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ABSTRACT 

The Discrete Event System Specification (DEVS) is one of the key formalisms to define Discrete Event 

Simulation (DES) models and underlying concepts. In this paper, we propose a conceptualization of 

DEVS designed as a metamodel that supports the formalization task. Such a conceptualization is part of a 

multi-level layered structure that defines a universal representation of DEVS as a combination of both 

theory and practice points of view. For the metamodel specification, we employ UML. With the existing 

modeling technology, our metamodel can be implemented to provide a framework that supports: (a) 

consistency validation between discrete event system descriptions and formal models using a DES 

metamodel, (b) interoperability between formalization and most used implementations using a platform-

independent metamodel, and (c) consistency verification between formal models and their 

implementation. All these benefits are derived from the capability of defining model-to-model 

transformations over the modeling levels proposed in our conceptualization. 

Keywords: abstraction to implementation, conceptual modeling, discrete event simulation, metamodeling. 

1 INTRODUCTION 

The Discrete-Event System Specification (DEVS) formalism is a modeling formalism based on systems 

theory that provides a general methodology for hierarchical construction of reusable models in a modular 

way (Zeigler, Muzy, and Kofman 2018). Over the years, DEVS has found an increasing acceptance in 

model-based simulation research because of the ease of model definition, model composition, reuse, and 

hierarchical coupling. However, in the Modeling and Simulation (M&S) field, there is no commonly 

agreed-upon precise definition of Discrete Event Simulation (DES) and its underlying concepts 

(Guizzardi and Wagner 2010). Moreover, the entire field of computer simulation is suffering from a 

plethora of different concepts, formalisms, and technologies along with a lack of common modeling 

languages and standards. 

According to (Guizzardi and Wagner 2012), DES is concerned with the simulation of real-world systems 

that are conceived as discrete event systems. The interplay of abstraction and concreteness between such a 

simulation and DEVS simulation models can be analyzed following the progression of abstraction to 

implementation detailed in (Zeigler 2019). Such a progression is defined as a sequence of three steps: 

abstraction, formalization, and implementation. Abstraction focuses on an aspect of reality (phenomenon) 

and greatly reduces the complexity of the reality being considered. This is the case of DES over discrete 
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event systems. Then, a formalization makes it easier to work out the implications of the abstraction and 

implement it in reality. This is the role of DEVS formalism as the widespread M&S language for the 

specification of DES. Finally, an implementation can be considered as providing a concrete realization of 

the abstraction through formalization. For DEVS, this is the case of DEVS executable models developed 

using M&S software tools. Hence, DEVS can be seen as a vehicle that allows formalizing the DES 

abstraction by becoming the foundation for a family of simulation systems. Since by nature simulation is 

a technical field (Robinson 2020), the implementation of such formal models is the practitioner’s activity 

frequently performed during M&S activities. 

In this paper, we propose a conceptualization of DEVS formalism designed as a metamodel that supports 

the formalization task. Such a conceptualization is part of a multi-level layered structure for studying the 

implicit and explicit knowledge related to DEVS formalism as a combination of both theory and practice 

points of view. The main goal of our research is to improve the vision of the DEVS-based community 

using a conceptual modeling perspective through the definition of a set of metamodels that act as a 

common modeling language for the development of a universal representation of DEVS. This 

representation uses the steps of the progression of abstraction to implementation as different (but related) 

Modeling Levels (ML) that support the progress of knowledge in DEVS-based M&S maintaining the 

traceability among concepts. At the core of the DEVS universal representation, a metamodel for defining 

the formal specification of DEVS formalism is required. Such a metamodel is presented in this paper as a 

Unified Modeling Language (UML) diagram restricted by Object Constraint Language (OCL) constraints. 

We analyze conceptual models of DEVS developed by researchers in terms of the three ML proposed in 

our representation (i.e., abstraction, formalization, and implementation) to show how the DEVS 

community has treated the DEVS representation problem over the years. Over this literature review, we 

set the guidelines for our universal representation using metamodels as the core of it. The main 

contribution is the UML metamodel designed for the instantiation of DEVS models following their 

formal specification in Classic DEVS with Ports (Zeigler, Muzy, and Kofman 2018). Due to the extension 

of the metamodel, we include a general package description and the main concepts used to define DEVS 

models. Our aim is i) to offer a conceptual modeling structure for the definition of DEVS simulation 

models using a universal representation of DEVS, and ii) to be able to integrate all DEVS views (i.e., the 

ML) into a traceable network of metamodels in a way that they can be used in a compliance fashion way. 

The remainder of this paper is structured as follows. Section 2 presents a literature review that 

summarizes existent representations of DEVS based on metamodels and ontologies. It also describes the 

need of building a universal representation of DEVS and the structure of our proposal. This structure sets 

the foundations of our research, introducing the guidelines that motivate the development of a metamodel 

for DEVS formalization. Section 3 introduces the core of the DEVS universal representation: the “DEVS 

Formal Specification” metamodel. In this section, we review the formal definition of Classic DEVS with 

Ports and present our conceptualization of this domain using UML diagrams. It also presents an instance 

of the metamodel as proof of concepts of our proposal. In this case, we use as an example the “Switch” 

model. Section 4 is dedicated to the discussion of our results and their relation with the universal 

representation of DEVS. Finally, Section 5 is devoted to conclusions and future work. 

2 RELATED WORK 

Over the years, researchers have designed several conceptual models to study the DEVS formalism. Most 

papers use ontologies and metamodels to analyze an individual view of DEVS formalism. These views 

can be grouped in three ML following the M&S dimensions (mentioned in Section 1) as abstraction, 

formalization, and implementation. 

At the abstraction ML, the conceptualizations deal with the domain of discrete event systems. In 

Guizzardi and Wagner (2010), the authors present DESO, a foundational ontology for discrete event 

system modeling derived from the foundational ontology UFO. The main purpose of such an ontology is 

to provide a basis for evaluating discrete event simulation languages. Authors claim that “a discrete event 
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system model may be expressed at different levels of abstraction”. Hence, the paper presents two 

ontologies: (a) the Design-Time Ontology that describes a discrete event system by defining the entity 

types and (b) the Run-Time Ontology that deals with individuals of different types from the simulator 

perspective. Since DESO represents a general conceptualization of discrete systems, it can serve as a 

reference ontology for evaluating the simulation languages of DES frameworks (e.g., DEVS formalism). 

A DEVS conceptualization based on the formalization ML should be designed focusing on the entities 

that describe the simulation models. Several researchers have proposed models to address this ML. Hu, 

Zhao, and Rong (2013) propose an ontology-based model representation named DEVSMO (DEVS math 

ontology). Such a model is composed of three ontologies: (a) the DEVS model ontology that describes 

the classification of simulation models according to DEVS formalism, (b) the model structure ontology 

that defines both atomic and coupled model structures, and (c) the model behavior ontology that specifies 

the behavior of a DEVS model. Most concepts related to the formalization ML are defined in (a) and (b). 

In (Touraille 2012), the author presents a metamodel of DEVS that provides a pivot format for building 

simulation models compatible with available software tools. Such a metamodel conceptualizes the 

specification of DEVS simulation models using two distinct parts: (a) a structural part that deals with 

state variables, ports, components, and connections, and (b) a behavioral part that describes the temporal 

evolution of models in terms of the DEVS functions. In the same direction, a DEVS behavioral 

metamodel is proposed in (Sarjoughian, Alshareef, and Lei 2015). Authors use metamodeling to generate 

concrete models from domain-specific metamodels. Therefore, the metamodel identifies a set of 

abstractions for state transitions in the external, internal, and confluent transition functions. Similarly, 

appropriate abstractions are designed for output and time advance functions. 

On the other hand, Hollmann, Cristiá, and Frydman (2015) propose a formal modeling language called 

CML-DEVS (Conceptual Modeling Language for DEVS) that provides an abstract description of DEVS 

models in terms of logical and mathematical expressions. In this case, CML-DEVS can be seen as an 

improved version of the specification language for DEVS models named DEVSpecL that has been 

previously developed by Hong and Kim (2006). By describing DEVS models in their most abstract form, 

independent of any particular implementation, this modeling language has two main advantages: (a) it 

allows the interoperability between practitioners and/or researchers; and (b) it facilitates both maintenance 

and modification of the simulation models. Moreover, the main benefit of this language is that the 

modeler can define a model without having programming skills. 

Finally, at the implementation ML, most conceptualizations deal with programming code generation 

processes. Since there is no common DEVS format used by all tools, modelers are tied to their M&S tool 

(Van Tendeloo and Vangheluwe 2017). Hence, each conceptualization used for implementing DEVS 

models is unique. Garredu et al. (2012a) propose a platform-independent metamodel for DEVS that is 

enriched with OCL constraints in (Garredu et al. 2012b). In this case, the authors state that such a 

metamodel is “accurate enough to specify several DEVS models”. From a different point of view, Kapos 

et al. (2014) discuss the adoption of Model-Driven Architecture concepts to transform SysML (Systems 

Modeling Language) models into executable DEVS models. In this paper, a MOF metamodel for the 

implementation of DEVS is presented to provide a standard representation for the simulation-specific 

domain. A similar approach is presented in (Cetinkaya, Verbraeck, and Seck 2010) where authors 

introduce a metamodel for component-based hierarchical simulation based on hierarchical DEVS. This 

research initiates a study of defining a formal component-based conceptual modeling technique to 

overcome the problems in hierarchical simulation. The authors also present a prototype of a simulation 

model design environment with a Java interpreter which transforms the visual simulation models into 

DEVS models. Hence, the conceptualization at implementation ML is attached to the Java platform. 

2.1 The Need for a Universal Representation of DEVS 

According to (Guizzardi and Wagner 2012), DES is concerned with the simulation of real-world systems 

that are conceived as discrete event systems. The behavior models of this type of systems can be 

described at different levels of abstraction. This implies that each abstraction level may employ different 
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formalisms. The particular formalism and level of abstraction depends on the background and goals of the 

modeler as much as on the system modeled (Vangheluwe 2008).  

There is widespread agreement that the paradigm of DES forms a core discipline of simulation (Guizzardi 

and Wagner 2010). That is because reality is often represented employing discrete-event models. In these 

models, time evolves continuously, but the state of the system only changes at a finite number of points in 

time in a bounded time-interval (called event-times). Therefore, for DES, DEVS has found increasing 

acceptance in the model-based simulation research community as a suitable M&S formal specification. 

DEVS is formalized using set theory and systems theory. The formalism includes two types of DES 

models: atomic and coupled. Both models are described using equations, functions, sets, etc. Hence, 

DEVS is an abstract formalism for the specification of simulation models that is independent of any 

particular implementation. However, when engineers want to simulate these models they need to program 

them in the input language of a concrete simulator, which means writing code in Java or C++ or another 

general-purpose programming language (Cristiá, Hollmann, and Frydman 2019). Such implementation is 

often called “reduction to concrete form” (Zeigler 2019). 

Nowadays, there are multiple software tools and simulators for DEVS models (Van Tendeloo and 

Vangheluwe 2017). Even when conceptualizations of implementations exist, in most cases modelers must 

represent the DEVS model as programming code using predefined libraries offered by each simulator 

(Nikolaidou et al. 2008). Each simulator has its own input language. Generally, these input languages are 

different, hindering the interoperability between simulation software tools (Hollmann, Cristiá, and 

Frydman 2015). 

Even when over the years several conceptualizations of DEVS have been developed, most approaches are 

isolated from each other due to the conceptual view used during their design. By nature, simulation is a 

technical field (Robinson 2020). Hence, most conceptualizations focus their attention on the more 

“scientific” elements of the simulation project life-cycle, that is, model development (led from computer 

science) and analysis (led from mathematics and statistics). Moreover, even when it is a fact that DEVS 

models can be mathematically described (at the formalization ML), its simulation is performed by 

concrete DEVS simulation systems (at the implementation ML). When concrete DEVS models are 

developed using programming languages, it is difficult to ensure they conform to their formal model 

(Sarjoughian, Alshareef, and Lei 2015). Moreover, the mathematical properties and constraints defined in 

DEVS models should be guaranteed in any implementation of it. However, the conceptualizations 

developed at the formalization ML are rarely a “real” representation of DEVS formal models.  

Since most formalization metamodels are used to get DEVS executable models, commonly their 

definition involves some programming features. For example, in (Touraille 2012), the author uses 

programming concepts such as “EClass” and “EDataType” to define state variables and ports. In 

(Sarjoughian, Alshareef, and Lei 2015), the DEVS functions are directly defined as extensions of 

“EOperation” to allow including content that can be transformed into concrete (programming) code. The 

formal modeling language proposed in (Hollmann, Cristiá, and Frydman 2015) is the most complete 

formal specification of DEVS simulation models. In this case, the authors complement the proposal with 

a multi-target compiler that allows getting DEVS executable models for two distinct M&S tools (DEVS-

Suite and PowerDEVS). Most executable representations are tool-specific, though efforts are underway to 

define a common standard (Wainer et al. 2010). Even when the formalization ML can be used as support 

of the implementation ML, the variety of executable representations difficult the alignment task. 

In this context, a universal representation of DEVS can help to understand (and study) the following ML 

maintaining the traceability among them: (a) DES approaches, (b) DEVS formal models, (c) the 

implementation of DEVS models in a platform-independent model, and (d) the implementation of DEVS 

models in platform-specific software tools. Each ML can be interpreted as a view of DEVS. All the views 

together provide a full understanding of DEVS simulation models in a unique conceptualization that 

allows outline interactions among distinct views. 
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From the traditional point of view, a good conceptual model lays a strong foundation for successful 

simulation modeling and analysis (Robinson et al. 2010). Over such interpretation, conceptual modeling 

serves as a bridge between problem owner and simulation modeler. It is important to denote that the 

universal representation of DEVS does not include the conceptual model of the DEVS solution. This 

conceptualization is attached to the problem-solution modeling task and is outside the scope of the DEVS 

universal representation. In such a case, the systems concept underlying DEVS should be considered to 

get a conceptual description at the general system level. 

2.2 Our Approach: A Multi-Level Layered Conceptualization 

Figure 1 shows the architecture of a multi-level conceptualization of DEVS defined as a set of five layers. 

Each layer is an independent ML (i.e., phenomenon, abstraction, formalization, platform-independent 

implementation, and platform-specific implementation) that supports the definition of a DEVS view 

through the use of metamodels. All views together give a structure for the DEVS universal representation. 

 

Figure 1: Multi-Level Layered Conceptualization of DEVS. 

The phenomenon ML models an aspect of the dynamic system of interest. The abstraction ML represents 

the model of the phenomenon in terms of the DES. It focuses on applying the simulation perspective over 

the main components and relationships identified at the top level. Over the DES perspective, the 

formalization ML offers a M&S language (i.e., the DEVS formalism) to define the simulation model of 

the event-based system under consideration. That is, it details how the abstraction of discrete events, 

states, and components can be formalized in DEVS simulation models. Even when the abstraction is 

achieved by the formal statement of the modeling domain, such a formalization can be described using 

distinct formal statements than the ones used for the formalization ML. In Figure 1, the abstracted 

knowledge will be represented with generic-DES concepts. Meanwhile, the formalized model will be 

represented with DEVS concepts. Hence, the phenomenon definition becomes the colloquial description 

that cannot be operable without having any DES specificity. Finally, the implementation ML is divided 

into two levels: platform-independent implementation and platform-specific implementation. Such a 

separation of concerns at the implementation ML is designed to allow including the conceptual models of 

available DEVS software tools as part of our proposal. Considering that i) DEVS is most naturally 

implemented in a computational form in an Object-Oriented (OO) framework (Zeigler, Muzy, and 

Kofman 2018), and ii) a formalization model can potentially be used to produce diverse OO 

implementations; the model defined at the platform-independent implementation ML condense an OO 

representation of DEVS executable models. Hence, this ML is focused on the common-concepts included 

in most OO implementations of DEVS software tools. Then, the platform-specific implementation ML 

provides a concrete realization of the platform-independent implementation that can be deployed in a 

target M&S environment based on an OO programming code. 
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At the top level, the first three MLs refer to the theoretical field of DEVS. At the bottom, the last three 

MLs refer to the DEVS practical field. Due to the general system basis of DEVS, the formalization ML is 

shared by both theory and practice fields. In this context, the main benefit of our architecture is the 

interplay of DEVS theory and practice in a holistic approach that establishes the foundations of the core 

concepts of a DEVS conceptualization as a clarification of its real-world semantics through the use of 

multiple layers. The goal of building a universal representation of DEVS is to explicitly define a set of 

common views of DEVS structured as metamodels that can be used to instantiate a group of related 

discrete-event specifications. Such views enable a broad M&S advance for DEVS conceptualizations. The 

use of metamodels to support the conceptual architecture provides a common basis for defining instances 

of such models and handling transformation between MLs (i.e., model-to-model transformations). 

Our current research is centered on the three middle levels of Figure 1 (i.e., levels highlighted in gray): 

abstraction, formalization, and platform-independent implementation. The phenomenon and platform-

specific model are not included at this stage but they will be added in future works. Figure 2 outlines how 

metamodels of different MLs will provide support to the DEVS model definition. Here, a full DEVS 

model definition is given by the set of models instantiated as {abstraction model, formalization model, 

platform-independent implementation model}. Each model represents a view of the final DEVS 

simulation model based on a metamodel. 

In Figure 2, three metamodels are defined: (a) Discrete Event Simulation (DES), (b) DEVS Formal 

Specification (DFS), and (c) DEVS OO-Implementation (DOI). Each metamodel is sketched as a set of 

concepts and relationships. All metamodels have a different number of concepts and distinct relationships 

between these concepts with aims to show their domain independence. As an interoperability example, all 

metamodels include the State concept. However, even when all States refer to the same DEVS model, 

each metamodel uses the concept to define the state of the model from a specific point of view. Then, the 

metamodel structure allows defining traceability relationships (i.e., the trace association) between 

concepts. Such traceability can be extended to relationships. This traceability allows aligning concepts 

from different metamodels with aims to get new knowledge regarding the model definition. 

Hence, the structure of our DEVS conceptualization provides a basis for defining transformation and 

traceability between metamodels. Moreover, each ML can be used to support interoperability with other 

metamodels of the same level. For example, the DES metamodel can be used to interoperate with the 

abstraction level of other simulation approaches. At the core of the universal representation of DEVS, the 

grand challenge is the development of the DFS metamodel. Such a metamodel is presented in Section 3. 

 

Figure 2: Views of DEVS structured as metamodels. 
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3 THE “DEVS FORMAL SPECIFICATION” METAMODEL 

3.1 Classic DEVS with Ports 

Since modeling is made easier with the introduction of input and output ports (Zeigler, Muzy, and 

Kofman 2018), we employ the Classic DEVS with Ports specification to develop our metamodel. In this 

formalism, a DEVS atomic model is defined as: 

DEVS = (X, Y, S, δext, δint, λ, ta) (1)
 

where 

 X = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

 Y = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

 S is the set of sequential states; 

 δext: Q×X→S is the external state transition function, with Q:= (s,e) | s ∈ S, 0 ≤ e ≤ ta(s); 

 δint: S→S is the internal state transition function; 

 λ: S→Y is the output function; 

 ta: S→R0
+∪∞ is the time advance function. 

On the other hand, a DEVS coupled model is defined as: 

N = (X, Y, D, Md | d ∈ D, EIC, EOC, IC, Select) (2)
 

where 

 X = {(p, v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 

 Y = {(p, v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 

 D is the set of the component names; 

For each d ∈ D, Md = (Xd, Yd, S, δext, δint, λ, ta) is a DEVS, with Xd = {(p,v) | p ∈ IPortsd, v ∈ Xp} and 

Yd = {(p,v) | p ∈ OPortsd, v ∈ Yp} 

EIC ⊆ {((N,ipN), (d,ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd} is the set of external input couplings that 

connect external inputs to component inputs; 

EOC ⊆ {((d,opd),(N,opN)) | opN ∈ OPorts, d ∈ D, opd ∈ OPortsd } is the set of external output 

couplings that connect component outputs to external outputs; 

IC ⊆ {((a,opa), (b,ipb)) | {a,b} ∈ D, opa ∈ OPortsa, ipb ∈ IPortsb} is the set of internal couplings that 

connect component outputs to component inputs; 

Select: 2D →D, the tie-breaking function. 

3.2 UML Metamodel 

UML is a graphical language for visualizing, specifying, constructing, and documenting the artifacts of a 

software-intensive system. We have divided the concepts and relationships in a UML package diagram 

(Figure 3). Each package groups concepts and relationships according to their scope. Due to length 

constraints, for each package, we introduce its purpose along with a link to our repository where the full 

description is provided as a UML class diagram. 
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Figure 3: UML package diagram of the metamodel. 

The package named DEVSModelCore defines the concepts AtomicModel and CoupledModel. These 

concepts are used to instantiate a DEVSModel. Our conceptualization of DEVSModel adds two elements 

to the traditional definitions. These elements are used to arrange the sets used to build the model. The 

EmptySet (from SetTheoryUtility) provides a conceptualization of a mathematical empty set that can be 

further employed in the specification of new sets. The Definition (from SetTheoryUtility) is used as an 

optional feature of the model that groups all sets and structures used during the model definition. 

An AtomicModel is conceptualized as a container of two components: (a) the AtomicStructuralPart (from 

DEVSAtomicStructuralModel) that defines the inputs and outputs sets and the state composition, and (b) 

the AtomicBehavioralPart (from DEVSAtomicBehavioralModel) that specifies required functions. On the 

other hand, a CoupledModel is conceptualized using a CoupledStructuralPart (from 

DEVSCoupledStructuralModel) that defines the inputs and outputs sets, the couplings, and the select 

function. The structure of the couplings is defined in the DEVSCouplingDefinitionModel package. This 

package includes the concepts used to define the specific set of couplings required as part of the 

CoupledModel definition such as EIC, EOC, and IC. For each set, the package defines how a specific 

coupling should be structured. For example, the IC is defined as a container of a list of InternalCoupling. 

Each InternalCoupling refers to two Components included in the CoupledStructuralPart. 

The DEVSStructuralModel package defines the StructuralPart of a DEVSModel as a container of i) a list 

of InputPort, ii) a list of OutputPort, iii) an input set X, iv) a list of Parameter, and v) an output set Y. 

Using this definition, the DEVSAtomicStructuralModel package defines the AtomicStructuralPart by 

adding the definition of State as part of the components included in the container. The 

DEVSCoupledStructuralModel package also extends the StructuralPart definition to conceptualize the 

CoupledStructuralPart. The package adds i) the set D, ii) the set EIC, iii) the set EOC, iv) the set IC, and 

v) the Select function (from DEVSCoupledFunctionModel). As opposite, the package named 

DEVSAtomicBehavioralModel defines the AtomicBehavioralPart as a container of i) a 

ExternalTransitionFunction, ii) a InternalTransitionFunction, iii) an OutputFunction, and iv) a 

TimeAdvanceFunction. For ExternalTransitionFunction and InternalTransitionFunction, the model uses a 

list of NextStateSpecification. A NextStateSpecification is related to a collection of VariableSpecification 

that plays the role of stateVariable. The VariableSpecification (from InteractionModel) is also related to a 

StateVariable (from DEVSAtomicStructuralModel) to define how a StateVariable (defined in the 

AtomicStructuralPart) evolves during the state transition function. A similar approach was used to define 

the OutputFunction and TimeAdvanceFunction using OutputSpecification and TimeAdvanceSpecification, 

respectively. The SelectFunction was also defined following this conceptualization guideline as part of 

the DEVSCoupledFunctionModel package. 

The InteractionModel package specifies the intermediate elements to be used for linking: (a) the 

AtomicStructuralPart and the AtomicBehavioralPart compositions for AtomicModel, and (b) the 

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSModelCoreClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSCouplingDefinitionModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSStructuralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSAtomicStructuralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSCoupledStructuralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSAtomicBehavioralModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/DEVSCoupledFunctionModelClassDiagram.png
http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/InteractionModelClassDiagram.png
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Coupling definition among Component for CoupledModel. In the first case, the concepts abstract the 

interactions between both parts by modeling the components of the behavioral level as elements that 

depend on the structural level. This allows instantiating the specification of the functions using 

independent elements that have a dependency on the structure of the model. In the second case, depending 

on the type of coupling, the concepts abstract the specification of input/output ports of the CoupledModel 

with the ports of its Component. 

Finally, the SetTheoryUtility package includes all the concepts required to define the set theory basis used 

when DEVS models are formally specified. These concepts are used according to the formalism 

definition to detail sets for input and output ports, state variables, parameters, and so on. The package 

includes concepts as BooleanAlgebraSet, NaturalNumberSet, and RealNumberSet among others. 

Moreover, it allows the modeler to define new sets using the Element hierarchy. Then, for example, the 

modeler can create a NewSet by defining specific values to a set of StringElement. 

Over the UML model, we restrict the instantiation with OCL constraints to ensure consistency between 

the formal definition and the metamodel. OCL is a declarative language describing rules applying to 

UML models. Hence, we use OCL to ensure consistency related to the correctness of DEVS formalism. 

For example, these constraints ensure i) no direct feedback loops in CoupledModel, ii) correctness of the 

Coupling specification in terms of the sets defined in the Port of each Component, and iii) the set of 

Elements used in an Expression needs to be compatible with the expected value of the StateVariable. 

3.3 Proof of Concepts 

We use as an example the “switch” model. A switch is modeled as an atomic model with pairs of input 

and output ports. When the switch is in the standard position, the elements arriving on port “in” are sent 

out on port “out”, and similarly for ports “in1” and “out1”. When the switch is in its other setting, the 

input-to-output links are reversed. The formal specification of this model is detailed in (Zeigler, Muzy, 

and Kofman 2018). Over such a definition, we consider V = {0,1} and processing_time = 15.85. 

Table 1 summarizes how each part of the formal specification is defined as a model derived from our 

metamodel. Some of the extra instances defined to complete the model instantiation are i) the Parameter 

with name="processing_time" and definition as a RealNumber with value=15.85, and ii) the sets used to 

define the type attached to ports and state variables. In this last case, for example, the definition of V is 

instantiated with a NewSet that includes two instances of IntegerNumber. The first instance is set with 

value=0, while the other one is set with value=1. 

For space reasons, the proof of concepts only includes an AtomicModel instantiation. However, following 

the same reasoning, an instantiation of DEVSCoupled can be easily defined. 

4 DISCUSSION 

Following the proof of concepts, Figure 4 shows the instantiation of the state variable named phase as 

part of the state definition. The object diagram (i.e., the objects depicted on the left side of the figure) uses 

the concepts of State, StateVariable, NewSet, and StringElement as instances of the metamodel with aims 

to detail how the state variable “phase” is defined at the formalization ML. 

On the other hand, the right side of Figure 4 (i.e., the classes with a light gray background) shows how the 

formalization definition can be interpreted at the implementation ML. In both MLs, the concept of State 

exists. At the implementation ML, each StateVariable defined formally in the model is an attribute of the 

State class. In the example, the StateVariable with name = phase is translated to the phase attribute. Since 

the StateVariable is attached to a NewSet defined as two instances of StringElement, the type of the phase 

attribute is defined using an Enumeration (i.e., PhaseValue). In such an Enumeration, the literals are 

defined using the value property of StringElement. Hence, when the proposed MLs are defined using 

metamodels, suitable traceability relationships can be specified across concepts and relationships. 

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/05/SetTheoryUtilityClassDiagram.png
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Table 1: The “Switch” model as instance of our metamodel. 

Model Instances 

SWITCH 
An AtomicModel with name="SWITCH". The instance of AtomicModel contains an 

AtomicStructuralPart and an AtomicBehavioralPart. 

X 

A X containing two instances of InputDefinition. The first one relates the InputPort 

with name="in" and the InputVariable with name="x_in". The second instance links 

the InputPort with name="in1" and the InputVariable with name="x_in1". 

Y 

A Y containing two instances of OutputDefinition. The first one links the OutputPort 

with name="out" and the OutputVariable with name="y_out". The other one links 

the OutputPort with name="out1" and the OutputVariable with name="y_out1". 

S 
A State containing five instances of StateVariable identified with i) name="phase", 

ii) name="sigma", iii) name="inport", iv) name="store", and v) name="Sw". 

δext 

An ExternalTransitionFunction that contains two NextStateSpecification. 

E.g., the first specification is defined as an ordered set that includes: i) a ValueFromSet 

with value="active", ii) a ParameterName with name="processing_time", iii) an 

InputPortIdentifier, iv) an InputPortValue, and v) a PreviousStateVariable 

with name="Sw". Condition instances are defined appropriately for each specification. 

δint 

An InternalTransitionFunction that contains a NextStateSpecification that 

includes: i) a ValueFromSet with value="passive", ii) a InfinityParameter, iii) a 

PreviousStateVariable with name="inport", iv) a PreviousStateVariable with 

name="store", and v) a PreviousStateVariable with name="Sw". 

λ 

An OutputFunction that contains four instances of OutputSpecification. As an 

example, the first OutputSpecification takes as value the PreviousStateVariable 

with name="store" and as port the OutputPortName with name="out". Condition 

instances are defined appropriately for each specification. 

ta 
A TimeAdvanceFunction that contains a TimeAdvanceSpecification defined using 

the PreviousStateVariable with name="sigma". 
 

Figure 4 is an example of the traceability relationship depicted in Figure 2 for the State concept. As part 

of the universal representation of DEVS, our metamodel can help to (a) validate the consistency between 

discrete event system descriptions and DEVS formal models through the use of a DES metamodel, (b) 

study the relation between DEVS formalization and most commonly used implementations when 

combined with a platform-independent metamodel, and (c) verify the consistency between DEVS formal 

models and their implementation at a platform-independent level to ensure the that the expected 

executable model is the one formalized. All these benefits are derived from the capability of defining 

model-to-model transformations over the distinct ML (i.e., defining traceability relationships between 

concepts defined at different levels). With the existing modeling technology (such as, Ecore), all these 

metamodels can be implemented to provide a software framework that supports all these features. 

 

Figure 4: Example of the “Switch” model state formalization vs. implementation. 



Blas, Gonnet, and Zeigler 

As a remark, it is interesting to briefly discuss how our proposal is related to the Model-Driven 

Architecture (MDA) approach. MDA involves the specification of models at three levels: models, 

metamodel, and meta-meta models. The capabilities of our metamodel can be improved with a meta-meta 

model that acts as a standard definition of formalisms. Hence, such a meta-meta model will allow 

bridging the gap between DEVS formal models and other alternative modeling formalisms. Moreover, 

our metamodel can be also used to provide a foundation for building multi-formalism models based on 

DEVS and its extensions. An appropriate alignment of the models’ composition can be defined to study 

the impact of multi-formalism model definitions at a conceptual level. 

5 CONCLUSIONS AND FUTURE WORK 

DEVS is a popular modular and hierarchical formalism for modeling complex dynamic systems using 

discrete-event abstraction. In this paper, we have presented a metamodel that defines a conceptualization 

of DEVS formal models. Regarding the metamodel specification, we employ UML to define all the 

concepts and relationships required to instantiate the Classic DEVS with Ports specification. Moreover, 

we restrict the instantiation of such a model with a set of OCL constraints to ensure consistency between 

the formal definition and the metamodel.  

This paper is the starting point of a work-in-progress aimed to define a universal representation of DEVS 

using a multi-level layered architecture of metamodels. Such a representation extends the DEVS 

conceptualization trying to capture the relationships among distinct ML designed as DEVS views. We are 

working on a software tool that allows instantiating a formal specification of the AtomicModel concept 

using a guided-design process. The metamodel implementation is based on Ecore aiming to provide a 

further integration to Java as an OO platform. The future work includes the design of the metamodels 

attached to other views. For the phenomenon ML, the systems concept underlying DEVS (i.e., the I/O 

system which is specifiable at multiple levels of structure and behavior with their associated morphisms) 

will be included to define a conceptual description at the general system level. In such a case, the 

uniqueness and well-definition of the DEVS abstract simulator will be considered. 
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