

ANNSIM ‘21, July 19-22, 2021, Fairfax, VA, USA; ©2021 Society for Modeling & Simulation International (SCS)

TOWARDS A UNIVERSAL REPRESENTATION OF DEVS: A METAMODEL-BASED

DEFINITION OF DEVS FORMAL SPECIFICATION

María Julia Blas

Silvio Gonnet

Bernard P. Zeigler

Instituto de Desarrollo y Diseño INGAR

CONICET

Universidad Tecnológica Nacional

Santa Fe, ARGENTINA

University of Arizona

Tucson, AZ

RTSync Corp.

Chandler AZ, USA

{mariajuliablas,sgonnet}@santafe-conicet.gov.ar zeigler@rtsync.com

ABSTRACT

The Discrete Event System Specification (DEVS) is one of the key formalisms to define Discrete Event

Simulation (DES) models and underlying concepts. In this paper, we propose a conceptualization of

DEVS designed as a metamodel that supports the formalization task. Such a conceptualization is part of a

multi-level layered structure that defines a universal representation of DEVS as a combination of both

theory and practice points of view. For the metamodel specification, we employ UML. With the existing

modeling technology, our metamodel can be implemented to provide a framework that supports: (a)

consistency validation between discrete event system descriptions and formal models using a DES

metamodel, (b) interoperability between formalization and most used implementations using a platform-

independent metamodel, and (c) consistency verification between formal models and their

implementation. All these benefits are derived from the capability of defining model-to-model

transformations over the modeling levels proposed in our conceptualization.

Keywords: abstraction to implementation, conceptual modeling, discrete event simulation, metamodeling.

1 INTRODUCTION

The Discrete-Event System Specification (DEVS) formalism is a modeling formalism based on systems

theory that provides a general methodology for hierarchical construction of reusable models in a modular

way (Zeigler, Muzy, and Kofman 2018). Over the years, DEVS has found an increasing acceptance in

model-based simulation research because of the ease of model definition, model composition, reuse, and

hierarchical coupling. However, in the Modeling and Simulation (M&S) field, there is no commonly

agreed-upon precise definition of Discrete Event Simulation (DES) and its underlying concepts

(Guizzardi and Wagner 2010). Moreover, the entire field of computer simulation is suffering from a

plethora of different concepts, formalisms, and technologies along with a lack of common modeling

languages and standards.

According to (Guizzardi and Wagner 2012), DES is concerned with the simulation of real-world systems

that are conceived as discrete event systems. The interplay of abstraction and concreteness between such a

simulation and DEVS simulation models can be analyzed following the progression of abstraction to

implementation detailed in (Zeigler 2019). Such a progression is defined as a sequence of three steps:

abstraction, formalization, and implementation. Abstraction focuses on an aspect of reality (phenomenon)

and greatly reduces the complexity of the reality being considered. This is the case of DES over discrete

Blas, Gonnet, and Zeigler

event systems. Then, a formalization makes it easier to work out the implications of the abstraction and

implement it in reality. This is the role of DEVS formalism as the widespread M&S language for the

specification of DES. Finally, an implementation can be considered as providing a concrete realization of

the abstraction through formalization. For DEVS, this is the case of DEVS executable models developed

using M&S software tools. Hence, DEVS can be seen as a vehicle that allows formalizing the DES

abstraction by becoming the foundation for a family of simulation systems. Since by nature simulation is

a technical field (Robinson 2020), the implementation of such formal models is the practitioner’s activity

frequently performed during M&S activities.

In this paper, we propose a conceptualization of DEVS formalism designed as a metamodel that supports

the formalization task. Such a conceptualization is part of a multi-level layered structure for studying the

implicit and explicit knowledge related to DEVS formalism as a combination of both theory and practice

points of view. The main goal of our research is to improve the vision of the DEVS-based community

using a conceptual modeling perspective through the definition of a set of metamodels that act as a

common modeling language for the development of a universal representation of DEVS. This

representation uses the steps of the progression of abstraction to implementation as different (but related)

Modeling Levels (ML) that support the progress of knowledge in DEVS-based M&S maintaining the

traceability among concepts. At the core of the DEVS universal representation, a metamodel for defining

the formal specification of DEVS formalism is required. Such a metamodel is presented in this paper as a

Unified Modeling Language (UML) diagram restricted by Object Constraint Language (OCL) constraints.

We analyze conceptual models of DEVS developed by researchers in terms of the three ML proposed in

our representation (i.e., abstraction, formalization, and implementation) to show how the DEVS

community has treated the DEVS representation problem over the years. Over this literature review, we

set the guidelines for our universal representation using metamodels as the core of it. The main

contribution is the UML metamodel designed for the instantiation of DEVS models following their

formal specification in Classic DEVS with Ports (Zeigler, Muzy, and Kofman 2018). Due to the extension

of the metamodel, we include a general package description and the main concepts used to define DEVS

models. Our aim is i) to offer a conceptual modeling structure for the definition of DEVS simulation

models using a universal representation of DEVS, and ii) to be able to integrate all DEVS views (i.e., the

ML) into a traceable network of metamodels in a way that they can be used in a compliance fashion way.

The remainder of this paper is structured as follows. Section 2 presents a literature review that

summarizes existent representations of DEVS based on metamodels and ontologies. It also describes the

need of building a universal representation of DEVS and the structure of our proposal. This structure sets

the foundations of our research, introducing the guidelines that motivate the development of a metamodel

for DEVS formalization. Section 3 introduces the core of the DEVS universal representation: the “DEVS

Formal Specification” metamodel. In this section, we review the formal definition of Classic DEVS with

Ports and present our conceptualization of this domain using UML diagrams. It also presents an instance

of the metamodel as proof of concepts of our proposal. In this case, we use as an example the “Switch”

model. Section 4 is dedicated to the discussion of our results and their relation with the universal

representation of DEVS. Finally, Section 5 is devoted to conclusions and future work.

2 RELATED WORK

Over the years, researchers have designed several conceptual models to study the DEVS formalism. Most

papers use ontologies and metamodels to analyze an individual view of DEVS formalism. These views

can be grouped in three ML following the M&S dimensions (mentioned in Section 1) as abstraction,

formalization, and implementation.

At the abstraction ML, the conceptualizations deal with the domain of discrete event systems. In

Guizzardi and Wagner (2010), the authors present DESO, a foundational ontology for discrete event

system modeling derived from the foundational ontology UFO. The main purpose of such an ontology is

to provide a basis for evaluating discrete event simulation languages. Authors claim that “a discrete event

Blas, Gonnet, and Zeigler

system model may be expressed at different levels of abstraction”. Hence, the paper presents two

ontologies: (a) the Design-Time Ontology that describes a discrete event system by defining the entity

types and (b) the Run-Time Ontology that deals with individuals of different types from the simulator

perspective. Since DESO represents a general conceptualization of discrete systems, it can serve as a

reference ontology for evaluating the simulation languages of DES frameworks (e.g., DEVS formalism).

A DEVS conceptualization based on the formalization ML should be designed focusing on the entities

that describe the simulation models. Several researchers have proposed models to address this ML. Hu,

Zhao, and Rong (2013) propose an ontology-based model representation named DEVSMO (DEVS math

ontology). Such a model is composed of three ontologies: (a) the DEVS model ontology that describes

the classification of simulation models according to DEVS formalism, (b) the model structure ontology

that defines both atomic and coupled model structures, and (c) the model behavior ontology that specifies

the behavior of a DEVS model. Most concepts related to the formalization ML are defined in (a) and (b).

In (Touraille 2012), the author presents a metamodel of DEVS that provides a pivot format for building

simulation models compatible with available software tools. Such a metamodel conceptualizes the

specification of DEVS simulation models using two distinct parts: (a) a structural part that deals with

state variables, ports, components, and connections, and (b) a behavioral part that describes the temporal

evolution of models in terms of the DEVS functions. In the same direction, a DEVS behavioral

metamodel is proposed in (Sarjoughian, Alshareef, and Lei 2015). Authors use metamodeling to generate

concrete models from domain-specific metamodels. Therefore, the metamodel identifies a set of

abstractions for state transitions in the external, internal, and confluent transition functions. Similarly,

appropriate abstractions are designed for output and time advance functions.

On the other hand, Hollmann, Cristiá, and Frydman (2015) propose a formal modeling language called

CML-DEVS (Conceptual Modeling Language for DEVS) that provides an abstract description of DEVS

models in terms of logical and mathematical expressions. In this case, CML-DEVS can be seen as an

improved version of the specification language for DEVS models named DEVSpecL that has been

previously developed by Hong and Kim (2006). By describing DEVS models in their most abstract form,

independent of any particular implementation, this modeling language has two main advantages: (a) it

allows the interoperability between practitioners and/or researchers; and (b) it facilitates both maintenance

and modification of the simulation models. Moreover, the main benefit of this language is that the

modeler can define a model without having programming skills.

Finally, at the implementation ML, most conceptualizations deal with programming code generation

processes. Since there is no common DEVS format used by all tools, modelers are tied to their M&S tool

(Van Tendeloo and Vangheluwe 2017). Hence, each conceptualization used for implementing DEVS

models is unique. Garredu et al. (2012a) propose a platform-independent metamodel for DEVS that is

enriched with OCL constraints in (Garredu et al. 2012b). In this case, the authors state that such a

metamodel is “accurate enough to specify several DEVS models”. From a different point of view, Kapos

et al. (2014) discuss the adoption of Model-Driven Architecture concepts to transform SysML (Systems

Modeling Language) models into executable DEVS models. In this paper, a MOF metamodel for the

implementation of DEVS is presented to provide a standard representation for the simulation-specific

domain. A similar approach is presented in (Cetinkaya, Verbraeck, and Seck 2010) where authors

introduce a metamodel for component-based hierarchical simulation based on hierarchical DEVS. This

research initiates a study of defining a formal component-based conceptual modeling technique to

overcome the problems in hierarchical simulation. The authors also present a prototype of a simulation

model design environment with a Java interpreter which transforms the visual simulation models into

DEVS models. Hence, the conceptualization at implementation ML is attached to the Java platform.

2.1 The Need for a Universal Representation of DEVS

According to (Guizzardi and Wagner 2012), DES is concerned with the simulation of real-world systems

that are conceived as discrete event systems. The behavior models of this type of systems can be

described at different levels of abstraction. This implies that each abstraction level may employ different

Blas, Gonnet, and Zeigler

formalisms. The particular formalism and level of abstraction depends on the background and goals of the

modeler as much as on the system modeled (Vangheluwe 2008).

There is widespread agreement that the paradigm of DES forms a core discipline of simulation (Guizzardi

and Wagner 2010). That is because reality is often represented employing discrete-event models. In these

models, time evolves continuously, but the state of the system only changes at a finite number of points in

time in a bounded time-interval (called event-times). Therefore, for DES, DEVS has found increasing

acceptance in the model-based simulation research community as a suitable M&S formal specification.

DEVS is formalized using set theory and systems theory. The formalism includes two types of DES

models: atomic and coupled. Both models are described using equations, functions, sets, etc. Hence,

DEVS is an abstract formalism for the specification of simulation models that is independent of any

particular implementation. However, when engineers want to simulate these models they need to program

them in the input language of a concrete simulator, which means writing code in Java or C++ or another

general-purpose programming language (Cristiá, Hollmann, and Frydman 2019). Such implementation is

often called “reduction to concrete form” (Zeigler 2019).

Nowadays, there are multiple software tools and simulators for DEVS models (Van Tendeloo and

Vangheluwe 2017). Even when conceptualizations of implementations exist, in most cases modelers must

represent the DEVS model as programming code using predefined libraries offered by each simulator

(Nikolaidou et al. 2008). Each simulator has its own input language. Generally, these input languages are

different, hindering the interoperability between simulation software tools (Hollmann, Cristiá, and

Frydman 2015).

Even when over the years several conceptualizations of DEVS have been developed, most approaches are

isolated from each other due to the conceptual view used during their design. By nature, simulation is a

technical field (Robinson 2020). Hence, most conceptualizations focus their attention on the more

“scientific” elements of the simulation project life-cycle, that is, model development (led from computer

science) and analysis (led from mathematics and statistics). Moreover, even when it is a fact that DEVS

models can be mathematically described (at the formalization ML), its simulation is performed by

concrete DEVS simulation systems (at the implementation ML). When concrete DEVS models are

developed using programming languages, it is difficult to ensure they conform to their formal model

(Sarjoughian, Alshareef, and Lei 2015). Moreover, the mathematical properties and constraints defined in

DEVS models should be guaranteed in any implementation of it. However, the conceptualizations

developed at the formalization ML are rarely a “real” representation of DEVS formal models.

Since most formalization metamodels are used to get DEVS executable models, commonly their

definition involves some programming features. For example, in (Touraille 2012), the author uses

programming concepts such as “EClass” and “EDataType” to define state variables and ports. In

(Sarjoughian, Alshareef, and Lei 2015), the DEVS functions are directly defined as extensions of

“EOperation” to allow including content that can be transformed into concrete (programming) code. The

formal modeling language proposed in (Hollmann, Cristiá, and Frydman 2015) is the most complete

formal specification of DEVS simulation models. In this case, the authors complement the proposal with

a multi-target compiler that allows getting DEVS executable models for two distinct M&S tools (DEVS-

Suite and PowerDEVS). Most executable representations are tool-specific, though efforts are underway to

define a common standard (Wainer et al. 2010). Even when the formalization ML can be used as support

of the implementation ML, the variety of executable representations difficult the alignment task.

In this context, a universal representation of DEVS can help to understand (and study) the following ML

maintaining the traceability among them: (a) DES approaches, (b) DEVS formal models, (c) the

implementation of DEVS models in a platform-independent model, and (d) the implementation of DEVS

models in platform-specific software tools. Each ML can be interpreted as a view of DEVS. All the views

together provide a full understanding of DEVS simulation models in a unique conceptualization that

allows outline interactions among distinct views.

Blas, Gonnet, and Zeigler

From the traditional point of view, a good conceptual model lays a strong foundation for successful

simulation modeling and analysis (Robinson et al. 2010). Over such interpretation, conceptual modeling

serves as a bridge between problem owner and simulation modeler. It is important to denote that the

universal representation of DEVS does not include the conceptual model of the DEVS solution. This

conceptualization is attached to the problem-solution modeling task and is outside the scope of the DEVS

universal representation. In such a case, the systems concept underlying DEVS should be considered to

get a conceptual description at the general system level.

2.2 Our Approach: A Multi-Level Layered Conceptualization

Figure 1 shows the architecture of a multi-level conceptualization of DEVS defined as a set of five layers.

Each layer is an independent ML (i.e., phenomenon, abstraction, formalization, platform-independent

implementation, and platform-specific implementation) that supports the definition of a DEVS view

through the use of metamodels. All views together give a structure for the DEVS universal representation.

Figure 1: Multi-Level Layered Conceptualization of DEVS.

The phenomenon ML models an aspect of the dynamic system of interest. The abstraction ML represents

the model of the phenomenon in terms of the DES. It focuses on applying the simulation perspective over

the main components and relationships identified at the top level. Over the DES perspective, the

formalization ML offers a M&S language (i.e., the DEVS formalism) to define the simulation model of

the event-based system under consideration. That is, it details how the abstraction of discrete events,

states, and components can be formalized in DEVS simulation models. Even when the abstraction is

achieved by the formal statement of the modeling domain, such a formalization can be described using

distinct formal statements than the ones used for the formalization ML. In Figure 1, the abstracted

knowledge will be represented with generic-DES concepts. Meanwhile, the formalized model will be

represented with DEVS concepts. Hence, the phenomenon definition becomes the colloquial description

that cannot be operable without having any DES specificity. Finally, the implementation ML is divided

into two levels: platform-independent implementation and platform-specific implementation. Such a

separation of concerns at the implementation ML is designed to allow including the conceptual models of

available DEVS software tools as part of our proposal. Considering that i) DEVS is most naturally

implemented in a computational form in an Object-Oriented (OO) framework (Zeigler, Muzy, and

Kofman 2018), and ii) a formalization model can potentially be used to produce diverse OO

implementations; the model defined at the platform-independent implementation ML condense an OO

representation of DEVS executable models. Hence, this ML is focused on the common-concepts included

in most OO implementations of DEVS software tools. Then, the platform-specific implementation ML

provides a concrete realization of the platform-independent implementation that can be deployed in a

target M&S environment based on an OO programming code.

Blas, Gonnet, and Zeigler

At the top level, the first three MLs refer to the theoretical field of DEVS. At the bottom, the last three

MLs refer to the DEVS practical field. Due to the general system basis of DEVS, the formalization ML is

shared by both theory and practice fields. In this context, the main benefit of our architecture is the

interplay of DEVS theory and practice in a holistic approach that establishes the foundations of the core

concepts of a DEVS conceptualization as a clarification of its real-world semantics through the use of

multiple layers. The goal of building a universal representation of DEVS is to explicitly define a set of

common views of DEVS structured as metamodels that can be used to instantiate a group of related

discrete-event specifications. Such views enable a broad M&S advance for DEVS conceptualizations. The

use of metamodels to support the conceptual architecture provides a common basis for defining instances

of such models and handling transformation between MLs (i.e., model-to-model transformations).

Our current research is centered on the three middle levels of Figure 1 (i.e., levels highlighted in gray):

abstraction, formalization, and platform-independent implementation. The phenomenon and platform-

specific model are not included at this stage but they will be added in future works. Figure 2 outlines how

metamodels of different MLs will provide support to the DEVS model definition. Here, a full DEVS

model definition is given by the set of models instantiated as {abstraction model, formalization model,

platform-independent implementation model}. Each model represents a view of the final DEVS

simulation model based on a metamodel.

In Figure 2, three metamodels are defined: (a) Discrete Event Simulation (DES), (b) DEVS Formal

Specification (DFS), and (c) DEVS OO-Implementation (DOI). Each metamodel is sketched as a set of

concepts and relationships. All metamodels have a different number of concepts and distinct relationships

between these concepts with aims to show their domain independence. As an interoperability example, all

metamodels include the State concept. However, even when all States refer to the same DEVS model,

each metamodel uses the concept to define the state of the model from a specific point of view. Then, the

metamodel structure allows defining traceability relationships (i.e., the trace association) between

concepts. Such traceability can be extended to relationships. This traceability allows aligning concepts

from different metamodels with aims to get new knowledge regarding the model definition.

Hence, the structure of our DEVS conceptualization provides a basis for defining transformation and

traceability between metamodels. Moreover, each ML can be used to support interoperability with other

metamodels of the same level. For example, the DES metamodel can be used to interoperate with the

abstraction level of other simulation approaches. At the core of the universal representation of DEVS, the

grand challenge is the development of the DFS metamodel. Such a metamodel is presented in Section 3.

Figure 2: Views of DEVS structured as metamodels.

Blas, Gonnet, and Zeigler

3 THE “DEVS FORMAL SPECIFICATION” METAMODEL

3.1 Classic DEVS with Ports

Since modeling is made easier with the introduction of input and output ports (Zeigler, Muzy, and

Kofman 2018), we employ the Classic DEVS with Ports specification to develop our metamodel. In this

formalism, a DEVS atomic model is defined as:

DEVS = (X, Y, S, δext, δint, λ, ta) (1)

where

 X = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values;

 Y = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values;

 S is the set of sequential states;

 δext: Q×X→S is the external state transition function, with Q:= (s,e) | s ∈ S, 0 ≤ e ≤ ta(s);

 δint: S→S is the internal state transition function;

 λ: S→Y is the output function;

 ta: S→R0
+∪∞ is the time advance function.

On the other hand, a DEVS coupled model is defined as:

N = (X, Y, D, Md | d ∈ D, EIC, EOC, IC, Select) (2)

where

 X = {(p, v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

 Y = {(p, v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

 D is the set of the component names;

For each d ∈ D, Md = (Xd, Yd, S, δext, δint, λ, ta) is a DEVS, with Xd = {(p,v) | p ∈ IPortsd, v ∈ Xp} and

Yd = {(p,v) | p ∈ OPortsd, v ∈ Yp}

EIC ⊆ {((N,ipN), (d,ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd} is the set of external input couplings that

connect external inputs to component inputs;

EOC ⊆ {((d,opd),(N,opN)) | opN ∈ OPorts, d ∈ D, opd ∈ OPortsd } is the set of external output

couplings that connect component outputs to external outputs;

IC ⊆ {((a,opa), (b,ipb)) | {a,b} ∈ D, opa ∈ OPortsa, ipb ∈ IPortsb} is the set of internal couplings that

connect component outputs to component inputs;

Select: 2D →D, the tie-breaking function.

3.2 UML Metamodel

UML is a graphical language for visualizing, specifying, constructing, and documenting the artifacts of a

software-intensive system. We have divided the concepts and relationships in a UML package diagram

(Figure 3). Each package groups concepts and relationships according to their scope. Due to length

constraints, for each package, we introduce its purpose along with a link to our repository where the full

description is provided as a UML class diagram.

Blas, Gonnet, and Zeigler

Figure 3: UML package diagram of the metamodel.

The package named DEVSModelCore defines the concepts AtomicModel and CoupledModel. These

concepts are used to instantiate a DEVSModel. Our conceptualization of DEVSModel adds two elements

to the traditional definitions. These elements are used to arrange the sets used to build the model. The

EmptySet (from SetTheoryUtility) provides a conceptualization of a mathematical empty set that can be

further employed in the specification of new sets. The Definition (from SetTheoryUtility) is used as an

optional feature of the model that groups all sets and structures used during the model definition.

An AtomicModel is conceptualized as a container of two components: (a) the AtomicStructuralPart (from

DEVSAtomicStructuralModel) that defines the inputs and outputs sets and the state composition, and (b)

the AtomicBehavioralPart (from DEVSAtomicBehavioralModel) that specifies required functions. On the

other hand, a CoupledModel is conceptualized using a CoupledStructuralPart (from

DEVSCoupledStructuralModel) that defines the inputs and outputs sets, the couplings, and the select

function. The structure of the couplings is defined in the DEVSCouplingDefinitionModel package. This

package includes the concepts used to define the specific set of couplings required as part of the

CoupledModel definition such as EIC, EOC, and IC. For each set, the package defines how a specific

coupling should be structured. For example, the IC is defined as a container of a list of InternalCoupling.

Each InternalCoupling refers to two Components included in the CoupledStructuralPart.

The DEVSStructuralModel package defines the StructuralPart of a DEVSModel as a container of i) a list

of InputPort, ii) a list of OutputPort, iii) an input set X, iv) a list of Parameter, and v) an output set Y.

Using this definition, the DEVSAtomicStructuralModel package defines the AtomicStructuralPart by

adding the definition of State as part of the components included in the container. The

DEVSCoupledStructuralModel package also extends the StructuralPart definition to conceptualize the

CoupledStructuralPart. The package adds i) the set D, ii) the set EIC, iii) the set EOC, iv) the set IC, and

v) the Select function (from DEVSCoupledFunctionModel). As opposite, the package named

DEVSAtomicBehavioralModel defines the AtomicBehavioralPart as a container of i) a

ExternalTransitionFunction, ii) a InternalTransitionFunction, iii) an OutputFunction, and iv) a

TimeAdvanceFunction. For ExternalTransitionFunction and InternalTransitionFunction, the model uses a

list of NextStateSpecification. A NextStateSpecification is related to a collection of VariableSpecification

that plays the role of stateVariable. The VariableSpecification (from InteractionModel) is also related to a

StateVariable (from DEVSAtomicStructuralModel) to define how a StateVariable (defined in the

AtomicStructuralPart) evolves during the state transition function. A similar approach was used to define

the OutputFunction and TimeAdvanceFunction using OutputSpecification and TimeAdvanceSpecification,

respectively. The SelectFunction was also defined following this conceptualization guideline as part of

the DEVSCoupledFunctionModel package.

The InteractionModel package specifies the intermediate elements to be used for linking: (a) the

AtomicStructuralPart and the AtomicBehavioralPart compositions for AtomicModel, and (b) the

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSModelCoreClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSCouplingDefinitionModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSStructuralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSAtomicStructuralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSCoupledStructuralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSAtomicBehavioralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSCoupledFunctionModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/InteractionModelClassDiagram.png

Blas, Gonnet, and Zeigler

Coupling definition among Component for CoupledModel. In the first case, the concepts abstract the

interactions between both parts by modeling the components of the behavioral level as elements that

depend on the structural level. This allows instantiating the specification of the functions using

independent elements that have a dependency on the structure of the model. In the second case, depending

on the type of coupling, the concepts abstract the specification of input/output ports of the CoupledModel

with the ports of its Component.

Finally, the SetTheoryUtility package includes all the concepts required to define the set theory basis used

when DEVS models are formally specified. These concepts are used according to the formalism

definition to detail sets for input and output ports, state variables, parameters, and so on. The package

includes concepts as BooleanAlgebraSet, NaturalNumberSet, and RealNumberSet among others.

Moreover, it allows the modeler to define new sets using the Element hierarchy. Then, for example, the

modeler can create a NewSet by defining specific values to a set of StringElement.

Over the UML model, we restrict the instantiation with OCL constraints to ensure consistency between

the formal definition and the metamodel. OCL is a declarative language describing rules applying to

UML models. Hence, we use OCL to ensure consistency related to the correctness of DEVS formalism.

For example, these constraints ensure i) no direct feedback loops in CoupledModel, ii) correctness of the

Coupling specification in terms of the sets defined in the Port of each Component, and iii) the set of

Elements used in an Expression needs to be compatible with the expected value of the StateVariable.

3.3 Proof of Concepts

We use as an example the “switch” model. A switch is modeled as an atomic model with pairs of input

and output ports. When the switch is in the standard position, the elements arriving on port “in” are sent

out on port “out”, and similarly for ports “in1” and “out1”. When the switch is in its other setting, the

input-to-output links are reversed. The formal specification of this model is detailed in (Zeigler, Muzy,

and Kofman 2018). Over such a definition, we consider V = {0,1} and processing_time = 15.85.

Table 1 summarizes how each part of the formal specification is defined as a model derived from our

metamodel. Some of the extra instances defined to complete the model instantiation are i) the Parameter

with name="processing_time" and definition as a RealNumber with value=15.85, and ii) the sets used to

define the type attached to ports and state variables. In this last case, for example, the definition of V is

instantiated with a NewSet that includes two instances of IntegerNumber. The first instance is set with

value=0, while the other one is set with value=1.

For space reasons, the proof of concepts only includes an AtomicModel instantiation. However, following

the same reasoning, an instantiation of DEVSCoupled can be easily defined.

4 DISCUSSION

Following the proof of concepts, Figure 4 shows the instantiation of the state variable named phase as

part of the state definition. The object diagram (i.e., the objects depicted on the left side of the figure) uses

the concepts of State, StateVariable, NewSet, and StringElement as instances of the metamodel with aims

to detail how the state variable “phase” is defined at the formalization ML.

On the other hand, the right side of Figure 4 (i.e., the classes with a light gray background) shows how the

formalization definition can be interpreted at the implementation ML. In both MLs, the concept of State

exists. At the implementation ML, each StateVariable defined formally in the model is an attribute of the

State class. In the example, the StateVariable with name = phase is translated to the phase attribute. Since

the StateVariable is attached to a NewSet defined as two instances of StringElement, the type of the phase

attribute is defined using an Enumeration (i.e., PhaseValue). In such an Enumeration, the literals are

defined using the value property of StringElement. Hence, when the proposed MLs are defined using

metamodels, suitable traceability relationships can be specified across concepts and relationships.

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/SetTheoryUtilityClassDiagram.png

Blas, Gonnet, and Zeigler

Table 1: The “Switch” model as instance of our metamodel.

Model Instances

SWITCH
An AtomicModel with name="SWITCH". The instance of AtomicModel contains an

AtomicStructuralPart and an AtomicBehavioralPart.

X

A X containing two instances of InputDefinition. The first one relates the InputPort

with name="in" and the InputVariable with name="x_in". The second instance links

the InputPort with name="in1" and the InputVariable with name="x_in1".

Y

A Y containing two instances of OutputDefinition. The first one links the OutputPort

with name="out" and the OutputVariable with name="y_out". The other one links

the OutputPort with name="out1" and the OutputVariable with name="y_out1".

S
A State containing five instances of StateVariable identified with i) name="phase",

ii) name="sigma", iii) name="inport", iv) name="store", and v) name="Sw".

δext

An ExternalTransitionFunction that contains two NextStateSpecification.

E.g., the first specification is defined as an ordered set that includes: i) a ValueFromSet

with value="active", ii) a ParameterName with name="processing_time", iii) an

InputPortIdentifier, iv) an InputPortValue, and v) a PreviousStateVariable

with name="Sw". Condition instances are defined appropriately for each specification.

δint

An InternalTransitionFunction that contains a NextStateSpecification that

includes: i) a ValueFromSet with value="passive", ii) a InfinityParameter, iii) a

PreviousStateVariable with name="inport", iv) a PreviousStateVariable with

name="store", and v) a PreviousStateVariable with name="Sw".

λ

An OutputFunction that contains four instances of OutputSpecification. As an

example, the first OutputSpecification takes as value the PreviousStateVariable

with name="store" and as port the OutputPortName with name="out". Condition

instances are defined appropriately for each specification.

ta
A TimeAdvanceFunction that contains a TimeAdvanceSpecification defined using

the PreviousStateVariable with name="sigma".

Figure 4 is an example of the traceability relationship depicted in Figure 2 for the State concept. As part

of the universal representation of DEVS, our metamodel can help to (a) validate the consistency between

discrete event system descriptions and DEVS formal models through the use of a DES metamodel, (b)

study the relation between DEVS formalization and most commonly used implementations when

combined with a platform-independent metamodel, and (c) verify the consistency between DEVS formal

models and their implementation at a platform-independent level to ensure the that the expected

executable model is the one formalized. All these benefits are derived from the capability of defining

model-to-model transformations over the distinct ML (i.e., defining traceability relationships between

concepts defined at different levels). With the existing modeling technology (such as, Ecore), all these

metamodels can be implemented to provide a software framework that supports all these features.

Figure 4: Example of the “Switch” model state formalization vs. implementation.

Blas, Gonnet, and Zeigler

As a remark, it is interesting to briefly discuss how our proposal is related to the Model-Driven

Architecture (MDA) approach. MDA involves the specification of models at three levels: models,

metamodel, and meta-meta models. The capabilities of our metamodel can be improved with a meta-meta

model that acts as a standard definition of formalisms. Hence, such a meta-meta model will allow

bridging the gap between DEVS formal models and other alternative modeling formalisms. Moreover,

our metamodel can be also used to provide a foundation for building multi-formalism models based on

DEVS and its extensions. An appropriate alignment of the models’ composition can be defined to study

the impact of multi-formalism model definitions at a conceptual level.

5 CONCLUSIONS AND FUTURE WORK

DEVS is a popular modular and hierarchical formalism for modeling complex dynamic systems using

discrete-event abstraction. In this paper, we have presented a metamodel that defines a conceptualization

of DEVS formal models. Regarding the metamodel specification, we employ UML to define all the

concepts and relationships required to instantiate the Classic DEVS with Ports specification. Moreover,

we restrict the instantiation of such a model with a set of OCL constraints to ensure consistency between

the formal definition and the metamodel.

This paper is the starting point of a work-in-progress aimed to define a universal representation of DEVS

using a multi-level layered architecture of metamodels. Such a representation extends the DEVS

conceptualization trying to capture the relationships among distinct ML designed as DEVS views. We are

working on a software tool that allows instantiating a formal specification of the AtomicModel concept

using a guided-design process. The metamodel implementation is based on Ecore aiming to provide a

further integration to Java as an OO platform. The future work includes the design of the metamodels

attached to other views. For the phenomenon ML, the systems concept underlying DEVS (i.e., the I/O

system which is specifiable at multiple levels of structure and behavior with their associated morphisms)

will be included to define a conceptual description at the general system level. In such a case, the

uniqueness and well-definition of the DEVS abstract simulator will be considered.

REFERENCES

Cetinkaya, D., A. Verbraeck, and M. D. Seck. 2010. “A Metamodel and a DEVS Implementation for

Component based Hierarchical Simulation Modeling”. In Proceedings of the 2010 Spring Simulation

Multiconference, pp. 130-138. Society for Computer Simulation International.

Cristiá, M., D. A. Hollmann, and C. Frydman. 2019. “A Multi-target Compiler for CML-DEVS”.

Simulation, vol. 95(1), pp. 11-29.

Garredu, S., E. Vittori, J. Santucci, and P. Bisgambiglia. 2012a. “A Meta-Model for DEVS-Designed

following Model Driven Engineering Specifications”. In Proceedings of the 10th International

Conference on Simulation and Modeling Methodologies, Techniques and Applications, pp. 152-157.

Garredu, S., E. Vittori, J. Santucci, and D. Urbani. 2012b. “Enriching a DEVS Meta-model with OCL

constraints”. In Proceedings of the 24th European Modeling and Simulation Symposium, pp. 216-225.

Guizzardi, G., and G. Wagner, G. 2010. “Towards an Ontological Foundation of Discrete Event

Simulation”. In Proceedings of the 2010 Winter Simulation Conference, edited by B. Johansson, S.

Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, pp. 652-664. Piscataway, New Jersey, Institute of

Electrical and Electronics Engineers, Inc.

Guizzardi, G., and G. Wagner, G. 2012. “Conceptual Simulation Modeling with Onto-UML”. In

Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R.

Pasupathy, O. Rose, and A.M. Uhrmacher, pp. 52-66. Piscataway, New Jersey, Institute of Electrical

and Electronics Engineers, Inc.

Hollmann, D. A., M. Cristiá, C. Frydman. 2015. “CML-DEVS: A Specification Language for DEVS

Conceptual Models”. Simulation Modelling Practice and Theory, vol. 57, pp. 100-117.

Blas, Gonnet, and Zeigler

Hong, K., and T. Kim. 2006. “DEVSpecL: DEVS Specification Language for Modeling, Simulation and

Analysis of Discrete Event Systems”, Information and Software Technology, vol. 48, pp. 221–234.

Hu, Y., J. Xiao, H. Zhao, and G. Rong. 2013. “DEVSMO: An Ontology of DEVS Model Representation

for Model Reuse”. In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy,

S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, pp. 4002-4003. Piscataway, New Jersey, Institute of

Electrical and Electronics Engineers, Inc.

Kapos, G. D., V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos. 2014. “Model-based

System Engineering using SysML: Deriving Executable Simulation Models with QVT”. In

Proceedings of the 2014 IEEE International Systems Conference, pp. 531-538.

Nikolaidou, M., V. Dalakas, L. Mitsi, G. D. Kapos, D. Anagnostopoulos. 2008. “A SysML Profile for

Classical DEVS Simulators”. In Proceedings of the 3rd International Conference on Software

Engineering Advances, pp. 445-450.

Robinson, S. 2020. “Conceptual Modelling for Simulation: Progress and Grand Challenges”. Journal of

Simulation, vol. 14(1), pp. 1-20.

Robinson, S., R. Brooks, K. Kotiadis, and D. J. Van Der Zee. 2010. Conceptual modeling for discrete-

event simulation. Boca Raton, USA: CRC Press.

Sarjoughian, H. S., A. Alshareef, Y. Lei. 2015. “Behavioral DEVS Metamodeling”. In Proceedings of the

2015 Winter Simulation Conference, edited by L. Yilmaz, W K V. Chan, I Moon, T. M K Roeder, C

Macal, and M D Rossetti, pp. 2788-2799. Piscataway, New Jersey, Institute of Electrical and

Electronics Engineers, Inc.

Touraille, L. 2012. Application of Model-driven Engineering and Metaprogramming to DEVS Modeling

& Simulation. Doctoral dissertation, Universite´ d’Auvergne, France.

Van Tendeloo, Y., and H. Vangheluwe. 2017. “An Evaluation of DEVS Simulation Tools”. Simulation,

vol. 93(2), pp. 103-121.

Vangheluwe, H. 2008. Foundations of Modelling and Simulation of Complex Systems. In Proceedings of

the 7th International Workshop on Graph Transformation and Visual Modeling Techniques, pp. 1-12.

Wainer, G., K. Al-Zoubi, S. Mittal, J.L. Risco Martin, H. Sarjoughian, and B. P. Zeigler. 2010. “An

Introduction to DEVS Standardization”. In Discrete-Event Modeling and Simulation: Theory and

Applications, edited by G. Wainer and P. Mosterman, pp. 393-425. Boca Raton, USA: CRC Press.

Zeigler, B. P. 2019. “How Abstraction, Formalization and Implementation Drive the Next Stage in

Modeling and Simulation”. In Summer of Simulation, edited by J. Sokolowski, U. Durak, N.

Mustafee, A. Tolk, pp. 25-37. Switzerland: Springer Nature.

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event &

Iterative System Computational Foundations. 3rd ed. London: Academic Press.

AUTHOR BIOGRAPHIES

MARIA JULIA BLAS is a Postdoctoral Fellow at INGAR and an Assistant Professor at UTN. She

received her Ph.D. degree in Engineering from UTN in 2019. Her research interests include discrete-event

M&S. Her email address is mariajuliablas@santafe-conicet.gov.ar.

SILVIO GONNET received his Ph.D. degree in Engineering from UNL in 2003. He currently holds a

Researcher position at CONICET. His research interests are models to support design processes and

conceptual modeling. His email address is sgonnet@santafe-conicet.gov.ar.

BERNARD P. ZEIGLER is Professor Emeritus of Electrical and Computer Engineering at the

University of Arizona (USA) and Chief Scientist of RTSync Corp. (USA). Dr. Zeigler is a Fellow of

IEEE and SCS and received the INFORMS Lifetime Achievement Award. He is a co-director of the

Arizona Center of Integrative Modeling and Simulation. His e-mail address is zeigler@rtsync.com.

mailto:mariajuliablas@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar
mailto:zeigler@rtsync.com

