modeling and Simulation of Complex

Manufacturing Systems. Simulation, 80(9), pp. 469–476 (cit. on pp. 2, 211).
FOWLER, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley (cit. on

pp. 54, 64).
FOX, C., A. LEVITIN and T. REDMAN (1994). The notion of data and its quality dimensions. Inform-

ation Processing and Management, 30(1), pp. 9 –19 (cit. on pp. 46, 48, 50).
FUJIMOTO, R. M. (2000). Parallel and Distributed Simulation Systems. Ed. by A. Y. Zomaya. Wiley

Series On Parallel and Distributed Computing. John Wiley & Sons (cit. on p. 64).

255

FUMAROLA, M. (2011). Multiple Worlds: A multi-actor simulation-based design method for logist-
ics systems. PhD thesis. The Netherlands: Delft University of Technology (cit. on pp. 63, 64,
120).

GALLAGHER, B. (2006). Matching structure and semantics: A survey on graph-based pattern match-
ing. Capturing and Using Patterns for Evidence Detection. AAAI Press, pp. 45–53 (cit. on pp. 56,
126, 131, 132).

GAMMA, E., R. HELM, R. JOHNSON and J. VLISSIDES (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (cit. on pp. 83, 85, 116).

GAREY, M. R. and D. S. JOHNSON (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H. Freeman & Co. (cit. on p. 131).

GELBSTEIN, E. (2003). Data, Information, and Knowledge. Encyclopedia of Information Systems.
Ed. by H. Bidgoli. New York: Elsevier, pp. 469 –476 (cit. on p. 46).

GELFERT, A. (2011). Mathematical formalisms in scientific practice: From denotation to model-
based representation. Studies in History and Philosophy of Science Part A, 42(2), pp. 272 –286
(cit. on p. 25).

GELSEY, A. (1990). Automated reasoning about machines. PhD thesis. New Haven: Yale University
(cit. on p. 3).

GELSEY, A. (1995). Automated reasoning about machines. Artificial Intelligence, 74(1), pp. 1–53
(cit. on p. 3).

GIAMBIASI, N. and J. C. CARMONA (2006). Generalized discrete event abstraction of continuous
systems: GDEVS formalism. Simulation Modelling Practice and Theory, 14(1), pp. 47–70 (cit.
on p. 88).

GIAMBIASI, N., B. ESCUDE and S. GHOSH (2000). GDEVS: A generalized discrete event specification
for accurate modeling of dynamic systems. Transactions of the SCS, 17(3), pp. 120 –134 (cit.
on pp. 69, 87, 88).

GLOTZER, S. C., S. KIM, P. T. CUMMINGS, A. DESHMUKH, M. HEAD-GORDON, G. KARNIADAKIS, L.
PETZOLD, C. SAGUI and M. SHINOZUKA (2010). International Assessment of Research and De-
velopment in Simulation-based Engineering and Science. Tech. rep. World Technology Evalu-
ation Center (cit. on pp. 2, 4, 211).

GOLDSMAN, D. and B. L. NELSON (1998). Comparing Systems via Simulation. Handbook of Sim-
ulation: Principles, Methodology, Advances, Applications, and Practice. Ed. by J. Banks. Wiley
Interscience. Chap. 8, pp. 273 –306 (cit. on p. 179).

GONZALEZ, R. A. (2010). A framework for ICT-supported coordination in crisis response. PhD
thesis. Delft University of Technology, Faculty of Technology, Policy and Management (cit.
on p. 203).

GÖSSLER, G. and J. SIFAKIS (2005). Composition for component-based modeling. Science of Com-
puter Programming, 55(1-3), pp. 161–183 (cit. on pp. 23, 24).

GRANDA, J. J. and R. C. MONTGOMERY (2003). Automated Modeling and Simulation Using the Bond
Graph Method for the Aerospace Industry. Tech. rep. CASI-20040085773. NASA Langley Re-
search Center (cit. on pp. 2, 4).

GREGOR, S. and D. JONES (2007). The Anatomy of a Design Theory. Journal of the Association for
Information Systems, 8(5), pp. 312–335 (cit. on p. 36).

GUBA, E. G. and Y. S. LINCOLN (1994). Competing paradigms in qualitative research. Handbook
of Qualitative Research. Ed. by N. K. Denzin and Y. S. Lincoln. Sage Publications, pp. 105–117
(cit. on p. 6).

HABEL, A. (1992). Hyperedge Replacement: Grammars and Languages. Spriger-Verlag (cit. on pp. 127,
129, 133, 134, 141).

256

HANSEN, I. A. and J. PACHL, eds. (2008). Railway Timetable & Traffic: Analysis-Modelling-Simulation.
Eurailpress (cit. on pp. 60, 61, 67–69, 89).

HARRISON, G. A., D. S. MAYNARD and E. POLLAK (2004). Automated database and schema-based
data interchange for modeling and simulation. Proceedings of the 2004 Winter simulation
Conference, pp. 191–197 (cit. on p. 3).

HESSE, W. (2006). More matters on (meta-)modelling: remarks on Thomas Kühne’s “matters”.
Software and Systems Modeling, 5(4), pp. 387–394 (cit. on p. 22).

HEVNER, A. R., S. T. MARCH, J. PARK and S. RAM (2004). Design Science in Information Systems
Research. English. MIS Quarterly, 28(1), pp. 75–105 (cit. on p. 8).

HO, T., B. MAO, Z. YUAN, H. LIU and Y. FUNG (2002). Computer simulation and modeling in railway
applications. Computer Physics Communications, 143(1), pp. 1–10 (cit. on pp. 60, 61).

HO, Y.-C., ed. (1994). Discrete Event Dynamic Systems: Analyzing Complexity and Performance in
the Modern World. IEEE (cit. on p. 27).

HOAD, K., S. ROBINSON and R. DAVIES (2010). Automated selection of the number of replications
for a discrete-event simulation. Journal of the Operational Research Society, 61(11), pp. 1632
–1644 (cit. on pp. 177–179).

HOFMANN, M. (2004). Criteria for decomposing systems into components in modeling and sim-
ulation: Lessons learned with military simulations. Simulation, 80(7-8), pp. 357–365 (cit. on
pp. 24, 34, 66).

HOLLANDER, Y. and R. LIU (2008). The principles of calibrating traffic microsimulation models.
English. Transportation, 35(3), pp. 347 –362 (cit. on pp. 180, 181, 187).

HOURDAKIS, J, P. G. MICHALOPOULOS and J KOTTOMMANNIL (2003). Practical Procedure For Cal-
ibrating Microscopic Traffic Simulation Models. Transportation Research Record: Journal of
the Transportation Research Board, (1852), pp. 130–139 (cit. on p. 181).

HUANG, Y., A. VERBRAECK, N. VAN OORT and H. VELDHOEN (2010). Rail Transit Network Design
Supported by an Open Source Simulation Library: Towards Reliability Improvement. Trans-
portation Research Board 89th Annual Meeting Compendium of Papers. 10-0310. Washington,
DC, USA: TRB (cit. on p. 3).

JACOBS, P. H. M. (2005). The DSOL simulation suite - Enabling multi-formalism simulation in a
distributed context. PhD thesis. the Netherlands: Delft University of Technology (cit. on pp. 8,
26, 63, 114, 120, 177, 183, 184, 225).

JIANG, X. Y. and H. BUNKE (1996). Including geometry in graph representations: A quadratic-time
graph isomorphism algorithm and its applications. Advances in Structural and Syntactical
Pattern Recognition. Ed. by P. Perner, P. Wang and A. Rosenfeld. Vol. 1121. LNCS. Springer
Berlin Heidelberg, pp. 110 –119 (cit. on p. 146).

JIANG, X. Y. and H. BUNKE (1999). Optimal quadratic-time isomorphism of ordered graphs. Pat-
tern Recognition, 32(7), pp. 1273 –1283 (cit. on pp. 146, 147, 156).

JOHNSON, T., A. KERZHNER, C. PAREDIS and R. BURKHART (2012). Integrating models and simula-
tions of continuous dynamics into SysML. Journal of Computing and Information Science in
Engineering, 12(1) (cit. on p. 2).

JONES, L. (1982). Defining System Boundaries in Practice: Some Proposals and Guidelines. Journal
of Applied Systems Analysis, 9, pp. 41–55 (cit. on p. 13).

JURAN, J. M. (1988). Juran on Planning for Quality. New York: Free Press (cit. on p. 45).
KAAS, A. (2000). Punctuality model for railways. Advances in Transport, 7, pp. 853–860 (cit. on

p. 60).
KAHL, W. (2002). A Relation-Algebraic Approach to Graph Structure Transformation. Habilitationss-

chrift. Fakultät für Informatik, Universität der Bundeswehr München (cit. on pp. 56, 130, 132).

257

KAMERLING, W. (2007). Besluitvorming over traminfrastructuur. In Dutch. MA thesis. Delft Univ-
eristy of Technology, Faculty of Technology, Policy and Management (cit. on p. 3).

KANACILO, E. M. and A. VERBRAECK (2005). A distributed multi-formalism simulation to sup-
port rail infrastructure control design. Proceedings of the 2005 Winter Simulation Conference.
IEEE, pp. 2546–2553 (cit. on p. 114).

KANACILO, E. M. and A. VERBRAECK (2006). Simulation services to support the control design of
rail infrastructures. Proceedings of the 2006 Winter Simulation Conference. IEEE, pp. 1372–
1379 (cit. on pp. 3, 114).

KANACILO, E. M. and A. VERBRAECK (2007). Assessing tram schedules using a library of simulation
components. Proceedings of the 2007 Winter Simulation Conference. IEEE, pp. 1878–1886 (cit.
on pp. 3, 114).

KAVICKA, A. and V. KLIMA (2000). Simulation support for railway infrastructure design and plan-
ning processes. Advances in Transport, 7, pp. 447–456 (cit. on p. 60).

KEEN, P. and H. SOL (2008). Decision Enhancement Services: Rehearsing the Future for Decisions
that Matter. IOS Press (cit. on p. 61).

KENNEDY, M. C. and A. O’HAGAN (2001). Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(3), pp. 425 –464 (cit. on p. 176).

KÜHNE, T. (2006). Matters of (Meta-) Modeling. Software and Systems Modeling, 5(4), pp. 369–385
(cit. on pp. 12, 20–22).

KICKERT, W. J. M. and J. P. VAN GIGCH (1979). A Metasystem Approach to Organizational Decision-
Making. Management Science, 25(12), pp. 1217–1231 (cit. on p. 23).

KIM, S.-J., W. KIM and L. R. RILETT (2005). Calibration of micro-simulation models using non-
parametric statistical techniques. Transportation Research Record: Journal of the Transporta-
tion Research Board, (1935), pp. 111–119 (cit. on p. 187).

KLEIJNEN, J. P. C. (1995). Verification and validation of simulation models. European Journal of
Operational Research, 82(1), pp. 145 –162 (cit. on pp. 179, 187).

KLEIJNEN, J. P. C. (1999). Statistical validation of simulation, including case studies. Validation of
simulation models. Ed. by C. van Dijkum, D. DeTombe and E. van Kuijk. 112 - 125. SISWO
Amsterdam (cit. on p. 179).

KLEIJNEN, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of Op-
erational Research, 192(3), pp. 707–716 (cit. on p. 22).

KLEIJNEN, J. P. C. and R. G. SARGENT (2000). A methodology for fitting and validating metamodels
in simulation. European Journal of Operational Research, 120(1), pp. 14–29 (cit. on p. 22).

KLEPPE, A., J. WARMER and W. BAST (2003). MDA Explained: The Model-Driven Architecture: Prac-
tice and Promise. Addison Wesley (cit. on p. 53).

KLIR, G. J. (2001). Facets of Systems Science. 2nd. Vol. 15. IFSR International Series on Systems
Science and Engineering. Kluwer Academic/Plenum Publishers (cit. on pp. 12, 14, 223, 224).

KLIR, G. J. and D. ELIAS (2003). Architecture of Systems Problem Solving. 2nd. Vol. 21. IFSR Inter-
national Series on Systems Science and Engineering. Kluwer Academic/Plenum Publishers
(cit. on pp. 8, 13, 16–18, 20, 22, 24).

KLIR, G. J. (1988). The Role of Uncertainty Principles in Inductive Systems Modelling. Kybernetes,
17(2), pp. 24–34 (cit. on p. 18).

KNIGHT, S.-A. and J. BURN (2005). Developing a Framework for Assessing Information Quality on
the World Wide Web. Informing Science, 8, pp. 159 –172 (cit. on p. 45).

KNUTH, D. E. (1997). The Art of Computer Programming, Volum 1: Fundamental Algorithms. Addison-
Wesley Professional (cit. on p. 76).

258

KOFMAN, E. (2003a). Quantization-Based Simulation of Differential Algebraic Equation Systems.
Simulation, 79(7), pp. 363–376 (cit. on pp. 69, 87).

KOFMAN, E. (2003b). Quantized-state control: a method for discrete event control of continuous
systems. Latin American applied research, 33(4), pp. 339 –406 (cit. on p. 87).

KOFMAN, E., J. LEE and B. ZEIGLER (2001). DEVS Representation of Differential Equation Systems:
Review of Recent Advances. Proceedings of the 2001 European Simulation Symposium (cit. on
p. 87).

KOUTSOPOULOS, H. and Z. WANG (2007). Simulation of Urban Rail Operations: Application Frame-
work. Transportation Research Record: Journal of the Transportation Research Board, 2006,
pp. 84–91 (cit. on p. 60).

KREUTZER, W. (1986). System Simulation: Programming Styles and Languages. New York: Addison-
Wesley (cit. on p. 175).

KUECHLER, B. and V. VAISHNAVI (2008). On theory development in design science research: ana-
tomy of a research project. European Journal of Information Systems (2008) 17, 489–504, 17,
pp. 489–504 (cit. on p. 36).

LASZLO, A. and S. KRIPPNER (1998). Systems theories: Their origins, foundations, and develop-
ment. Systems Theories and a Priori Aspects of Perception. Ed. by J. S. Jordan. Vol. 126. Ad-
vances in Psychology. Amsterdam: Elsevier Science, pp. 47 –74 (cit. on p. 11).

LAW, A. M. (2007). Simulation Modeling and Analysis. 4th. McGraw-Hill (cit. on pp. 1, 14, 62, 63,
120, 122, 123, 175–179, 184, 187, 189, 195, 198, 201, 202).

LEE, J.-K., Y.-H. LIM and S.-D. CHI (2004). Hierarchical Modeling and Simulation Environment for
Intelligent Transportation Systems. Simulation, 80(2), pp. 61–76 (cit. on p. 67).

LEE, J.-B. and K. OZBAY (2008). Calibration of a Macroscopic Traffic Simulation Model Using En-
hanced Simultaneous Perturbation Stochastic Approximation Methodology. TRB 87th An-
nual Meeting Compendium of Papers, (08-2964) (cit. on p. 187).

LEE, J.-B. and K. OZBAY (2009). A New Calibration Methodology for Microscopic Traffic Simulation
Using Enhanced Simultaneous Perturbation Stochastic Approximation Approach. Transport-
ation Research Record: Journal of the Transportation Research Board, (2124), pp. 233–240 (cit.
on p. 187).

LEE, Y. W., D. M. STRONG, B. K. KAHN and R. Y. WANG (2002). AIMQ: a methodology for information
quality assessment. Information and Management, 40(2), pp. 133 –146 (cit. on p. 45).

LEVITIN, A. and T. REDMAN (1995). Quality dimensions of a conceptual view. Information Pro-
cessing and Management, 31(1), pp. 81 –88 (cit. on p. 48).

LEVY, A. Y., Y. IWASAKI and R. FIKES (1997). Automated model selection for simulation based on
relevance reasoning. Artificial Intelligence, 96(2), pp. 351–394 (cit. on p. 3).

LI, K.-P. and Z.-Y. GAO (2007). An improved equation model for the train movement. Simulation
Modelling Practice and Theory, 15(9), pp. 1156 –1162 (cit. on p. 68).

LI, K.-P., Z.-Y. GAO and B. NING (2005). Cellular automaton model for railway traffic. Journal of
Computational Physics, 209(1), pp. 179 –192 (cit. on p. 68).

LI, K.-P., B.-H. MAO and Z.-Y. GAO (2009). An improved walk model for train movement on railway
network. Communications in Theoretical Physics, 51(6), pp. 979–984 (cit. on p. 68).

LIANG, V.-C. and C. PAREDIS (2004). A port ontology for conceptual design of systems. Journal of
Computing and Information Science in Engineering, 4(3), pp. 206–217 (cit. on p. 28).

LILLRANK, P. (2003). The quality of information. International Journal of Quality and Reliability
Management, 20(6), pp. 691 –703 (cit. on pp. 44, 45).

259

LITTLE, S., D. WALTER, K. JONES, C. MYERS and A. SEN (2010). Analog/mixed-signal circuit verific-
ation using models generated from simulation traces. International Journal of Foundations
of Computer Science, 21(2), pp. 191–210 (cit. on p. 2).

LONGO, F. (2011). Advances of modeling and simulation in supply chain and industry. Simulation,
87(8), pp. 651–656 (cit. on pp. 2, 4, 211).

LOSHIN, D. (2011). The Practitioner’s Guide to Data Quality Improvement. Morgan Kaufmann (cit.
on pp. 44, 47, 48, 50).

LU, Q., M. DESSOUKY and R. C. LEACHMAN (2004). Modeling train movements through complex
rail networks. ACM Transactions on Modeling and Computer Simulation, 14(1), pp. 48–75 (cit.
on p. 68).

LUBARS, M. D. (1988). Wide-spectrum support for software reusability. Software reuse: emerging
technology. Ed. by W. Tracz. Los Alamitos, CA, USA: IEEE Computer Society Press, pp. 275–281
(cit. on p. 61).

LUCKO, G., P. C. BENJAMIN, K. SWAMINATHAN and M. G. MADDEN (2010). Comparison of manual
and automated simulation generation approaches and their use for construction applica-
tions. Proceedings of the 2010 Winter Simulation Conference, pp. 3132–3144 (cit. on p. 3).

M’PHERSON, P. K. (1974). A perspective on systems science and systems philosophy. Futures, 6,
pp. 219–239 (cit. on p. 6).

MACK, N. K. (1990). Learning Fractions with Understanding: Building on Informal Knowledge.
English. Journal for Research in Mathematics Education, 21(1), pp. 16–32 (cit. on p. 14).

MANIN, Y. I. (2010). A Course in Mathematical Logic for Mathematicians. Vol. 53. Graduate Texts
in Mathematics. Springer New York (cit. on p. 127).

MANNING, C. D., P. RAGHAVAN and H. SCHÜTZE (2008). Introduction to Information Retrieval.
Cambridge University Press (cit. on p. 157).

MARCH, S. T. and G. F. SMITH (1995). Design and natural science research on information tech-
nology. Decision Support Systems, 15(4), pp. 251 –266 (cit. on p. 8).

MASON, D. M. and J. H. SCHUENEMEYER (1983). A Modified Kolmogorov-Smirnov Test Sensitive
to Tail Alternatives. The Annals of Statistics, 11(3), pp. 933 –946 (cit. on p. 195).

MCGILVRAY, D. (2008). Executing Data Quality Projects: Ten Steps to Quality Data and Trusted
Information. Morgan Kaufmann (cit. on pp. 48, 50).

MENS, T. and P. VAN GORP (2006). A Taxonomy of Model Transformation. Electronic Notes in The-
oretical Computer Science, 152, pp. 125–142 (cit. on pp. 40, 53–55).

MIDDELKOOP, D. and M. BOUWMAN (2001). Simone: Large Scale Train Network Simulations. Pro-
ceedings of the 2001 Winter Simulation Conference. IEEE, pp. 1042–1047 (cit. on pp. 60, 61,
68).

MIELCZAREK, B. and J. UZIALKO-MYDLIKOWSKA (2012). Application of computer simulation mod-
eling in the health care sector: a survey. Simulation, 88(2), pp. 197–216 (cit. on p. 2).

MINGERS, J. (2006). Realising Systems Thinking: Knowledge and Action in Management Science.
Ed. by R. L. Flood. Vol. 14. Contemporary systems thinking. Springer US (cit. on p. 6).

MORRIS, C. W. (1938). Foundations of the Theory of Signs. Vol. 1. International Encyclopaedia of
Unified Sciences. University of Chicago Press (cit. on p. 45).

MORRIS, C. W. (1971). Writings on the General Theory of Signs. Vol. 1. International Encyclopaedia
of Unified Sciences. The Hague & Paris: Mouton (cit. on p. 45).

MOSER, H. G. (2006). Component-based Modelling and Simulation. MA thesis. Royal Institute of
Technology (KTH), Sweden and Nanyang Technological University (NTU), Singapore (cit. on
p. 24).

260

MUELLER, R. (2007). Specification And Automatic Generation Of Simulation Models With Applic-
ations In Semiconductor Manufacturing. PhD thesis. Georgia Institute of Technology (cit. on
pp. 3, 4).

MUSSELMAN, K. J. (1998). Guidelines for Success. Handbook of Simulation: Principles, Method-
ology, Advances, Applications, and Practice. Ed. by J. Banks. Wiley Interscience. Chap. 22,
pp. 721–743 (cit. on pp. 57, 176).

NASH, A. and D. HUERLIMANN (2004). Railroad simulation using OpenTrack. Advances in Trans-
port, 15, pp. 45–54 (cit. on p. 60).

NAYAK, P. (1995). Automated Modeling of Physical Systems. Vol. 1003. Lecture Notes in Computer
Science (cit. on p. 2).

NIERSTRASZ, O. and T. D. MEIJLER (June 1995). Research directions in software composition. ACM
Comput. Surv. 27(2), pp. 262–264 (cit. on p. 25).

NIERSTRASZ, O. and D. TSICHRITZIS, eds. (1995). Object-Oriented Software Composition. Object-
Oriented Series. Prentice Hall PTR (cit. on p. 25).

NÖTH, W. (1995). Handbook of Semiotics. Indiana University Press (cit. on p. 45).
OMG (2003). MDA Guide. Version 1.0.1. Object Management Group (cit. on p. 22).
ÖREN, T. I. (1981). Concepts and criteria to assess acceptability of simulation studies: a frame of

reference. Communications of The ACM, 24(4), pp. 180 –189 (cit. on p. 62).
ÖREN, T. I. and B. P. ZEIGLER (2012). System theoretic foundations of modeling and simulation:

a historic perspective and the legacy of A Wayne Wymore. Simulation, 88(9), pp. 1033–1046
(cit. on pp. 11, 13, 32).

ORTÚZAR, J. and L. WILLUMSEN (2001). Modelling Transport. 3rd. John Wiley & Sons (cit. on p. 60).
OVERSTREET, C. M. (1982). Model Specification and Analysis for Discrete-Event Simulation. PhD

thesis. Virginia Tech, Department of Computer Science (cit. on p. 12).
OVERTON, D. (1989). Traffic signal control of LRVs. IEE Colloquium on Light Rapid Transit On-

Street, pp. 9/1–9/3 (cit. on p. 60).
PACHL, J. (2002). Railway Operation and Control. VTD Rail Publishing (cit. on pp. 60, 67, 70, 102,

136).
PAGE, E. H., B. R. and J. A. TUFAROLO (2004). Toward a family of maturity models for the simulation

interconnection problem. Proceedings of the Spring Simulation Interoperability Workshop.
IEEE CS Press (cit. on p. 24).

PAGE, E. H. (1995). Simulation modeling methodology: principles and etiology of decision sup-
port. PhD thesis. Virginia Tech (cit. on pp. 2, 12).

PAGE, E. H. (2007). Theory and Practice for Simulation Interconnection: Interoperability and Com-
posability in Defense Simulation. CRC Handbook of Dynamic Systems Modeling. Ed. by P. A.
Fishwick. CRC Press. Chap. 16 (cit. on p. 24).

PALACZ, W. (2004). Algebraic hierarchical graph transformation. Journal of Computer and System
Sciences, 68(3), pp. 497 –520 (cit. on p. 127).

PAREDIS, C., A. DIAZ-CALDERON, R. SINHA and P. KHOSLA (2001). Composable models for simulation-
based design. Engineering with Computers, 17(2), pp. 112–128 (cit. on p. 28).

PARNAS, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commu-
nications of ACM, 15(12), pp. 1053 –1058 (cit. on pp. 64, 66, 67).

PETTER, S., W. DELONE and E. MCLEAN (2008). Measuring information systems success: models,
dimensions, measures, and interrelationships. European Journal of Information Systems, 17,
pp. 236 –263 (cit. on p. 45).

261

PETTY, M. D. and E. W. WEISEL (2003a). A composability lexico. Proceedings of the Spring 2003
Simulation Interoperability Workshop. Simulation Interoperability Standards Organization,
pp. 181–187 (cit. on pp. 24, 212).

PETTY, M. D. and E. W. WEISEL (2003b). A formal basis for a theory of semantic composability.
Proceedings of the Spring 2003 Simulation Interoperability Workshop. Simulation Interoper-
ability Standards Organization (cit. on pp. 24, 25).

PIDD, M. and A. CARVALHO (2006). Simulation software: not the same yesterday, today or forever.
Journal of Simulation, 1(1), pp. 7 –20 (cit. on p. 62).

PIPINO, L. L., Y. W. LEE and R. Y. WANG (2002). Data quality assessment. Communications of the
ACM, 45(4), pp. 211 –218 (cit. on pp. 44, 45, 47, 48, 50).

PRICE, R. and G. SHANKS (2005). A semiotic information quality framework: development and
comparative analysis. Journal of Information Technology, 20, pp. 88 –102 (cit. on pp. 44–50).

PROCTOR, S (1998). Linking philosophy and method in the research process: the case for realism.
Nurse Researcher, 5(4), pp. 73–90 (cit. on p. 6).

RAATIKAINEN, K. E. E. (1993). A Sequential Procedure for Simultaneous Estimation of Several
Means. ACM Transactions on Modeling and Computer Simulation, 3, pp. 108–133 (cit. on
p. 179).

REDMAN, T. (1996). Data Quality for the Information Age. Artech House (cit. on pp. 46, 47, 50).
REKAPALLI, P. V. (2008). Discrete-event simulation based virtual reality environments for con-

struction operations. PhD thesis. Purdue University, Civil Engineering (cit. on p. 123).
RIZZOLI, A. E., N. FORNARA and L. M. GAMBARDELLA (2002). A simulation tool for combined rail/road

transport in intermodal terminals. Journal of Mathematics and Computers in Simulation,
59(1-3), pp. 57–71 (cit. on p. 60).

ROBINSON, S. (2004). Simulation: The Practice of Model Development and Use. John Wiley & Sons
(cit. on pp. 62, 65, 177).

ROBINSON, S. (2010). Conceptual Modeling for Simulation: Definition and Requirements. Con-
ceptual Modeling for Discrete-Event Simulation. Ed. by S. Robinson, R. Brooks, K. Kotiadis
and D.-J. V. D. Zee. CRC Press. Chap. 1, pp. 3–30 (cit. on p. 65).

ROBINSON, S., R. E. NANCE, R. J. PAUL, M. PIDD and S. J. TAYLOR (2004). Simulation model reuse:
definitions, benefits and obstacles. Simulation Modelling Practice and Theory, 12(7–8). Sim-
ulation in Operational Research, pp. 479–494 (cit. on p. 61).

RÖHL, M. and S. MORGENSTERN (2007). Composing simulation models using interface definitions
based on web service descriptions. Proceedings of the 2007 Winter Simulation Conference,
pp. 815–822 (cit. on p. 28).

ROMAN, M. and D. SELISTEANU (2012). Pseudo bond graph modeling of wastewater treatment
bioprocesses. Simulation, 88(2). cited By (since 1996) 1, pp. 233–251 (cit. on pp. 3, 4).

ROWLEY, J. E. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of
Information Science, 33(2), pp. 163–180 (cit. on p. 44).

ROYCE, W. W. (1970). Managing the Development of Large Software Systems. Proceedings of IEEE
WESCON, pp. 1–9 (cit. on p. 8).

ROYCHOUDHURY, I., M. DAIGLE, G. BISWAS and X. KOUTSOUKOS (2011). Efficient simulation of
hybrid systems: A hybrid bond graph approach. Simulation, 87(6), pp. 467–498 (cit. on p. 2).

RUDOLPH, R. (2000). Operational simulation of light rail systems. Proceedings of the European
Transport Conference. 167-178 (cit. on pp. 60, 61).

SAGE, A. P. (1992). Systems Engineering. Wiley IEEE (cit. on p. 8).

262

SANDBLAD, B., A. ANDERSSON, K.-E. JONSSON, P. HELLSTRÖM, P. LINDSTRÖM, J. RUDOLF, J. STORCK

and M. WAHL-BORG (2000). A train traffic operation and planning Simulator. Advances in
Transport, 7, pp. 241–248 (cit. on p. 60).

SARGENT, R. G. (2001). Some approaches and paradigms for verifying and validating simulation
models. Proceedings of the 2001 Winter Simulation Conference, pp. 106–113 (cit. on p. 176).

SARGENT, R. G. (2013). Verification and validation of simulation models. Journal of Simulation,
7(1). cited By (since 1996)0, pp. 12 –24 (cit. on p. 179).

SARJOUGHIAN, H. S. (2006). Model composability. Proceedings of the 2006 Winter simulation Con-
ference. Monterey, California, pp. 149–158 (cit. on p. 24).

SCANNAPIECO, M., P. MISSIER and C. BATINI (2005). Data Quality at a Glance. Datenbank-Spektrum,
14 (cit. on pp. 46, 50).

SCHUNN, C. D. and D. WALLACH (2005). Evaluating goodness-of-fit in comparison of models to
data. Psychologie der Kognition: Reden and Vorträge anlässlich der Emeritierung von Werner
Tack. Ed. by W. Tack. Saarbrueken, Germany: University of Saarland Press (cit. on pp. 180,
198).

SECK, M. D. and A. VERBRAECK (2009). DEVS in DSOL: Adding DEVS operational semantics to a
generic Event-Scheduling Simulation Environment. Proceedings of the 2009 Summer Com-
puter Simulation Conference (cit. on pp. 63, 114, 225).

SHANKS, G. and B. CORBITT (1999). Understanding Data Quality: Social and Cultural Aspects.
Proceeding of the 10th Australasian Conference on Information Systems, pp. 785 –797 (cit. on
p. 49).

SHANNON, R. E. (1975). Systems simulation: the art and science. Prentice Hall, Inc. (cit. on pp. 1, 2,
12, 15, 63–65, 223).

SHEATHER, S. J. and M. C. JONES (1991). A Reliable Data-Based Bandwidth Selection Method for
Kernel Density Estimation. English. Journal of the Royal Statistical Society. Series B (Method-
ological), 53(3), pp. 683 –690 (cit. on p. 189).

SIDI, F., P. SHARIAT PANAHY, L. AFFENDEY, M. JABAR, H. IBRAHIM and A. MUSTAPHA (2012). Data
quality: A survey of data quality dimensions. Proceedings of 2012 International Conference on
Information Retrieval and Knowledge Management, pp. 300 –304 (cit. on p. 45).

SIMON, H. A. (1962). The Architecture of Complexity. Proceedings of the American Philosophical
Society, 106(6), pp. 467–482 (cit. on pp. 13, 14).

SIMON, H. A. (1996). The Sciences of the Artificial. 3rd. MIT Press (cit. on pp. 8, 13, 14, 24, 66, 99).
SJOBERG, D. I. K., T. DYBA and M. JORGENSEN (2007). The Future of Empirical Methods in Soft-

ware Engineering Research. 2007 Future of Software Engineering. FOSE 2007. Washington,
DC, USA: IEEE Computer Society, pp. 358–378 (cit. on p. 9).

SKIENA, S. S. (1997). The Algorithm Design Manual. Springer-Verlag New York (cit. on pp. 131,
132).

SOL, H. G. (1982). Simulation in Information Systems Development. PhD thesis. The Netherlands:
University of Groningen (cit. on pp. 1, 61).

SOMMERVILLE, I. (1996). Software Engineering. 5th. Addison-Wesley (cit. on pp. 59, 64).
SOROOSHIAN, S., V. K. GUPTA and J. L. FULTON (1983). Evaluation of Maximum Likelihood Para-

meter estimation techniques for conceptual rainfall-runoff models: Influence of calibration
data variability and length on model credibility. Water Resources Research, 19(1), pp. 251 –259
(cit. on pp. 176, 180, 181).

SPRINKLE, J., B. RUMPE, H. VANGHELUWE and G. KARSAI (2011). Metamodelling: State of the art
and research challenges. Model-Based Engineering of Embedded Real-Time Systems. Ed. by

263

H. Giese, G. Karsai, E. Lee, B. Rumpe and B. Schätz. Vol. 6100. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, pp. 57–76 (cit. on pp. 21, 22).

STACHOWIAK, H (1973). Allgemeine Modelltheorie. In German. Vienna: Springer (cit. on p. 12).
SYRIANI, E. (2011). A Multi-Paradigm Foundation for Model Transformation Language Engineer-

ing. PhD thesis. McGill University, School of Computer Science (cit. on pp. 53, 56).
SZABO, C. and Y. M. TEO (2007). On Syntactic Composability and Model Reuse. Proceedings of the

International Conference on Modeling and Simulation. IEEE Computer Society Press, pp. 230–
237 (cit. on pp. 24, 64, 212).

SZYPERSKI, C. (2011). Component Software: Beyond Object-oriented Programming. 2nd. Addison-
Wesley component software series. Addison-Wesley (cit. on pp. 24, 64, 212).

TAHMASSSEBY, S. (2009). Reliability in Urban Public Transport Network Assessment and Design.
PhD thesis. The Netherlands: Delft University of Technology (cit. on pp. 185, 195).

TALPAZ, H., G. DA ROZA and A. HEARN (1987). Parameter estimation and calibration of simulation
models as a non-linear optimization problem. Agricultural Systems, 23(2), pp. 107 –116 (cit.
on p. 176).

TAYLOR, J. R. (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Meas-
urements. 2nd. University Science Books (cit. on p. 48).

TEJAY, G., G. DHILLON and A. CHIN (2006). Data quality dimensions for information systems se-
curity: A theoretical exposition. IFIP International Federation for Information Processing, 193
(cit. on p. 45).

THEEG, G. and S. VLASENKO, eds. (2009). Railway Signalling & Interlocking: International Com-
pendium. Eurailpress (cit. on pp. 67, 68, 70, 102, 103, 105).

THOMASETH, K. (2003). Multidisciplinary modelling of biomedical systems. Computer Methods
and Programs in Biomedicine, 71(3), pp. 189–201 (cit. on p. 3).

TIAN, Y., B. LIU, H.-W. GAO and W.-Q. LI (2012). Modeling and simulation of electro-hydraulic
proportional position control system with the flexible hose. Advanced Materials Research,
468-471, pp. 2094–2099 (cit. on p. 2).

TOLK, A., L. BAIR and S. DIALLO (2013a). Supporting network enabled capability by extending the
levels of conceptual interoperability model to an interoperability maturity model. Journal of
Defense Modeling and Simulation, 10(2), pp. 145–160 (cit. on p. 24).

TOLK, A., ed. (2013). Ontology, Epistemology, and Teleology for Modeling and Simulation: Philo-
sophical Foundations for Intelligent M&S Applications. Intelligent Systems Reference Library.
Springer Berlin Heidelberg (cit. on p. 6).

TOLK, A., S. Y. DIALLO, R. D. KING, C. D. TURNITSA and J. J. PADILLA (2010). Conceptual Modeling
for Composition of Model-based Complex Systems. Conceptual Modeling for Discrete-Event
Simulation. Ed. by S. Robinson, R. Brooks, K. Kotiadis and D.-J. V. D. Zee. CRC Press. Chap. 14,
pp. 355–381 (cit. on pp. 24, 64, 66, 212).

TOLK, A., S. Y. DIALLO, J. J. PADILLA and H. HERENCIA-ZAPANA (2013b). Reference modelling in
support of M&S - foundations and applications. Journal of Simulation, 7(2), pp. 69 –82 (cit.
on p. 11).

UHRMACHER, A. M. (2001). Dynamic structures in modeling and simulation: a reflective approach.
ACM Transactions on Modeling and Computer Simulation, 11(2), pp. 206 –232 (cit. on pp. 112,
225).

ULGAN, O. and A. GUNAL (1998). Simulation in the Automobile Industy. Handbook of Simulation:
Principles, Methodology, Advances, Applications, and Practice. Ed. by J. Banks. Wiley Inter-
science, pp. 547–570 (cit. on p. 61).

264

ULLMANN, J. R. (1976). An Algorithm for Subgraph Isomorphism. Journal of the ACM, 23(1), pp. 31
–42 (cit. on p. 131).

ULRICH, W. (2001). A Philosophical Staircase for Information Systems Definition, Design and De-
velopment: A Discursive Approach to Reflective Practice in ISD (Part 1). Journal of Informa-
tion Technology Theory and Application (JITTA), 3(3), pp. 55–84 (cit. on p. 44).

UMESH RAI, B. and L. UMANAND (2009). Bond graph toolbox for handling complex variable. IET
Control Theory and Applications, 3(5), pp. 551–560 (cit. on p. 2).

VALENTIN, E. (2011). Effective simulation studies using domain specific simulation building blocks.
PhD thesis. Delft University of Technology, Faculty of Technology, Policy and Management
(cit. on p. 24).

VAN DER PIJL, G. J. (1994). Measuring the strategic dimensions of the quality of information. The
Journal of Strategic Information Systems, 3(3), pp. 179 –190 (cit. on p. 45).

VAN ANTWERPEN, H. (2011). Rail Simulation Suite Development. BA Thesis, De Haagse Hogeschool
(cit. on p. 219).

VAN GIGCH, J. P. (1991). System Design Modeling and Metamodeling. Plenum Press (cit. on p. 23).
VAN GIGCH, J. P. (1993). Metamodeling: The epistemology of system science. Systems Practice,

6(3), pp. 251–258 (cit. on p. 23).
VAN GIGCH, J. P. (2005). Metadecisions: Invoking the epistemological imperative to enhance the

meaning of knowledge for problem solving. Systems Research and Behavioral Science, 22(1),
pp. 83–89 (cit. on p. 23).

VAN OORT, N. (2011). Service Reliability and Urban Public Transport Design. PhD thesis. Nether-
lands: Delft University of Technology, Department of Transport and Planning (cit. on pp. 3,
185, 195).

VANGHELUWE, H. (2000). DEVS as a common denominator for multi-formalism hybrid systems
modelling. IEEE International Symposium on Computer-Aided Control System Design, pp. 129
–134 (cit. on pp. 26, 29).

VANGHELUWE, H. (2008). Foundations of Modelling and Simulation of Complex Systems. Elec-
tronic Communications of the EASST - Proceedings of the 7th International Workshop on Graph
Transformation and Visual Modeling Techniques. 10 (cit. on pp. 13, 29).

VANGHELUWE, H. and J. DE LARA (2002). Meta-Models are Models too. Proceedings of the 2002
Winter Simulation Conference, pp. 597–605 (cit. on p. 20).

VANNI, T., J. KARNON, J. MADAN, R. WHITE, W. EDMUNDS, A. FOSS and R. LEGOOD (2011). Calib-
rating models in economic evaluation: a seven-step approach. English. PharmacoEconomics,
29(1), pp. 35 –49 (cit. on pp. 179, 180).

VARRÓ, D. and A. BALOGH (2007). The model transformation language of the VIATRA2 framework.
Science of Computer Programming, 68(3). Special Issue on Model Transformation, pp. 214 –
234 (cit. on p. 56).

VARRÓ, G., A. HORVÁTH and D. VARRÓ (2008). Recursive Graph Pattern Matching. Applications of
Graph Transformations with Industrial Relevance. Ed. by A. Schürr, M. Nagl and A. Zündorf.
Berlin, Heidelberg: Springer-Verlag, pp. 456–470 (cit. on pp. 56, 154).

VELDHOEN, H. (2009). Embedding Simulation in Decision Making. MA thesis. Delft University of
Technology, Faculty of Technology, Policy and Management (cit. on pp. 3, 185).

VELEGRAKIS, Y., J. MILLER and L. POPA (2004). Preserving mapping consistency under schema
changes. The VLDB Journal, 13(3), pp. 274 –293 (cit. on p. 51).

VERBRAECK, A., Y. SAANEN, Z. STOJANOVIC, E. VALENTIN, K. VAN DER MEER and A. M. B. SHISHKOV

(2002). Building blocks for Effective Telematics Application Development and Evaluation. Ed.

265

by A. Verbraeck and A. Dahanayak. TU Delft. Chap. What are building blocks?, pp. 8–21 (cit.
on pp. 23, 24).

VIEGA, J., B. TUTT and R. BEHRENDS (1998). Automated Delegation is a Viable Alternative to Mul-
tiple Inheritance in Class Based Languages. Tech. rep. Charlottesville, VA, USA: Cs-98-03, Mi-
crosoft Corporation (cit. on pp. 83, 85).

VILLA, F., A. VOINOV, C. FITZ and R. COSTANZA (2004). Calibration of Large Spatial Models: A
Multistage, Multiobjective Optimization Technique. Landscape Simulation Modeling. Ed. by
R. Costanza and A. Voinov. Modeling Dynamic Systems. Springer New York, pp. 77–116 (cit.
on p. 181).

VON BERTALANFFY, L. (1950). An Outline of General System Theory. The British Journal for the
Philosophy of Science, 1(2), pp. 134 –165 (cit. on p. 11).

VROMANS, M. J. C. M., R. DEKKER and L. G. KROON (2006). Reliability and heterogeneity of railway
services. European Journal of Operational Research, 172(2), pp. 647–665 (cit. on p. 61).

VUCHIC, V. R. (2005). Urban Transit: Operations, Planning, and Economics. John Wiley & Sons, Inc
(cit. on pp. 67, 136).

WAHLBORG, M. (1996). Simulation models: Important aids for Banverket’s planning process. Com-
puters in Railways. Vol. V. 1. WIT Press, pp. 175–181 (cit. on p. 60).

WAINER, G. A. (2009). Discrete-Event Modeling and Simulation: A Practitioner’s Approach. Com-
putational Analysis, Synthesis, and Design of Dynamic Systems. CRC Press (cit. on pp. 28, 29,
64, 87, 88, 112, 120).

WAINER, G. (2006). ATLAS: A language to specify traffic models using Cell-DEVS. Simulation Mod-
elling Practice and Theory, 14(3), pp. 313–337 (cit. on p. 67).

WALICKI, M., A. HODZIC and S. MELDAL (2001). Compositional Homomorphisms of Relational
Structures. Fundamentals of Computation Theory. Ed. by R. Freivalds. Vol. 2138. Lecture Notes
in Computer Science. Springer Berlin/Heidelberg, pp. 359–371 (cit. on p. 224).

WAND, Y. and R. Y. WANG (1996). Anchoring data quality dimensions in ontological foundations.
Communications of the ACM, 39(11), pp. 86 –95 (cit. on pp. 44, 46, 48, 49).

WANG, J., Q. CHANG, G. XIAO, N. WANG and S. LI (2011). Data driven production modeling and
simulation of complex automobile general assembly plant. Computers in Industry, 62(7), pp. 765–
775 (cit. on pp. 3, 4).

WANG, R. and D. STRONG (1996). Beyond Accuracy: What Data Quality Means to Data Consumers.
Journal of Management Information Systems, 12(4), pp. 5 –34 (cit. on pp. 45, 47, 48, 50).

WANG, Y. (2009). Toward a formal knowledge system theory and its cognitive informatics found-
ations. Transactions on Computer Science, 5540 LNCS, pp. 1–19 (cit. on p. 15).

WARNER, S. (1990). Modern Algebra. Courier Dover Publications (cit. on p. 224).
WASHIO, T. and H. MOTODA (2003). State of the art of graph-based data mining. ACM SIGKDD

Explorations Newsletter, 5(1), pp. 59 –68 (cit. on p. 132).
WASYNCZUK, O. and S. SUDHOFF (1996). Automated state model generation algorithm for power

circuits and systems. IEEE Transactions on Power Systems, 11(4), pp. 1951–1956 (cit. on p. 2).
WEBER, R. (2004). The Rhetoric of Positivism Versus Interpretivism: A Personal View. MIS Quarterly,

28(1), pp. iii–xii (cit. on pp. 6, 7).
WEISSTEIN, E. W. (2009). Graph Automorphism. MathWorld - A Wolfram Web Resource (cit. on

p. 155).
WETZEL, L. (2011). Types and Tokens. The Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta

(cit. on p. 20).
WIELAND, F. and A. PRITCHETT (2007). Looking into the Future of Air Transportation Modeling

and Simulation: A Grand Challenge. Simulation, 83(5), pp. 373–384 (cit. on pp. 2, 4, 211).

266

WYMORE, A. W. (1967). A mathematical theory of systems engineering: the elements. Wiley (cit. on
pp. 8, 11, 12, 32).

XIA, S. and N. SMITH (1996). Automated modelling: A discussion and review. Knowledge Engin-
eering Review, 11(2), pp. 137–160 (cit. on p. 2).

YAPO, P. O., H. V. GUPTA and S. SOROOSHIAN (1996). Automatic calibration of conceptual rainfall-
runoff models: sensitivity to calibration data. Journal of Hydrology, 181(1–4), pp. 23 –48 (cit.
on pp. 176, 180, 181).

YILMAZ, L. (2004). On the Need for Contextualized Introspective Models to Improve Reuse and
Composability of Defense Simulations. The Journal of Defense Modeling and Simulation: Ap-
plications, Methodology, Technology, 1(3), pp. 141–151 (cit. on pp. 24, 64, 212).

ZAGLAUER, S. and U. KNOLL (2012). Evolutionary algorithms for the automatic calibration of sim-
ulation models for the virtual engine application. 7th Vienna International Conference on
Mathematical Modelling. Ed. by I. Troch and F. Breitenecker. Vol. 7. 1, pp. 177–181 (cit. on
p. 176).

ZANGWILL, O. L. (1980). Kenneth Craik: the man and his work. The British journal of psychology,
71(1), pp. 1–16 (cit. on p. 12).

ZEIGLER, B. P. (1976). Theory of Modeling and Simulation. 1st. New York: Wiley Interscience (cit.
on p. 27).

ZEIGLER, B. P. (2003). Systems Movement: Autobiographical Retrospectives – The Evolution of
Theory of Modeling and Simulation. International Journal of General Systems, 32(3), pp. 221–
236 (cit. on pp. 8, 11, 13).

ZEIGLER, B. P. and J. S. LEE (1998). Theory of quantized systems: Formal basis for DEVS/HLA dis-
tributed simulation environment. Proceedings of SPIE - The International Society for Optical
Engineering. Vol. 3369, pp. 49–58 (cit. on p. 69).

ZEIGLER, B. P., H. PRAEHOFER and T. G KIM (2000). Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems. 2nd. Elsevier/Academic Press (cit.
on pp. 13, 14, 16, 18, 19, 24–30, 34, 62–65, 175, 176, 223).

ZEIGLER, B. P. (1998). DEVS Theory of Quantized Systems. Advance Simulation Technology Thrust
(ASTT), DARPA Contract N6133997K-0007. University of Arizona (cit. on pp. 29, 87).

ZHANG, X., G. HÖRMANN, N. FOHRER and J. GAO (2012). Parameter calibration and uncertainty
estimation of a simple rainfall-runoff model in two case studies. Journal of Hydroinformatics,
14(4), 1061 – 1074 (cit. on p. 176).

ZINS, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal
of the American Society for Information Science and Technology, 58(4), pp. 479–493 (cit. on
p. 44).

ZUPANCIC, B. and A. SODJA (2012). Computer-aided physical multi-domain modelling: Some ex-
periences from education and industrial applications. Simulation Modelling Practice and
Theory. Article in Press (cit. on p. 2).

267

List of Tables

1.1 Positivism and interpretivism – basic differences 7
2.1 Levels of systems knowledge and systems specification 19
3.1 The data types and their usages for the simulation model for Example 3.1 43
3.2 Proposed data quality categories and criteria 49
3.3 Definitions of data quality criteria 50
3.4 Data issues in Example 3.1 51
4.1 Time complexity per V2I or V2V communication with dedicated dynamic connec-

tions or message propagation 76
4.2 Distance accumulation in the response of MP sequence (2) in Example 4.1 82
4.3 Infrastructure model class description 84
4.4 The vehicle model state transitions in Example 4.4 97
4.5 A check table in a control unit – Example 4.5, 4.6 108
5.1 “Y” composite defined as a graph pattern %Y 148
5.2 “T” composite defined as a graph pattern containing three “Y” composites 149
6.1 Calibrated (µ,σ) and (ai , bi) and the p -values using standard deviationσ or kernel

bandwidth h as a measure of scale parameter differences 194
6.2 Data descriptions of Y4 (model, 10-th experiment) and R4 (EBS) 196
6.3 Calibrated (µ,σ) and (ai , bi) and the p -values using EBS data from the odd weeks;

validated with EBS data from the even weeks in October 2011 199
B.1 Message initiators 228
C.1 Stop Composite 237
C.2 Quad-diamond composite defined as a graph pattern 237
C.3 Butterfly union composite defined as a graph pattern containing one quad-diamond

and four “Y” composites 238
C.4 Half union composite defined as a graph pattern containing one quad-diamond

and two “Y” composites and seven points 239
C.5 Facing Turnout Composite 240
C.6 Trailing Turnout Composite 240
C.7 Diamond Composite 240
C.8 Misc composite 241

268

List of Figures

2.1 Sources of systems knowledge 15
2.2 Hierarchy of epistemological levels of systems 17
2.3 Token and type model examples 21
2.4 Formalism Transformation Graph 26
2.5 State transition mechanism of a DEVS atomic model 31
2.6 DEVS coupled model: an example 33
3.1 Research questions in relation with domain, model and meta-models 37
3.2 A CAD drawing of the tram crossing 41
3.3 A schema of a simulation model composition of the tram crossing 42
3.4 Data models for Example 3.1 44
3.5 Proposed steps in an AMG process 53
3.6 Basic elements in model transformation 54
3.7 Vertical and horizontal transformations 55
4.1 Basic elements in M&S and their relations 62
4.2 Modeling options for infrastructure models 71
4.3 Modeling options for vehicle and infrastructure model connections 74
4.4 Message propagation in Example 4.1 80
4.5 High level infrastructure model classes in LIBROS 84
4.6 SAM pattern 85
4.7 Infrastructure model classes in LIBROS 86
4.8 The action steps in one round of movement with message request 89
4.9 Vehicle movement computation with NCRI – Example 4.2 90
4.10 Vehicle movement computation with NCRI and PV – Example 4.3 91
4.11 The action steps in one round of movement with an update message 92
4.12 State variable update of speed v and position p in the vehicle model with an up-

date message at text – Example 4.4 94
4.13 SUTM – state update and transition mechanism of a DEVS atomic model in LIBROS 95
4.14 State transitions in a classic DEVS model vs. those in a LIBROS model 98
4.15 Rail vehicle model 99
4.16 Start and end nodes of infrastructure models 101
4.17 RIE models 102
4.18 Sensor behavior reuse by the 3S models – a SAM pattern application 104
4.19 Control unit model 105
4.20 A Y crossing – Example 4.5 106
4.21 Access of a route in a Y crossing – Example 4.6 107
4.22 Coupled infrastructure models 109

269

4.23 Couplings of nodes of infrastructure models 109
4.24 3S model coupling 110
4.25 Rail vehicle model coupling with RIE models – an example 112
4.26 Source and sink models 113
4.27 LIBODE and LIBROS 114
4.28 Light-rail operation in The Hague city center tunnel modeled with LIBROS 115
4.29 Composite tree of the LIBROS tunnel model 116
4.30 Execution time of the LIBODE and LIBROS tunnel models 118
4.31 Execution base time per category of the LIBODE and LIBROS tunnel models 119
4.32 Model/simulation presentation components in LIBROS 120
4.33 Model visualization with DSOL animator 121
4.34 LIBROS model visualization with DSOL animator 121
4.35 LIBROS model image update and data output with publish-subscribe 122
4.36 Smooth animation of discrete state variables 123
5.1 Hypergraph – an example 128
5.2 Model composite graph – an example 129
5.3 Graph transformation – rule-based modification of graphs 130
5.4 Hyperedge of type (m , n) 133
5.5 Hyperedge Replacement 134
5.6 Light-rail infrastructure CAD data of the Haaglanden region 135
5.7 Composite information types and dependencies for the AMG of LIBROS models 137
5.8 CAD entity-to-entity compositions 139
5.9 Creating a stop hyperedge 140
5.10 Representation of track composition information in set and maps 142
5.11 An (m , n)-edge representing a composite with m entry vertices and n exit vertices 143
5.12 Recurring rail composites and their dependencies 145
5.13 “Y” composite 146
5.14 Ordering of track compositions of points 147
5.15 Rail infrastructure without common composites 149
5.16 Automorphism of a directed ordered square graph s and its embedding s ′ 155
5.17 Merge two misc composites eM 1 and eM 1 connected by a path (vi , w j) 158
5.18 A (2, 2)misc component eM 164
5.19 Steps of generating a coupled infrastructure model M – Example 5.1 165
5.20 A simple G2 with two sources s1, s2 and one (2, 2)-edge e1 168
5.21 Model generator 172
6.1 LIBROS model calibration procedure 182
6.2 Model calibration components connecting with LIBROS model 183
6.3 Relative errors between the model output and the EBS data in the calibration with

standard deviationσ or kernel bandwidth h as a measure of scale parameter dif-
ferences 192

6.4 Density functions of the speed of stop interval 514→ 520 compared with that of
the corresponding EBS data 194

6.5 Density functions of the speed of stop interval 513→ 506 compared with that of
the corresponding EBS data 197

6.6 Density functions of the delays of the vehicle arrival times at the stops Maliveld
(2810) and Riouwstraat (505) in the odd and even weeks of October 2011 198

7.1 Double halting places: an example at Wouwermanstraat 205

270

7.2 Boundary locations of crossings 206
7.3 Adjusted boundary locations of misc-crossings at Station HS 206
7.4 Search distance difference of misc-crossings – an example at Station HS 207
7.5 Short change of maximum speed – an example at Station CS 209
A.1 An example of weak and strong homomorphism 224
A.2 User defined components and the DSOL and ESDEVS simulators 225
A.3 The atomic and coupled model classes in ESDEVS 226

271

Subject Index

“T” composite, 145, 148,
155

“Y” composite, 145, 148
3S, 72, 79, 101, 110, 228

abstraction, 65
active route, 107
AMCP, 176, 180
AMG, 2
animation, 122
attachment vertices, 133
automation, 2
automorphism, 154

bandwidth, 189
base time, 117
behavior, 13, 65
behavioral unit, 68, 69
BFS, 76
bound function, 127
boundary vertex, 143
butterfly union, 145, 155

CAD, 2
CAE, 2
calibration, 57, 175
candidate selection, 132
CCH, 72, 73, 126, 129, 203,

218
check table, 107, 167, 208
child model, 33
CIM, 108
closure under coupling, 34,

65
cluster of points, 150

coefficient, 88
cohesion, 64, 79
common random numbers,

184
complex system, 13
component, 23
component unit, 83, 111
composability, 24, 64, 83
composite maps, 151
composite pattern, 150
composition property, 13,

88
concatenation, 13, 88
construct, 36
control unit, 72, 208
coupling, 30, 33, 64, 79
CP, 142
CP map, 142
CPM algorithm, 151
CU, 105, 167

data, 4
data accuracy, 46
data completeness, 46
data consistency, 47
data graph, 126
data model, 43
data output, 122
data quality, 45
data system, 17
DDC, 75
decomposition, 24, 65, 156
delegation, 85
DESS, 27
detector, 103

determinism, 111
DEVS, 12, 27, 30, 225
DEVS simulator, 225
DFS, 138
digraph, 126
discretization, 29, 87
distance accumulation, 81
distance of a path, 148, 150
domain knowledge, 67
drive-on-sight, 60, 67
DSDEVS, 112
DSOL, 63, 114, 225
DTSS, 27

EBS, 184, 185, 187
EIC, 33
empirical data, 15, 176
entry vertex, 143
EOC, 33
ERP, 2
ESDEVS, 63, 83, 114, 225
exit vertex, 143
experimental frame, 19, 62,

63
extensibility, 61
external event, 31
external vertex, see hyper-

graph

facing track, 141
FP, 141
FP set, 141

GDEVS, 87, 88
generative system, 17

272

GPM, 131
graph, 126
graph invariant, 132
graph morphism, 130
graph pattern, 127
graph pattern matching, 56
graph rewriting, 56

H2, 184
half union, 155
heavy-rail, 61
hierarchical graph , 55
homomorphism, 224, 225
HTM, 3, 60
HTM data, 163
hybrid systems, 87
hyperedge, 127, 133, 164

tentacle, 133
hyperedge map, 143, 144
hyperedge type, 162
hypergraph, 127

begin vertex, 133
end vertex, 133
external vertex, 133

hysteresis, 87

i.i.d, 177
IC, 33
ICG, 164
independent path, 146, 151
index construction, 132
Info. Types, 138
infrastructure, 69, 83
injective homomorphic, see

also homomorphism,
166, 168

internal event, 32
internal vertices, 133
interpretivism, 6
isomorphism, 154

KDE, 189
KPI, 63, 122
KS test, 187

level of resolution, 14, 66
LIBODE, 114
library, 59

LIBROS, 60
light-rail, 60

M&S, 1
MCF, 157
MCG, 128, 134, 144, 162,

163
MCT, 77, 115, 126
mental model, 12
MES, 2
message backward, 79
message forward, 79
message propagation, 75
meta-model, 22, 112
MGA, 170
microscopic model, 60, 61
misc composite, 150, 157
mixin, 83, 105
model, 12
model configuration, 43,

163
model image, 121
model map, 169
modeling formalism, 26–28
modeling style, 88
modeling styles, 68
modularity, 24, 64, 79, 83
morphism, see also homo-

morphism, 19
MP, 75, 79, 89
MSP, 120
MSR, 185

NCRI, 80, 81, 89, 112
near-decomposability, see

also decomposition,
25

node, 101
node coupling, 108

ODE, 87
operational validation, 176
ordered graph, 146
ordered graph isomorph-

ism, 147
OV, 81

parent model, 33

part, 13
passivity, 93
path, 126
PDF, 186, 189, 199
polynomial trajectory, 88
port, 30
positivism, 6
predicate function, 127
presentation suitability, 48
publish-subscribe, 116, 184
PV, 81, 89, 90, 114

QDEVS, 87
QSS, 87
quad-diamond, 155
quad-diamond composite,

155
quantization, 29, 87
quantum, 87
Que, 165, 167
queuing request, 107

R, 185
rail composite type, 162
regulated, 140
release of detector, 103
replication, 177
request message, 80
response message, 80
reusability, 61
RIE, 72, 74, 75, 79, 99, 100

SAM, 87, 103, 168
search distance, 151, 207
sensor, 70
separation of concerns, 64,

66, 68, 70, 99, 214
signal, 70
simplification, 65
simulation model, 25
simulation relation, 63
simulator, 62, 64
sink, 113
snapping tolerance, 136
source, 113
source system, 16, 62
start graph, 131
state, 13, 16

273

state transition, 19, 32, 95
state update, 95
structure, 13, 65
structure system, 17
SUTM, 96
switch, 70, 84
system, 12
systems analysis, 18
systems design, 18
systems inference, 18
systems knowledge, 14, 16
systems modeling, 18
systems specification, 18

target model, 53
token model, 20
topological sort, 150
TP, 141
TP map, 141
track map, 139
trailing track, 141
transformation definition,

53
transformation rule, 53, 56,

130
trigger of detector, 103
type model, 20

typed graph, 126

update message, 82, 92

V2I, 74
V2V, 74
validation, 175, 198, 201
validity, 19
variable, 13, 16
vehicle, 67, 87, 99
vehicle communication, 73
vehicle coupling, 112
vehicle detection, 102
vehicle movement, 89

274

Summary

Automated Simulation Model Generation

One challenge in today’s Modeling and Simulation (M&S) projects is to model increas-
ingly larger and more complex systems. Complex simulation models take long to de-
velop and incur high costs. While there is a rich history of efforts to improve model-
ing processes, there is still considerable room for improvement. With the advances in
data collection technology and more popular use of computer-aided systems, more and
more data has become available in many organizations. The increased availability of
data, on the one hand, could foster automation in modeling, and on the other hand
often requires a certain degree of automation since the large amount of data can no
longer be manually handled effectively and efficiently.

In this research, we studied Automated Model Generation (AMG). The objective was
to provide a method that automatically generates simulation models with flexible struc-
tures using existing data assuming that these simulation models are intended for a cer-
tain domain. The AMG method provided by this thesis differs from other AMG research
in at least two aspects. First, the data used for the AMG does not contain specifications
of the model structure. Second, the generated models have structures that are dynam-
ically constructed during the AMG. We decomposed the research objective into four
interrelated tangible parts and identified the following research questions:

1. What is a good way to define flexible structures for simulation models in order to
achieve the research objective?

2. What are the requirements for the data in order to achieve the research objective?

3. What functionalities should a method provide in order to automatically generate
simulation models with flexible structures using existing data?

4. What is the quality of the simulation model generated by the method?

We used cases in the domain of light-rail transport to study the AMG method. Since
the method aims at generating simulation models intended for a certain domain, a
good way to define flexible model structures is required to represent a class of models
of interest as a prerequisite for the AMG. For this purpose, we propose domain meta-
models and domain model components that should represent different knowledge levels
of the systems of interest, implement the concept of component-based modeling, and

275

use an appropriate underlying modeling formalism. Domain meta-models allow for
an abstract representation of model structures of a class of models, and domain model
components specify concrete model behaviors that are used as building blocks for model
composition.

We developed a domain model component library, LIBROS (Library for Rail Oper-
ations Simulation) using DEVS (Discrete Event System Specification), whose design
complies with the above concepts. The atomic models in LIBROS specify model be-
haviors at the elementary level. The coupled models are defined to represent domain
meta-models that allow for a set of model compositions. Although the statement of
“components should support composition” may seem redundant, many researchers
acknowledge that model composability is difficult to apply. To support a good level of
modularity and composability, we designed cohesive model ports and coupling rela-
tions and a communication mechanism. Based on message propagation, the commu-
nication mechanism is suitable for decentralized communications in a connected net-
work model. A number of other modeling practices were also discussed: a SAM (shared
alterable mixin) design pattern for atomic model behavior composition, reuse and ex-
tension; the handling of interrupts in Generalized DEVS (GDEVS); vehicle model coup-
lings with Dynamic Structure DEVS (DSDEVS); a State Update and Transition Mechan-
ism (SUTM), its benefits and potential computational costs.

For the AMG method, existing data is supposed to provide concrete information
about model structures and parameterization. Typically, existing data has quality is-
sues and does not contain all types of information, particularly in terms of model struc-
tures, that are required for the AMG. In designing the AMG method, the information gap
should be identified and measures are defined accordingly to close this gap. The func-
tionalities that should be provided by the AMG method basically include those meas-
ures that are automatable. In the generation of light-rail simulation models studied
by this research, infrastructure CAD data is used as a basis for model structures. Cer-
tain measures are taken to solve data issues such as mapping consistency and prag-
matic completeness. For example, minor modifications, such as the locations where
the vehicle models shall be generated in the simulation, are made manually to the data
to solve the issue of pragmatic completeness for the AMG. The major challenge for the
AMG method is, however, the presentation suitability in model structures (including
identification of model components and model compositional relations). Presenta-
tion suitability refers to the degree to which the data is appropriate for the purpose of
data use in terms of format, unit, precision and type-sufficiency, where type-sufficiency
refers to the degree to which the data includes all the types of useful information. To
solve this problem, the types of information that are available in the data and those that
can be inferred from the data (which are required for the AMG) are arranged by their de-
pendencies. Based on these dependencies, three transformation steps (with sub-steps)
are designed to infer the required information from the data step by step and to finally
generate simulation models.

The data structure representations and transformations in the AMG method are
based on graph transformation theory. A pair of an ordinary digraph and a hypergraph
is used to represent a model composite graph (MCG) which has a compositional con-

276

tainment hierarchy (CCH). A CCH is a strictly nested component inclusion hierarchy.
A set of transformation rules is specified on the meta-models of the original data struc-
ture, of intermediate structures and of the simulation model as a final outcome. The
meta-models of the data and the data structure compositions of interest (for transform-
ation) are defined as graph patterns and pattern composites whose matching instances
are recorded as hyperedges in the MCG.

In the first transformation step, a digraph that represents the rail infrastructure net-
work (as a flat graph) is constructed from the original infrastructure data (which does
not contain vertex relations) based on geometrical inferences. In the second transform-
ation step, graph pattern matching and hyperedge replacement are performed incre-
mentally (with partially ordered sub-steps where composition and decomposition are
both used) on the graphs which produce an MCG. For the transformation, we defined a
number of graph patterns and pattern composites, an algorithm for ordered composite
isomorphism for the matching of the defined graph patterns, and an algorithm for the
merging of composites within a defined distance measure. The purpose of the MCG is
to aggregate the vertices in the digraph into a CCH such that the matched graph pat-
terns can be transformed into corresponding model components in the next step. In the
third transformation step, the vertices and hyperedges in the MCG are transformed into
atomic and coupled model components corresponding to the vertex and hyperedge
types, and the vertex relations are transformed into model coupling relations. In this
context, a hyperedge (composite) is injective homomorphic to the (generated) coupled
infrastructure model, where a number of sub-components are added into the model
according to the meta-model definitions. Among these sub-components, the control
logic of each crossing model component is generated according to the corresponding
infrastructure layout. After these steps, we obtain a simulation model where the model
behavior at the elementary level is pre-specified in the atomic components in the do-
main model component library, and the model structure is dynamically constructed
using the coupled components according to the infrastructure data.

To complement the AMG method, when operational data from the real system is
available, the generated model can be calibrated by a model calibration procedure us-
ing user defined goodness-of-fit measures and parameter search algorithms. In the cal-
ibration test presented in this thesis, a preliminary study was made to calibrate interval
driving times of the generated LIBROS light-rail simulation model of The Hague, and the
issues related to the calibration experiments are discussed. Note that the goodness-of-
fit measures in the calibration procedure can also serve as a way to validate the relevant
model output data (operational validation through comparison).

During the research and model development process, we closely followed guidelines
discussed in M&S literature in order to build valid and creditable models. As a final
step of model validation in this research, and a way to evaluate the AMG method, a
validation session (with a combination of questionnaires and discussions) was organ-
ized with a panel of nine subject-matter experts. Specific questions are designed to ask
about the model behaviors and interactions of the generated LIBROS light-rail simula-
tion models of The Hague in order to evaluate the structural validity of the models. As
follow-ups for the validation session, minor adjustments in the model and paramet-

277

ers adjustments for the model generation were made to fine-tune the AMG outcomes.
The experts raised no substantial modeling problems in the validation session. Over-
all, they appreciated the fact that complex simulation models can be generated using
infrastructure data, and showed support for the structural validity of the model for sim-
ulation studies such as timetable and driving time analysis. They also suggested further
directions for model development.

In this research, through the cases in the domain of light-rail transport, we designed
a method that can automatically generate valid simulation models with flexible struc-
tures using existing data and a domain model component library. The library was de-
signed to support a good level of modularity and composability. It contains domain
model components that specify concrete model behaviors (at the elementary level)
which are used as AMG building blocks, as well as components that represent domain
meta-models which allow for a set of model compositions to be dynamically construc-
ted during the AMG. In order to close the information gap between the existing data
and the information that is required for model structures, a set of transformation rules
was specified. For the transformations, graph patterns and pattern composites were
defined, and graph pattern matching and hyperedge replacement algorithms were per-
formed incrementally to produce a model composite graph, according to which a sim-
ulation model was generated.

In general, a good design of flexible model structures is the outcome of joint con-
siderations: a generic modeling formalism, formal definitions of model structures, sep-
aration of concerns and reusable definitions of model behaviors, cohesive definitions
of model interfaces and interaction, etc. The transformation rules for the AMG can
be defined when the data as AMG input has semantic and pragmatic completeness,
has definable measures for syntactic and mapping inconsistency (if any), and when
the modelers have sufficient domain knowledge and deductive reasoning for the defin-
ition of transformation rules that can solve data issues related to semantic accuracy
and presentation suitability with regard to model structure and parameterization. The
rules are defined on the meta-models of the original data structure, of intermediate
structures, and of the simulation model in order to construct a representation of the
model structure whose components can be mapped to the corresponding pre-defined
simulation model components, and to construct a simulation model according to the
representation of the model structure.

Founded on rich systems theory, M&S theory, graph and hypergraph transformation
theory, and accompanied by practical applications of the method (and the generated
models) in the domain of light-rail transport, we argue that the method has a strong po-
tential for applications to graph-representable systems such as those in the infrastruc-
ture domain. Future research includes studies for calibration methods and techniques,
extension of the LIBROS simulation library, multi-resolution and multi-perspective model
generation, and applications of the AMG method to other domains.

278

Samenvatting

Automatische Generatie van Simulatiemodellen

Een van de uitdagingen voor simulatieprojecten is het modelleren van steeds grotere en
complexere systemen. Het ontwikkelen van complexe simulatiemodellen duurt ech-
ter lang en kost veel. Ondanks het feit dat er de afgelopen tijd veel vooruitgang is ge-
boekt met de kwaliteit van het modelleerproces, zijn er nog veel mogelijkheden voor
verdere verbetering. Door ontwikkelingen in dataverzamelingsmethoden en de popu-
lariteit van CAD-systemen, beschikken steeds meer bedrijven over grote hoeveelheden
digitale data. Aan de ene kant stelt de grotere beschikbaarheid van data ons in staat
om meer automatisering toe te passen in het modelleerproces, aan de andere kant is
meer automatisering ook een noodzaak geworden omdat de grote hoeveelheid data
niet meer handmatig verwerkt kan worden op een effectieve en efficiënte wijze.

Het onderzoek beschreven in deze dissertatie bestudeert Automatische Model Ge-
neratie (AMG). Het doel van het onderzoek was om een methode te ontwikkelen die op
automatische wijze simulatiemodellen genereert met een flexibele structuur, gebruikma-
kend van beschikbare data, onder de aanname dat deze simulatiemodellen bedoeld zijn
voor gebruik binnen een zeker domein. De AMG-methode die in dit proefschrift is ont-
wikkeld verschilt op tenminste twee manieren van eerder onderzoek naar AMG. Ten
eerste zijn in de data die gebruikt wordt voor de modelgeneratie geen specificaties op-
genomen van de gewenste modelstructuur. Ten tweede hebben de modellen die gege-
nereerd worden een structuur die dynamisch wordt bepaald tijdens het AMG-proces.
Het onderzoeksdoel is uitgewerkt tot vier gerelateerde maar beter te onderzoeken on-
derdelen, die geadresseerd worden in de volgende vier onderzoeksvragen:

1. Wat is een goede manier om flexibele structuren voor simulatiemodellen te defi-
niëren die helpt om het onderzoeksdoel te bereiken?

2. Wat zijn de voorwaarden die aan data gesteld moeten worden om het onderzoeks-
doel te kunnen bereiken?

3. Welke functionaliteiten moeten door een methode geboden worden om automa-
tisch simulatiemodellen met een flexibele structuur te kunnen genereren op basis
van bestaande data?

4. Wat is de kwaliteit van de met de methode gegenereerde simulatiemodellen?

279

Voor het bestuderen van de AMG-methode is light-rail transport als toepassingsdo-
mein gebruikt. Aangezien de methode zich richt op het genereren van simulatiemodel-
len voor een bepaald domein, is het noodzakelijk om een goede manier te vinden om
flexibele modelstructuren voor een klasse van modellen te definiëren. In dit onderzoek
hebben we hiervoor domeinspecifieke metamodellen en domeinspecifieke modelcom-
ponenten ontwikkeld om kennis over het systeem op verschillende abstractieniveaus te
representeren. Er is gebruik gemaakt van het concept van component-gebaseerd mo-
delleren en van een geschikt onderliggend modelformalisme. Domeinspecifieke me-
tamodellen zorgen voor de abstracte representatie van de structuur van een klasse van
modellen, en de domeinspecifieke modelcomponenten specificeren het concrete ge-
drag van de elementen die als bouwstenen gebruikt worden voor de modelcompositie.

In lijn met bovenstaande concepten is een domeinspecifieke componentenbiblio-
theek genaamd LIBROS (Library for Rail Operations Simulation) ontwikkeld, gebruik-
makend van het DEVS (Discrete Event System Specification) formalisme. De atomaire
modellen binnen LIBROS beschrijven het gedrag van systeemelementen op het meest
gedetailleerde niveau. De samengestelde modelcomponenten representeren metamo-
dellen waarmee complexere modellen binnen het domein samengesteld kunnen wor-
den. Ondanks de veelgehoorde bewering dat “componenten compositie ondersteu-
nen”, geven veel onderzoekers aan dat modelcompositie in de praktijk moeilijk toe-
pasbaar is. Om modulariteit en koppelbaarheid te ondersteunen, hebben we goed ge-
definieerde communicatiepoorten en samenstellingsrelaties ontworpen, evenals een
gestandaardiseerd mechanisme voor communicatie binnen het model. Dit commu-
nicatiemechanisme, dat is gebaseerd op stapsgewijze doorgifte van het bericht tussen
modelcomponenten, is ontworpen voor gedecentraliseerde communicatie in een net-
werkmodel. Een aantal andere modelleeroplossingen worden ook besproken bij het
ontwikkelen van de bibliotheek. Voorbeelden zijn het gebruik van het SAM design pat-
tern (Shared Alterable Mixin) voor samengesteld gedrag van atomaire modellen, her-
gebruik en uitbreiding van modelcomponenten; het omgaan met interrupts in GDEVS
(Generalized DEVS); het gebruik van Dynamic Structure DEVS (DSDEVS) voor het kop-
pelen van de voertuigen aan de infrastructuur in het model; en gebruik van het State
Update and Transition Mechanism (SUTM) met bijbehorende voordelen en complexi-
teit van het algoritme.

Voor de AMG-methode moeten de aanwezige gegevens voldoende concrete infor-
matie opleveren om het model te kunnen structureren en parameteriseren. Over het
algemeen zijn er echter kwaliteitsproblemen met de bestaande informatie, en zijn niet
alle typen informatie aanwezig die de AMG-methode nodig heeft om de modelstruc-
tuur te kunnen opbouwen. Bij het ontwikkelen van de AMG-methode moet deze dis-
crepantie worden geïdentificeerd, en moeten maatregelen worden genomen die het gat
dichten. Binnen de AMG-methode worden voornamelijk die functionaliteiten opgeno-
men die automatiseerbaar zijn. Bij het genereren van simulatiemodellen voor light rail
systemen wordt infrastructuurdata uit CAD-systemen gebruikt als basis voor de mo-
delstructuur. Diverse maatregelen bleken nodig te zijn om problemen op te lossen met
interne inconsistenties in de dataverzameling en volledigheid van de data. Om het pro-
bleem van volledigheid op te lossen moet een klein aantal elementen handmatig toe-

280

gevoegd worden aan de data, zoals de plaats waar voertuigen worden gegenereerd. Een
grote uitdaging voor de AMG-methode blijft de geschiktheid van de datarepresentatie
voor het ontwikkelen van de modelstructuur (waaronder het identificeren van bruik-
bare modelcomponenten en compositierelaties voor het model). De “geschiktheid van
de datarepresentatie” is de mate waarin de gegevens geschikt zijn voor gebruik in ter-
men van formaat, eenheid, precisie, en toereikendheid van het type. Dat laatste wordt
gedefinieerd als de mate waarin de data alle typen bruikbare informatie bevat. Om het
geschiktheidsprobleem op te lossen, worden de typen informatie die beschikbaar zijn
in de data en die uit de data afgeleid kunnen worden, geordend op basis van hun af-
hankelijkheden. Op basis van deze afhankelijkheden zijn drie transformatiestappen
(met verschillende sub-stappen) ontwikkeld om de benodigde data stap voor stap af te
leiden en uiteindelijk simulatiemodellen te genereren.

De representaties van de datastructuren en transformaties zijn gebaseerd op de the-
orieën voor transformaties van grafen. Een gerichte graaf en een hypergraaf worden ge-
combineerd om de samengestelde modelgraaf (MGC) te vormen. Deze graaf heeft een
hiërrarchische structuur, waarin (samengestelde) elementen geheel binnen één hoger-
liggend element opgenomen worden. Deze structuur wordt aangeduid als de Compo-
sitional Containment Hierarchy (CCH). De regels voor de transformaties van de grafen
worden gespecificeerd op het niveau van het metamodel van de originele datastruc-
tuur, van de datastructuren gebruikt in de tussenstappen van de transformaties, en van
het uiteindelijke simulatiemodel. De metamodellen van de data en de samengestelde
datastructuren die voor de transformaties worden gebruikt, worden gedefinieerd als
grafen, waarvan de overeenkomende instanties als hypertakken opgenomen worden
in de MCG.

In de eerste transformatiestap wordt een gerichte (platte) graaf geconstrueerd die
een afbeelding bevat van de data over de railinfrastructuur (die geen knopen bevat),
gebaseerd op geometrische deducties. In de tweede transformatiestap worden delen
van de grafen gematcht met patronen (met partieel geordende substappen waar zowel
van compositie als van decompositie gebruik gemaakt wordt), waaruit een MCG wordt
afgeleid. Voor de transformatie zijn een aantal grafenpatronen en samengestelde gra-
fen gedefinieerd, evenals een algoritme voor het bepalen van isomorfismen in samen-
gestelde grafen en een zoekalgoritme voor het vinden van mogelijke samenstellingen.
Het doel van de MCG is het aggregeren van de knopen in de gerichte graaf naar een CCH
op een zodanige manier dat de gevonden patronen in de grafen in een volgende stap
getransformeerd kunnen worden naar corresponderende modelcomponenten. In de
derde transformatiestap worden de knopen en de hypertakken van de MCG getransfor-
meerd naar overeenkomstige atomaire en samengestelde modelcomponenten (inclu-
sief hun configuratie), en de knopen worden getransformeerd naar verbindingsrelaties
tussen modelcomponenten. In dit verband is de relatie tussen een hypertak (een sa-
menstelling) en het gegenereerde gekoppelde infrastructuurmodel een injectief (een-
eenduidig) homomorfisme, waarbij een aantal subcomponenten zijn toegevoegd aan
het resulterende infrastructuurmodel conform de definities in het metamodel. Een
voorbeeld van een toegevoegde component is de besturingslogica van een kruispunt,
die dynamisch wordt geconfigureerd. Na afloop van deze transformatiestappen be-

281

schikken we over een simulatiemodel waar het gedrag op elementair niveau is voorge-
definieerd in de atomaire modelcomponenten van de domeingerelateerde bouwsteen-
bibliotheek, en de modelstructuur dynamisch is opgebouwd uit samengestelde com-
ponenten op grond van de beschikbare infrastructuurgegevens.

Na afloop van de modelgeneratie kan het model worden gekalibreerd met behulp
van kwantitatieve data afkomstig uit het afgebeelde systeem, voor zover dit voorhan-
den is. De kalibratieprocedure gebruikt speciaal gedefinieerde goodness-of-fit testen
en zoekmethoden voor parameters. Voor de kalibratie is een eerste onderzoek uitge-
voerd om rijtijden tussen haltes te schatten voor een gegenereerd LIBROS-model van
de Gemeente Den Haag. Verschillende observaties en problemen die te maken hebben
met de kalibratie worden besproken in het proefschrift. De kwaliteitstoets die uitge-
voerd wordt voor de kalibratie kan natuurlijk ook (met een complementaire dataset)
gebruikt worden voor het valideren van de werking van het model.

Gedurende het onderzoek en het ontwikkelen van de methoden en de resulterende
modellen is gebruik gemaakt van richtlijnen en bewezen werkwijzen uit het vakgebied
Modelbouw en Simulatie om valide en bruikbare modellen te bouwen. Als een afslui-
tende validatiestap in het onderzoek en als een methode om de AMG-methode te eva-
lueren, is een validatiesessie (met enquêtes en interviews als dataverzamelingsmetho-
des) uitgevoerd met negen inhoudsdeskundigen. Er is specifiek gevraagd om het mo-
delgedrag en de interacties tussen modelcomponenten te evalueren om de structurele
validiteit van de gegenereerde LIBROS light-rail-modellen van de Gemeente Den Haag
vast te stellen. Op basis van de validatiesessies zijn kleine aanpassingen gemaakt in
de modellen en in de parameters voor het genereren van modellen, zodat de AMG-
resultaten (nog) beter aansluiten bij de inzichten van de experts. Geen van de experts
heeft in de validatiesessie aangegeven dat er structurele problemen waren met de gege-
nereerde modellen. Over het algemeen waren de experts zeer tevreden over het feit dat
complexe simulatiemodellen automatisch gegenereerd kunnen worden op basis van
infrastructuurgegevens, en ze ondersteunden de validiteit van de modellen voor simu-
latiestudies zoals dienstregelingsonderzoek en analyse van rijtijden. De experts hadden
verschillende suggesties voor vervolgonderzoek.

Het onderzoek heeft, gebruikmakend van cases in light-rail transport, een methode
opgeleverd die op geautomatiseerde wijze valide simulatiemodellen met flexibele struc-
turen kan genereren op basis van bestaande infrastructuurgegevens en een bouwsteen-
bibliotheek. De bibliotheek is ontworpen om modulariteit en samenstelbaarheid van
de componenten te ondersteunen. Het bevat domeinspecifieke modelcomponenten
voor de AMG-methode waarmee concreet modelgedrag op elementair niveau gespe-
cificeerd kan worden. Daarnaast zijn componenten gedefinieerd die metamodellen
voor het domein beschrijven, waarmee complexere structuren dynamisch samenge-
steld kunnen worden bij het toepassen van de AMG-methode. Om het probleem op te
lossen dat beschikbare gegevens veelal onvolledig en maar beperkt geschikt zijn voor
het genereren van modellen, zijn transformatieregels voor de data ontwikkeld. De trans-
formaties maken gebruik van grafen en samenstellingen van grafen. Een incrementeel
algoritme matcht achtereenvolgens de patronen in de grafen met patronen in de data,

282

waarbij een deel van de graaf bij een match vervangen wordt door een samengestelde
graaf, op grond waarvan uiteindelijk de structuur van het simulatiemodel wordt gege-
nereerd.

Over het algemeen is een goed ontwerp van een flexibele modelstructuur de uit-
komst van een groot aantal overwegingen: een generiek modelformalisme, formele
definities van modelstructuren, scheiden van verschillende belangen, en herbruikbare
definities van modelgedrag, modelkoppelingen, modelinteracties, etc. De transforma-
tieregels voor AMG kunnen worden gedefinieerd onder de conditie dat de beschikbare
gegevens voor AMG semantisch en pragmatisch compleet zijn, dat de syntactische- en
afbeeldingsinconsistenties meetbaar zijn, en dat de modelleurs over voldoende do-
meinkennis beschikken om de transformatieregels te definiëren die problemen met
volledigheid en geschiktheid van de beschikbare gegevens moeten oplossen. De trans-
formatieregels worden gedefinieerd op basis van de metamodellen van de originele da-
tastructuren, de tussenliggende datastructuren en het gegenereerde simulatiemodel.
Hierdoor kunnen de elementen in de representatie van de modelstructuur afgebeeld
worden op de overeenkomstige voorgedefinieerde simulatiemodelcomponenten, en
kan een werkend simulatiemodel gespecificeerd worden waarvan de structuur over-
eenkomt met de modelstructuur die afgeleid is van de oorspronkelijke data.

De AMG-methode bouwt voort op systeemtheorie, theorie over modelbouw en si-
mulatie, en grafentheorie waaronder transformaties van grafen en hypergrafen. De me-
thode (en de gegenereerde modellen) zijn getest in het domein van light-rail transport,
maar kunnen in een bredere veld toegepast worden. Wanneer de structuur van een
systeem voorgesteld kan worden als een graaf, zoals bij bijna alle systemen in het in-
frastructuurdomein, lijken er goede kansen voor gebruik van de methode te zijn. Ver-
der onderzoek zal moeten uitwijzen of dat inderdaad het geval is. Daarnaast kan na-
der onderzoek worden gedaan naar calibratietechnieken en naar generatie van multi-
resolutie- en multi-perspectiefmodellen.

283

One of today's challenges in the field of modeling and simulation is to model increasingly larger
and more complex systems. Complex models take long to develop and incur high costs. With
the advances in data collection technologies and more popular use of computer-aided
systems, more data has become available in many organizations. This often allows for and
requires a certain degree of automation in modeling. The research presented in this disserta-
tion studied how to automatically generate simulation models. The method proposed uses
domain specific model components as building blocks for model generation and applies graph
transformation based algorithms to compose large simulation models according to the existing
data. The method has been applied practically in the domain of light-rail transportation.

仿真模型
自动生成方法

	Towards Automated Simulation Model Generation
	Research Context
	Motivation
	An Example: HTM Cases
	Problem Statement

	Research Objective and Questions
	Research Strategy
	Research Philosophy
	Research Approach
	Research Instruments

	Thesis Outline

	Foundations of Systems and Simulation Modeling
	Systems and Models
	What are They?
	Sources of Systems Knowledge
	Levels of Systems Knowledge
	Levels of Systems Specification

	Meta-Models
	Roles of Models
	Types of Meta-Models

	Component-Based Models
	Modeling Formalisms and Model Specifications
	Formalisms and Formalism Classes
	Formalism Transformations
	DEVS Formalism

	An Outlook on Automated Simulation Model Generation
	Proposed Constructs on Research Questions
	A Modeling Example
	Vignette: A Tram Crossing
	Model Components and Composition
	Data Models

	Data Quality Issues
	Background
	Data Quality Categories and Criteria
	Discussion On Data Quality Issues and Measures

	From Data to Simulation Model
	Model Transformation
	Model Instantiation
	Model Calibration

	Domain Simulation Library
	Towards Developing A Rail Simulation Library
	Application Context and Challenges
	Basic Functionality and Elements

	Systems Modeling
	Modeling Vehicles
	Modeling Infrastructures
	Modeling Vehicle Communications

	Model Design in Libros
	A Communication Mechanism: Message Propagation
	An Overview on Infrastructure Models
	Vehicle Model
	Rail Infrastructure Element Models
	Coupled Infrastructure Models

	A Study on Libros Model Performance
	Experimental Setup
	Experiment Results and Discussion

	Model/Simulation Presentation

	Model Generation
	Graph Theory and Graph Transformation
	Structure Representation with Graphs
	Basic Concepts of Graph Transformation

	Model Transformation
	On Start Graph
	Transformation Step 1
	On Model Composite Graph
	Transformation Step 2

	Model Instantiation
	On Instantiation of Libros Models
	Transformation Step 3

	Model Generator

	Model Calibration
	Output Estimation and Comparison
	Output Estimation with Replication Method
	Operational Validation through Comparison

	Calibration Procedure
	Basic Elements and Functions
	Procedure Design

	Calibration Experiments
	Case Description
	Two Stage Calibration

	A Calibration Test Case
	Measures of Scale Parameter Differences
	Bounds of Parameter Configuration
	Validation of Calibration Results

	Expert Validation and Evaluation
	Model Validation Procedure
	Expert Validation Results
	Driving Behind A Vehicle
	Double Halting at Stops
	Boundary Locations of Crossings
	Search Distance of Misc-Crossings
	Control Logic at Crossings
	Other Remarks

	Reflection

	Epilogue
	Research Findings
	Practical Use of Libros Models
	Future Research

	Background
	Modeling Relation: Homomorphism
	A DEVS Simulator: DSOL and ESDEVS

	Libros Library
	Communication Mechanism
	Message Initiators
	Message Propagation Rules
	Distance Accumulation Rules

	Vehicle Model Specification
	External Transition Function
	Output Function
	Internal Transition Function

	Animation Legend
	Infrastructure Composite Examples

	Model Generation
	Infrastructure CAD Entities
	Infrastructure Composites
	Infrastructure Model Examples

	Model Validation
	Validation of Calibration Results
	Calibration vs. Validation Datasets
	Calibration Results

	Expertise of Panelists
	Validation Questionnaire

	References
	List of Tables
	List of Figures
	Subject Index
	Summary
	Samenvatting

