
Visual and Persistence Behavior Modeling for DEVS

Mostafa D. Fard

School of Electrical and Computer Engineering
University of Tehran, Tehran, Iran
Email: M.Derakhshandeh@ut.ac.ir

Hessam S. Sarjoughian
Arizona Center for Integrative Modeling &

Simulation
School of Computing, Informatics, and Decision

Systems Engineering
Arizona State University, Tempe, AZ, USA

http://acims.asu.edu

ABSTRACT
An integrated visual modeling and simulation tool called
Component-based System Modeling and Simulation
(CoSMoS) is extended to support behavioral specification
of parallel atomic DEVS model. An approach based on
Statecharts and Graphical Modeling Framework has been
developed and implemented for specifying behaviors of
atomic models. One or more Statecharts can be developed
for any atomic model and stored in a relational database.
The behavioral modeling complements atomic and coupled
DEVS structural modeling where families of models with
semi-automated code generated for the DEVS-Suite
simulator are systematically stored and retrieve. The
behavioral modeling enriches visual development of models
that have DEVS-compliant specifications with modular,
component-based visual representations. The visual
representation of hierarchal coupled models are
automatically generated or restored. An example model is
employed to show the degree of details supported both in
visual representation and database representation. Current
and future works are briefly described.

Keywords
GMF, EMF, Parallel DEVS, CoSMoS, Statecharts, Visual
and Persistence Modeling.

INTRODUCTION
Discrete Event Systems Specification (DEVS) formalism
has been used in recent decades for modeling and
simulation of discrete event systems [1]; According to
Zeigler et al [2], “DEVS is the unique form of
representation that underlies any system with discrete event
behavior”.

CoSMoS (Component-based System Modeling and
Simulation) is a new integrated modeling and simulation
environment for component-based and cellular automata
models [3-6]. Its modeling engine supports logical, visual,
and persistent model specification with support for
automated simulation code generation. It is integrated with
the DEVS-Suite simulator [7-9], which supports visual
experimentation configuration and run-time data collection
and observation. The CoSMoS tool enables a simulation-

based system design process with support for model
verification and simulation validation. CoSMoS stores all
models in relational databases.

In DEVS, any component that contains other components is
called a coupled model; non-container components are
called atomic models. The DEVS formalism includes the
means to build hierarchical, modular models from
components. A model’s behavior is derived from the
behavior of atomic models. Behavior of an atomic model is
defined by autonomous or input-driven state-based
transition functions, which are known as internal and
external transition functions.

Atomic Model Behavior Modeling
There exists different ways to specify the behavior of an
atomic model. Behavior may be defined through
mathematics, programming code, or visual notation. Each
has its own benefit; the visual notation is more attractive,
particularly for domain experts who may not prefer the
other approaches. In CoSMoS, the modelers can visually
develop the structure of a model, and then automatically
translate it to source code for the DEVS-Suite simulator.
Behaviors of atomic models must be manually added to the
partially generated source code. DEVS-Suite can execute
these simulation models.

The UML Statecharts is a standard, powerful and effective
visual notation for specifying a system’s behavior [9]. At
the heart of the Statecharts is the notion of discrete states
and the transitions between any two states. Using parallel
DEVS is superior to UML Statecharts since the concept of
time is explicitly accounted for. On the other hand, unlike
DEVS, Statecharts has a rich visual notation. However,
neither DEVS nor Statecharts is concerned with persistence
modeling (i.e., storing and accessing models).

Given these observations, our research considers three
topics. First is supporting visual notation for specifying
behavior, second is storing models in a relational database,
and third is implementing and integrating these into
CoSMoS.

For the first topic, time and ports are required in DEVS, but
the handling of time, especially as required for simulation,
has shortcomings in UML Statecharts [9, 10]. Handling
concurrent events as defined in the confluent function is not
accounted for. Simultaneous events are supported in
UML2.0, but not in DEVS. Ports are directly handled in the
UML2.0 component model.

For the second topic, in software tools such as Rational
Rose [11], specifications including Statecharts are stored in
flat files, but in CoSMoS all models including their
relationships are stored in a relational database [12].
Therefore, new schemas need to be developed for storing
visual specifications. Persistence modeling is important for
model reuse, code generation for different target simulation
engines, and measuring complexity metrics [3].

For the third topic, CoSMoS needs to be extended with a
new editor for visual behavior modeling. The editor has to
support storing and retrieving both structural and behavior
models uniformly.

BACKGROUND
Eclipse is an integrated development environment (IDE)
that contains a base workspace and an extensible plug-
in foundation for customizing and extending it. GMF
(Graphical Modeling Framework) is a modeling framework
that supports creating a specific graphical editor for logical
models. It uses a meta-model following the MVC (Model-
View-Controller) architecture. It is based on the EMF
(Eclipse Modeling Framework) and GEF (Graphical
Editing Framework). GEF is used in tools such as CD++
Builder [13]. EMF handles the model’s definition and GEF
handles the model’s view and controller [14].

GMF provides basic entities for creating graphs consisting
of nodes, links, and labels. It can be used to define special
types of graphs, such as Statecharts. GMF includes wizards
for generating intermediary graphical tools and mapping
definitions based on an initial meta-model (EMF Ecore), as
well as the final runtime code [14].

Eclipse Modeling Framework
Eclipse EMF can be used to model platform independent
software applications from which platform specific code
can be generated. EMF distinguishes between meta-models
and concrete models. A meta-model describes the structure
of the concrete model. Therefore, a concrete model
conforms to its meta-model. EMF provides a plug-able
framework to store the model information; the default uses
XMI (XML Metadata Interchange) to persist (i.e., store) the
model definition. EMF allows creating the meta-model
using other languages including Java annotations, UML,
and XML Schema.

EMF itself is defined using the concept of meta-modeling.
It has two meta-models; the Ecore and the Genmodel meta-
models. The Ecore contains the information about the
defined classes for a domain. The Genmodel contains

additional information for the code generation, e.g., the path
and file information. The Genmodel also contains the
control parameter for code generation. EMF makes domain
model explicit, which helps to provide clear visibility of the
model. EMF also provides change notification functionality
to the model in case the model changes. EMF will generate
interfaces and factory classes for creating objects; therefore
it helps to keep the application clean from the individual
implementation classes. Another advantage is the ability to
regenerate the Java code from the model at any point in
time.

Figure 1. GMF Workflow Process

Graphical Modeling Framework
The GMF provides a workflow for generating graphical
editors (see Figure 1). The starting point is to define a
domain model using the Ecore Domain Generation Model,
which generates the implementation code. The graphical
model defines the symbols used for representing the
different object classes visually (as nodes), as well as labels
for displaying and editing attribute values. Classes and
references may also be mapped to connections (links
between nodes), and some references may be defined
as containment for decomposition of a node into sub-nodes
in compartments. A wizard helps generate a basic graphical
model from the domain model, though custom figures and
decomposition must be added manually.

The tools model defines the services for creating new nodes
and connectors in the model editor. A wizard helps
selecting which of the object classes in the domain model
will be available. The mapping model connects the domain,
tools, and graphical models, defining which node and
connector symbols are used for representing which domain
model class and which tools create new elements. Indeed,
this part makes the relation between graphical elements,
tool elements and their classes. By using the GMF wizards,
the basic mappings are established automatically, though
decomposition rules and links between different diagrams
must be added manually.

Create
GMF
Projec

Domain
Model
(.ecore)

Graphical Model
(.gmfgraph)

Tools Model
(.gmftool)

Mapping Model
(.gmfmap)

Domain Generation
Model (.gmftool)

Edit & Editor
Packages

Mapping Model
(.gmfmap)

Diagram
Package

T

I

V

V

V
I

T

Figure 2. An Ecore DEVS meta-model using Statecharts

The Java code for editing diagrams is generated from the
mapping model. It uses the code generated from the domain
model. The dark arrows embedded in I, V, and T characters
in Figure 1 reflect the additional configuration of the model
editor that the modeler may input at each stage. The domain
model reflect the information content aspect, while the
graphical and tools models represent the view aspects of
model elements and tools (tasks or services), respectively. I,
V, and T are for the information, view and task aspects.
Additional tasks or services can only be defined through
programming. The tools model identifies services for
creating new model elements, but all other kinds of tasks
are implicit. The Diagram Generation Model configures
GMF to generate diagramming code. The purpose of this
model is similar to the Domain Generation Model.

STATECHARTS EDITOR
EMF Ecore model is the basic model to define the structure
of a desired visual editor in GMF. Figure 2 depicts the
Ecore model (Class Diagram) for the atomic DEVS model.
There is ConfluentType attribute in Model class to define
confluent function. States in DEVS are defined using four
classes; InitialState, State, CompositeState and FinalState.
InternalTransition and ExternalTransition classes capture
the Internal Transition Function and External Transition
Function, respectively. To initialize the model, we add a
Transition class which just starts from an InitialState. The
OutputFunction class defines the output function of DEVS
that just can be added to the State. TimeAdvanceType and
TimeAdvanceValue attributes in the Transitions class
define to show a simple time advance function. States,
OtherStates, SourceState, TargetState, TransitionFunctions
and Transitions are abstract classes.

We can define some rules for the DEVS atomic model
specification in the Statecharts just described fined. For
example, we just can have one initial state in a model
and/or any composite state. We observe this rule by adding
initialState connections (EReferences connections) from
Model and CompositeState classes to InitialState class with

Upper Bound property set to one. Initial state is just the
source state of Transition; also target of Transition just can
be form SourceState (State or Composite State).

Final state cannot be the source state of any transition. This
rule is observed by adding two abstract classes (SourceState
and TargetState) and define that FinalState just inherit from
TargetState. Any internal or external transition has source
state (State or Composite State) and target state (State,
Composite State or Final State). Any composite state is like
a new model which can have its initial state, states,
composite states, etc.

We have developed an editor to support visual specify the
behavior of atomic DEVS model by applying the steps of
the GMF workflow. Figure 3 is a snapshot of the generated
Statecharts Editor (SE) that is an RCP Application. The
editor is divided into main canvas (left side / drag and drop
environment), toolbox (right side), and property window.
Models are created in the main canvas. Menu bar and Tool
bar are located in the top, and there are some tools for
arranging elements in the main canvas. Position and size of
all windows can change manually.

STATECHART EDITOR ELEMENTS PROPERTIES
The Statecharts Editor’s meta-data (Ecore Model) and
generated editor has specific entities to visually model the
behavior of atomic models, thus the behavior of the system.
Each of these simple and complex entities has a unique
visual icon with one or more properties. An example of a
simple entity is State defined to have a name with data type
string. The Initial State, Final State, Composite State and
State just have Name property. It has to be filled before
saving a model. Actions, Guards and Messages are arrays
of String. Action uses to set states as assignments, Guard
uses to check conditions, and Message uses to define output
values, to send by output function.

In Transition, the SourceState can be an initial state, and
TargetState can be a simple or a composite state.

Figure 3. Statecharts Editor

In the Internal and External Transition, the Source property
can be a state or composite state; and Target property can
be a state, composite state, or final state. The External
transition activates by receiving message on its Input Port.
The output port with message/messages is set by Output
Port property in the output function. Example specifications
for the internal, external, and output functions are shown in
Figure 4. The Time Advance Type can be set to Infinity,
Update or Value. The Time Advance Value can be a real
number ranging from 0 to less than infinity when the Time
Advance Type is set to Value. An example of specifying the
time advance with a finite value is shown in the External
Transition in Figure 4. For the output function, Message
property is defined to be FWE and the port to be out1. An
action can be a simple assignment or complex (see the
internal and external transition functions). The confluent
function is defined to be either FIT (First Internal
Transition) or FET (First External Transition).

ATOMIC MODEL STORAGE
The data for every atomic model developed in the SE is
stored in two flat files. The Domain file has the model’s
data, such as the atomic model’s attributes and functions.
The Diagram file has the model’s graphical attributes, such
as position, font, and color for every element of the model.

Figure 4. Sample specifications for the internal, external and

output functions

In contrast, CoSMoS stores every model in a database
without any data about their graphical representations. The
CoSMoS client generates visual representations of the
models using a set of rules. For CoSMoS, it is useful to
store the behavioral model (i.e., the Domain model) with its
corresponding structural model. One option is to use
existing plug-ins, such as Teneo, Hibernate, and CDO [15].
Another option is to modify the Diagram Generation Model
package in GMF to store the Statecharts model in the
CoSMoS database. Table 1 lists some of the basic pros and
cons that pertain to this work.

 Plug-ins Architecture Classical

P
ros

Automatic database (re-)
generation

Full control in designing
and implementing
databases

Built-in multi-client support
with minimal manual
programming

Flexibility in using
databases with existing
client applications

C
on

s

Dependency on complex
plug-ins and Eclipse
Framework

Manual development

Table 1. Model Persistence Approaches in Databases

Based on our requirements, we have chosen the classical
approach for adding the Statecharts model to the existing
CoSMoS database. In particular, automatic database
generation using plug-ins does not offer a tangible benefit
since the SE is not subject to user-specific changes.

There are two approaches to achieve the storing data
mechanism. The first is to read and modify all the classes
that are automatically generated by GMF and the second is
to implement the needed changes in the CoSMoS without
making any changes to the SE. We decided to choose the
second approach due to the GMF’s plug-ins complexity.

As mentioned above, every model in the SE has the
Domain and Diagram files. The names of the domain and
diagram models are the same as the atomic model name in
the CoSMoS database. There is no need to store the
Diagram model.

Figure 5 shows the schema for the Domain model of the
SE. The CoSMoS database is extended with Domain model
schema. The Statecharts Diagram fields are also included in
the tables shown in Figure 5. The primary key for these
tables are AMname (Atomic model name) and SCname
(Statecharts name). When the modeler saves a model, its
domain file is parsed and stored in the database tables. The
database is used to recreate the Domain and Diagram files
that are needed in the SE. The SE works as a standalone
application; it uses flat files whose content are identical to
the data contained in the CoSMoS database.

When a modeler wants to save one or more Statecharts
models in the database, CoSMoS will parse the domain file
to extract the relevant data that is to be stored in the
database.

Figure 5. Database schema to storing DEVS atomic model
logical and visual specifications

Figure 6 illustrates the sequence diagram for this process.
The states and transitions are stored in the database. It is the
same for other model elements such as Guards, Actions,
Messages, and Output Functions. When a modeler wants to
save a model, the Controller object calls Parse()
method of the Parser object. It parses the domain file,
creates a list of elements and returns OK. The methods
Update() and UpdateFiles()copy the whole content
of the domain and diagram files into the domain and
diagram fields in the Statecharts table. Then, all instances
of an element are returned with their properties on a list
(e.g., States). Next, the current data, which is for a specific
atomic model, is deleted and replaced with new data.
Similar steps are executed for all the elements of a
Statecharts model.

Figure 6. Sequence diagram for storing behavioral atomic

models in database

Figure 7 illustrates the sequence diagram for opening an
atomic model from the database. When a modeler wants to
open an atomic model, one or more Statecharts model will

: Controller : Parser : Statecharts : States : Transitions
: Modeler

1: Save

2: Parse()

3: Parse

4: OK

5: CallUpdate()

6: CallUpdateFiles()

7: GetStates()

8: StatesList

9: DeleteAllStates(SCname)

10: InsertNewStates(SCname)

11: GetTransitions()

12: TranitionsList

13: DeleteAllTransitions(SCname)

14: InsertNewTransitions(SCname)

be opened on individual tabs in the SE (see Figure 3). At
first, all the Statecharts of an atomic model are read from
the Statecharts table in database. Then, the Domain and the
Diagram flat files are created in their pre-specified location.
Finally, new tabs will be created in the main canvas of the
SE and automatically filled with the data retrieve from
CoSMoS database.

Communications between the SE and the CoSMoS with the
database are different. In CoSMoS all validations are
checked against data stored in the database. In the SE some
validations are enforced by the editor and the database and
domain flat files.

Figure 7. Sequence diagram to open a model

INTEGRATING COSMOS AND STATECHARTS EDITOR
Until now, we have two visual editors for atomic DEVS
models (one for developing structural models and another
for developing behavioral models). These modeling
environments work independently, but use a single
database. It is important for these two environments to be
integrated and have a workflow with the ability to
iteratively and incrementally develop models. The
workflow must ensure both environments use the database
consistently and in particular guarantee that the database
and the SE flat files remain consistent (i.e., the database and
flat files are not changed simultaneously).

The first approach was to embed the SE within CoSMoS.
However, since the SE is an RCP Application, it could not
be included in CoSMoS, a Java Application. This is due to
the SE launching with eclipse configurations which cannot
be supported in Java applications. Also, we could not find a
way to convert the RCP application to a Java application.
Thus, we devised a second approach called the “calling
mechanism” where CoSMoS is embedded in the SE.

Figure 8 details the workflow between the CoSMoS Java
application (referred to as CoSMoSA) and the SE. The
integration required converting the Statecharts editor RCP
Application to its executable counterpart. It is called
CoSMoSR. It supports both structural and behavioral atomic
DEVS modeling while retaining the complete range of
modeling already supported in CoSMoSA. In this setting, an
instance of the CoSMoSA is launched as a thread in

CoSMoSR which is the master thread. The part of Figure 8
enclosed in the dotted rectangle is for CoSMoSA. The
remaining steps and flows are for the master thread. The
atomic model for which Statecharts models are to be
developed is selected in CoSMoSA. Then, the Statecharts
can be developed (see the “Wake up RCP’s thread” step in
Figure 8).

Figure 8. Model Development Workflow Process

The CoSMoSR thread looks for a temporary file
(CurrentDB.xml) along with the CoSMoSR. If it does not
exist, the modeler must either create a database or select an
existing one. Information about the selected database and
the path to its flat files will be stored in the
CurrentDB.xml temporary file. Then CoSMoSA is
initialized and launched. If a temporary file exists,
information will be read from it and automatically
initialized. The CoSMoSA visual editor is displayed and the
modeler can modify the structure of the model. The
modeler has two options: launch the SE or terminate
CoSMoSR. In the former scenario, the CoSMoSA thread sets
appropriate results for waking up the CoSMoSR thread,
which launches the SE. When CoSMoSA is to exit, then the
CurrentDB.xml temporary file will be deleted and the
master thread will be disposed. Otherwise, the SE is
launched with the name of atomic model. If there are any
behavioral atomic models for the named atomic model, they
are loaded in the SE and the modeler can change and/or add
new Statecharts models.

As shown in Figure 9, any behavior atomic model has a
defined Template Model (TM). When an atomic model is
selected from the TM tree, new Statecharts behavior can be
developed for it or, alternatively, existing models can be
modified or deleted. Every Statecharts has a unique name.
The modeler can select and delete any model from a list of
Statecharts. The database and flat files are updated and
removed accordingly.

1: Open

2: getStatecharts()

6: Add new tab to
Editor

3: statechartsList

4: CreateDomainFile()

5: CreateDiagramFile()

: Controller
: Modeler

: IOController : Statecharts

Read temp
file data

Temp
file

Wait current
thread of RCP

Run
(CoSMoS.exe)

Launch an instance of
CoSMoS by new thread

Dispose
Statechart

Run new instance
of CoSMoS.exe

Close
Statechart

Create & Show
Statechart

Set Atomic
Model’s name

Delete
temp file

Dispose
RCP’s thread

Return
value

Exit

Show Statechart

Create/Select
a database

Create temp file
and save data

CoSMoS
initialization

Show
CoSMoS

Set return
value

Wake up
RCP’s thread

Close & Dispose
CoSMoS

Exist

Not Exist

CoSMoS

Figure 9. Statecharts modeling in CoSMoS

RELATED WORKS
Visual behavior specification for atomic DEVS model
behavior has been of interest for many years. States and
transitions of atomic models are commonly used to visually
represent DEVS model behaviors of atomic models with
tools supporting varying levels of specifications. A
common approach is to use State Machine. The behavior of
a generic classic atomic model is reduced to the syntax and
semantics afforded by the State Machine. Another approach
for behavior modeling is Statecharts [16]. There are
different ways of representing (mapping) the behavior of
atomic models to Statecharts (e.g., [10, 17]). Another
approach is developed for CoSMoS (see Figure 3). Atomic
model behavior may also be defined using custom notations
(e.g., [18]). Recent tools that are guided by the State
Machine and Statecharts include CD++ Builder [13], LSIS
DME DEVS [19], DEVS Graph [20], and MS4Me [21].
Other simulation tools such as Simulink [22] and Ptolemy
II [23] use variants of State Machines.

Amongst the above approaches, Statecharts is more
attractive since it is a visual language and more expressive
as compared with State Machine and its variants such as
Stateflow [22]. Statecharts is widely adopted and is
included in the UML standard. Furthermore, GMF supports
creating Statecharts in a disciplined fashion with rich built-
in tools capabilities. The SE has a well-defined UI
partitioning which simplifies model development, for
example, through the palette and property panels (as
opposed, for example, to use of dialogue boxes).

The visual behavior modeling supported in CoSMoS tool
has similarities and differences with those mentioned
above. Basic similarities with the above tools are defining
states and transitions at the Statecharts (and therefore State
Machine) abstraction level. Key differences are the
specification of input and output ports. The external and
internal transitions for DEVS atomic model are directly
specified in terms of these ports. In the context of CoSMoS
as an integrated modeling and simulation framework,
families of models in a disciplined setting, multiple

behavioral models for a model may be constructed. This
capability leads to specializing an atomic model in terms of
not only its structure, but also its behavior.

In comparison to other approaches, including the tools
mentioned above, models in CoSMoS are stored in
relational database. Disciplined model persistence is crucial
when modelers are faced with creating alternative models
[24]. Traditional methods of storing models in flat files can
become unnecessarily complex when more than a few
model components are to be developed. Synthesizing a
family of models visually is attractive especially as an
atomic may have different behaviors in different coupled
models. From a broader perspective, CoSMoS is compared
with MS4Me as an exemplar (commercial) DEVS and
Ptolemy II as an exemplar (open source) component-based
tool. Structural and behavioral DEVS models are stored in
relational database, whereas in MS4Me and Ptolemy II
structural and behavioral models are stored in flat files.
Among these tools, CoSMoS and MS4Me frameworks can
support similar, yet distinct, approaches for creating
families of models.

CONCLUSION
The work presented in this paper introduces a rich visual
behavior modeling capability to the Component-based
System Modeling and Simulation (CoSMoS) environment.
As described in the earlier sections, specifying the states,
transitions, and timing for atomic models as Statecharts is
developed using the Graphical Modeling Framework GMF.
The resulting Statecharts Editor offers a rich environment to
develop non-trivial behavior models. DEVS behavior
model syntax is readily captured and supported in GMF.
Furthermore, these behavioral atomic models, alongside
their structural counterparts, are stored in the CoSMoS
relational database. Consequently, both structural and
behavioral DEVS modeling is supported. For future work, it
is useful to support code generation behavioral models for
the DEVS-Suite simulator. This requires extending
structural simulation code generation with the external,
internal, confluent, time advance, and output functions. A
benefit of this generated code is that basic syntactic
specification of atomic models can be automatically
verified.

REFERENCES
[1] B. P. Zeigler and H. S. Sarjoughian, "DEVS

component-based M&S framework: an
introduction," in Proceedings of, 2002.

[2] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of
modeling and simulation: integrating discrete event
and continuous complex dynamic systems, 2nd ed.
San Diego: Academic Press, 2000.

[3] H. S. Sarjoughian and V. Elamvazhuthi, "CoSMoS: a
visual environment for component-based modeling,
experimental design, and simulation," in

Proceedings of the 2nd international conference on
simulation tools and techniques, 2009, p. 59.

[4] H. S. Sarjoughian, V. Elamvazhuthi, and S. Sarkar,
"CoSMoS 2.1.0 Help Document/Guide," 2002-2009.

[5] (2014). Arizona Center for Integrative Modeling and
Simulation. http://www.acims.arizona.edu.

[6] (2009). CoSMoS. http://cosmosim.sourceforge.net
[7] (2010). DEVS-Suite Simulator. http://devs-

suitesim.sourceforge.net.
[8] A. C. Chow, "Parallel DEVS: A parallel,

hierarchical, modular modeling formalism and its
distributed simulator," TRANSACTIONS of the
Society for Computer Simulation, vol. 13, pp. 55-68,
1996.

[9] (2004). OMG Unified Modeling Language.
Available: http://www.omg.org/docs/formal/05-07-
04.pdf.

[10] J. Mooney and H. Sarjoughian, "A framework for
executable UML models," in Proceedings of the
Spring Simulation Multiconference, 2009, p. 160.

[11] (2014). IBM - Software - Rational Rose family.
Available: http://www-
03.ibm.com/software/products/en/ratirosefami.

[12] T.-S. Fu, "Hierarchical modeling of large-scale
systems using relational databases," The University
of Arizona, 2002.

[13] M. Bonaventura, G. A. Wainer, and R. Castro,
"Advanced IDE for modeling and simulation of
discrete event systems," in Proceedings of the Spring
Simulation Multiconference, 2010, p. 125.

[14] R. C. Gronback, Eclipse modeling project: a
domain-specific language toolkit. Upper Saddle
River, NJ: Addison-Wesley, 2009.

[15] (2014). CDO/Hibernate Store - Eclipsepedia.
https://wiki.eclipse.org/CDO/Hibernate_Store

[16] D. Harel, "Statecharts: A visual formalism for
complex systems," Science of computer
programming, vol. 8, pp. 231-274, 1987.

[17] S. Borland, "Transforming statechart models to
DEVS," McGill University, 2003.

[18] U. B. Ighoroje, O. Maïga, and M. K. Traoré, "The
DEVS-driven modeling language: syntax and
semantics definition by meta-modeling and graph
transformation," in Proceedings of the 2012
Symposium on Theory of Modeling and Simulation-
DEVS Integrative M&S Symposium, 2012, p. 49.

[19] M. Hamri and G. Zacharewicz, "Automatic
generation of object-oriented code from DEVS
graphical specifications," in Simulation Conference,
Proceedings of the 2012 Winter, 2012, pp. 1-11.

[20] H. S. Song and T. G. Kim, "DEVS Diagram Revised:
A Structured Approach for DEVS Modeling," in
Proc. European Simulation Conference, 2010, pp.
94-101.

[21] C. Seo, B. P. Zeigler, R. Coop, and D. Kim, "DEVS
modeling and simulation methodology with MS4 Me
software tool," in Proceedings of the Symposium on
Theory of Modeling & Simulation-DEVS Integrative
M&S Symposium, 2013, p. 33.

[22] G. Hamon and J. Rushby, "An operational semantics
for Stateflow," in Fundamental Approaches to
Software Engineering, ed: Springer, 2004, pp. 229-
243.

[23] (2014). Ptolemy II Home Page. Available:
http://ptolemy.eecs.berkeley.edu/ptolemyII/

[24] H. S. Sarjoughian, J. J. Nutaro, and G. Joshi,
"Collaborative Component-based System Modeling,"
Journal of Simulation, vol. 5, p. 2, 2011.

