
An Integrated Modelling and Analysis Environment
for Parallel DEVS

Bruno Barroca
McGill University, Canada

bbarroca@cs.mcgill.ca

Sadaf Mustafiz
McGill University, Canada

sadaf@cs.mcgill.ca

Hans Vangheluwe
Univ. of Antwerp, Belgium
McGill University, Canada

hv@cs.mcgill.ca

Simon Van Mierlo
Univ. of Antwerp, Belgium

simon.vanmierlo@uantwerpen.be

Ernesto Posse
Zeligsoft, Canada

eposse@zeligsoft.com

ABSTRACT
Visual modelling environments are becoming increasingly
popular in the modelling and simulation domain. While the
advantages of graphical languages are evident, the limitations
restricting model analysis, portability, standardization also
need to be addressed. Textual languages can prove to be ben-
eficial in such cases giving users the opportunity of deploying
formal verification means if desired, or to serve as a bridge to
connect to external simulation or analysis environments.

In this paper, we introduce an integrated DEVS modelling,
simulation, and analysis environment for modelling discrete
event systems (DEVS), by using two textual notations: DE-
VSLang and DEVSPro. On the one hand, these languages
facilitate both horizontal exchange of models (i.e., between
the various existing DEVS environments), and vertical (i.e.,
between the tools within the integrated environment). On the
other hand, they enable the complete verification of the ac-
tion code included in DEVS models by means of syntactic
checking, and static-semantics analysis.

Author Keywords
Parallel DEVS; HUTN; textual concrete syntax; analysis;

INTRODUCTION
Discrete EVent System Specification (DEVS) environments
that allow both visual and textual modelling are highly desir-
able, with textual modelling allowing compact expressiveness
at the level of the DEVS functions and expressions. More-
over, if the goal is to have an integrated DEVS environment
that supports not only modelling, but also analysis and simu-
lation, then textual notations can yet take a bigger role.

The use of textual concrete syntax to meet interoperability re-
quirements has been advocated in [2]. As is evident from re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SpringSim’15, April 13-16, 2015, Alexandria, VA

cent efforts [15, 7] in DEVS standardization, textual represen-
tations in a neutral language allow DEVS models to be easily
ported between modelling and simulation environments (hor-
izontal interoperability), or to integrate new tools within the
environment (vertical interoperability).

In this work, we integrate editors, static analyzers and simu-
lators in an integrated DEVS environment, to support mod-
elling, analysis, and simulation of DEVS models. For
this purpose, we introduce two textual languages in our
DEVS framework (see Figure 1). Our framework is built
on a graphical modelling and simulation environment for
DEVS in AToMPM [10] which uses Python Parallel DEVS
(PyPDEVS) [13] as the simulation engine. We have ad-
dressed the need for a textual concrete syntax with the re-
spective required analysis support for PyPDEVS. The main
contributions of this paper are outlined below.

• DEVSLang: We introduce a new restricted variant of the
DEVS formalism that can be used to express DEVS mod-
els using a one-dimensional state representation. DEVS-
Lang is expressive but compact which often means that
it is also intuitive to use. It is to be adopted for the in-
tegration of a DEVS modelling environment with exist-
ing analysis mechanisms, and for interchange with other
DEVS environments. We have integrated a neutral action
code language in DEVSLang which is to be used to specify
DEVS functions in a kind of pseudo-code, i.e., indepen-
dently from any programming language environment.
• DEVSPro: We introduce a DEVS language based on

DEVS theory allowing users to go beyond DEVSLang’s
one-dimensional state automatons to model atomic com-
ponents in DEVS, while also using the same neutral action
code language. This is especially needed in order to ex-
change existing DEVS models with other DEVS modeling
environments, that (for instance) can enable further kinds
of simulation and analysis.
• Static analysis of DEVS models: We built a DEVS static

analyzer in order to verify the syntax and static-semantics
of both DEVSLang and DEVSPro models.
• Integrated environment: We demonstrate our approach by

building a DEVS modelling environment that integrates
AToMPM (here used as a graphical modelling front-end)

1

	
 Graphical	
 	
 	
 Textual	
 Python	
 Parallel	
 DEVS	

Python	
 Classic	
 DEVS	
 DEVSPro	
 DEVSLang	
 AToMPM	
 DEVS	

Regular	
 User	
 DEVS	
 Expert	

Model	
 TransformaBon	

Feedback	

Figure 1: DEVS Formalisms

with several kinds of tools (ranging from analysis to sim-
ulation). The result is a hybrid DEVS modelling environ-
ment, where the users can use AToMPM in order to visu-
ally define DEVS Models while using embedded textual
action code to specify the functions’ behavior. The consis-
tency and conformance of the defined DEVS models can
then be analyzed using our DEVS static analyzer.

The rest of this paper is structured as follows: Following a
brief background on Parallel DEVS, we introduce the DEVS
formalisms used and proposed in our environment. We then
elaborate on the concrete-syntax/grammar of the proposed
formalisms (DEVSLang and DEVSPro) which is followed
by a detailed section on the proposed analysis mechanisms
(its aims and means). Finally, we present a comparison with
related work in order to clarify our contribution, and discuss
the future research trends and immediate developments in our
integrated modeling and analysis environment.

BACKGROUND
The DEVS formalism was introduced to develop a rigorous
basis for the compositional modelling and simulation of dis-
crete event systems [17]. We briefly present the Parallel
DEVS formalism, a variant of Classic DEVS, in this section.

A DEVS model is composed of both atomic and coupled
components. An atomic component model describes the be-
havior of a reactive system. A coupled component model is
the composition of several submodels which can be atomic
or coupled. Submodels have ports, which are connected by
channels defining a transfer function to translate output to in-
put messages. Ports and channels allow a component model
to receive and send signals (events) from and to other models.
Parallel DEVS is closed under coupling, which means that
coupled models can be nested to arbitrary depth.

An atomic model is formally defined as,

M =< X,Y, S, δint, δext, δconf , λ, ta >

where input set X denotes the set of admissible inputs of the
model such that X = ×m

i=1Xi with Xi denoting the admissi-
ble inputs on port i; output set Y denotes the set of admissible
outputs of the model such that Y = ×l

i=1Yi with Yi denoting
the admissible outputs on port i; state set S is the set of admis-
sible sequential states; internal transition function δint de-
fines the next sequential state depending on the current state,
δint : S → S; output function λ maps the sequential state set
onto an output bag, λ : S → Y b; external transition function
δext gets called whenever an external input (∈ X) is received
in the model, δext : Q × Xb → S with Q = {(s, e)|s ∈
S, 0 ≤ e ≤ ta(s)} where e is the elapsed time; time advance
function ta defines the simulation time the system remains

in the current state before triggering its internal transition
function such that ta : S → R+

0,+∞; and finally confluent
transition function is called if both an internal and external
transition collide at the same simulation time, replacing both
functions such that δconf : S ×Xb → S.

THE MODELVERSE DEVS ENVIRONMENT
Our integrated modelling and analysis DEVS environment
uses the Modelverse [12] as its model repository and model
management facility. The Modelverse focuses on scalable
and efficient model-management activities. It includes a
built-in meta-modelled action language to give basic exe-
cution support to back-end operations as well as to allow
symbolic transformation and analysis of equations and action
code. The AToMPM models are stored in the Modelverse and
can then be retrieved and edited by means of a human usable
textual notation (HUTN). The HUTN [12] is a textual front-
end for the Modelverse. It is a language with high reflexive
powers such as the capability of dynamically (in memory)
defining grammars and strong type systems (such as meta-
models) upon which the syntax of models (such as the ones
expressed in the user-defined AToMPM DEVS models) can
be checked for syntax errors.

DEVS Formalisms
The proposed environment is composed of formalisms at four
different levels:

• AToMPM DEVS A simulation environment for Paral-
lel DEVS visual modelling, simulation, and debugging in
AToMPM (A Tool for Multi Paradigm Modelling) [10].
The DEVS formalism requires each atomic DEVS com-
ponent to be explicitly modelled with states;
• DEVSLang A user-friendly textual syntax conceptually

similar to the AToMPM DEVS formalism: it enforces the
usage of one-dimensional states (here called modes);
• DEVSPro A textual notation based on DEVS theory and

at an abstraction level closer to programming languages to
allow expert users to exploit the full power of DEVS;
• Python Parallel DEVS (PyPDEVS) [13] is a DEVS lan-

guage grafted on the Python language with a matching sim-
ulator. It supports various features (such as tracing, check-
pointing, and real-time simulation) and formalisms (classic
DEVS, parallel DEVS, and dynamic structure DEVS).

Method
The AToMPM model (example model of a Producer-
Consumer system is shown in Figure 2), along with the em-
bedded action code, is first exported to DEVSLang to carry
out syntax checks and static-semantic analysis. The mapping
onto PyPDEVS is then facilitated using a code generator. The
DEVSLang models need to be instrumented for visualization,
in order to send feedback to and animate the source model at
the AToMPM front-end. This also requires the graphical de-
tails of the model elements to be stored in the Modelverse
and in the Python PDEVS models. The DEVSLang models
can also be transformed to a DEVSPro model, if required, to
enable models to be ported to different environments, or to
make it possible for advanced users to adapt the models in

2

Figure 2: Producer-Consumer Model in AToMPM

an unrestricted manner (i.e., without having to use the one-
dimensional state representation).

THE TEXTUAL LANGUAGES: DEVSLANG AND DEVSPRO
This section describes the representation of DEVS models us-
ing both DEVSLang and DEVSPro, while contrasting with
their respective design goals.

DEVSLang
The DEVSLang textual syntax should primarily allow the
specification of composite structures defined with coupled
DEVS, and the specification of each atomic DEVS compo-
nent along with its associated time advances, output function,
transition functions, transfer functions, confluent functions,
and port definitions. The events and state definitions should
also be included as syntactic constructs in the textual model.

We now detail the proposed concrete syntax for DEVSLang
by partially showing (due to space constraints), the cor-
responding DEVSLang model for the Producer-Consumer
model (Figure 2). This is presented in Listing 1. An exporter
in AToMPM is able to generate the DEVSLang textual mod-
els from the visual DEVS models.

Listing 1: Snippet of the Producer Consumer example in DEVSLang.
1 # S t a t e d e f i n i t i o n s

. . .
s t a t e d e f C o l l e c t o r S t a t e (name , n r o f j o b s)
. . .

5 # Event d e f i n i t i o n s
e v e n t Job (j o b S i z e)
. . .
a t om ic P r o c e s s o r () :

i n p o r t s p i n
10 o u t p o r t s p o u t

mode P r o c e s s o r S t a t e (’ i d l e ’ , j o b) :
any−> P r o c e s s o r S t a t e (’ p r o c e s s i n g ’ , p i n [0])
a f t e r i n f i n i t y −> any
o u t n o t h i n g

15 mode P r o c e s s o r S t a t e (’ p r o c e s s i n g ’ , j o b) :
a f t e r j o b . j o b S i z e −> P r o c e s s o r S t a t e (’ i d l e ’)
o u t {p o u t : [j o b]}

i n i t i a l P r o c e s s o r (’ i d l e ’)
. . .

20 ## component Root needs t o be d e f i n e d
c o u p l e d ProducerConsumer () :

i n s t a n c e s :
g = G e n e r a t o r (a , b)
cp = C o u p l e d P r o c e s s o r ()

25 p = P r o c e s s o r ()
c = C o l l e c t o r ()

c o n n e c t i o n s :
from g . p o u t t o cp . p i n
from cp . p o u t t o p . p i n

30 from p . p o u t t o c . p i n

. . .

bo t tom :
sim = ProducerConsumer ()

35 sim . s e t V e r b o s e (None)
sim . s e t T e r m i n a t i o n T i m e (1 0 0)
sim . s i m u l a t e ()

A DEVSLang specification includes definitions for state defi-
nitions (as in line 3), events (as in line 6), atomic components
(as from lines 8 to line 18), coupled components (as from line
21 to line 30), and two possible action blocks: an action block
to be executed at the beginning of the simulation (i.e., the top
block—not shown in Listing 1), and an action block to be ex-
ecuted at the end (i.e., the bottom block as shown from line
33).

As we can see inside each atomic component definition (line
11 to 14), DEVSLang mimics the notion of one-dimensional
states as used in the AToMPM’s visual syntax, with the no-
tion of mode. Modes are connected by means of either exter-
nal transitions (see line 12) or internal transitions (see line
13), in a grammar-like fashion: each transition is defined
by means of a rule in the form <left − hand side> →
<right − hand side>, where the left-hand side is match-
ing some condition on the component’s non-modal state vari-
ables, and the right-hand side creates a new mode instance
while allowing the creation and modification of the non-
modal state variables, and passing them through that mode
instance. In this example (see line 13), the external transition
starts with the any keyword, which means that any event com-
ing from any of the defined inports in the Processor compo-
nent will trigger this transition.

It is very easy to recognize an internal transition since they al-
ways start with the after (line 13) keyword, but do notice that
the value infinity is actually the result of a partial definition of
time advance function implicitly defined for the Processor
component. In DEVSLang, the time advance function for a
given atomic component is implicitly defined by the collec-
tion of all the after conditions from all of the defined modes
in that component. For instance, in a given component with
two specified modes a and b, where mode a defines an inter-
nal transition in the form: after c → b; and mode b defines
a transition in the form: after d → a; then it is mapped to
the following time advance function for that component (in
Python):

d e f t i m e a d v a n c e :
i f (mode == a) :

r e t u r n c
i f (mode == b) :

r e t u r n d

where both c and d are of type Float or Infinity.

The action code meta-model used in both DEVSLang and
DEVSPro is shown in Figure 4. It demonstrates the high ex-
pressiveness of the action code language, bringing additional
problems on a straight forward translation to timed automata.

DEVSPro
We now briefly present the DEVSPro language by means of
a small example. The type model for DEVSPro (not shown
here for space reasons) is very much like the class diagram
of PyPDEVS, without the simulation-specific classes. The
meta-model is based on DEVS theory, and hence the notion
of modes (in the DEVSLang metamodel) is not present here.

3

CoupledDEVS BaseDEVS
+initial: String
AtomicDEVS

+devs_type: string
DEVSInstance Port

InputPort OutputPort
Simulation

Event

StateDefinition

+name: string
Named

+id: string
ID

Internal
Transition

External
Transition

Confluent
Transition

Channel

Code
+code: string

+n: integer
ListInt

ListAttr

ListArg

+type: string
+default: string

Attributes

+type: string
Args

+key: string
+value: string

ParamterBinding

ListBindings nextBinding

statedef_bindings
1

*

initialbinding
1

*

submodels *

1 *
0.

.1

0.
.1

1

*ports

1

1

1
position

position
scale nextint

nextArg

nextAttr

listArg_args
*

listAttr_attributes
*

it_condition

et_condition

it_action

et_action

1
11
1
1

1

1

end_condition

st
at

ed
ef

_i
ni

t

1ev
en

t_
in

it

transferFunction

1cf
_c

on
di

tio
n

1cf
_a

ct
io

n

statedef
1

statedef_attributes
1

1

1

1

baseDEVS_attributes
1

event_attributes
1

baseD
EVS_args 1

event_args
1

lis
tB

in
di

ng
s_

pa
ra

m
et

er
Bi

nd
in

g

statedef_args
1

po
rt_

to
_c

ha
nn

el
ch

an
ne

l_
to

_p
or

t

1tim
e_

ad
va

nc
e

1ou
tp

ut

+id: string
ActionBlock

+id: string
Expression

ActionBlock and Expression
are classes from the Action
Code Metamodel.

Mode

0..*

1..*

0..1

modes

mode_it mode_et 0..1ad_cf

Figure 3: DEVSLang Metamodel

name: String
returnType: String

Function

id: String
ActionBlock

Import
name: String
location:String
from:String
as: String

Statement
id: String

Assignment

IFElse

Declaration
name: String

While

FunctionCall
name: String

Expression
id: String

NavigationExpression

Unop
 Not

Binop

Parenthesis

NEqual

Add

LEThan

LThan

Div

Mult

Mod

GThan

Subtract

Equal

Selection

GEThan

AtomValue

StringValue
value: String

FloatValue
value: Float

IntegerValue
value: Intetger

BooleanValue
value: Boolean

Composite

Dict

DictArgument
name: String

Array

Tuple

Top

0..1

Argument
label: String

Bottom

*
arguments

1

method
body

*statement

1
while
body

1

while_conditionguard

1
if_condition

1
ifbody

1

else
body

0..1
init

0..1
type

0..1sender

1 1

binop_
right

binop_
left

1*
element

label
unop_
expression

1

value
1

name: String
default: String

Parameter
*

function_
parameter

1

1left

right

Or

And

Minus

Figure 4: HUTN Action Code Metamodel used in both DEVSLang and DEVSPro.

The example model shown in Listing 1 (in parts) is mapped
to DEVSPro here.
. . .
s t a t e d e f C o l l e c t o r S t a t e :

c o n s t r u c t o r (name , n r o f j o b s = 0) :
s e l f . name = name
s e l f . n r o f j o b s = n r o f j o b s

. . .

a t om ic P r o c e s s o r :
c o n s t r u c t o r () :

s e l f . s t a t e = P r o c e s s o r S t a t e (’ i d l e ’)
s e l f . o u t p o r t s = {’ p ou t ’}
s e l f . i n p o r t s = {’ p i n ’}

t imeAdvance () :
i f s e l f . s t a t e . name == ’ i d l e ’ :

r e t u r n INFINITY
e l s e :

i f s e l f . s t a t e . name == ’ p r o c e s s i n g ’ :
r e t u r n s e l f . s t a t e . j o b . j o b S i z e

o u t p u t F n c () :
i f s e l f . s t a t e . name == ’ i d l e ’ :

r e t u r n {}
e l s e :

i f s e l f . s t a t e . name == ’ p r o c e s s i n g ’ :
r e t u r n { s e l f . o u t p o r t s [’ p ou t ’] : [s e l f . s t a t e . j o b]}

i n t T r a n s i t i o n () :

i f s e l f . s t a t e . name == ’ p r o c e s s i n g ’ :
r e t u r n P r o c e s s o r S t a t e (’ i d l e ’)

e x t T r a n s i t i o n (i n p u t s) :
i f s e l f . s t a t e . name == ’ i d l e ’ :

r e t u r n P r o c e s s o r S t a t e (’ p r o c e s s i n g ’ , j o b = i n p u t s [s e l f . i n p o r t s [’ p i n ’]] [0])

c o n f T r a n s i t i o n (i n p u t s) :
p a s s

. . .
c o u p l e d ProducerConsumer :

c o n s t r u c t o r () :
s e l f . o u t p o r t s = {}
s e l f . i n p o r t s = {}
s e l f . submodels = {’g ’ : G e n e r a t o r () , ’p ’ : P r o c e s s o r () , /

’ cp ’ : C o u p l e d P r o c e s s o r () , ’ c o l l e c t o r ’ : C o l l e c t o r ()}
s e l f . c o n n e c t P o r t s (s e l f . submodels [’ g ’] . o u t p o r t s [’ p ou t ’] , /

s e l f . submodels [’ p ’] . i n p o r t s [’ p i n ’])
s e l f . c o n n e c t P o r t s (s e l f . submodels [’ p ’] . o u t p o r t s [’ p ou t ’] , /

s e l f . submodels [’ cp ’] . i n p o r t s [’ p i n ’])
s e l f . c o n n e c t P o r t s (s e l f . submodels [’ cp ’] . o u t p o r t s [’ p ou t ’] , /

s e l f . submodels [’ c o l l e c t o r ’] . i n p o r t s [’ p i n ’])

bot tom :
sim = ProducerConsumer ()
sim . s e t V e r b o s e (None)
sim . s e t T e r m i n a t i o n T i m e (1 0 0)
sim . s i m u l a t e ()

4

ANALYSIS
The grammar specifications for each of the languages DE-
VSLang and DEVSPro enabled the generation of parsers that
are able to recognize their sentences and assert its syntactic
correctness. For instance, issue syntactic errors when some
grammar rule is violated. However, these syntactic rules are
not expressive enough to ensure consistency of the speci-
fied DEVS models, and more importantly their conformance
to the original Parallel DEVS theory (presented in Section
Background).

We will now observe the potential that both of the defined
textual notations have to provide powerful mechanisms for
consistency analysis, and describe our first steps in our inte-
grated modeling and analysis environment to carry out anal-
ysis of DEVS models.

First of all, we need to distinguish between the three different
kinds of analysis that are required in order to assure consis-
tency of DEVS models as well as their conformance to the
Parallel DEVS theory: contextual analysis, determinism anal-
ysis and symbolic state-space analysis. Each of these kinds
of analysis require specialized data structures, and multiple
passes over a given abstract syntax tree (AST) that represents
a given parsed DEVS model.

Contextual Analysis in DEVSLang
The contextual analysis provided in the DEVSLang proto-
type is quite rich, and it builds on the syntactic constructs
provided by the language, namely the type definitions, and
explicit/syntactic division of the transition functions in pre-
and post-conditions organized inside mode definitions.

Single state definitions in Atomic DEVS Component def-
initions. In order to maintain visual coherence with the
AToMPM models, the DEVSLang users must specify state
definition structures, and then reference them in the mode
definitions of atomic components. The first contextual anal-
ysis check is to assure that only one state definition type is
used per atomic component. This check is important so that
we can safely instantiate DEVSLang models conforming to
the DEVSLang metamodel which only allows one single state
definition per component.

Communication between components in Coupled DEVS
Component definitions. DEVSLang users while defining
Atomic and Coupled components, are actually defining new
types: DevsType. These types can then be used in order to
be instantiated and connected in a given Coupled DEVS def-
inition. This forms a tree of instantiations, where only the
Coupled DEVS defined at the root level, is actually instan-
tiated. The contextual analysis checks that every two con-
nected instances belong to two existing types, and their re-
spective inports and outports have compatible types. For
instance, if a component A is outputting a vector of type T
in outport Oa, and a component B is expecting a vector of
type T ′ through inport Ib, and an instance of A is being con-
nected to an instance of B by connecting Oa to Ib, then types
T and T ′ should be the same (or at least compatible, if we are
to support subtyping in the future). Notice however, that the
original DEVS theory does not impose any restriction a-priori

in the types of the events flowing through the ports. There-
fore, with this restriction DEVSLang enforces a stronger type
system, with less expressiveness but also more type safety,
which actually means less possible programming errors, and
hence produce DEVS models with more quality.

Variable references within a given scope. The DEVSLang
users can define variables on particular scopes ranging from
the state definitions, event definitions, function definitions, or
components definitions (either atomic or coupled). Moreover,
each variable is typed (basic types are supported such as In-
tegers, Float, Strings and Booleans), and can be initialized
with a specified default value. All of the scope definitions are
globally available (e.g., a coupled component can refer and
instantiate a given atomic component type). Also variables
defined in state definitions and event definitions, or even func-
tions inside components, are accessible outside a given scope
definition using the dot notation. For instance, it is possible to
access a given function named Z defined inside a component
named B, simply by calling ’B.Z()’.

The contextual analysis forbids the access of both function
and component parameters from outside their scope. Param-
eters are variables defined to be used internally in their own
scopes. When the users define such variables, the variable
remains accessible within its particular scope.

Consistent operation of user-defined functions and vari-
ables. The contextual analysis enforces the correct definition
and calling of user-defined functions on general expressions,
while computing the function return types and their composi-
tion within expression operations. For instance, in the expres-
sion 1 + c(), the return type of function c is expected to be
integer or at least float in order to be cast to integer
and safely allow the + operation.

Consistent operation of DEVS functions and variables.
The contextual analysis goes deep over the called user-
defined functions and analyzes conditional branches, in order
to check the return and parameter types of the time-advance,
internal/external/confluent and output functions. It checks the
allowed Read/Write variable access under the above func-
tions (e.g., the elapsed variable in the precondition of the ex-
ternal function). The action code defined on the left-hand side
of each transition definition, is analyzed in order to verify that
the component’s variables are being just read: this means that
a match cannot change the variables of a given component, or
of any other defined component.

The complete set of access rules is presented on Table 1.
Here we detail for each function, the expected types for the
pre-conditions and post-condition parts. Not explicitly repre-
sented in Table 1 is the additional requirements that: (i) there
can be only exactly one internal transition function defined
per mode in atomic components (as specified directly in the
DEVSLang metamodel); and (ii) that the type of its result
(written on the right-hand side) must always belong to the
same state definition, and only the state variables are accessi-
ble for reading and writing.

On each external transition’s pre-condition, the elapsed vari-
able, all the state variables, and all the defined inport vari-

5

Internal Function External Function Confluent Output
Time Advance (Precon.) Postcond. Precond. Postcond. Function Function

Return Type Float State Def. Boolean State Def. State Def. Dictionary(*)
State variables Read Only Read/Write Read Only Read/Write Read/Write Read Only
Inport variables N/A N/A Read Only N/A Read Only N/A

Outport variables N/A N/A N/A N/A N/A Write Only
Elapsed N/A N/A Read Only N/A Read Only N/A

Table 1: Contextual Analysis Rules for DEVSLang models. (*) where all labels belong to defined Outports in given Atomic Component

ables are accessible for read-only. Although in the post-
condition, only the state variables are accessible for reading
and writing.

Finally, in the output function only the outport variables are
accessible for writing, although we can read all of the state
variables. The contextual analysis checks that the return type
of the output function is a dictionary where all of its labels
are names of defined outport variables on that component.
Warnings are issued if the analysis is inconclusive, and errors
are issued if an inconsistency is detected. For instance, in the
following output function:

o u t { n r o f j o b s = 5 ; r e t u r n n o t h i n g ; }

the contextual analysis issues the following message back to
the AToMPM front-end: ’Error at line 13: nr of jobs state
variable is not accessible for writing in output functions.’.

Contextual Analysis in DEVSPro
The DEVSPro syntax for DEVS functions does not offer
any explicit distinction between the pre-condition and post-
condition parts. Besides the predefined DEVS functions both
atomic and coupled component definitions also include the
self.inport, self.outports predefined as sets of Strings. All
the atomic components predefine the self.elapsed variable
of type Float + Infinity. The coupled components pre-
define the self.submodels variable typed as a dictionary
of String x DevsType, as well as the predefined function
connectPorts used to connect DEVS instances together (and
possibly with the containing self coupled component), using
their ports.

We reuse the analysis made for DEVSLang (as detailed in
Table 1) for DEVSPro, with the exceptions that here we ap-
ply both the rules for pre- and post-conditions; and in the
outputFunc, the checker allows read access for all the vari-
ables except the self.inport and self.elapsed variables.

Notice that in DEVSPro, the time advance function has an
explicit representation, and there will be exactly one of the
DEVS functions per Atomic Component definition (i.e., ex-
ternal transition function, confluent transition function, etc.),
which if not defined, the simulator engine will just assume
that their results are ’pass’ (or ’Infinity’ in the case of the
time advance function).

Determinism Analysis in DEVSLang
Since DEVSLang uses a notion of states as in the state charts
formalism, it will inherit some of its advantages in terms of
usability, but also its problems. One of such problems is the
non-determinism that can occur on the outgoing transitions of
a given state (i.e,. on external transitions). Non-determinism
is usually not a problem in analyzing languages like state

charts, because timed-automata model checkers such as UP-
PAAL are also able to deal with non-determinism; and also
while translating to a particular simulation engine such as
PythonPDEVS, any non-deterministic behavior is automati-
cally resolved: typically the first defined external transitions
take priority over the subsequent ones.

This automated resolution brings up however a PIM/PSM
gap between the DEVSLang and the resulting PythonPDEVS
Code. For instance, during simulation, the modeller might get
unexpected or even missing behavior in the non-deterministic
branches. In order to reduce such a gap, the modelers should
be able to automatically detect non-deterministic behavior,
and/or correct it directly at the model level.

The non-determinism check on languages such as state charts
is decidable, as demonstrated on the analysis of UML state-
charts (with similar expressiveness) [8]. The analysis per-
forms a constraint solving of the conjunction of any two out-
going guards from any given state: If the solver returns true
then it means non-deterministic, because there exists a non-
empty intersection of values from both guard conditions that
evaluate to True.

However, the above mentioned analysis does not consider the
usage of action code such as the one we are using in DEVS-
Lang. Therefore, in the context of an external precondition
expression consisting of several function calls, the determin-
ism analysis must unfold the resulting guard expression from
each function call, not as a value (that would be dynamic anal-
ysis), but instead as the a logical expression that represents
the logical guard of that external transition.

RELATED WORK
Over the years, several extensions and variants of the DEVS
formalism have been proposed [4]. One of our primary con-
cerns in this paper was to address the specification of the
DEVS functions. As seen in the observed DEVS language
extensions, they are typically expressed using a textual syntax
strongly influenced by the existing underlying programming
language on which the simulation environments are grafted
into (e.g., as seen in [1]). The need to provide a platform inde-
pendent specification, with the capability to specify platform-
neutral code statements (i.e., action code) that could then be
rendered in any given programming language has remained
unaddressed in most projects.

Yet another concern was the interoperability of DEVS en-
vironments along with the need for making available an in-
tegrated environment for DEVS. A common adopted solu-
tion for this problem (e.g. in [6, 11]) caused by the need
for integrating tools in integrated modelling environments,

6

is the usage of meta-modelling, model transformations, and
their combination with textual formats such as XML, in order
to rapidly interchange models between simulation systems.
However, little reference is made to the difficulty of express-
ing models in XML by regular users: the common argument
is that this is a problem to be solved by suitable visual mod-
elling environments.

In Table 2, we present a comparison of existing environments
and approaches for DEVS modelling and analysis based on
several criteria (listed in the first column of the table). A sum-
mary of such textual DEVS languages proposed for standard-
ization is given in [14]. While various graphical front-ends
for modelling DEVS are available (such as [9]), in our sur-
vey we have focused on approaches that allow formal speci-
fications (in some form of textual concrete syntax) of DEVS
models. It is to be noted that static analysis in Table 2 refers
to syntax checking and type checking including static seman-
tics analysis, and symbolic analysis refers to model checking
or behavioral analysis.

Based on the related work we have seen, we conclude that
the main challenge is to tackle the need for an integrated
modelling environment, which composes tools for modelling,
analysis, simulation, optimization and execution. In our
work, we have attempted to adopt the stack approach by in-
teracting different tools and associated meta-modelled lan-
guages, along with a textual platform-neutral action code that
serves as the most appropriate format for model interchange
between these tools, as well as across different modelling en-
vironments.

In this stack approach, static analysis tools should be able
to validate the consistency of the defined DEVS during the
editing phase, by sending correctness feedback to the editing
tool, before allowing any further advanced analysis (e.g., by
translating it to timed automata). This feature has also been
addressed in our work.

Finally, to provide such advanced analysis, we must first
include a way to express a property language based on a
branching time temporal logics such as Timed CTL, which is
an extension of regular branching time temporal logics with
clock constraints. The integration of both kinds of analysis—
either by scenario/case simulation, or by model checking’s
exhaustive search—in the system’s design/modelling process
is probably the biggest challenge to achieve in a DEVS inte-
grated modelling environment.

CONCLUSION
We have built an integrated DEVS environment with the main
goal of carrying out analysis of DEVS models. For our pur-
pose, we have introduced the neutral textual languages, DE-
VSLang and DEVSPro, that can be used to model discrete
event systems at two levels of abstraction: (i) one which
gives users the capability to model atomic DEVS as state-
automatons using a restricted language with an easy-to-use
and readable notation; (ii) a second which gives users the
flexibility and power to model systems as they would using
any programming language (with or without using the notion
of states). Action code in a human usable textual notation

(HUTN) has been integrated in both languages. The syn-
tax for specification of the action code remains the same over
both languages. The action code can be used to represent the
transitions functions, time advances, and output functions in
our visual DEVS modelling environment. Hence, the visual
models can be seamlessly transformed to our textual models
to further extend or adapt the models, or to carry out analysis
of the models.

The exported models are instrumented (with visualization de-
tails) in order to allow feedback from the static analyzer back
to the graphical front-end. Based on the error and warning
feedback, the user is required to make the necessary modifi-
cations to the action code in order to continue with the simu-
lation.

The introduced static analyzer supports the following.

• Syntax checking: The action code is checked for basic
syntactic errors according to either the DEVSLang or DE-
VSPro grammar definitions.
• Static Semantics: The static analyzer goes beyond tradi-

tional type checking (from programming languages), by,
for instance, forbidding write access to the component’s
state variables inside an output function.

We plan on defining a conservative analysis procedure in or-
der to automatically decide if a given DEVSLang model is
for sure translatable to timed automata, so that further behav-
ioral analysis can be provided (e.g., reachability analysis) on
model checking tools such as UPAAL.

Further language enhancements in the proposed modeling en-
vironment will involve the pre-visualization at design time
of the results of the DEVSPro constructors in the AToMPM
front-end. It is interesting to note that it is possible to de-
fine parameters on DEVS components, such that a coupled
component that accepts as parameter a number (value of type
Integer) would be able to programmatically create a coupled
system with a completely connected graph with the avail-
able connections between predefined DEVS components in-
stances.

ACKNOWLEDGEMENTS
This work was partly funded by the Automotive Partnership
Canada (APC) in the NECSIS project.

REFERENCES
1. Franceschini, R., Bisgambiglia, P.-A., Bisgambiglia, P.,

and Hill, D. DEVS-ruby: A domain specific language
for DEVS modeling and simulation (WIP). In
TMS-DEVS, SpringSim, SCS (2014), 393–398.

2. Goldschmidt, T., Becker, S., and Uhl, A. Classification
of concrete textual syntax mapping approaches. In
Model Driven Architecture - Foundations and
Applications, vol. 5095 of LNCS. Springer, 2008,
169–184.

3. Hong, K. J., and Kim, T. G. DEVSpecL: DEVS
specification language for modeling, simulation and
analysis of discrete event systems. Inf. Softw. Technol.
48, 4 (Apr. 2006), 221–234.

7

DEVSpecL [3] DEVSML [5] DEVSML
2.0 [6]

DEVSRuby [1] DEVSW [16] SimStudio [11] Our DEVS
Framework

DEVS (C1/P2) C C C,P C C P P
Meta-modelling/MT X XSL Transformation X X X X X
DEVS Variant Theory Theory Finite De-

terministic
DEVS

Theory FSA3 Theory FSA3 and Theory

DEVS Levels X X X DSL only X X X
Analysis

Static X X X X X X X
Symbolic X X X X X X X

Modelling
Graphical X Limited support X X X X X(AToMPM)

Textual X X(XML) X(NLDEVS,
DEVSML)

X X(XML) X(XML) X(DEVSLang,
DEVSPro)

Multi-view Synch X X X X X X X
Integrated Environment X X X X X X X
Action code X Lisp-like JAVAML X X X(neutral) X(neutral)
Property Language X X X X X X X
Simulation

Debugging X X X X X X X
Execution X X X X X X X

Target Platform C++, Java Various (PyDEVS,
DEVSJava)

DEVSJava Ruby, Ruby C DEVS-
Scheme

Multiple Python

Portability X X X X X X X

Table 2: DEVS Modelling and Analysis Environments: A Comparison (1C: Classic DEVS, 2P: Parallel DEVS; 3FSA: Finite State Automaton)

4. Hwang, M. H. Taxonomy of DEVS variants. In
TMS-DEVS, SpringSim (2014), 445–450.

5. Janoušek, V., Polášek, P., and Slavı́ček, P. Towards
DEVS Meta Language. In ISC (2006), 69–73.

6. Mittal, S., and Douglass, S. A. DEVSML 2.0: the
language and the stack. In TMS-DEVS, SpringSim
(2012), 17.

7. Sarjoughian, H. S., and Chen, Y. Standardizing DEVS
models: An endogenous standpoint. In TMS-DEVS,
SpringSim, SCS (2011), 266–273.

8. Schwarzl, C., and Peischl, B. Static and dynamic
consistency analysis of UML state chart models. In
MoDELS, vol. 6394 of LNCS. Springer, 2010, 151–165.

9. Song, H. Infrastructure for DEVS modelling and
experimentation. Master’s thesis, School of Computer
Science, McGill University, 2006.

10. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., and Ergin, H. AToMPM: A web-based
modeling environment. In MODELS’13 Demonstrations
(2013).

11. Touraille, L., Traoré, M. K., and Hill, D. R. C. A
model-driven software environment for modeling,
simulation and analysis of complex systems. In
TMS-DEVS, SpringSim, SCS (2011), 229–237.

12. Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani,
E., and Kühne, T. Multi-level modelling in the
modelverse. MULTI 2014 – Multi-Level Modelling
Workshop Proceedings 1286 (2014), 83–92.

13. Van Tendeloo, Y., and Vangheluwe, H. The modular
architecture of the Python(P)DEVS simulation kernel. In
TMS-DEVS, SpringSim (2014), 387–392.

14. Wainer, G. A., Al-Zoubi, K., Dalle, O., Hill, D. R.,
Mittal, S., Martı́n, J. R., Sarjoughian, H., Touraille, L.,
Traoré, M. K., and Zeigler, B. P. Standardizing DEVS
model representation. CRC Press, 2010, ch. 17,
427–458.

15. Wainer, G. A., Al-Zoubi, K., Mittal, S., Risco-Martı́n,
J. L., Sarjoughian, H., and Zeigler, B. P. An Introduction
to DEVS Standardization. CRC Press, 2010, ch. 16,
393–425.

16. Wang, Y., and Wang, L. An XML-based DEVS
modeling tool to enhance simulation interoperability. In
Proceeding 14th European Simulation Symposium
(2002).

17. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation, Second Edition. Integrating
Discrete Event and Continuous Complex Dynamic
Systems. Academic Press, 2000.

8

	Introduction
	Background
	The Modelverse DEVS Environment
	DEVS Formalisms
	Method

	The Textual Languages: DEVSLang and DEVSPro
	DEVSLang
	DEVSPro

	Analysis
	Contextual Analysis in DEVSLang
	Contextual Analysis in DEVSPro
	Determinism Analysis in DEVSLang

	Related Work
	Conclusion
	Acknowledgements
	REFERENCES

