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ABSTRACT 

In this paper we show how to use Specification and Description 

Language (SDL) to represent cellular automata models. To 

achieve that we use a generalization of the common cellular 

automata, named m:n-CAk, allowing the definition of multiple 

layers in a single cellular automata. Also we add some extension 

to SDL language to simplify the representation of these automata. 

Thanks SDL and m:n-CAk the behavior of the cellular automata 

model can be defined in a graphical way allowing the complete 

and unambiguous description of the simulation model that uses it. 

SDL is a modern object oriented formalism that allows the 

definition of distributed systems. It has focused on the modeling 

of reactive, state/event driven systems, and has been standardized 

by the International Telecommunications Union (ITU) in the 

Z.100. 

In our approximation the SDL representation of the model (a 

Microsoft Visio® diagram) can be executed. This implies that 

since is not needed to perform any implementation, the 

verification process is simplified. 

Categories and Subject Descriptors 

J.2 [Computer Applications]: Physical sciences and engineering 

– Mathematics and statistics  

General Terms 

Documentation, Design, Human Factors, Standardization, 

Languages, Theory. 

Keywords 

SDL, Simulation, Formalisms, cellular automata. 

1. INTRODUCTION 
The construction of a simulation model sometimes lacks in the 

formalization process needed to understand the model before any 

implementation. This model behavior understanding helps in the 

implementation process and in the communication between the 

different personnel involved in the model construction. Also can 

be considered a product itself [1].  

Different formalisms exist in order to represent a simulation 

model, like Petri Nets or DEVS among others. 

Some tools have been build in order to allows help the model 

implementation from the specification [2], [3] and some allows 

the distribute execution of the models like CD++[4]. 

The proposed methodology (and infrastructure) allows the 

definition (and implementation) of a simulation model that uses 

cellular automata following the Specification and Description 

Language.  

 

Figure 1: The formalization of the model can be considered as 

a product itself [1]. 

2. SDL LANGUAJE 
SDL is the acronym of Specification and Description Language. 

SDL is an object-oriented, formal language defined by the 

International Telecommunication Union – Telecommunication 

Standardization Sector (ITU–T) (formerly Comité Consultatif 

International Télégraphique et Téléphonique [CCITT]) as 

Recommendation Z.100 [5]. The language is designed to specify 

complex, event-driven, real-time, interactive applications 

involving many concurrent activities using discrete signals to 

enable communication. 

SDL is a powerful and modern language widely used in different 

areas, not only in simulation area. It has been standardized by the 

International Telecommunications Union (ITU) in the Z.100, and 

can be used easily in combination with UML. 

The definition of the model is based on different components: 

 Structure: system, blocks, processes and 

processes hierarchy. 

 Behavior: defined through the different processes. 

 Data: based on Abstract Data Types (ADT). 

 Communication: signals, with the parameters and 

channels that the signals use to travel. 
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 Inheritances: to describe the relationships 

between, and specialization of, the model 

elements. 
 

The language has 4 levels (i) System, (ii) Blocks, (iii) Processes 

and (iv) Procedures, as we can see in the next figure. 

 

 

Figure 2: SDL levels, 

(http://www.iec.org/online/tutorials/sdl/topic04.html) 

 

To know more about SDL the recommendation Z.100 [5] can be 

consulted, also a lot of information can be reviewed in the 

www.sdl-forum.org website. 

In our domain the signals are equivalent to the events that rule the 

modification of the states of the different elements, for that in this 

paper the use of event or signal is equivalent (see the section 

Error! Reference source not found. to review a discussion of 

this). 

3. SDLPS OUR SDL IMPLEMENTATION 
To implement our models we can use different existing tools that 

understand SDL language, like Cinderella [6] or Telelogic [7] of 

IBM. We develop our tool in order to improve the existing 

solutions adding some new capabilities: 

 Allow to work with the delaying signals (as we 

can see below). 

 Allow to work with cellular automata. 

 Allow to work with intelligent agents. 

 Allow a distributed simulation of the models. 

 For these reasons we decide to implement our tool 

named SDLPS [8]. 
 

In SDLPS all the signals can carry the parameter defined in the 

structure represented in the Figure 3.  

 

Figure 3: Structure related to the SDLPS signals. 

ExecutionTime, of event structure, allows defining the time when 

the signal (carrying the event) must reach its destination. Other 

elements are: (ii) Priority, the priority of the event, used to break a 

possible simultaneity of events. (iii) CreationTime, representing 

the time when the event is created. (iv) Id, an identifier of the 

event. (v) Time, the clock of the process. (vi) Destination, the 

final destination (process PId) of the signal. Not all the parameters 

of event structure must be defined, only those needed to fully 

define the behavior of the model. 

 

NewArrival TO SELF
creationtime = 0;

executiontime = PQueue_t;

priority = 0;

 

Figure 4: Defining the executionTime, and other parameters, 

of the signal using the SDL time extensions. 

These extensions are now under discussion on the ITU-T Study 

Group 17 (http://www.itu.int/ITU-

T/studygroups/com17/index.asp) to be included in the next release 

of the standard (SDL-2010). 

In our example, since the Fibonacci model does not depend on 

time this is not used. 

4. CELLULAR AUTOMATA 
Cellular automata are discrete dynamical systems whose behavior 

is completely specified in terms of a local relation [9]. 

One-dimensional cellular automata are based in a row of "cells" 

and a set of "rules". A two-dimensional cellular automata uses 

rectangular grids of cells. 

Each one of the different cells can be in one of different "states" 

(the number of possible states depends on the automata). Thinking 

states as numbers, in a two-state automata, each cell can be only 

in 1 or 2 state. 

Cells represent automata space; time advances in discrete steps 

following “the rules”, the laws of “automata universe”, usually 

expressed in a small look-up table. At each step every cell 

computes its new state in function of its closer neighbors. Thus, 

system's laws are local and uniform.  

Next figure shows one-dimensional cellular automata initial state 

and successive two states after rules application. 

 

 

Figure 5:One-dimensional cellular automata 

 

Since we are working with an extension of the common cellular 

automata, first we must define this extension.  

5. M:N-CAK CELLULAR AUTOMATA 
The main objective of m:n-CAk is to simplify the use of 

geographical and environmental information in a simulation 

model. As a result, m:n-CAk cellular automata is defined. Mainly 

is a generalization that simplifies the use of raster and vectorial 

data in a simulation model, and also extends the definition of 

common cellular automaton over the Topology mathematical 

concept. 
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m:n-CAk was first defined on [10], in the next lines we describe 

the more important aspects of this cellular automaton 

generalization. 

First said that m:n-CAk means multi n-dimensional cellular 

automaton. Mainly is a generalization of cellular automata defined 

as follows: 

Definition 1: m:n-ACk 

A multi n dimensional cellular automaton is a cellular automaton 

generalization composed by m layers with n dimensions each one. 

The representation is: 

kACnm :.   

Where 

m: is the  automaton number of layers. 

n: is the different layers dimension. 

k: is the number of main layers (1 by default). 

With this notation, a usual two dimensional cellular automaton is 

represented by a 1:2-AC. A transition in a m:2-AC cellular 

automata is defined as in a 2-dimensional cellular automata, but 

main layer cell state is a combination of data contained in the m-1 

secondary layers at the same position. 

A m:n-AC implements a set of rules determining its transitions, 

but includes some new features: 

 Layers modifying its cells values (states) are named 

main layers. Main layers maximum number is m. 

Number of main layers are represented by k (mk). 

More than one main layer can exist in the same 

automata. 

 Combination function Ψ allows state calculation in a 

main layer depending on state in other layers of 
automata. 

 It is not necessary, that contained data follows raster 

structure since all layers are referenced in a coordinate 

system (usually georeferenced). This allows the use of 

vectorial data in cellular automata. Ψ function 

determines cell state independently of layers data 
structure. 

Definition 2: Em[x1,..,xn], layer m state in x1,..,xn position 

Em is a function describing cell state in position x1,..,xn of layer m.  

Em function allows state representation for each cell in the 

different layers of the automata, but this is not the global state of 

the automata. This state is represented by the EG function. 

Definition 3: EG[x1,..,xn], automata status in x1,..,xn position. 

EG returns automata global state in position referenced by 

coordinates x1,..,xn. 

The global state of cellular automata depends on EG function in 

all automata positions. 

Combination functions Ψ is represented by equation: 
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Definition purpose for Ψ function depends on automata structure, 

but in a 1:n-AC this function is the identity function. 
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Global state of the cellular automata only depends on the state of 

main layer. This is the usual case in the common cellular automata 

with only one layer. 

5.1 EVOLUTION FUNCTION () IN A 

M:N-AC 
In a common cellular automaton, evolution function allows global 

automata state change through cells value modification. 

In a m:n-ACk vectorial layers use makes necessary to generalize 

the neighborhood and later define a new function that determines 

something similar to cell size (nucleus function). These two 

functions are defined in detail in next subsection. 

m:n-ACk have the capability to represent continuous space. In 

order to model continuous time, evolution function must be a 

continuous function, too. 

Evolution function it’s only defined in layers that modify its state 

(as we see previously named main layers). 

Definition 4: Main layer 

A layer in a m:n-AC is a main layer if a transition function  is 

defined in order to modify its state. 

Now we can define a m:n-ACk depending on the number of 

included main layers. 

Definition 5: m:n-ACk 

A m:n-AC automaton only presents one main layer, an m:n-ACk 

automaton presents k main layers. 

Common case is a m:n-AC1, an automata with only one main 

layer, therefore a m:n-AC automata. 

Definition of the evolution function depends on the layer that 

modifies. 

Definition 6: Evolution Function m 

Function defined for the layer m to modify its state through the 

state of others layers using combination function Ψ, and vicinity 

and nucleus functions. 

Intuitively evolution function allows the representation of the 

modifications in this layer (modifications in nucleus area of a 

point x1.xn), using the state of other layers with combination 

function Ψ, and the vicinity area. 

5.2 NEIGHBORHOOD DEFINITION 

EXTENSION, VICINITY AND NUCLEUS 

CONCEPT. 
In a traditional cellular automaton neighborhood function must be 

defined in order to determine cells to be considered in the 

evolution function. 

In a m:n-ACk, due to the vectorial representation capability is 

necessary to redefine the concept without using cells with the help 

of some kind of reference system. 

Therefore is necessary to define the space area characterizing 

neighborhood without cell dependency. Vicinity function defines, 

from a position x1,..,xn, the points to be considered inside  

evolution function (to calculate the new state of a cell). Nucleus 

function allows to define, from a position x1,..,xn, the environment 



to be modified after evolution function calculation (the cells to be 

modified after the calculus, or the space in the continuous case). 

Neighborhood concept is related to topological concept 

formalizing a colloquial concept. Remembering topology 

mathematical definition, a topological space is a non empty set X 

with a defined topology. Representation is (X, T). If (X, T) is a 

topological space and p a point of X, a subset “A” of X is a 

neighborhood of p if and open U of the topology T exist as p  U 

 A. 

Existing relation between mathematical topology and vicinity and 

nucleus concepts allows formalizing point’s ordination in layers in 

two levels: 

1. First level represents points to be considered in order to 

calculate new state. 

2. Second level represents points to be modified once state 

changes. 

Finest topology on X is discrete topology imply punctual 

modification. The coarsest topology on X is a trivial topology, 

composed by only two elements: T= {Ø, X}. 

In these two cases open sets configuring space are defined by two 

topologies: nucleus and vicinity, representing points to be 

modified through m function and points to be considered in new 

state calculus. 

Mathematical topological concept permits explicit definition of 

neighborhoods for different points. Hence for a raster layer 

(discrete space) the neighborhood for each point can be explicitly 

defined. 

Definitions of these two topologies for m:n-AC automatons are: 

Definition 7: vicinity topology 

Topology defining the set of points (neighborhood) for layer m, to 

be considered for m calculus. 

In a similar way for nucleus topology: 

Definition 8: nucleus topology 

Topology defining the set of points (neighborhood) for layer m, to 

be modified by m calculus. 

These two topologies define neighborhood structures necessary 

for each point in order to establish vicinity and nucleus. In despite 

of that, not all neighborhoods can be used to represent nucleus or 

vicinity, and only one set can be used. 

To define the set to be used from a point neighborhood, usually 

can be necessary to define a metric, based for instance in 

Euclidian distance: 

2
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Distance d(x,y) allows the definition of neighborhood bases as: 

}),(/{),( ryxdyrxB m                 (4) 

This is the usual topology on RxR [11], can be one of the more 

indicated topologies for a m:2-AC based in the RxR space defined 

the usual distance. 

In a general way we can define a distance r from the point x 

defining restrictions of the selected neighborhood. 

A typical restriction rule can be to calculate minimum 

neighborhood containing all the points accomplish d(x,p)<r. For 

instance, in the usual topology presented in (4), B(x,r) are the 

minimum neighborhood to accomplishes this restriction. In a 

more general topology, like the one presented in next figure, 

restriction defines only one neighborhood from all the sets. In an 

m:n-ACk two restrictions rules have to  be defined, one for the 

vicinity topology, and other for nucleus topology. These two 

restriction rules are used to construct vicinity and nucleus 

functions. Now we can define vicinity and nucleus functions. 

Definition 9: Vicinity function vn(x1,..,xn) 

Function returning minimum open set of vicinity topology 

containing point x1,..,xn, and including maximum points that 

accomplishes the restriction and minimum points not 

accomplishing the restriction. 

If the restriction is defined through usual distance its represents 

neighborhood containing maximum points that accomplish 

d(t,p)<r and minimum points that accomplish d(t,p)r  

In the same way we define the nucleus function. 

Definition 10: Nucleus function nc(x1,..,xn) 

Function returning minimum open set of nucleus topology 

containing point x1,..,xn, and including maximum points that 

accomplishes the restriction and minimum points not 

accomplishing the restriction. 

Our main purpose is to represent graphically and as simple as we 

can these definitions, allowing an automatic simulation of the 

represented model through SDLPS. Also, thanks the use of m:n-

CAk GIS data can be represented easily in different layers of the 

m:n-ACk. Suitable data are vectorial data (2DLayers) or raster 

data (3DLayers). All layers must be referenced in a coordinate 

system (usually georeferenced) [12].  An example of use of m:n-

CAk over continuous space can be reviewed in [10]. 

6. SDL EXTENSIONS 
In order to simplify the representation of the m_n-CAk cellular 

automata we add some extensions to SDL language to improve 

the readability of the model. 

First of all, note that in cellular automata, all the cells have the 

same behavior. This implies that is not needed to represent all the 

cells, but only one cell. Also is needed to represent the relation 

that have with the neighborhood (that of course is specific of the 

cellular automata), and the relation with the other layers. That 

means define the combination, vicinity and nucleus functions. 

In SDL language we can use types to define blocs that have the 

same behavior (as is usual in any OO language).In order to 

represent the communication between the different cells, are 

needed to represent all the communication channels between the 

cells. This implies the need of represent at least a set of cells that 

belongs to the vicinity (and the nucleus) of a cell. Also if we want 

a complete description of the cellular automaton (if we want an 

automatic generation of code), we need to represent all the cells of 

the cellular automaton. 

In order to simplify the representation (avoiding the representation 

of all the cellular automaton cells) we decide to add a new kind of 

agent to SDL language, the mnca. This agent have the same 

behavior as the agent block, with a particularity, mnca agent is 

defining the entire cellular automaton, but only is needed to 

represent one cell. This implies that is needed to use a declarations 

section that defines the structure of the cellular automata (mainly 

the dimension of the cellular automata, and the size of each one of 



these dimensions). You can see a declaration of the cellular 

automaton in the Figure 8. 

Also, since we want to avoid the representation of all the channels 

needed to send and receive the information related to consult the 

values in other cells (and since now the mnca agent represents in 

fact the whole cellular automaton although we only details the 

behavior of one cell), is needed to implement the next five 

methods. 

 mncaGetCurrentCell(int 

MNCA_CURR_CELL): helps to obtain the index 

of the current cell. 

 mncaGetCellValue(int MNCA_GET_CELL, int 

MNCA_GET_VALUE): helps to get the value of 

an specific cell, indexed by MNCA_GET_CELL. 

 mncaSetCellValue(int MNCA_SET_VALUE): to 

set the value in a specific cell. 

 mncaGetLayerValue(string MNCA_LAY, int 

MNCA_LAY_CELL, int 

MNCA_LAY_VALUE): to get the value of a cell 

of other layer. 

 mncaSetLayerValue(string MNCA_LAY, int 

MNCA_LAY_CELL, int 

MNCA_LAY_VALUE): to set the value of a cell 

of other layer. 
 

Since mnca block represents all the cells of the cellular 

automaton, is needed to define how send a signal from one cell to 

other cell of the same mnca. 

To do this we are using an extension of the language that allows 

completing the definition of a signal (Figure 6). 

 

Figure 6: Sending a signal from on cell to other in the same 

mnca block. 

First, note that the signal is send to the same element (TO SELF), 

as is defined in the standard. In order to distinguish between the 

different cells represented in the mnca SDL agent we are using 

the extension mnca_cell[]={cells} that defines the cells of the 

mnca block that receives the signal. 

We can define an array of cells (the cells that can receive the 

signal). Also we can use ALL_CELLS, to send the signal to all 

the cells of the mnca agent. 

6.1 GET PARALLEL 
At this point is needed to mention that the current extension of the 

Specification and Description Language do not add more 

expression power to the language, but allows a clear 

representation of the diagrams. The implementation of these 

methods in SDLPS simplifies the definition of the model and 

improves its readability. Also remark that since in SDL language 

all the blocks (that means in our case cells and layers of a cell) can 

be executed in parallel, using our extension this can be achieved 

too. This implies that each one of the different cells and each one 

of the different layers belonging to the mnca agent can be 

executed in different machines. 

For extension reason is not possible to explain in detail here the 

implemented solutions done. Only remark that at this point of the 

development the system is working with a conservative algorithm 

[13]. The system, named SDLPS [8], uses a manager to assign the 

resources (IP’s of the machines that can be used for the 

simulation) at the beginning of the execution. At this point this 

assignment of resources is static. 

7. CELLULAR AUTOMATA SDL 

REPRESENTATION 
As an example we represent cellular automata that calculate the 

well known Fibonacci function. First is needed to define the 

different elements that compose our simulation model. 

This first level of the SDL diagrams, in this case, only contains a 

single block, representing the cellular automata that implements 

the Fibonacci function. 

 

 

Figure 7: Fibonacci cellular automata. 

 

This first level of the model helps to understand the different 

elements that must be combined inside the model. 

Next, we must define the structure of this m:n-CAk cellular 

automata. First is needed to define the number of cells (the 

dimensions) that the cellular automata have. This is done with a 

DCL (declaration block): 

 

Figure 8: DCL block with the definition of the structure of the 

cellular automata. 

 

On this block, the mnca_DIM variable defines the number of 

dimensions of the cellular automata, and mnca_D1 to mnca_Dn 

defines the size of each one of these dimensions. In that case we 

have a matrix (10x10). 

Also we need to declare the different functions that rules the 

behavior of the cellular automata, these functions are: 

 

 mncaVicFunc: defines the vicinity functions, as 

we can see next (Figure 12). 



 mncaNucFunc: defines the nucleolus function, as 

we can see next (Figure 13). 
 

In the next figure we can see the SDL representation of the cells 

of our m:n-CAk cellular automata. At this level we can see the 

signals (carrying the simulation events) that are sending from each 

one of the different layers to other layers in order to establish the 

communication. This is not the case in this example since we have 

only one layer. Looking this structure the m:n-CAk cellular 

automata used here is 1:2-CA over N. 

 

 

Figure 9: m:n-CAk cell representation. Here we can see the 

relation between the different layers. 

 

In the BlockLayer we can define different processes that can be 

executed sequentially. In our case only one process is defined as 

we can see in the next diagram. 

 

 

Figure 10: Representation of the layer. 

 

From this complete representation of the cellular automata 

structure we can go further to define the behavior. In the next 

diagrams we show the processes and the procedures that defines 

the Evolution function, the Vicinity function and the Nucleus 

function of the cellular automata. 

Evolution function is defined in the ProcessLayer, in Figure 11. 

 

Figure 11: representation of the behavior of the cell. 

 

Once the behavior of the evolution function of the cellular 

automata is defined, we need to explain how the Vicinity function 

and a Nucleus function behaves. These two functions are used in 

the definition of the behavior of our cellular automaton 

(ProcessLayer process). 

Vicinity function defines a neighborhood with the visibility of the 

cellular automata. Nucleus function defines what is the space 

(cells in the discrete case) that must be modified once the 

evolution function is executed. 

We characterize the representation of the Vicinity and Nucleus 

function for our Fibonacci model in Figure 12 and Figure 13. 

 



 

Figure 12: Vicinity function, representing the cells that must 

be consulted to modify the value of the cellular automata 

nucleus. 

 

Figure 13: Nucleus function, defining the cells that must be 

modified due to the execution of the cellular automata 

evolution function. 

8. EXECUTING THE MODEL 
Since cellular automata frequently are used to perform 

environmental simulations, is needed to define a method to load 

this kind of information in the model. Since in a m:n-CAk cellular 

automata different layers can be used, different layers must be 

defined to load the initial automata configuration (one for each 

one of the layers of the automata). In our example, since only one 

layer is used the files used are: 

 Layer.doc: File containing the description of the 

raster file. 

 Layer.img: File containing the data of the raster 

file. This data is used to fill the cellular automata 

initial state. In our case the file is containing 0’s. 
 

At the end of the simulation we obtain a new layer 

(Result_Layer.img) that contains the new values for the layer. In 

our Fibonacci example the file have the next output: 

 

0\n1\n1\n2\n3\n5\n8\n13\n21\n34\n55\n89\n 

(…) 

 

The structures of these files are based on the IDRISI32 file 

format[14]. In brief the initial conditions of the cellular automata 

can be defined using GIS data that follows IDRISI32 format. The 

output is a new file that follows IDRISI32 format. 

The model is represented using Microsoft Visio®. From this 

representation an XML is obtained (thanks a plug-in). This XML 

is loaded in SDLPS who performs the simulation. We are using 

XML file instead the SDL-PR representation because XML offers 

different advantages to manage the data. Also allows the 

incorporation of blocs and metadata inside the XML model 

representation. This metadata is useful to add information about 

the graphical representation that we want that each one of the 

different SDL agents have. 

9. CONCLUSIONS AND FUTURE WORK 
This paper proposes a solution to represent the behavior of 

cellular automata graphically using the Specification and 

Description Language. 

To do this we propose two solutions to two existing problems. 

First, we had shown how to deal with time in SDL. Second how to 

represent cellular automata using the language. To do this first an 

extension of the common cellular automata is presented. This 

extension allows the definition of several functions that helps in 

the description of its behavior. 

From these extensions we had shown how a Fibonacci model can 

be represented using SDL. 

The graphical representation of the cellular automata behavior 

helps in the understanding of its behavior. In this kind of models, 

where usually are formed by multidisciplinary individuals, these 

graphical tool can be very valuable.  

The future work is focused in the implementation of all this 

extensions in a way that allows a distributed execution of the 

automata with a dynamic assignation of the existing resources. 

Also we are developing some different models using this 

approximation to represent environmental phenomena, like slap 

avalanches [15] or wildfires. 
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