
Representing cellular automata using Specification and
Description Language

Pau Fonseca i Casas
Universitat Politècnica de Catalunya

Jordi Girona 1-3
08034, Barcelona, Catalunya, SPAIN

(+34)934017732

pau@fib.upc.edu

Màxim Colls
Universitat Politècnica de Catalunya

Jordi Girona 1-3
08034, Barcelona, Catalunya, SPAIN

(+34)934017732

maximc@fib.upc.edu

 Josep Casanovas
Universitat Politècnica de Catalunya

Jordi Girona 1-3
08034, Barcelona, Catalunya, SPAIN

(+34)934017732

josepk@fib.upc.edu

ABSTRACT

In this paper we show how to use Specification and Description

Language (SDL) to represent cellular automata models. To

achieve that we use a generalization of the common cellular

automata, named m:n-CAk, allowing the definition of multiple

layers in a single cellular automata. Also we add some extension

to SDL language to simplify the representation of these automata.

Thanks SDL and m:n-CAk the behavior of the cellular automata

model can be defined in a graphical way allowing the complete

and unambiguous description of the simulation model that uses it.

SDL is a modern object oriented formalism that allows the

definition of distributed systems. It has focused on the modeling

of reactive, state/event driven systems, and has been standardized

by the International Telecommunications Union (ITU) in the

Z.100.

In our approximation the SDL representation of the model (a

Microsoft Visio® diagram) can be executed. This implies that

since is not needed to perform any implementation, the

verification process is simplified.

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical sciences and engineering

– Mathematics and statistics

General Terms

Documentation, Design, Human Factors, Standardization,

Languages, Theory.

Keywords

SDL, Simulation, Formalisms, cellular automata.

1. INTRODUCTION
The construction of a simulation model sometimes lacks in the

formalization process needed to understand the model before any

implementation. This model behavior understanding helps in the

implementation process and in the communication between the

different personnel involved in the model construction. Also can

be considered a product itself [1].

Different formalisms exist in order to represent a simulation

model, like Petri Nets or DEVS among others.

Some tools have been build in order to allows help the model

implementation from the specification [2], [3] and some allows

the distribute execution of the models like CD++[4].

The proposed methodology (and infrastructure) allows the

definition (and implementation) of a simulation model that uses

cellular automata following the Specification and Description

Language.

Figure 1: The formalization of the model can be considered as

a product itself [1].

2. SDL LANGUAJE
SDL is the acronym of Specification and Description Language.

SDL is an object-oriented, formal language defined by the

International Telecommunication Union – Telecommunication

Standardization Sector (ITU–T) (formerly Comité Consultatif

International Télégraphique et Téléphonique [CCITT]) as

Recommendation Z.100 [5]. The language is designed to specify

complex, event-driven, real-time, interactive applications

involving many concurrent activities using discrete signals to

enable communication.

SDL is a powerful and modern language widely used in different

areas, not only in simulation area. It has been standardized by the

International Telecommunications Union (ITU) in the Z.100, and

can be used easily in combination with UML.

The definition of the model is based on different components:

 Structure: system, blocks, processes and

processes hierarchy.

 Behavior: defined through the different processes.

 Data: based on Abstract Data Types (ADT).

 Communication: signals, with the parameters and

channels that the signals use to travel.

mailto:pau@fib.upc.edu
mailto:maximc@fib.upc.edu
mailto:josepk@fib.upc.edu

 Inheritances: to describe the relationships

between, and specialization of, the model

elements.

The language has 4 levels (i) System, (ii) Blocks, (iii) Processes

and (iv) Procedures, as we can see in the next figure.

Figure 2: SDL levels,

(http://www.iec.org/online/tutorials/sdl/topic04.html)

To know more about SDL the recommendation Z.100 [5] can be

consulted, also a lot of information can be reviewed in the

www.sdl-forum.org website.

In our domain the signals are equivalent to the events that rule the

modification of the states of the different elements, for that in this

paper the use of event or signal is equivalent (see the section

Error! Reference source not found. to review a discussion of

this).

3. SDLPS OUR SDL IMPLEMENTATION
To implement our models we can use different existing tools that

understand SDL language, like Cinderella [6] or Telelogic [7] of

IBM. We develop our tool in order to improve the existing

solutions adding some new capabilities:

 Allow to work with the delaying signals (as we

can see below).

 Allow to work with cellular automata.

 Allow to work with intelligent agents.

 Allow a distributed simulation of the models.

 For these reasons we decide to implement our tool

named SDLPS [8].

In SDLPS all the signals can carry the parameter defined in the

structure represented in the Figure 3.

Figure 3: Structure related to the SDLPS signals.

ExecutionTime, of event structure, allows defining the time when

the signal (carrying the event) must reach its destination. Other

elements are: (ii) Priority, the priority of the event, used to break a

possible simultaneity of events. (iii) CreationTime, representing

the time when the event is created. (iv) Id, an identifier of the

event. (v) Time, the clock of the process. (vi) Destination, the

final destination (process PId) of the signal. Not all the parameters

of event structure must be defined, only those needed to fully

define the behavior of the model.

NewArrival TO SELF
creationtime = 0;

executiontime = PQueue_t;

priority = 0;

Figure 4: Defining the executionTime, and other parameters,

of the signal using the SDL time extensions.

These extensions are now under discussion on the ITU-T Study

Group 17 (http://www.itu.int/ITU-

T/studygroups/com17/index.asp) to be included in the next release

of the standard (SDL-2010).

In our example, since the Fibonacci model does not depend on

time this is not used.

4. CELLULAR AUTOMATA
Cellular automata are discrete dynamical systems whose behavior

is completely specified in terms of a local relation [9].

One-dimensional cellular automata are based in a row of "cells"

and a set of "rules". A two-dimensional cellular automata uses

rectangular grids of cells.

Each one of the different cells can be in one of different "states"

(the number of possible states depends on the automata). Thinking

states as numbers, in a two-state automata, each cell can be only

in 1 or 2 state.

Cells represent automata space; time advances in discrete steps

following “the rules”, the laws of “automata universe”, usually

expressed in a small look-up table. At each step every cell

computes its new state in function of its closer neighbors. Thus,

system's laws are local and uniform.

Next figure shows one-dimensional cellular automata initial state

and successive two states after rules application.

Figure 5:One-dimensional cellular automata

Since we are working with an extension of the common cellular

automata, first we must define this extension.

5. M:N-CAK CELLULAR AUTOMATA
The main objective of m:n-CAk is to simplify the use of

geographical and environmental information in a simulation

model. As a result, m:n-CAk cellular automata is defined. Mainly

is a generalization that simplifies the use of raster and vectorial

data in a simulation model, and also extends the definition of

common cellular automaton over the Topology mathematical

concept.

http://www.iec.org/online/tutorials/sdl/topic04.html
http://www.sdl-forum.org/
http://www.itu.int/ITU-T/studygroups/com17/index.asp
http://www.itu.int/ITU-T/studygroups/com17/index.asp

m:n-CAk was first defined on [10], in the next lines we describe

the more important aspects of this cellular automaton

generalization.

First said that m:n-CAk means multi n-dimensional cellular

automaton. Mainly is a generalization of cellular automata defined

as follows:

Definition 1: m:n-ACk

A multi n dimensional cellular automaton is a cellular automaton

generalization composed by m layers with n dimensions each one.

The representation is:

kACnm :.

Where

m: is the automaton number of layers.

n: is the different layers dimension.

k: is the number of main layers (1 by default).

With this notation, a usual two dimensional cellular automaton is

represented by a 1:2-AC. A transition in a m:2-AC cellular

automata is defined as in a 2-dimensional cellular automata, but

main layer cell state is a combination of data contained in the m-1

secondary layers at the same position.

A m:n-AC implements a set of rules determining its transitions,

but includes some new features:

 Layers modifying its cells values (states) are named

main layers. Main layers maximum number is m.

Number of main layers are represented by k (mk).

More than one main layer can exist in the same

automata.

 Combination function Ψ allows state calculation in a

main layer depending on state in other layers of
automata.

 It is not necessary, that contained data follows raster

structure since all layers are referenced in a coordinate

system (usually georeferenced). This allows the use of

vectorial data in cellular automata. Ψ function

determines cell state independently of layers data
structure.

Definition 2: Em[x1,..,xn], layer m state in x1,..,xn position

Em is a function describing cell state in position x1,..,xn of layer m.

Em function allows state representation for each cell in the

different layers of the automata, but this is not the global state of

the automata. This state is represented by the EG function.

Definition 3: EG[x1,..,xn], automata status in x1,..,xn position.

EG returns automata global state in position referenced by

coordinates x1,..,xn.

The global state of cellular automata depends on EG function in

all automata positions.

Combination functions Ψ is represented by equation:

]..[])..[,],..[(11

)2

11 nnm

m

n xxEGxxExxE (1)

Definition purpose for Ψ function depends on automata structure,

but in a 1:n-AC this function is the identity function.

]..[])..[(11

1

nn xxEGxxE ssi k=1 (2)

Global state of the cellular automata only depends on the state of

main layer. This is the usual case in the common cellular automata

with only one layer.

5.1 EVOLUTION FUNCTION () IN A

M:N-AC
In a common cellular automaton, evolution function allows global

automata state change through cells value modification.

In a m:n-ACk vectorial layers use makes necessary to generalize

the neighborhood and later define a new function that determines

something similar to cell size (nucleus function). These two

functions are defined in detail in next subsection.

m:n-ACk have the capability to represent continuous space. In

order to model continuous time, evolution function must be a

continuous function, too.

Evolution function it’s only defined in layers that modify its state

(as we see previously named main layers).

Definition 4: Main layer

A layer in a m:n-AC is a main layer if a transition function is

defined in order to modify its state.

Now we can define a m:n-ACk depending on the number of

included main layers.

Definition 5: m:n-ACk

A m:n-AC automaton only presents one main layer, an m:n-ACk

automaton presents k main layers.

Common case is a m:n-AC1, an automata with only one main

layer, therefore a m:n-AC automata.

Definition of the evolution function depends on the layer that

modifies.

Definition 6: Evolution Function m

Function defined for the layer m to modify its state through the

state of others layers using combination function Ψ, and vicinity

and nucleus functions.

Intuitively evolution function allows the representation of the

modifications in this layer (modifications in nucleus area of a

point x1.xn), using the state of other layers with combination

function Ψ, and the vicinity area.

5.2 NEIGHBORHOOD DEFINITION

EXTENSION, VICINITY AND NUCLEUS

CONCEPT.
In a traditional cellular automaton neighborhood function must be

defined in order to determine cells to be considered in the

evolution function.

In a m:n-ACk, due to the vectorial representation capability is

necessary to redefine the concept without using cells with the help

of some kind of reference system.

Therefore is necessary to define the space area characterizing

neighborhood without cell dependency. Vicinity function defines,

from a position x1,..,xn, the points to be considered inside

evolution function (to calculate the new state of a cell). Nucleus

function allows to define, from a position x1,..,xn, the environment

to be modified after evolution function calculation (the cells to be

modified after the calculus, or the space in the continuous case).

Neighborhood concept is related to topological concept

formalizing a colloquial concept. Remembering topology

mathematical definition, a topological space is a non empty set X

with a defined topology. Representation is (X, T). If (X, T) is a

topological space and p a point of X, a subset “A” of X is a

neighborhood of p if and open U of the topology T exist as p U

 A.

Existing relation between mathematical topology and vicinity and

nucleus concepts allows formalizing point’s ordination in layers in

two levels:

1. First level represents points to be considered in order to

calculate new state.

2. Second level represents points to be modified once state

changes.

Finest topology on X is discrete topology imply punctual

modification. The coarsest topology on X is a trivial topology,

composed by only two elements: T= {Ø, X}.

In these two cases open sets configuring space are defined by two

topologies: nucleus and vicinity, representing points to be

modified through m function and points to be considered in new

state calculus.

Mathematical topological concept permits explicit definition of

neighborhoods for different points. Hence for a raster layer

(discrete space) the neighborhood for each point can be explicitly

defined.

Definitions of these two topologies for m:n-AC automatons are:

Definition 7: vicinity topology

Topology defining the set of points (neighborhood) for layer m, to

be considered for m calculus.

In a similar way for nucleus topology:

Definition 8: nucleus topology

Topology defining the set of points (neighborhood) for layer m, to

be modified by m calculus.

These two topologies define neighborhood structures necessary

for each point in order to establish vicinity and nucleus. In despite

of that, not all neighborhoods can be used to represent nucleus or

vicinity, and only one set can be used.

To define the set to be used from a point neighborhood, usually

can be necessary to define a metric, based for instance in

Euclidian distance:

2

22

2

11)()(),(yxyxyxd (3)

Distance d(x,y) allows the definition of neighborhood bases as:

}),(/{),(ryxdyrxB m (4)

This is the usual topology on RxR [11], can be one of the more

indicated topologies for a m:2-AC based in the RxR space defined

the usual distance.

In a general way we can define a distance r from the point x

defining restrictions of the selected neighborhood.

A typical restriction rule can be to calculate minimum

neighborhood containing all the points accomplish d(x,p)<r. For

instance, in the usual topology presented in (4), B(x,r) are the

minimum neighborhood to accomplishes this restriction. In a

more general topology, like the one presented in next figure,

restriction defines only one neighborhood from all the sets. In an

m:n-ACk two restrictions rules have to be defined, one for the

vicinity topology, and other for nucleus topology. These two

restriction rules are used to construct vicinity and nucleus

functions. Now we can define vicinity and nucleus functions.

Definition 9: Vicinity function vn(x1,..,xn)

Function returning minimum open set of vicinity topology

containing point x1,..,xn, and including maximum points that

accomplishes the restriction and minimum points not

accomplishing the restriction.

If the restriction is defined through usual distance its represents

neighborhood containing maximum points that accomplish

d(t,p)<r and minimum points that accomplish d(t,p)r

In the same way we define the nucleus function.

Definition 10: Nucleus function nc(x1,..,xn)

Function returning minimum open set of nucleus topology

containing point x1,..,xn, and including maximum points that

accomplishes the restriction and minimum points not

accomplishing the restriction.

Our main purpose is to represent graphically and as simple as we

can these definitions, allowing an automatic simulation of the

represented model through SDLPS. Also, thanks the use of m:n-

CAk GIS data can be represented easily in different layers of the

m:n-ACk. Suitable data are vectorial data (2DLayers) or raster

data (3DLayers). All layers must be referenced in a coordinate

system (usually georeferenced) [12]. An example of use of m:n-

CAk over continuous space can be reviewed in [10].

6. SDL EXTENSIONS
In order to simplify the representation of the m_n-CAk cellular

automata we add some extensions to SDL language to improve

the readability of the model.

First of all, note that in cellular automata, all the cells have the

same behavior. This implies that is not needed to represent all the

cells, but only one cell. Also is needed to represent the relation

that have with the neighborhood (that of course is specific of the

cellular automata), and the relation with the other layers. That

means define the combination, vicinity and nucleus functions.

In SDL language we can use types to define blocs that have the

same behavior (as is usual in any OO language).In order to

represent the communication between the different cells, are

needed to represent all the communication channels between the

cells. This implies the need of represent at least a set of cells that

belongs to the vicinity (and the nucleus) of a cell. Also if we want

a complete description of the cellular automaton (if we want an

automatic generation of code), we need to represent all the cells of

the cellular automaton.

In order to simplify the representation (avoiding the representation

of all the cellular automaton cells) we decide to add a new kind of

agent to SDL language, the mnca. This agent have the same

behavior as the agent block, with a particularity, mnca agent is

defining the entire cellular automaton, but only is needed to

represent one cell. This implies that is needed to use a declarations

section that defines the structure of the cellular automata (mainly

the dimension of the cellular automata, and the size of each one of

these dimensions). You can see a declaration of the cellular

automaton in the Figure 8.

Also, since we want to avoid the representation of all the channels

needed to send and receive the information related to consult the

values in other cells (and since now the mnca agent represents in

fact the whole cellular automaton although we only details the

behavior of one cell), is needed to implement the next five

methods.

 mncaGetCurrentCell(int

MNCA_CURR_CELL): helps to obtain the index

of the current cell.

 mncaGetCellValue(int MNCA_GET_CELL, int

MNCA_GET_VALUE): helps to get the value of

an specific cell, indexed by MNCA_GET_CELL.

 mncaSetCellValue(int MNCA_SET_VALUE): to

set the value in a specific cell.

 mncaGetLayerValue(string MNCA_LAY, int

MNCA_LAY_CELL, int

MNCA_LAY_VALUE): to get the value of a cell

of other layer.

 mncaSetLayerValue(string MNCA_LAY, int

MNCA_LAY_CELL, int

MNCA_LAY_VALUE): to set the value of a cell

of other layer.

Since mnca block represents all the cells of the cellular

automaton, is needed to define how send a signal from one cell to

other cell of the same mnca.

To do this we are using an extension of the language that allows

completing the definition of a signal (Figure 6).

Figure 6: Sending a signal from on cell to other in the same

mnca block.

First, note that the signal is send to the same element (TO SELF),

as is defined in the standard. In order to distinguish between the

different cells represented in the mnca SDL agent we are using

the extension mnca_cell[]={cells} that defines the cells of the

mnca block that receives the signal.

We can define an array of cells (the cells that can receive the

signal). Also we can use ALL_CELLS, to send the signal to all

the cells of the mnca agent.

6.1 GET PARALLEL
At this point is needed to mention that the current extension of the

Specification and Description Language do not add more

expression power to the language, but allows a clear

representation of the diagrams. The implementation of these

methods in SDLPS simplifies the definition of the model and

improves its readability. Also remark that since in SDL language

all the blocks (that means in our case cells and layers of a cell) can

be executed in parallel, using our extension this can be achieved

too. This implies that each one of the different cells and each one

of the different layers belonging to the mnca agent can be

executed in different machines.

For extension reason is not possible to explain in detail here the

implemented solutions done. Only remark that at this point of the

development the system is working with a conservative algorithm

[13]. The system, named SDLPS [8], uses a manager to assign the

resources (IP’s of the machines that can be used for the

simulation) at the beginning of the execution. At this point this

assignment of resources is static.

7. CELLULAR AUTOMATA SDL

REPRESENTATION
As an example we represent cellular automata that calculate the

well known Fibonacci function. First is needed to define the

different elements that compose our simulation model.

This first level of the SDL diagrams, in this case, only contains a

single block, representing the cellular automata that implements

the Fibonacci function.

Figure 7: Fibonacci cellular automata.

This first level of the model helps to understand the different

elements that must be combined inside the model.

Next, we must define the structure of this m:n-CAk cellular

automata. First is needed to define the number of cells (the

dimensions) that the cellular automata have. This is done with a

DCL (declaration block):

Figure 8: DCL block with the definition of the structure of the

cellular automata.

On this block, the mnca_DIM variable defines the number of

dimensions of the cellular automata, and mnca_D1 to mnca_Dn

defines the size of each one of these dimensions. In that case we

have a matrix (10x10).

Also we need to declare the different functions that rules the

behavior of the cellular automata, these functions are:

 mncaVicFunc: defines the vicinity functions, as

we can see next (Figure 12).

 mncaNucFunc: defines the nucleolus function, as

we can see next (Figure 13).

In the next figure we can see the SDL representation of the cells

of our m:n-CAk cellular automata. At this level we can see the

signals (carrying the simulation events) that are sending from each

one of the different layers to other layers in order to establish the

communication. This is not the case in this example since we have

only one layer. Looking this structure the m:n-CAk cellular

automata used here is 1:2-CA over N.

Figure 9: m:n-CAk cell representation. Here we can see the

relation between the different layers.

In the BlockLayer we can define different processes that can be

executed sequentially. In our case only one process is defined as

we can see in the next diagram.

Figure 10: Representation of the layer.

From this complete representation of the cellular automata

structure we can go further to define the behavior. In the next

diagrams we show the processes and the procedures that defines

the Evolution function, the Vicinity function and the Nucleus

function of the cellular automata.

Evolution function is defined in the ProcessLayer, in Figure 11.

Figure 11: representation of the behavior of the cell.

Once the behavior of the evolution function of the cellular

automata is defined, we need to explain how the Vicinity function

and a Nucleus function behaves. These two functions are used in

the definition of the behavior of our cellular automaton

(ProcessLayer process).

Vicinity function defines a neighborhood with the visibility of the

cellular automata. Nucleus function defines what is the space

(cells in the discrete case) that must be modified once the

evolution function is executed.

We characterize the representation of the Vicinity and Nucleus

function for our Fibonacci model in Figure 12 and Figure 13.

Figure 12: Vicinity function, representing the cells that must

be consulted to modify the value of the cellular automata

nucleus.

Figure 13: Nucleus function, defining the cells that must be

modified due to the execution of the cellular automata

evolution function.

8. EXECUTING THE MODEL
Since cellular automata frequently are used to perform

environmental simulations, is needed to define a method to load

this kind of information in the model. Since in a m:n-CAk cellular

automata different layers can be used, different layers must be

defined to load the initial automata configuration (one for each

one of the layers of the automata). In our example, since only one

layer is used the files used are:

 Layer.doc: File containing the description of the

raster file.

 Layer.img: File containing the data of the raster

file. This data is used to fill the cellular automata

initial state. In our case the file is containing 0’s.

At the end of the simulation we obtain a new layer

(Result_Layer.img) that contains the new values for the layer. In

our Fibonacci example the file have the next output:

0\n1\n1\n2\n3\n5\n8\n13\n21\n34\n55\n89\n

(…)

The structures of these files are based on the IDRISI32 file

format[14]. In brief the initial conditions of the cellular automata

can be defined using GIS data that follows IDRISI32 format. The

output is a new file that follows IDRISI32 format.

The model is represented using Microsoft Visio®. From this

representation an XML is obtained (thanks a plug-in). This XML

is loaded in SDLPS who performs the simulation. We are using

XML file instead the SDL-PR representation because XML offers

different advantages to manage the data. Also allows the

incorporation of blocs and metadata inside the XML model

representation. This metadata is useful to add information about

the graphical representation that we want that each one of the

different SDL agents have.

9. CONCLUSIONS AND FUTURE WORK
This paper proposes a solution to represent the behavior of

cellular automata graphically using the Specification and

Description Language.

To do this we propose two solutions to two existing problems.

First, we had shown how to deal with time in SDL. Second how to

represent cellular automata using the language. To do this first an

extension of the common cellular automata is presented. This

extension allows the definition of several functions that helps in

the description of its behavior.

From these extensions we had shown how a Fibonacci model can

be represented using SDL.

The graphical representation of the cellular automata behavior

helps in the understanding of its behavior. In this kind of models,

where usually are formed by multidisciplinary individuals, these

graphical tool can be very valuable.

The future work is focused in the implementation of all this

extensions in a way that allows a distributed execution of the

automata with a dynamic assignation of the existing resources.

Also we are developing some different models using this

approximation to represent environmental phenomena, like slap

avalanches [15] or wildfires.

10. REFERENCES
[1] Brade, D. (2000). Enhancing modeling and simulation

accreditation by structuring verification and validation results. In

J. A. Joines, R. R. Barton, K. Kang, & P. A. Fishwick (Ed.),

Winter Simulation Conference.

[2] De Lara, J., & Vangheluwe, H. (2002). ATOM³: A Tool for

Multi-formalism Modelling and Meta-modelling. 4th

International Conference on Enterprise Information Systems

ICEIS 2002.

[3] Praehofer, H., & Pree, D. (1993). Visual modeling of DEVS-

based multiformalism systems based on higraphs. In G. W. Evans,

M. Mollaghasemi, E. C. Russell, & W. E. Biles (Ed.), Winter

Simulation Conference, (pp. 595-603). Los Angeles, California,

United States.

[4] Wainer, G., & Chen, W. (2003, November). A framework for

remote execution and visualization of Cell-DEVS models.

Simulation: Transactions of the Society for Modeling and

Simulation International , 626-647.

[5] Telecommunication standardization sector of ITU. (1999).

Specification and Description Language (SDL). Retrieved April

2008, from Series Z: Languages and general software aspects for

telecommunication systems.: http://www.itu.int/ITU-

T/studygroups/com17/languages/index.html

[6] CINDERELLA SOFTWARE. (2007). Cinderella SDL.

Retrieved 03 31, 2009, from http://www.cinderella.dk

[7] IBM. (2009). TELELOGIC. Retrieved 03 31, 2009, from

http://www.telelogic.com/

[8] Fonseca i Casas, P. (2008). SDL distributed simulator. Winter

Simulation Conference 2008. Miami: INFORMS.

[9] Emmeche, C. (1998). Vida Simulada en el ordenador.

Barcelona, Catalunya: Gedisa.

[10] Fonseca i Casas, P., & Casanovas, J. (2005). Simplifying GIS

data use inside discrete event simulation model through m_n-AC

cellular automaton. Proceedings ESS 2005.

[11] Arregui Fernandez, J. (1988). Topología. UNED.

[12] Fonseca i Casas, P., Casanvas, J., & Montero, J. (2004). GIS

and simulation system integration in a virtual reality environment.

Proceedings GISRUK 2004, (pp. 403-408).

[13] Fujimoto, R. M. (2001). Parallel simulation: parallel and

distributed simulation systems. Winter Simulation Conference,

(pp. 147-157).

[14] Clark Labs. (2009). IDRISI. Retrieved 11 26, 2009, from

IDRISI: http://www.idrisi.com/

[15] Fonseca i Casas, P., & Rodríguez Fontoba, S. (2007). Using

GIS data in a m:n-ACk cellular automaton to perform an

avalanche simulation. Geographical Information Science

Research UK Conference 2007. National University of Ireland

Maynooth.

[16] Law, A. M., & Kelton, W. D. (2000). Simulation Modeling

and Analysis. McGraw-Hill.

[17] Guasch, A., Piera, M. À., Casanovas, J., & Figueras, J.

(2002). Modelado y simulación. Barcelona, Catalunya/Spain:

Edicions UPC.

[18] Fishman, G. S. (2001). Discrete-Event Simulation: Modeling,

Programming and Analysis. Berlin: Springer-Verlag.

[19] Bozga, M., Graf, S., Mounier, L., Kerbrat, A., Ober, I., &

Vincent, D. (2000). SDL for Real-Time: What Is Missing ?

SAM'2000. Grenoble, France.

[20] Bozga, M., Graf, S., Mounier, L., Ober, I., Roux, J.-L., &

Vincent, D. (2001). Timed Extensions for SDL. Proceedings of

SDL-Forum'01. Copenhagen, Denmark.

[21] Doldi, L. (2003). Validation of Communications Systems with

SDL: The Art of SDL Simulation and Reachability Analysis. John

Wiley & Sons, Inc.

[22] Banks, J., & Gibson, R. (1997, February). Simulation

modeling: some programming required. IIE Solutions , 26-31.

