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ABSTRACT 
An integrated visual modeling and simulation tool called 
Component-based System Modeling and Simulation 
(CoSMoS) is extended to support behavioral specification 
of parallel atomic DEVS model.  An approach based on 
Statecharts and Graphical Modeling Framework has been 
developed and implemented for specifying behaviors of 
atomic models. One or more Statecharts can be developed 
for any atomic model and stored in a relational database. 
The behavioral modeling complements atomic and coupled 
DEVS structural modeling where families of models with 
semi-automated code generated for the DEVS-Suite 
simulator are systematically stored and retrieve. The 
behavioral modeling enriches visual development of models 
that have DEVS-compliant specifications with modular, 
component-based visual representations. The visual 
representation of hierarchal coupled models are 
automatically generated or restored. An example model is 
employed to show the degree of details supported both in 
visual representation and database representation. Current 
and future works are briefly described.  
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INTRODUCTION 
Discrete Event Systems Specification (DEVS) formalism 
has been used in recent decades for modeling and 
simulation of discrete event systems [1]; According to 
Zeigler et al [2], “DEVS is the unique form of 
representation that underlies any system with discrete event 
behavior”.  

CoSMoS (Component-based System Modeling and 
Simulation) is a new integrated modeling and simulation 
environment for component-based and cellular automata 
models [3-6]. Its modeling engine supports logical, visual, 
and persistent model specification with support for 
automated simulation code generation. It is integrated with 
the DEVS-Suite simulator [7-9], which supports visual 
experimentation configuration and run-time data collection 
and observation. The CoSMoS tool enables a simulation-

based system design process with support for model 
verification and simulation validation. CoSMoS stores all 
models in relational databases. 

In DEVS, any component that contains other components is 
called a coupled model; non-container components are 
called atomic models. The DEVS formalism includes the 
means to build hierarchical, modular models from 
components. A model’s behavior is derived from the 
behavior of atomic models. Behavior of an atomic model is 
defined by autonomous or input-driven state-based 
transition functions, which are known as internal and 
external transition functions. 

Atomic Model Behavior Modeling 
There exists different ways to specify the behavior of an 
atomic model. Behavior may be defined through 
mathematics, programming code, or visual notation. Each 
has its own benefit; the visual notation is more attractive, 
particularly for domain experts who may not prefer the 
other approaches. In CoSMoS, the modelers can visually 
develop the structure of a model, and then automatically 
translate it to source code for the DEVS-Suite simulator. 
Behaviors of atomic models must be manually added to the 
partially generated source code. DEVS-Suite can execute 
these simulation models. 

The UML Statecharts is a standard, powerful and effective 
visual notation for specifying a system’s behavior [9]. At 
the heart of the Statecharts is the notion of discrete states 
and the transitions between any two states. Using parallel 
DEVS is superior to UML Statecharts since the concept of 
time is explicitly accounted for. On the other hand, unlike 
DEVS, Statecharts has a rich visual notation. However, 
neither DEVS nor Statecharts is concerned with persistence 
modeling (i.e., storing and accessing models). 

Given these observations, our research considers three 
topics. First is supporting visual notation for specifying 
behavior, second is storing models in a relational database, 
and third is implementing and integrating these into 
CoSMoS. 



For the first topic, time and ports are required in DEVS, but 
the handling of time, especially as required for simulation, 
has shortcomings in UML Statecharts [9, 10]. Handling 
concurrent events as defined in the confluent function is not 
accounted for. Simultaneous events are supported in 
UML2.0, but not in DEVS. Ports are directly handled in the 
UML2.0 component model. 

For the second topic, in software tools such as Rational 
Rose [11], specifications including Statecharts are stored in 
flat files, but in CoSMoS all models including their 
relationships are stored in a relational database [12]. 
Therefore, new schemas need to be developed for storing 
visual specifications. Persistence modeling is important for 
model reuse, code generation for different target simulation 
engines, and measuring complexity metrics [3]. 

For the third topic, CoSMoS needs to be extended with a 
new editor for visual behavior modeling. The editor has to 
support storing and retrieving both structural and behavior 
models uniformly. 

BACKGROUND 
Eclipse is an integrated development environment (IDE) 
that contains a base workspace and an extensible plug-
in foundation for customizing and extending it. GMF 
(Graphical Modeling Framework) is a modeling framework 
that supports creating a specific graphical editor for logical 
models. It uses a meta-model following the MVC (Model-
View-Controller) architecture. It is based on the EMF 
(Eclipse Modeling Framework) and GEF (Graphical 
Editing Framework). GEF is used in tools such as CD++ 
Builder [13]. EMF handles the model’s definition and GEF 
handles the model’s view and controller [14]. 

GMF provides basic entities for creating graphs consisting 
of nodes, links, and labels. It can be used to define special 
types of graphs, such as Statecharts. GMF includes wizards 
for generating intermediary graphical tools and mapping 
definitions based on an initial meta-model (EMF Ecore), as 
well as the final runtime code [14]. 

Eclipse Modeling Framework 
Eclipse EMF can be used to model platform independent 
software applications from which platform specific code 
can be generated. EMF distinguishes between meta-models 
and concrete models. A meta-model describes the structure 
of the concrete model. Therefore, a concrete model 
conforms to its meta-model. EMF provides a plug-able 
framework to store the model information; the default uses 
XMI (XML Metadata Interchange) to persist (i.e., store) the 
model definition. EMF allows creating the meta-model 
using other languages including Java annotations, UML, 
and XML Schema. 

EMF itself is defined using the concept of meta-modeling. 
It has two meta-models; the Ecore and the Genmodel meta-
models. The Ecore contains the information about the 
defined classes for a domain. The Genmodel contains 

additional information for the code generation, e.g., the path 
and file information. The Genmodel also contains the 
control parameter for code generation. EMF makes domain 
model explicit, which helps to provide clear visibility of the 
model. EMF also provides change notification functionality 
to the model in case the model changes. EMF will generate 
interfaces and factory classes for creating objects; therefore 
it helps to keep the application clean from the individual 
implementation classes. Another advantage is the ability to 
regenerate the Java code from the model at any point in 
time. 

 
Figure 1. GMF Workflow Process 

Graphical Modeling Framework 
The GMF provides a workflow for generating graphical 
editors (see Figure 1). The starting point is to define a 
domain model using the Ecore Domain Generation Model, 
which generates the implementation code. The graphical 
model defines the symbols used for representing the 
different object classes visually (as nodes), as well as labels 
for displaying and editing attribute values. Classes and 
references may also be mapped to connections (links 
between nodes), and some references may be defined 
as containment for decomposition of a node into sub-nodes 
in compartments. A wizard helps generate a basic graphical 
model from the domain model, though custom figures and 
decomposition must be added manually. 

The tools model defines the services for creating new nodes 
and connectors in the model editor. A wizard helps 
selecting which of the object classes in the domain model 
will be available. The mapping model connects the domain, 
tools, and graphical models, defining which node and 
connector symbols are used for representing which domain 
model class and which tools create new elements. Indeed, 
this part makes the relation between graphical elements, 
tool elements and their classes. By using the GMF wizards, 
the basic mappings are established automatically, though 
decomposition rules and links between different diagrams 
must be added manually.  
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Figure 2. An Ecore DEVS meta-model using Statecharts  

The Java code for editing diagrams is generated from the 
mapping model. It uses the code generated from the domain 
model. The dark arrows embedded in I, V, and T characters 
in Figure 1 reflect the additional configuration of the model 
editor that the modeler may input at each stage. The domain 
model reflect the information content aspect, while the 
graphical and tools models represent the view aspects of 
model elements and tools (tasks or services), respectively. I, 
V, and T are for the information, view and task aspects. 
Additional tasks or services can only be defined through 
programming. The tools model identifies services for 
creating new model elements, but all other kinds of tasks 
are implicit. The Diagram Generation Model configures 
GMF to generate diagramming code. The purpose of this 
model is similar to the Domain Generation Model. 

STATECHARTS EDITOR 
EMF Ecore model is the basic model to define the structure 
of a desired visual editor in GMF. Figure 2 depicts the 
Ecore model (Class Diagram) for the atomic DEVS model. 
There is ConfluentType attribute in Model class to define 
confluent function. States in DEVS are defined using four 
classes; InitialState, State, CompositeState and FinalState. 
InternalTransition and ExternalTransition classes capture 
the Internal Transition Function and External Transition 
Function, respectively. To initialize the model, we add a 
Transition class which just starts from an InitialState. The 
OutputFunction class defines the output function of DEVS 
that just can be added to the State. TimeAdvanceType and 
TimeAdvanceValue attributes in the Transitions class 
define to show a simple time advance function. States, 
OtherStates, SourceState, TargetState, TransitionFunctions 
and Transitions are abstract classes. 

We can define some rules for the DEVS atomic model 
specification in the Statecharts just described fined. For 
example, we just can have one initial state in a model 
and/or any composite state. We observe this rule by adding 
initialState connections (EReferences connections) from 
Model and CompositeState classes to InitialState class with 

Upper Bound property set to one. Initial state is just the 
source state of Transition; also target of Transition just can 
be form SourceState (State or Composite State). 

Final state cannot be the source state of any transition. This 
rule is observed by adding two abstract classes (SourceState 
and TargetState) and define that FinalState just inherit from 
TargetState. Any internal or external transition has source 
state (State or Composite State) and target state (State, 
Composite State or Final State). Any composite state is like 
a new model which can have its initial state, states, 
composite states, etc. 

We have developed an editor to support visual specify the 
behavior of atomic DEVS model by applying the steps of 
the GMF workflow. Figure 3 is a snapshot of the generated 
Statecharts Editor (SE) that is an RCP Application. The 
editor is divided into main canvas (left side / drag and drop 
environment), toolbox (right side), and property window. 
Models are created in the main canvas. Menu bar and Tool 
bar are located in the top, and there are some tools for 
arranging elements in the main canvas. Position and size of 
all windows can change manually. 

STATECHART EDITOR ELEMENTS PROPERTIES 
The Statecharts Editor’s meta-data (Ecore Model) and 
generated editor has specific entities to visually model the 
behavior of atomic models, thus the behavior of the system. 
Each of these simple and complex entities has a unique 
visual icon with one or more properties. An example of a 
simple entity is State defined to have a name with data type 
string. The Initial State, Final State, Composite State and 
State just have Name property. It has to be filled before 
saving a model. Actions, Guards and Messages are arrays 
of String. Action uses to set states as assignments, Guard 
uses to check conditions, and Message uses to define output 
values, to send by output function. 

In Transition, the SourceState can be an initial state, and 
TargetState can be a simple or a composite state.



Figure 3. Statecharts Editor 

In the Internal and External Transition, the Source property 
can be a state or composite state; and Target property can 
be a state, composite state, or final state. The External 
transition activates by receiving message on its Input Port. 
The output port with message/messages is set by Output 
Port property in the output function. Example specifications 
for the internal, external, and output functions are shown in 
Figure 4. The Time Advance Type can be set to Infinity, 
Update or Value. The Time Advance Value can be a real 
number ranging from 0 to less than infinity when the Time 
Advance Type is set to Value. An example of specifying the 
time advance with a finite value is shown in the External 
Transition in Figure 4. For the output function, Message 
property is defined to be FWE and the port to be out1. An 
action can be a simple assignment or complex (see the 
internal and external transition functions). The confluent 
function is defined to be either FIT (First Internal 
Transition) or FET (First External Transition). 

ATOMIC MODEL STORAGE 
The data for every atomic model developed in the SE is 
stored in two flat files. The Domain file has the model’s 
data, such as the atomic model’s attributes and functions. 
The Diagram file has the model’s graphical attributes, such 
as position, font, and color for every element of the model. 

 

 

 
Figure 4. Sample specifications for the internal, external and 

output functions 



In contrast, CoSMoS stores every model in a database 
without any data about their graphical representations. The 
CoSMoS client generates visual representations of the 
models using a set of rules. For CoSMoS, it is useful to 
store the behavioral model (i.e., the Domain model) with its 
corresponding structural model. One option is to use 
existing plug-ins, such as Teneo, Hibernate, and CDO [15]. 
Another option is to modify the Diagram Generation Model 
package in GMF to store the Statecharts model in the 
CoSMoS database. Table 1 lists some of the basic pros and 
cons that pertain to this work. 

 Plug-ins Architecture Classical 

P
ros 

Automatic database (re-) 
generation 

Full control in designing 
and implementing 
databases  

Built-in multi-client support 
with minimal manual 
programming  

Flexibility in using 
databases with existing 
client applications 

C
on

s 

Dependency on complex 
plug-ins and Eclipse 
Framework  

Manual development 

 

Table 1. Model Persistence Approaches in Databases 

Based on our requirements, we have chosen the classical 
approach for adding the Statecharts model to the existing 
CoSMoS database. In particular, automatic database 
generation using plug-ins does not offer a tangible benefit 
since the SE is not subject to user-specific changes.  

There are two approaches to achieve the storing data 
mechanism. The first is to read and modify all the classes 
that are automatically generated by GMF and the second is 
to implement the needed changes in the CoSMoS without 
making any changes to the SE. We decided to choose the 
second approach due to the GMF’s plug-ins complexity.  

As mentioned above, every model in the SE has the 
Domain and Diagram files. The names of the domain and 
diagram models are the same as the atomic model name in 
the CoSMoS database. There is no need to store the 
Diagram model. 

Figure 5 shows the schema for the Domain model of the 
SE. The CoSMoS database is extended with Domain model 
schema. The Statecharts Diagram fields are also included in 
the tables shown in Figure 5. The primary key for these 
tables are AMname (Atomic model name) and SCname 
(Statecharts name). When the modeler saves a model, its 
domain file is parsed and stored in the database tables. The 
database is used to recreate the Domain and Diagram files 
that are needed in the SE. The SE works as a standalone 
application; it uses flat files whose content are identical to 
the data contained in the CoSMoS database. 

When a modeler wants to save one or more Statecharts 
models in the database, CoSMoS will parse the domain file 
to extract the relevant data that is to be stored in the 
database. 

Figure 5. Database schema to storing DEVS atomic model 
logical and visual specifications 

Figure 6 illustrates the sequence diagram for this process. 
The states and transitions are stored in the database. It is the 
same for other model elements such as Guards, Actions, 
Messages, and Output Functions. When a modeler wants to 
save a model, the Controller object calls Parse() 
method of the Parser object. It parses the domain file, 
creates a list of elements and returns OK. The methods 
Update() and UpdateFiles()copy the whole content 
of the domain and diagram files into the domain and 
diagram fields in the Statecharts table. Then, all instances 
of an element are returned with their properties on a list 
(e.g., States). Next, the current data, which is for a specific 
atomic model, is deleted and replaced with new data. 
Similar steps are executed for all the elements of a 
Statecharts model. 

 
Figure 6. Sequence diagram for storing behavioral atomic 

models in database 

Figure 7 illustrates the sequence diagram for opening an 
atomic model from the database. When a modeler wants to 
open an atomic model, one or more Statecharts model will 

: Controller : Parser : Statecharts : States : Transitions 
: Modeler 

1: Save

2: Parse() 

3: Parse 

4: OK 

5: CallUpdate() 

6: CallUpdateFiles() 

7: GetStates() 

8: StatesList 

9: DeleteAllStates(SCname) 

10: InsertNewStates(SCname) 

11: GetTransitions() 

12: TranitionsList 

13: DeleteAllTransitions(SCname) 

14: InsertNewTransitions(SCname) 



be opened on individual tabs in the SE (see Figure 3). At 
first, all the Statecharts of an atomic model are read from 
the Statecharts table in database. Then, the Domain and the 
Diagram flat files are created in their pre-specified location. 
Finally, new tabs will be created in the main canvas of the 
SE and automatically filled with the data retrieve from 
CoSMoS database. 

Communications between the SE and the CoSMoS with the 
database are different. In CoSMoS all validations are 
checked against data stored in the database. In the SE some 
validations are enforced by the editor and the database and 
domain flat files. 

 
Figure 7. Sequence diagram to open a model 

INTEGRATING COSMOS AND STATECHARTS EDITOR 
Until now, we have two visual editors for atomic DEVS 
models (one for developing structural models and another 
for developing behavioral models). These modeling 
environments work independently, but use a single 
database. It is important for these two environments to be 
integrated and have a workflow with the ability to 
iteratively and incrementally develop models. The 
workflow must ensure both environments use the database 
consistently and in particular guarantee that the database 
and the SE flat files remain consistent (i.e., the database and 
flat files are not changed simultaneously). 

The first approach was to embed the SE within CoSMoS. 
However, since the SE is an RCP Application, it could not 
be included in CoSMoS, a Java Application. This is due to 
the SE launching with eclipse configurations which cannot 
be supported in Java applications. Also, we could not find a 
way to convert the RCP application to a Java application. 
Thus, we devised a second approach called the “calling 
mechanism” where CoSMoS is embedded in the SE. 

Figure 8 details the workflow between the CoSMoS Java 
application (referred to as CoSMoSA) and the SE. The 
integration required converting the Statecharts editor RCP 
Application to its executable counterpart. It is called 
CoSMoSR. It supports both structural and behavioral atomic 
DEVS modeling while retaining the complete range of 
modeling already supported in CoSMoSA. In this setting, an 
instance of the CoSMoSA is launched as a thread in 

CoSMoSR which is the master thread. The part of Figure 8 
enclosed in the dotted rectangle is for CoSMoSA. The 
remaining steps and flows are for the master thread. The 
atomic model for which Statecharts models are to be 
developed is selected in CoSMoSA. Then, the Statecharts 
can be developed (see the “Wake up RCP’s thread” step in 
Figure 8). 

 
Figure 8. Model Development Workflow Process 

The CoSMoSR thread looks for a temporary file 
(CurrentDB.xml) along with the CoSMoSR. If it does not 
exist, the modeler must either create a database or select an 
existing one. Information about the selected database and 
the path to its flat files will be stored in the 
CurrentDB.xml temporary file. Then CoSMoSA is 
initialized and launched. If a temporary file exists, 
information will be read from it and automatically 
initialized. The CoSMoSA visual editor is displayed and the 
modeler can modify the structure of the model. The 
modeler has two options: launch the SE or terminate 
CoSMoSR. In the former scenario, the CoSMoSA thread sets 
appropriate results for waking up the CoSMoSR thread, 
which launches the SE. When CoSMoSA is to exit, then the 
CurrentDB.xml temporary file will be deleted and the 
master thread will be disposed. Otherwise, the SE is 
launched with the name of atomic model. If there are any 
behavioral atomic models for the named atomic model, they 
are loaded in the SE and the modeler can change and/or add 
new Statecharts models.  

As shown in Figure 9, any behavior atomic model has a 
defined Template Model (TM). When an atomic model is 
selected from the TM tree, new Statecharts behavior can be 
developed for it or, alternatively, existing models can be 
modified or deleted. Every Statecharts has a unique name. 
The modeler can select and delete any model from a list of 
Statecharts. The database and flat files are updated and 
removed accordingly. 
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Figure 9. Statecharts modeling in CoSMoS 

RELATED WORKS 
Visual behavior specification for atomic DEVS model 
behavior has been of interest for many years. States and 
transitions of atomic models are commonly used to visually 
represent DEVS model behaviors of atomic models with 
tools supporting varying levels of specifications. A 
common approach is to use State Machine. The behavior of 
a generic classic atomic model is reduced to the syntax and 
semantics afforded by the State Machine. Another approach 
for behavior modeling is Statecharts [16]. There are 
different ways of representing (mapping) the behavior of 
atomic models to Statecharts (e.g., [10, 17]). Another 
approach is developed for CoSMoS (see Figure 3). Atomic 
model behavior may also be defined using custom notations 
(e.g., [18]). Recent tools that are guided by the State 
Machine and Statecharts include CD++ Builder [13], LSIS 
DME DEVS [19], DEVS Graph [20], and MS4Me [21]. 
Other simulation tools such as Simulink [22] and Ptolemy 
II [23] use variants of State Machines. 

Amongst the above approaches, Statecharts is more 
attractive since it is a visual language and more expressive 
as compared with State Machine and its variants such as 
Stateflow [22]. Statecharts is widely adopted and is 
included in the UML standard. Furthermore, GMF supports 
creating Statecharts in a disciplined fashion with rich built-
in tools capabilities. The SE has a well-defined UI 
partitioning which simplifies model development, for 
example, through the palette and property panels (as 
opposed, for example, to use of dialogue boxes).  

The visual behavior modeling supported in CoSMoS tool 
has similarities and differences with those mentioned 
above. Basic similarities with the above tools are defining 
states and transitions at the Statecharts (and therefore State 
Machine) abstraction level. Key differences are the 
specification of input and output ports. The external and 
internal transitions for DEVS atomic model are directly 
specified in terms of these ports. In the context of CoSMoS 
as an integrated modeling and simulation framework, 
families of models in a disciplined setting, multiple 

behavioral models for a model may be constructed. This 
capability leads to specializing an atomic model in terms of 
not only its structure, but also its behavior. 

In comparison to other approaches, including the tools 
mentioned above, models in CoSMoS are stored in 
relational database. Disciplined model persistence is crucial 
when modelers are faced with creating alternative models 
[24]. Traditional methods of storing models in flat files can 
become unnecessarily complex when more than a few 
model components are to be developed. Synthesizing a 
family of models visually is attractive especially as an 
atomic may have different behaviors in different coupled 
models. From a broader perspective, CoSMoS is compared 
with MS4Me as an exemplar (commercial) DEVS and 
Ptolemy II as an exemplar (open source) component-based 
tool. Structural and behavioral DEVS models are stored in 
relational database, whereas in MS4Me and Ptolemy II 
structural and behavioral models are stored in flat files. 
Among these tools, CoSMoS and MS4Me frameworks can 
support similar, yet distinct, approaches for creating 
families of models.   

CONCLUSION 
The work presented in this paper introduces a rich visual 
behavior modeling capability to the Component-based 
System Modeling and Simulation (CoSMoS) environment. 
As described in the earlier sections, specifying the states, 
transitions, and timing for atomic models as Statecharts is 
developed using the Graphical Modeling Framework GMF. 
The resulting Statecharts Editor offers a rich environment to 
develop non-trivial behavior models. DEVS behavior 
model syntax is readily captured and supported in GMF. 
Furthermore, these behavioral atomic models, alongside 
their structural counterparts, are stored in the CoSMoS 
relational database. Consequently, both structural and 
behavioral DEVS modeling is supported. For future work, it 
is useful to support code generation behavioral models for 
the DEVS-Suite simulator. This requires extending 
structural simulation code generation with the external, 
internal, confluent, time advance, and output functions. A 
benefit of this generated code is that basic syntactic 
specification of atomic models can be automatically 
verified.  
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