
Observations in DEVS framework

G. Quesnel1, É. Ramat2 and R. Duboz3

1National Institute for Agricultural Research, Biometrics and Artificial Intelligence unit, France
2Université du littoral côte d’opale, Computer Science Lab. of Littoral, France
3Agricultural Research for Developing Countries, Research Unit 22, France

Abstract

To observe a model is of key importance in the modeling and simulation activity. In this paper,

we distinguish two types of observation in dynamical models: observations of model behaviors for

analysis and observations of model performed by another model. Even in the first usual case, the

observation mechanism is generally not explicit nor specified. This is generally not a problem unless

we want to clearly specify the algorithmic in experimental frames. Secondly, a model can need the

state of another one to compute its own state. In this case, the model “observes” another one to get

its state. This is not quite the same compare to the first type. Indeed, in this case, the observation

participates in the global dynamics. In this work, we specify these two types of observation in the

Discrete Event System Specification (DEVS) formalism. To achieve that, we extend the formalism

with two functions, the request function and the observation function. It responds to a pragmatic

need for the specification and implementation of complex experimental frames and optimisation

techniques and to simplify the development of models where numerous entities interact. We give the

abstract simulator algorithms we have implemented in our DEVS simulators, the Virtual Laboratory

Environment (VLE).

keywords: : Computer, Methodology, Simulation, System dynamics

1 Introduction

In the modeling and simulation activity, the observation of model’s behavior play a very important role. Nevertheless, mech-

anisms to achieve such observations are generally not explicit nor specified. To capture the dynamics of models, the modeler

generally connect simulation software to output streams like files, database or visualisation software for instance. This is gen-

erally not useful to specify it unless we want the observation to be modeled as a part of an experimental frame [Traoré and

Zeigler, 2003], where simulation results have to be capture following a precise experimental plan (for example when the plan

defines the time step to perform observation). Furthermore, for dynamical experimental frames, where observations dynamics

has to be specified (in the field of optimisation by simulation [Gosavi, 2003], simulation results serve as an input to compute

1

new parameters and run a new simulation. Observations here do not participate of the model dynamics itself. Another type

of observation can be identified when a model needs to know the state of another one to compute its own state. This is often

the case in spatial explicit model [Wainer and Giambiasi, 2001, Quesnel et al., 2005, Versmisse and Ramat, 2005] Individual

Based Model (IBM) or Agent Based Model (ABM) [Duboz et al., 2006] and in coupled equation systems [Kofman and Junco,

2001]. In these models, observations participate in the global dynamics. We think it is important to provide a clear semantic

for these two types of observation.

In this paper, we consider the Discrete Event Specification System (DEVS) [Zeigler, 1976, Zeigler et al., 2000]. This

formalism is well situated to clearly specified both system dynamics and experimental frame. Nevertheless, even if it is possible

to specify observations using DEVS without any modification, it appears that the addition of two particular functions dedicated

to observation process can be very useful and computationally more efficient than a classic DEVS implementation. We propose

these two functions, the “request function” and the “observation function” in addition to the classic DEVS specification. We

provide the abstract simulators to implement them in the DEVS framework. Furthermore, we illustrate how the C++ language

is well situated to rigorously implement the specification.

2 The request function

2.1 Problematic

In very communicative systems, like IBM, it is often necessary for a model to know the states of the surrounding models to

change their own state. This model realize an observation on the neighbourhood. This kind of observation, which we call

request, is easily achievable in DEVS framework and several solutions exists:

• Using the DEVS algorithms and instantaneous state, i.e. when ta(s) = 0, to build output value. Two ways are possible:

– on external transition: if the observation event does not require an internal transition, it may be generated by the

external function or output function. In this case, only one instantaneous state is necessary:

1. s1 = δext(s) receives the request and keeps the remaining time in state s: x = ta(s) − e and computes

an output

2. ta(s1) = 0 instantaneous state to process λ

3. λ(s1) builds and sends an output value

4. s = δint(s1) restores to the state before request

5. ta(s) = x restores the duration time before request, x was computed in the first step

– on internal transition: if the observation event requires an internal transition to process a correct output, two

instantaneous states are required:

1. s1 = δext(s) receives the request and keep the remaining time in state s: x = ta(s)− e

2. ta(s1) = 0 instantaneous state to process δint

3. λ(s1) sends nothing

4. s2 = δint(s1) computes an output

5. ta(s2) = 0 instantaneous state to process λ

6. λ(s2) sends the correct output

2

7. s3 = δint(s2) restores to the state before request, where s3 = s

8. ta(s3) = x restores the duration of state before request, x was computed in the first step

• Models share their states when a modification arrived in internal or external transitions. This technique was developed

in CellDEVS [Wainer and Giambiasi, 2001].

• In his book [Zeigler et al., 2000], B. P. Zeigler defines the memoryless systems like a static system where the output is

unambiguously determined by the current input and call it function specified systems.

Fnss = 〈X,Y, λ〉

Where: 0BBB@
X is the set of inputs

Y is the set of outputs

λ : X → Y is the output function

In the request cases presented above, we can notice that models that receive requests must manage theirs states using

internal and external transition functions. The instantaneous states, although clearly defined in DEVS are hard tasks to modeler

who implements models, mainly in state models, where each state should expect to receive request events.

In this paper, we propose a formal approach to develop request interactions between models. The aim of this formalization

is to simplify the development of model for the modeler by simplifying state graphs of its models.

In the next section, we propose an approach based on the Fnss and a slight modification of the DEVS algorithms for the

introduction of an event named request.

2.2 Formal specification

Starting from Fnss, we want to specify a particular DEVS output function providing the same behavior as λ for Fnss (i.e. to

compute instantaneously an output without changing the current state of the model). Considering a model M in the state s, a

request of the current state of M from another model is an external transition on M as follow:

δext(X,Q) = s′ | {Q ≡ s′ ≡ (s, e)}

Considering s′ as an instantaneous state (ta(s′) = 0) and δint(s
′) = s then we can write:

δint(δext(X,Q)) = s

and

λ(δext(X,Q)) = α | {α ⊆ s, α ∈ Y }

Renaming this particular output function we give the formal specification of the request function as:

λreq : X ×Q→ Y

Where: 0BBB@
Q = (s, e) | s ∈ S

X request port and associated values

Y response port and associated values

In classic DEVS, the confluence between internal and request function could be managed by the Select function. In

Parallel DEVS, the δcon function could be used. In our implementation, we assume that request events are managed after all

imminent transitions in a model. Then we do not provide δcon the ability to manage requests. We ensure in the coordinator

implementation that all imminent bags are fired before calling the request function. We give the algorithms in the next section.

3

2.3 Algorithms

In this section, we present our changes in the DEVS algorithms for coordinator and simulator. The root-coordinator was not

changed.

2.3.1 Coordinator

In coordinator, we add the management of the request events r-message (the request messages):

1 Devs-Coordinator

2 variables:

3 DEVN = (X,Y ,D,{Md},{Id},{Zi,d},Select,Selectreq)

4 parent // parent coordinator

5 tl // time of last event

6 tn // time of next event

7 d∗ // selected imminent child

8 eventlist // list of element (d,tnd) sorted by tnd

9 // and Select

10

11 [...] // The same algorithms than DEVS classic

12 // coordinator.

13

14 when receive r-message (x,t) at t with input x

15 if not (tl ≤ t ≤ tn) then

16 error: bad synchronization

17 receivers = {r|r ∈ D,N ∈ Ir,ZN,r (x) 6= ∅}

18 for-each r in receivers

19 send r-message (xr,t) to r

20 sort eventlist according to tnd and Selectreq

21 tl = t

22 tn = min{tnd|d ∈ D}

23

24 when receive r-message (yd∗,t) at t with output yd∗

25 if d∗ ∈ IN & Zd∗,N(yd∗) 6= ∅ then

26 send r-message (yN,t) to parent

27 put yd∗ of d∗

28 receivers = {r|r ∈ D, d∗ ∈ Ir,Zd∗,r (yd∗) 6= ∅}

29 for-each r in receivers

30 send r-message (xr,t) to r

31 end Devs-Coordinator

• l. 14: condition is activated on receipt of a request event from the parent and to broadcast into the network.

• l. 24: condition is activated on receipt of a request event from the network and to broadcast into the network.

4

This algorithm is the same as the x-message and y-message proposed by B. P. Ziegler. The main difference is the Selectreq

function that sorts the events in order to put the request events in a buffer to consume all events produced at the same date.

This function ensures the sorting of events and avoids causality problem.

2.3.2 Simulator

We define the DEVS atomic model by the tuple:

M = 〈X,Y, δint, δext, δreq, ta, λ〉

1 Devs-Simulator

2 variables:

3 parent // parent coordinator

4 t1 // time of last event

5 tn // time of next event

6 DEV S // associated model with total state (s,e)

7 y // current output value of the associated model

8

9 [...] // The same algorithms than DEVS classic

10 // simulator.

11

12 when receive *-message (∗, t) at t

13 if t != tn ten

14 error: bad synchronization

15 y = λ(s)

16 send y-message or r-message (y,t) to parent

17 s = δint(s)

18 tl = t

19 tn = tl + ta(s)

20

21 when receive r-message (x,t) at t with input x

22 if not (tl ≤ t ≤ tn) then

23 error: bad synchronization

24 y = δreq(s, t, x)

25 send y-message(y,t) to parent

26 end Devs-Simulator

• l. 12: the classic internal event process. The change is the output function λ may returns an external or a request event

to the coordinator or root-coordinator.

• l. 21: condition is activated on receipt of a request message. In this case, the δreq is called and the result is broadcast

to the network.

5

In Parallel DEVS, the select function is replaced by a well defined management of events, using bags or mails. To

produce the same behaviour for the request transition than in Classic DEVS, we update the Parallel DEVS coordinator by

adding a management of r-message.

3 Observation transition

3.1 Problematic

The construction of a DEVS platform for modeling and simulation (presented in section 4) required to observe models and their

evolution during the simulation. Observation of DEVS models involves watching or capturing theirs states. These captures

can take place during a change of a model (in a δint or δext transition functions) or at a specific date.

In DEVS, the commonly solution, presented in figure 1, used is to connect models to observe, both input and output, to

an observation model. This model have in charge to send observation messages and treatment of the models responses. For

instance, to build a discrete observation, the observation model uses its ta function with a constant to send, at each time step,

an observation event.

[Figure 1 about here.]

These solutions impose to the modelers to mix the state graphs between observation and behavior of theirs models. In

addition, by merging the state graphs, the modeler may make the results of its models dependent to the observation he makes.

For example, if a model is observed asynchronously with its behaviour, the computation of the e (in abstract simulator, e = t−tl

when process an external transition δext : Q×X → S with Q = (s, e), e the time elapsed since the last transition) or internal

state variables, with the quality of real in computer engineering, can give different results with or without observations.

Finally, in DEVS, a model can have several states at the same date (when at least one call to the ta(s) function returns

0), known as instantaneous states. If an observation model sends an event at a specific time to capture the state of a model to

observe, this one can provide an instantaneous state and not the last state if an another model send, at the same date an external

event, or in a next bag in DEVS parallel.

In this section, we propose a formalization of the observation models for the management of the state models before a

change of date. We propose this change by adding an additional function in the atomic model in order to avoid mix graphs

state observation and behavior.

3.2 Formal specification

The observation is specified following the same reasoning that for the request function as follow:

λobs : X ×Q→ Y

Where: 0BBB@
Q = (s, e) | s ∈ S

X observation port and values

Y response port and values

The observation upon a model does not modify its current state. The difference between request and observation function

relies on the algorithmic of the coordinator. Observations functions must return the state of models at time t, after all transitions

6

were fired at this date. If it exists one or several instantaneous internal transitions at t, the observation function must be treated

after all these transitions to be sure we observe the final state at t. In the following, we give the algorithms of coordinators and

simulators in DEVS.

3.3 Algorithms

3.3.1 Root coordinator

The root-coordinator implements the overall simulation loop. It sends messages to its direct subordinate (simulator or coordi-

nator). The root-coordinator first sends an initialize message (i-message), and loop on internal transition (*-message) from its

child to perform the simulation cycles until some termination conditions.

1 Devs-Root-Coordinator

2 variables:

3 t // current simulation time

4 tl // the last simulation time

5 child // direct subordinate devs-simulator

6 // or devs-coordinator

7

8 t = t0

9 send initialization message (i,t) to child

10 t = tn of its child

11 tl = t

12 loop

13 send (∗,t) message to child

14 t = tn of its child

15 if tl < t then

16 send flush-observation message (t) to child

17 tl = t

18 until end of simulation

19 end Devs-Root-Coordinator

In the root-coordinator algorithm, we add an additional variable tl which indicates the last date of the simulation. When a

date change occurs (l. 15), the root-coordinator sends a message (o-message) to its direct subordinate to flush the observation

event (l. 16).

3.3.2 Coordinator

The treatment of the order of observation events and the state of the simulation is required to guarantee that observation are

send to all child before a change in the date of the simulation.

1 Devs-Coordinator

2 variables:

3 DEVN = (X, Y , D, {Md}, {Id}, {Zi,d}, Select)

7

4 parent // parent coordinator

5 tl // time of last event

6 tn // time of next event

7 d∗ // selected imminent child

8 eventlist // list of element (d, tnd) sorted by tnd

9 // and Select

10

11 [...] // The same algorithms than DEVS classic

12 // coordinator.

13

14 when receive o-message (x,t) at t with input x

15 if not (tl ≤ t ≤ tn) then

16 error: bad synchronization

17 receivers = {r | r ∈ D, N ∈ Ir, ZN,r (x) 6= ∅}

18 for-each r in receivers

19 send o-message (xr) to r

20

21 when receive o-message (yd∗,t) output yd∗ from d∗

22 if d∗ ∈ IN and Zd∗,N (y_{d*}) 6= ∅ then

23 send o-message (yn,t) value yN = Zd∗,N(yd∗) to parent

24 receivers = {r | r ∈ D, d∗ ∈ Ir, Zd∗,r (x) 6= ∅}

25 for-each r in receivers

26 send o-message (xr) to r

27

28 when receive fo-message (t) at t

29 for-each d in D

30 send flush-observation message (t) to child

• l. 14: the o-message (x,t) are input messages (x, y) from the coupled model. His goal is to route the observation event

to the children and store observation.

• l. 21: the o-message (yd∗,t) are output messages from children of the coupled model. His goal is to route the observation

event to the children and store observation or to route observation to the output of the coupled model.

• l. 28: the fo-message (t) are messages from root-coordinator when the simulation date is change. The message is send

to all child.

The previous algorithm shows in l. 14-30 the distribution of observation events from or to the simulators.

3.3.3 Simulator

We define the DEVS atomic model by the tuple:

M = 〈X,Y, δint, δext, δobs, ta, λ〉

8

We propose this algorithm for the simulator of the Atomic DEVS with the observation transition based on the Classic

DEVS of [Zeigler et al., 2000]:

1 Devs-Simulator

2 variables:

3 parent // parent coordinator

4 t1 // time of last event

5 tn // time of next event

6 DEV S // associated model with total state (s,e)

7 y // current output value of the associated model

8 obslist // list of element (x)

9

10 [...] // The same algorithms than DEVS classic

11 // simulator.

12

13 when receive o-message (x,t) at t with input x

14 if not (tl ≤ t ≤ tn) then

15 error: bad synchronization

16 add (x) to obslist

17

18 when receive fo-message (t) at t

19 for-each x in obslist

20 y = δobs(s,t,x)

21 send y-message(y,t) to parent

22 obslist = ∅

23 end Devs-Simulator

• l. 13: when receives an o-message from the parent, we just add the event into the observation list.

• l. 18: when receives an fo-message from the parent (originally send by the root-coordinator), we compute the observa-

tion transition and send the output to the parent and remove it to the observation list.

To develop the observation transition into classic DEVS, we add the observation event, o-message in algorithm (l. 13-16)

to store the observation message. In l. 20, the transition δobs, activated when the simulator receipts a fo-message from the

coordinator or root-coordinator, computes an output value y from the current state, the time and the observation event. This

function guarantees that the state of the model is not modified.

The algorithms of coordinators and simulators presented above are exactly the same in the Parallel DEVS specification

using a buffer of observations events in the simulator and fo-message from the root-coordinator when the date of simulation is

changed.

9

4 Implementation in VLE

In this part, we describe the implementation of the observation and request transition into an operational DEVS environment:

VLE.

4.1 VLE

The VLE, Virtual Laboratory Environment, is an environment for modeling, simulation and analysis [Quesnel et al., 2007] of

complex systems. VLE is an open-source software and API (Application Programming Interface), developed in C++, oriented

object, available on Unix, Linux and Windows. VLE allows to develop DEVS models, build experimental frames and run-

it on grid computing. This environment proposes a DSDE abstract simulators from [Barros, 2003] and some classic DEVS

extensions like Cell-DEVS, QSS 1 & 2, Cell-Qss, Petri net, Finite State Automata, etc.

The VLE DSDE abstract simulator defines an Atomic Model like a class:

1 class Dynamics

2 {

3 public:

4 // classic Parallel DEVS functions

5 Time timeAdvance() const;

6 void internalTransition(

7 const Time& time);

8 void externalTransition(

9 const Time& time,

10 const ExternalEventList& lst);

11 void output(

12 const Time& time,

13 ExternalEventList& out) const;

14 void confluentTransition(

15 const Time& time,

16 const ExternalEventList& lst) const;

17

18 // request transition

19 void request(

20 const RequestEvent& event,

21 ExternalEventList& out) const;

22

23 // observation transition

24 Value observation(

25 const ObservationEvent& event) const;

26 };

• l. 4-16: the classic Parallel DEVS functions: ta, δint, δb
ext, λ and δconf .

10

• l. 18-21: the request method, called when at least on request event arrived on input Xb. δreq is a constant function,

to prevent user to modify the state of its model. The out parameter is an external event list used to put external events

output ports.

• l. 23-25: the observation method, called when an observation event arrived on a input X . δobs is also a constant

function to prevent user to modify the state of its model. This function returns a Value (simple type as integer, real,

boolean, string, and complex type as set, dictionary, matrix etc.).

With the VLE simulator, we propose a strictly implementation of the DEVS specification by using the C++ const keyword.

This feature specifies constant variables and functions. If a function is constant then, the C++ compiler forbid the developer

to modify the state of its object (a model in VLE simulator). This feature ables the VLE modeler to develop strictly DEVS

models and also allows a better learning of DEVS for the new user.

4.2 Experimental frames in VLE

The study of models is very important in the modeling cycle. The experimental frames as sensitivity analysis, replicas gen-

eration, etc. are used to study the possibilities of models. In the VLE environment, we propose tools for managing the

experimental frames. These tools provides:

• Define a graph of the original models, and each model atomic defines several experimental conditions and how they

would be observed (We use the observation defined in section 3).

• Build instances of the experimental design by performing combinations between different experimental conditions and

applying a number of replicas with particular seed.

• Execute these instances of the experimental design on the grid computation composed of workstations and/or clusters

(distributed and parallelized).

Figure 2 shows the three steps of the previous point. The experimental frame is defined in an XML file. This file describes

the experimentation: what type of combination ? Number of replicas ? Seed for the random number generator ?

The XML input file can be directly edited with an XML editor but it can also be generated with the tools provided by the

environment. It allows to script the experimental frames process and theirs simulations on grid computing.

[Figure 2 about here.]

The VLE environment is based on a set of libraries called VFL (VLE Foundation Libraries). The development of programs

over these interfaces is easily achievable. Thus, in order to collaborate with users of statistical tools, we provide an interface to

the program R[R Development Core Team, 2006]: a tool and language for statistical computing. This package, called RVLE,

has the same capabilities as the VFL and provided an easy-to-use tool to exploit and to explore model output based on VLE

simulations.

5 Conclusion and perspectives

In this paper, we present the formalization of the observation in the DEVS framework. These observations are classified into

two types. First, observation between models, secondly, observation for interact with experimental frames. For both types, we

propose the formalisation in DEVS and the changes in the DEVS abstract algorithms.

11

The separation between the dynamics of the system and its observation is a fundamental issue. Similarly, the simplification

of interactions between models is important. These considerations are set in a context of complex systems modeling and based

on a significant number of interact entities. Moreover, the simulations are usually in the core of the process of analysis which

are based on the observation of models. In this paper, we extend the DEVS formalism to ensure those two objectives.

The next step of this work is to continue the integration of this extended DEVS framework in experimental frame. The

observation mechanism is the first element. The construction of an DEVS extension for IBM is as well dependent on these

developments. The concept of request will help us to propose a elementary brick for the construction of models based on

interactive entities.

References

F. J. Barros. Dynamic Structure Multiparadigm Modeling and Simulation. ACM Transactions on Modeling and Computer

Simulation, 13(3):259–275, 2003.

R. Duboz, D. Versmisse, G. Quesnel, A. Muzzy, and É. Ramat. Specification of Dynamic Structure Discrete Event Multiagent

Systems. In In proceedings of Agent Directed Simulation (Spring Simulation Multiconference), Huntsville, Alabama, USA,

April 2006.

A. Gosavi. Simulation-Based Optimisation – Parametric Optimization Techniques and Reinforcement Learning. Kluwer

Academic Publishers, 2003.

E. Kofman and S. Junco. Quantized State Systems. a DEVS Approach for Continuous Systems Simulation. In Transactions of

SCS., volume 18, pages 123–132, 2001.

G. Quesnel, R. Duboz, D. Versmisse, and É. Ramat. DEVS Coupling of Spatial and Ordinary Differential Equations: VLE

framework. In Proceedings of OICMS 2005 conference, Clermont Ferrand, France, June 2005.

G. Quesnel, R. Duboz, É. Ramat, and M.K. Traore. VLE - A Multi-Modeling and Simulation Environment. In Moving

Towards the Unified Simulation Approach, Proceedings of the Summer Simulation 2007 conference, pages 367–374, San

Diego, USA, July 2007. SCS - ACM.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Comput-

ing, Vienna, Austria, 2006. URL http://www.R-project.org. ISBN 3-900051-07-0.

M. K. Traoré and B. P. Zeigler. Experimental Frames Methodology. In NSF Workshop on Modeling and Simulation for Design

of Large Software-Intensive Systems: Challenges and New Research Directions. DLS03, Tucson, AZ, USA, December

2003.

D. Versmisse and É. Ramat. Management of perturbations within a spatialized differential equations system. In European

Simulation and Modelling Conference, pages 520–524, Porto, Portugal, october 2005. SCS.

G. A. Wainer and N. Giambiasi. Application of the Cell-DEVS paradigm for cell spaces modelling and simulation. In

Simulation, volume 76, pages 22–39, 2001.

B. P. Zeigler. Theory Of Modeling and Simulation. Wiley Interscience, 1976.

12

http://www.R-project.org

B. P. Zeigler, D. Kim, and H. Praehofer. Theory of modeling and simulation: Integrating Discrete Event and Continuous

Complex Dynamic Systems. Academic Press, 2000.

13

List of Figures

1 This picture show the classic solution to observe model. Three atomic models A, B, C,
the system, are observed by the observation models O which sends observation event
and wait result to store it in output file, database etc. 15

2 This picture shows the workflow of the achievement of en experimental frames in VLE. . 16

14

Figure 1: This picture show the classic solution to observe model. Three atomic models A, B, C, the
system, are observed by the observation models O which sends observation event and wait result to store
it in output file, database etc.

15

Figure 2: This picture shows the workflow of the achievement of en experimental frames in VLE.

16

	Introduction
	The request function
	Problematic
	Formal specification
	Algorithms
	Coordinator
	Simulator

	Observation transition
	Problematic
	Formal specification
	Algorithms
	Root coordinator
	Coordinator
	Simulator

	Implementation in VLE
	VLE
	Experimental frames in VLE

	Conclusion and perspectives

