
http://sim.sagepub.com

SIMULATION

DOI: 10.1177/0037549706075479
 2006; 82; 809 SIMULATION

Sunwoo Park, C. Anthony Hunt and Bernard P. Zeigler
 Constructive Models

Cost-based Partitioning for Distributed and Parallel Simulation of Decomposable Multiscale

http://sim.sagepub.com/cgi/content/abstract/82/12/809
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATION Additional services and information for

 http://sim.sagepub.com/cgi/alerts Email Alerts:

 http://sim.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com

Cost-based Partitioning for Distributed and
Parallel Simulation of Decomposable
Multiscale Constructive Models
Sunwoo Park
BioSystems Group, Department of Biopharmaceutical Sciences University of California, San Francisco 513
Parnassus Ave, San Francisco CA 94143-0446, USA

C. Anthony Hunt
BioSystems Group, Department of Biopharmaceutical Sciences, and Joint Graduate Group in Bioengineering
University of California, Berkeley and San Francisco 513 Parnassus Ave, San Francisco CA 94143-0446, USA
a.hunt@ucsf.edu

Bernard P. Zeigler
Department of Electrical and Computer Engineering University of Arizona, 1230 E. Speedway Blvd Tucson, AZ
85721, USA

We present a concise, generic, and configurable partitioning approach for decomposable, modular,
and multiscale (or hierarchical) constructive models. A generic model partitioning (GMP) algorithm
decomposes a given multiscale model to a set of partition blocks based on a cost modeling and
analysis method in polynomial time. It minimizes model decompositions and constructs monotoni-
cally improved partitioning outcomes during the partitioning process. The cost modeling and analysis
method enables translating subjective, domain-specific, and heterogeneous resource information to
objective, domain-independent, and homogeneous cost information. By translating models to a ho-
mogeneous cost space and describing partitioning logics over the space, the proposed algorithm
utilizes domain-specific knowledge to produce the best partitioning results without any modification
of its programming logics. As a consequence of its clean separation between domain-specific parti-
tioning requirements and goals, and generic partitioning logic, the proposed algorithm can be applied
to a variety of partitioning problems in large-scale systems biology research utilizing distributed and
parallel simulation. It is expected that the algorithm improves overall performance and efficiency of
in silico experimentation of complex multiscale biological system models.

Keywords: Multiscale partitioning, model decomposition, discrete event systems specification
(DEVS), systems biology, resource allocation

1. Introduction

Given the challenges faced by the emerging field of sys-
tems biology [1–3], multiscale constructive simulation
modeling is an attractive approach for describing large,
complex, multiscale biological systems. It is expected to
enable representing aspects of structural and behavioral

SIMULATION, Vol. 82, Issue 12, December 2006 809–826
c� 2006 The Society for Modeling and Simulation International
DOI: 10.1177/0037549706075479
Figure 4 appear in color online: http://sim.sagepub.com

characteristics of multiscale system hierarchies of compo-
nents interacting with each other and their environment.
Heterogeneous and multifaceted system features can also
be represented within such models. Such aggregations
are often infeasible or difficult for the more traditional
equation-based inductive models.

However, efficient execution of complex multiscale
simulation models is challenging. The models are easily
exposed to low degrees of parallelism and are also prone
to unsatisfactory resource distribution to a set of computa-
tional entities (e.g. processors) in distributed and parallel
computing environments. In order to increase the degree
of parallelism while optimizing resource allocation and
managing core modeling and simulation (M&S) issues,

Volume 82, Number 12 SIMULATION 809

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

we need to consider computational and resource manage-
ment issues. Prominent among these issues are model par-
titioning, model deployment, remote activation, parame-
ter sweeping and optimization, and experimentation au-
tomation [4, 5]. Model partitioning constructs a set of
fine-grain component models from a coarse-grain mul-
tiscale model. Model deployment dispatches the decom-
posed models to the set of computational entities based on
a certain heuristic. Remote activation reactively launches
a simulator with a model and builds communication chan-
nels with other simulators when the model is available
within the simulator’s computational boundary. Parameter
sweeping and optimization minimize exploration of un-
interested parameter spaces. Experimentation automation
pipelines a series of distinctive experimental phases to an
automated workflow for the efficient execution of large-
scale in silico experiments or large numbers of distinctive
but repetitive experiments. Among these issues, this paper
focuses on the issue of partitioning.

Multiscale model partitioning plays a key role in
efficient execution of complex multiscale simulation mod-
els. By decomposing a complex multiscale model to a set
of component models, it enables building and maintain-
ing optimal model distribution over computational entities
and enhances the degree of parallelism. Design and im-
plementation of generic partitioning algorithms that can
be applied to a variety of multiscale models is challeng-
ing. We must simultaneously consider two design aspects:
specialization and generalization. It is desirable to use
domain-specific or domain-aware knowledge to produce
optimal partitioning results. However, existing partition-
ing algorithms use domain-independent or domain-neutral
low-level information, such as execution time, communi-
cation time, delay, and memory requirements. In doing
so, it is preferable to maintain generic partitioning log-
ics that can be widely applied. However, these consider-
ations can conflict. We adopt a cost modeling and analy-
sis method for our partitioning algorithm in order to re-
duce conflicts. The method enables translating domain-
specific and heterogeneous resource information into ob-
jective, domain-independent, and homogeneous cost in-
formation. The method’s use leads to a class of algorithms
that efficiently partition a set of decomposable multiscale
models while preserving important aspects of both the
specialization and generalization paradigms. The concept
and related issues of this method are addressed in Sec-
tion 3.

We propose a generic model partitioning (GMP) algo-
rithm that uses the cost modeling and analysis method
to decompose a modular, multiscale constructive model
into a set of partition blocks in polynomial time. The al-
gorithm describes a partitioning programming logic over
a domain-independent cost space that is constructed by
applying selected cost modeling and analysis techniques.
The process allows the GMP algorithm to be concise,
generic, and configurable. The algorithm produces high-
quality partitioning outcomes with the minimum model

decomposition. The quality of partitioning (QoP) is pro-
gressively improved until the best partitioning result is at-
tained. Furthermore, it enables implementing various par-
titioning strategies by using different cost measures and
functions instead of modifying the partitioning logics. The
algorithm is described in detail in Section 4. Complexity
and execution time analysis of the algorithm are presented
in Section 5.

To present the usability and power of the GMP algo-
rithm, we apply it to multiscale, decomposable, modu-
lar discrete event systems specification (DEVS) models.
DEVS is a discrete-event oriented multiscale, construc-
tive M&S approach [6–8]. It provides a solid foundation
for theoretical or practical M&S driven systems biology
and has been applied to multiscale biological problems
[9–12]. A set of GMP DEVS partitioners has been suc-
cessfully developed for large-scale distributed simulation
systems [4, 13, 14]. A collection of qualitative and quanti-
tative experimental results and their analysis are presented
in Section 6.

2. Background and Related Work

Model partitioning is the process of aggregating or divid-
ing (decomposable) models into a set of partition blocks.
In distributed and parallel simulation systems, it plays
vital roles in three processes: resource allocation and
management, load sharing and balancing, and optimiza-
tion. Performance, efficiency, and utilization can be sig-
nificantly improved by optimally distributing models into
active or passive system entities (e.g. simulators and co-
ordinators). Optimal distribution is closely related to how
models are partitioned and deployed. Thus, it is important
to develop algorithms that produce optimal or, at least, ac-
ceptable partitioning results with respect to the end points
of interest. However, most model partitioning algorithms
focus on non-decomposable models that are formulated
as a graph or a hyper-graph structure [15–18]. Multilevel
partitioning algorithms transform the structure into a hi-
erarchical alternative [19–23]. Neither deals with decom-
posable models. We can produce better partitioning results
[4, 24, 25]. As model complexity increases, they have nat-
urally evolved into hierarchical and modular structures.
Such evolution escalates the demand for new classes of
partitioning algorithms that efficiently handle those struc-
tures.

Partitioning algorithms are mainly divided into
three main classes: random partitioning, partitioning
refinement, and heuristic. Random partitioning algorithms
randomly aggregate or segregate models to a set of
partition blocks. Partitioning refinement algorithms im-
prove partitioning results during the partitioning process.
Heuristic partitioning algorithms utilize domain-specific
knowledge or particular optimization techniques.

The Kernighan–Lin (KL) algorithm is an exam-
ple of random partitioning combined with partitioning

810 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

refinement. The KL algorithm initially builds a parti-
tioning result by randomly assigning models to parti-
tion blocks� it then revises the quality of the results by
swapping models between those blocks whenever swap-
ping produces a better partitioning result [26]. The per-
formance of the KL algorithm has been improved from
O�n3� to O�max�E � log n� E � degmax�� by Dutt [27],
and to O�E� by Fiduccia and Mattheyeses [28], and to
O�V � E� by Diekmann, Monien, and Preis [29]. V , E ,
and degmax are the total number of vertices, the total num-
ber of edges, and the maximum node degree, respectively.
The quality of partitioning is substantially bound to the
initial partitioning result. Thus, it is desirable to incorpo-
rate domain specific heuristics to improve result quality
[30].

Multifarious heuristics have been applied to model par-
titioning algorithms. Structural and spatial relationships
between models are used in recursive bisection algo-
rithms. The algorithms split a graph into two subgraphs
and recursively bisect each subgraph based on particu-
lar geometric information. Recursive coordinate bisection
(RCB), recursive inertial bisection (RIB), and orthogonal
recursive bisection (ORB) algorithms use the property of
spatial orthogonality: a coordinate axis, an axis of angu-
lar momentum, and an orthogonal plane to the axis [31–
33]. Recursive graph bisection (RGB) algorithms use the
shortest path length between two graph nodes [34]. Re-
cursive spectral bisection (RSB) and eigenvector recur-
sive bisection (ERB) algorithms use an eigenvector repre-
senting connectivity and distance between nodes [36–39].
Various optimization techniques including simulated an-
nealing (SA), mean field annealing (MFA), Tabu search
(TS), and genetic algorithm (GA) have been also applied
to model partitioning algorithms [40–44].

Hierarchical partitioning works by either decompos-
ing or building hierarchical structures based on specified
decision-making criteria. Hierarchical structure is com-
monly represented by a multilevel, acyclic, directed graph
(ADG) or a tree structure. During the partitioning process,
the hierarchical structure is dynamically created and up-
dated over time and space. A partitioning policy specifies
how and when the structure is updated. Three widely used
policies are flattening, deepening, and heuristic. Flatten-
ing is a structural decomposition technique that trans-
forms the hierarchical structure into a non-hierarchical
structure. Deepening, also known as hierarchical cluster-
ing, is a structural aggregation technique that transforms a
non-hierarchical structure into a hierarchical one. Heuris-
tic is any technique other than flattening and deepening.
In this paper, we refer to partitioning algorithms based
on the flattening and deepening approaches as multiscale
and multilevel partitioning algorithms, respectively. Mul-
tilevel partitioning has been investigated extensively over
the past few decades [19–23]. However, multiscale parti-
tioning has received less attention.

In this paper, we reduce the scope of multiscale par-
titioning algorithms to random, ratio-cut, and heuristic.

For a given hierarchical and decomposable cost tree that
preserves the structural relationship between the compo-
nents of a DEVS coupled model (as shown in Figure 1),
a random algorithm decomposes the tree and randomly
assigns nodes or subtrees to a set of partition blocks. A
ratio-cut algorithm cuts a subtree that has the minimum
cost disparity compared to the average cost of the tree.
The average cost of the tree is computed by dividing the
cost of the root node of the tree by the requested number
of partition blocks. Once a subtree is assigned to a parti-
tion block, the average cost is recomputed while exclud-
ing the subtree. This is repeated until only one partition
block is left. The last partition block is populated with
the remaining nodes that are not assigned to other parti-
tion blocks. The HIPART algorithm is an example of the
ratio-cut algorithm [24]. A heuristic algorithm is one that
uses any technique other than random and ratio-cut ap-
proaches. The ENCLOSURE algorithm is an example of
the heuristic algorithm [25].

3. Cost Modeling and Analysis Method

The cost modeling and analysis method provides a means
of transforming heterogeneous resource information into
homogeneous cost information while conducting analy-
ses over a cost space. A “cost” is a homogeneous ob-
ject representing heterogeneous resource information (e.g.
single value, a set of discrete objects, and a continuous
range). A cost “measure” is a conceptual metric that cap-
tures heterogeneous resource information in terms of cost
(e.g. complexity, I/O connectivity, dynamic activity, and
latency). Because a cost measure is a parametric method
subject to certain axioms, algorithms based on the method
are generic and applicable to any family of computational
tasks (e.g. constructive simulation models) provided that
there is a way to manipulate the appropriate cost infor-
mation. However, a more general concept potentially in-
cludes other important determiners of a task such as num-
ber of messages sent and received. By applying one or
more cost measures, a task is abstracted to a cost regard-
less of its complexity or heterogeneity. The homogeneity
of the cost allows the proposed algorithm to be applicable
to heterogeneous problems by simply switching cost mea-
sures, without any modification of the algorithm itself (see
Table 1). This is because of the homogeneous nature of the
method. Thus, the proposed algorithm is highly adaptable
and can be applied within various application domains. A
cost function is a mathematical function that quantifies or
qualifies resource information to cost based on a set of
cost measures. Some of the operations considered in cost
modeling and analysis are cost extraction, cost generation,
cost aggregation, cost evaluation, and cost analysis [4].

A “cost tree” is a homomorphic representation of a de-
composable, modular, and multiscale task from the per-
spective of cost modeling and analysis. A node in the tree
is classified as either atomic or coupled. An atomic node

Volume 82, Number 12 SIMULATION 811

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

Table 1. An example of cost measures and cost functions

Cost measure Cost function Decision-making criteria
I/O �Xmodel � � �Ymodel � The cost of a system is generally proportional to the number of I/O interfaces
connectivity if the system is dedicated to serving I/O requests.
System ��model � The cost of a system is represented by the number of internal states
complexity rather than the number of I/O access points if system performance

relies on its complexity.
I/O and system �Xmodel � � �Ymodel � � ��model � The cost of a system can be captured more appropriately by considering
complexity both I/O interfaces and system complexity.
System ��model � The cost of a system can be captured more appropriately by considering
activity dynamic system behaviors.

Xmodel is a set of input interfaces, Ymodel is a set of output interfaces, �model is a set of internal states, �model is a set of internal
transitions for a certain period of time, and �E� is a counting operator that returns the total number of elements in the given set E

is a terminal node containing no child nodes. A coupled
node is a non-terminal node holding at least one child
node. A set of decomposable multiscale tasks are easily
translated to a cost tree by applying cost functions with
appropriated cost measures. Each node contains a cost (or
a task and cost pair). The cost of an atomic node is gen-
erally equal to the cost of the model with which it is as-
sociated. However, the cost of a coupled node is the ag-
gregated cost of that node and all descendants that can be
reached through the tree hierarchy. Thus, the cost of a sub-
tree starting from a particular node is acquired by simply
retrieving the cost of the node without further expansion
or exploration of the tree. So doing considerably reduces
the amount of time and space required for parsing all de-
scendants of the node and aggregating their costs during
the cost evaluation process. We show the GMP algorithm
based on the method runs in polynomial time in Section 5.

Let D be a finite discrete set of models. D refers to
a decomposable set if it contains at least one model that
can be expanded into a set of submodels. If D is popu-
lated with more than one model, {d1� � � � � dn}, we repop-
ulate D with a new virtual coupled model d0 that con-
tains all existing models in D. That is, D � �d0� where
d0 � �d1� � � � � dn�. A cost tree T is a tree structure that
represents each model di 	 D by a cost node ai 	 A while
preserving structural properties as shown in Figure 1. A is
a set of cost nodes representing T . Every di is translated
to ai by a cost evaluation function, fe�al : D
 A. If di
is a decomposable model, it is also legitimate to alterna-
tively use a cost aggregation function, faggr : E
 A. E
is a subset of D that contains only decomposable mod-
els in D. faggr computes the cost of a coupled component
ei 	 E by aggregating all costs of its children. We can
build distinct collections of cost trees by applying differ-
ent aggregation methods (e.g. summation, max, and av-
erage) to d0. So doing enables delineating a multiscale
model from various different perspectives based on aggre-
gated cost. During the tree construction process, D shrinks
when a decomposable model is removed and grows when
the removed model is expanded and its components are
added back to D.

Figure 1. Cost tree construction with a cost evaluation
function and/or a cost aggregation function: A cost tree T is
constructed from a decomposable task D. The cost ai 	 T is
computed by a cost evaluation function fe�al : D
 A. If di is a
decomposable model, the cost ai can also be computed by a cost
aggregation function faggr : E
 A, instead of fe�al . E is a subset
of D that contains only decomposable models in D.

The GMP algorithm requires a cost tree. In general,
the cost tree preserves the structural relationship between
components of a reference model. However, variant cost
trees can be constructed from the model by excluding
some components of the model and also distorting struc-
tural relationship between components of the model. It en-
ables building a set of different cost tree topologies from
the model. For a given cost tree, the algorithm tries to pro-
duce the best partitioning result without any involvement
in cost tree construction and validation. Difficulty, ambi-
guity, and accuracy of obtaining, generating, and aggre-
gating cost information in cost tree construction are iso-
lated into cost modeling issues. By excluding those is-
sues from partitioning algorithmic logics, the algorithm
remains concise but generic for a wide range of applica-
tions.

812 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

4. Generic Model Partitioning

A GMP algorithm decomposes a given multiscale model
(e.g. a coupled model in DEVS) into a set of partition
blocks. It decomposes a set of models only if model de-
composition produces a better partitioning result. With
the minimization of model decomposition, the GMP al-
gorithm becomes less sensitive to the depth or the com-
plexity of the models. Minimization makes the algorithm
more flexible and scalable than other partitioning algo-
rithms based on full decomposition. A unique feature of
the GMP algorithm is its support of incremental QoP im-
provement during the partitioning process. This property
guarantees that partitioning outcomes will evolve into bet-
ter alternatives without any degradation of QoP until a
best partitioning result is attained. Incremental improve-
ment enables the GMP algorithm to produce a high de-
gree of QoP for the given model. The GMP algorithm
divides into two subalgorithms: initial partitioning and
evaluation–expansion–selection (E2S) partitioning.

4.1 Initial Partitioning

The initial partitioning algorithm constructs P partition
blocks from a cost tree T . Each partition block contains
at least one node. The algorithm consists of four phases:
initialization, expansion, fill, and distribution, as shown in
Algorithm 1. All necessary data structures are created with
initial values in the initialization phase (lines 3–4). clist
is the list containing cost nodes. It grows and shrinks, re-
spectively, when a node is expanded from T and is as-
signed to a partition block. Initially, clist is populated
with child nodes of a root node and every partition block
is empty. If P � �clist �, at least one node expansion oc-
curs until �clist � becomes equal to or larger than P (lines
6–12). Node expansion is a sequence of �i� identifying
and removing nhighest , which is the node having the high-
est cost in clist , �i i� expanding it, and �i i i� restoring its
child nodes back to clist . If P � �clist �, select nhighest
and assign it to an empty partition block until there exist
no empty partition blocks (lines 14–16). Finally, remain-
ing nodes in clist are distributed to non-empty partition
blocks until �clist � becomes zero (lines 18–20). The node
having the lowest cost in clist , nlo	est , is used instead of
nhighest in the distribution phase. Initial partitioning min-
imizes cost disparity between partition blocks by assign-
ing a node to each empty block in a descending order and
distributing remaining nodes to partition blocks in an as-
cending order. Initial partitioning results of the cost tree in
Figure 1 over various P are provided in Figure 2.

4.2 Evaluation–Expansion–Selection Partitioning

Evaluation–expansion–selection (E2S) partitioning im-
proves the quality of partition results until no better result

Figure 2. Initial partitioning results of the cost tree T over
various P: fe�al �di � � system activity of di , faggr �di � ��

j fe�al �di j �� di j 	 di , and 2 � P � 5.

is attained. The algorithm consists of six phases: initializa-
tion, identification, expansion, fill, distribution, and eval-
uation, as shown in Algorithm 2. All necessary data struc-
tures are created with initial values in the initialization
phase (lines 3–5). parray and earray are, respectively, a
set of partition blocks that contain previous and next par-
titioning outcomes. eparti tion is the partition block that
contains the highest cost in earray, P Bhighest . enode is
the coupled node that has the highest cost over all other
nodes in P Bhighest . The initial partitioning result is as-
signed to parray. After initialization, enode is identified
from P Bhighest (lines 7–18). The selected enode is ex-
panded and eparti tion is filled with a node if it has only
enode (line 20 and lines 22–24). The remaining nodes

Volume 82, Number 12 SIMULATION 813

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

Algorithm 1. Initial partitioning algorithm (�I nit)
Input:

T: a cost tree, P: a number of partition blocks
Return:

parray: partitioning result
Acronym:

P B: a partition block, P Bempty: an empty P B, �P B� � 0
P Blo	est : a P B having the lowest cost, P Bhighest : a P B having the highest cost
Nodelo	est : a node having the lowest cost, Nodehighest : a node having the highest cost
Nodecoupled : a coupled node, Nodehighest

coupled : a coupled node having the highest cost
Operators:

remo�eFrom�node� clist�: remove a node from clist � node � remo�eFrom�node� clist�
addT o�node� P B�: add a node to a partition block, P B� P B � addT o�node� P B�
expand�node�: expand a node� a set of child nodes of the node � expand�node�

1 procedure PB[] INITIAL-PARTITIONING (CostT ree T, int P)
2: // PHASE 1: initialize clist and parray
3: clist := child nodes of a root node in T ��clist � � 0
4: parray := P B[P] // create P empty partition blocks ��i� �parray [i] � � 0� 1 � i � P
5: // PHASE 2: expand node(s), if necessary
6: while lengthO f �clist�
 number O f �parray� do
7: if clist contains at least one Nodecoupled

8: clist := clist + expand�remo�eFrom�Nodehighest
coupled� clist��

9: else
10: return error�cannot expand � � �� � �� Nodecoupled 	 clist� � �clist � � 0
11: end if
12: end while ��clist � � �parray�
13: // PHASE 3: �ll empty partition blocks
14: while parray contains an P Bempty do
15: addT o�remo�eFrom�Nodehighest � clist�� P Bempty�
16: end while ��i� �parray [i] � � 0
17: // PHASE 4: distribute nodes in clist into partition blocks
18: while clist is not empty do
19: addT o�remo�eFrom�Nodelo	est � clist�� P Blo	est�
20: end while ��clist � � 0
21: return parray
22: end procedure

in clist are distributed to non-empty partition blocks un-
til �clist � becomes zero (lines 26–28). Finally, E2S parti-
tioning recursively performs until a best result is attained
(lines 30–34). If the new partitioning result earray is su-
perior to the previous result parray, E2S partitioning con-
tinues. Otherwise, it returns parray as the best partition-
ing result. superiorT o�� is a user-provided function that
compares earray to parray. An example of E2S parti-
tioning results is presented in Figure 3. Figure 3(b) illus-
trates monotonic QoP improvement of E2S partitioning re-
sult.

5. Algorithm Analysis

To simplify our analysis, we assume a coupled model D
that is translated to a cost tree T �d� k� n�. d is the depth

of T �d� k� n�, k is the number of child nodes per cou-
pled node, and n is the total number of atomic nodes. n
is ki , where i 	 1� � � � � d. The total number of nodes in
T �d� k� n� ranges from

�d�1
i�0 ki � k and

�d
i�0 ki since

there exists
�d�1

i�0 ki coupled nodes, where d � 1 and
k � 1. In this paper, we do not consider the complexity of
constructing T �d� k� n� because the construction process
is not part of the GMP algorithm.

5.1 Initial Partitioning Algorithm

The length of the clist after i node expansions li is

li �
�
� 0� i � 0

li�1 � � i � i � 1�
(1)

814 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

Figure 3. E2S partitioning results for various P and an
example of a partitioning tree. The top figure presents parti-
tioning results when P ranges from 2 to 5. The bottom figure
presents a partitioning tree � when P is 3 and cost disparity
between P Bmax and P Bmin is used as a partitioning quality
measure, . = � faggr �P Bmax � � faggr �P Bmin��. faggr �P Bi � =�

j a j � 1 � j � �P Bi � and a j 	 P Bi . P Bmax and P Bmin are
P Bi that respectively satisfy faggr �P Bi � � faggr �P B j � and
faggr �P Bi � � faggr �P B j ���i � j ��i �� j� � �1 � i� j � P��. Lower
means better QoP.

where � 0 is the number of children of a root node in T
and � i is the number of children of the expanded node
after i expansions. By substituting li�1 by the sum of � up
to (i � 1)th expansion, we can rewrite li as

li � li�1 � � i � � � �

�
i�1�
j�0

�� j � 1�� 1� � i

�
i�

j�0

� j � i� i � 1� (2)

Assume that node expansions occur E times to guarantee
�clist � � �parray�. Then, by applying equation (2) to the
	hile loop (line 6, Algorithm 1), we can rearrange the
conditional part of the loop to �

�E
j�0 � j � E�
 P (see

Appendix A). E is the total number of expansions and P
is the the number of partition blocks, �parray�.

To make analysis simple, let � i be a constant value K
(i.e. K -ary tree). For a given K 	 �, the conditional part
is simplified to E
 �P � K ���K � 1� by substituting K
for � i (see Appendix B). Because E 	 �, the total number
of node expansions needed in the initial partitioning be-
comes ��P � K ���K � 1��� 1
 K
 P . No expansion
occurs when K � P. The length of clist after the expand-
ing phase, lE , is described by P and K by substituting
��P � K ���K � 1�� for i and K for � i in equation (2). lE
is K when no expansion occurs because the clist is ini-
tially populated with the children of the root node.

lE �
�
�K � 1� � � P�K

K�1

�� K � 1
 K
 P

K � K � P�
(3)

P comparisons occur in the filling phase because every
empty partition in the parray is filled with a cost node
that is extracted from the clist . (lE –P) comparisons oc-
cur in the distribution phase because the remaining clist
nodes are distributed into the parray.

Definition 1 For execution time complexity analysis of
�ini tial , we define
� �n�: expand the node, n�
�ini t

part : time required for executing �ini tial �

�(clist, nodes, add): time required for adding nodes to
the clist�
�(clist, nodes, remove): time required for removing
nodes from the clist�
�(parray, size, create): time required for creating the
parray with size empty blocks�
�(PBi , nodes, add): time required for adding nodes to
the P Bi .

Algorithm execution time is the sum of time spent in each
phase of the algorithm. That is, �ini t

part � �init � �expand �
� f ill � �dist . We can rewrite this as

�ini t
part �

��������	
�ini t ��E

i�1 �expandi �
�P

i�1 � f illi �
�lE�P

i�1 �disti �

1
 K
 P

�ini t � 1��P
i�1 � f illi �

�K�P
i�1 �disti �

K � P

� (4)

where �ini t � ��clist� ��Noderoot�� add� � ��parray�
P� create�, �expandi � ��clist� Nodehighest

coupled � remo�e� �
��clist� ��Nodehighest

coupled�� add�, � f illi � ��clist�
Nodehighest � remo�e� � ��P Bempty� Nodehighest � add�,
and �disti � ��clist� Nodelo	est � remo�e� � ��P Blo	est �
Nodelo	est � add�. By applying E and lE to equation (4),
we obtain

Volume 82, Number 12 SIMULATION 815

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

Algorithm 2. E2S partitioning algorithm (�E2 S)
Input:

parray: previous partitioning result
Return:

parray: new partitioning result
Operators:

e�aluate�P B�: evaluate partition blocks� �alue � e�aluate�P B�
superiorT o�P B1� P B2�: check P B1 is superior to P B2�

True or False � superior T o�P B1� P B2�

1 procedure EVALUATION-EXPANSION-SELECTION PARTITIONING(P B parray)
2: // PHASE 1: initialize earray and eparti tion
3: earray := parray ��i� �earray [i] � � 0
4: eparti tion := P Bhighest in earray � eparti tion �� �
5: enode := null � enode � �
6: // PHASE 2: identify an expandable PB from earray
7: while true do
8: if eparti tion = null return parray ��i��Nodecoupled 	 earray [i]
9: else

10: if eparti tion contains Nodecoupled then
11: enode := Nodehighest

coupled in eparti tion
12: break �enode �� �
13: else
14: eparti tion := select the P Bhighest from earray
15: excluding previously selected PBs
16: end if
17: end if
18: end while ��i� enode 	 earray [i]
19: // PHASE 3: expand enode and put them into clist
20: clist := expand�remo�eFrom�enode� eparti tion�� � �clist � � �enode�
21: // PHASE 4: �ll the eparti tion with Nodehighest if eparti tion is empty
22: if eparti tion is empty then
23: addT o�remo�eFrom�Nodehighest � clist�� eparti tion�
24: end if ��i� �earray [i] � � 0
25: // PHASE 5: distribute nodes to earray
26: while clist is not empty do
27: addT o�remo�eFrom�Nodelo	est � clist�� P Blo	est�
28: end while ��clist � � 0
29: // PHASE 6: evaluate a new partitioning result
30: if superiorT o�e�aluate�earray�� e�aluate�parray�� then
31: return Evaluation-Expansion-Selection Partitioning(earray) ��earray� � �parray�
32: else
33: retrun parray � �earray� � �parray�
34: end if
35: end procedure

�ini t
part �

������������������	

�ini t ��

P�K
K�1

�
i�1 �expandi �

�P
i�1 � f illi

���K�1�

P�K
K�1

�
�K�P

i�1 �disti �

1
 K
 P

�ini t � 1��P
i�1 � f illi �

�K�P
i�1 �disti �

K � P

� (5)

To make analysis of the algorithm simple, assume it
takes one time unit either to run an operator or to evalu-
ate a conditional statement. Then, �ini t takes three units:
one unit for the expansion of the root node and two units
for the initialization of clist and parray. �expandi takes
five units: two units for the evaluation of conditional parts
of both 	hile and i f loops and three units for the exe-
cution of the remo�e-expand-add operation. Both � f illi

816 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

and �disti take three units: one unit for the evaluation of
conditional part of the 	hile loop and two units for the
execution of the remo�e-add operation. By substituting
all ���� in equation (5) by appropriate the execution time,

�init
part �

����������������	

3�

P�K
K�1

�
� 5� P � 3

�
�
�K � 1�

P�K
K�1

�
� K � P

� 3�

1
 K
 P

3� 1� P � 3� �K � P� � 3�
K � P

� (6)

By rearranging equation (6), we obtain

�init
part �

�
�3K � 2�

�

P�K
K�1

�
� 1

� 1� 1
 K
 P

3K � 4� K � P
� (7)

Equation (7) shows that, for a given partition block size
P , the total execution time of the initial partitioning al-
gorithm is more sensitive to the number of children of a
coupled node (e.g. K in K -ary tree) rather than the total
number of components or the spatiotemporal complexity
of each component in a given multiscale model. It also
implies that the performance of the algorithm is highly
bound to the number of expansions, E , rather than model
complexity.

5.2 E2S Partitioning Algorithm

Definition 2 For execution time complexity analysis of
�E2 S , we define
� enode: the number of child nodes expanded from enode,
���enode�� �
� : the number of recursions until a best partitioning re-
sult is attained�
�E2 S

part : time required for executing �E2 S.

The E2S partitioning algorithm has six phases as described
in Algorithm 2. Thus, the total execution time of the al-
gorithm is the sum of time spent in those phases: �E2 S

part �
�ini t��identi f y��expand�� f ill��dist��e�al . In the 	hile
loop, l comparisons occur to find the enode in the iden-
tification phase, 1 � l � P. l divides into l � 1 for parti-
tion blocks having no coupled node and 1 for the partition
block having at least one coupled node. At most, � enode
comparisons occur in the distribution phase to redistrib-
ute all nodes of the clist to the earray. No comparisons
occur in other phases.

�E2 S
part � �init �

l�1�
i�1

�identi f y��enode

� �identi f y�enode � �expand

� � � � f ill �
�enode���

i�1

�disti � �e�al� (8)

where l is the total number of comparisons occurred in the
while loop to find enode, � is 1 if eparti tion is empty af-
ter the expansion phase and otherwise 0, �identi f y��enode is
the time need for handling eparti tion having no coupled
node, and �identi f y�enode is the time needed for handling
eparti tion having at least one coupled node.

To simplify the analysis, assume it takes one time
unit to run an operator or to evaluate a conditional state-
ment. Then, �ini t takes three units to initialize earray,
eparti tion, and enode. �identi f y��enode takes four units to
handle eparti tion having no coupled node. �identi f y�enode
takes five units to identify enode. �expand , � f ill , and �disti

take three units, respectively. �e�al takes three + �
E2S
part

units. �
E2 S
part is equal to the time needed to run the algorithm

recursively until the best result is attained. �
E2 S
part is 1 if

e�aluate�earray� is not better than e�aluate�parray�.
By substituting all ���� in equation (8) by the appropriate
execution time, we obtain

�E2 S
part � 3� �l � 1� � 4� 5� 3� � enode � 3

�3� �E2 S
part � 4l � 3� enode � 10� �E2 S

part � (9)

Assume �
E2 S
part runs � times recursively to attain a best

result. Then, we rewrite equation (9) as

�E2 S
part � 4l � 3� enode � 10

�
��

i�1

�
4li � 3� i

enode � 10
�� 1� (10)

where �i is l at the i th recursion in �
E2 S
part , and � i

enode is

� enode at the i th recursion in �
E2 S
part .

In most cases, li is 1. However, it could vary dynami-
cally depending on the content of the parray. We approx-
imate li by introducing �l, the average of li , as

�E2 S
part �

��
i�0

�
4�l � 3� i

enode � 10
�� 1� (11)

where �l is the average of l, 1��� � 1�
��

i�0 li , and � i
enode

is � enode at the i th recursion
For a K -ary cost tree, we rewrite equation (11) by sub-

stituting � i
enide by K as follows:

�E2 S
part �

��
i�0

�
4�l � 3K � 10

�� 1� (12)

Equation (12) implies that the total execution time of
the E2S partitioning algorithm is sensitive to the degree
of QoP rather than the total number of components or the
spatiotemporal complexity of each component in a given
multiscale model.

Volume 82, Number 12 SIMULATION 817

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

5.3 Worst Case Analysis

5.3.1 Initial Partitioning Algorithm

For a worst case in the initial partitioning, assume the cost
tree T �d� k� n� sustains the following constraints: (i) the
total number of atomic nodes n is kd � (ii) the number
of partition blocks P is kd � (iii) d � k. E is induced
to �kd � 1���k � 1� from the constraints i and i i . The
constraints imply that there exist

�d�1
i�0 ki coupled nodes

and that they are all expanded.
�d�1

i�0 ki is simplified to
�kd � 1���k � 1� using the geometric series. lE is com-
puted to kd � k � 1 by substituting �kd � 1���k � 1� for
i and k for � i (see equation (2)). By substituting all ����
in equation (4) by the appropriate execution time and re-
arranging it, we obtain

�ini t
part � 3kd � 5

kd � 1

k � 1
� 3k

� 3n � 5
n � 1

n1�d � 1
� 3n1�d � (13)

As k is n1�d and n � d, O��ini t
part� is O�n� for T �d� k� n�,

d � k � 1, n � kd .

5.3.2 E2S Partitioning Algorithm

For the worst case in the E2S partitioning algorithm, as-
sume an additional constraint: (iv) a new partitioning re-
sult is always superior to the previous one.

In the case, li is 1 because the P Bhighest always con-
tains at least one coupled node. We can compute � for the
given T �d� k� n� by

� �
d�1�
i�1

ki � kd � 1

k � 1
� 1� k � 1� (14)

By substituting li and � with 1 and �kd � 1���k � 1�� 1,
respectively, in equation (12), we obtain

�E2 S
part �

�
kd � 1

k � 1
� 1� 1

�
� �4� 3k � 10�� 1� (15)

We rewrite equation (15) in terms of n:

�E2 S
part � 3 �

�
n � 1

n1�d � 1

�
�
�

n1�d � 14

3

�
� 1� (16)

O��E2 S
part� is O�n� for the cost tree T �d� k� n�, d � k � 1,

n � kd .

5.4 Parameter Optimization

From an algorithm analysis perspective, if an algorithm
needs a set of parameters to perform its task, it is impor-
tant to know which parameter values produce the minimal
algorithm execution time as well as to know the algorithm
execution time for a given parameter value set. Searching
optimal parameter value sets from a large parameter space
produced by the parameter set can be challenging.

As part of parameter optimization analysis in the GMP
algorithm, we discuss here an optimal P for a fixed T and
an optimal T for a fixed P . This helps to predict or un-
derstand the relationship between P and T . For example,
we can determine an optimal P for a particular multiscale
model and an optimal structure of a multiscale model (e.g.
K in K -ary cost tree) for a particular P . Optimal P and
T do not necessarily mean that a simulation will run fast.
However, they can attest it if the cost of each node in T
represents the execution time of a component in a refer-
ence model.

5.4.1 Optimal Number of Partition Blocks

For a given coupled model, the optimal number of par-
tition blocks Popt is identified by searching P that pro-
duces minimum execution time from the following equa-
tion. �K

P ��I ni t� is equation (7) that represents the execu-
tion time of the initial partitioning algorithm for a fixed K
and an arbitrary P:

min
1
P����

K
P ��I nit��

�

������	
minK
P����3K � 2�

��
P�K
K�1

�� 1
�� 1��

K
 P � �
3K � 4� P � K

� (17)

By rearranging equation (17), we obtain

min
1
P����

K
P ��I ni t��

�

������	
minK
P���3K�2

K�1 P � 3K�2
K�1 � 1��

K
 P � �
3K � 4� P � K

� (18)

Popt is K � 1 when K
 P � � because �K
P ��I ni t�

grows linearly as P increases. �K
K�1��I nit� produces min-

imum execution time. Popt is P when P � K because
�K

P ��I ni t� is governed by only K independent from P:

Popt �
�

K � 1� K
 P � �
P� P � K

� (19)

818 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

Table 2. Cost patterns for generating various computational workload distributions of a model [45–48]

Pattern PMF Parameters Distribution Load

Cunitstep ��x� None Unit step Low
Cexp �e��x � = 0.05 Exponential Low
Cpareto �k�x���1 � = 1.245, k = 3 Pareto Medium

Cin�gaus

�
�

2�x3 e
���x���2

2�2x � = 3.86, � = 9.46 Inverse Gaussian Medium

Cuni f orm 1 None Uniform High

Clognorm
1

x
�

2��2 e
��lnx���2

2�2 � = 5.929, � = 0.321 Lognormal High

PMF, probability mass function. ��x�, a PMF that returns 1 when x = a� otherwise returns 0.

In �E2 S , it is unnecessary to compute Popt . P is set by
�I nit and is indirectly referenced by �E2 S through the set
of partition blocks. P is an implicit and non-permutable
value in�E2 S . Also, �E2 S

part is mainly bound to � rather than
to P .

5.4.2 Optimal Cost Tree for a Particular Number
of Partition Blocks

For a fixed number of partition blocks P , the optimal
number of K -ary cost tree Kopt is identified by searching
K that produces minimum execution time from the fol-
lowing equation. �K

P ��I ni t� is equation (7) that represents
the execution time of the initial partitioning algorithm for
a fixed P and an arbitrary K :

min
1
K����

K
P ��I ni t�� (20)

�
�

min1
K
P��3K � 2�
�

P�K
K�1

�
� 1

� 1�� 1
 K
 P

3K � 4� K � P
�

By rearranging equation (20), we obtain

min
1
K����

K
P ��I ni t�� (21)

�
�

min1
K
P�5�P � 1� 1
K�1 � 3�P � 1�� 1�� 1
 K
 P

3K � 4� K � P
�

Kopt is P � 1 when 1
 K
 P because �K
P ��I ni t�

decreases linearly as K increases. �P�1
P ��I ni t� produces

the minimum execution time. Kopt is P when K � P
because �K

P ��I ni t� increases linearly as K increases:

Kopt �
�

P � 1� 1
 K
 P

P� K � P
� (22)

In �E2 S , it is not necessary to compute Kopt . Once a
model is selected by �I ni t , �E2 S cannot dynamically per-
mute structural properties of the model.

6. Experimental Results

A series of experiments have been conducted to evaluate
the GMP algorithm and to compare it to two multiscale
partitioning algorithms, random and ratio-cut . A set of
quality and performance measures has been applied to the
results. All experiments were performed on a small-scale
Beowulf cluster system which consists of one root node,
seven compute nodes, a Gigabit switch, and a dedicated
Gigabit network. Each node is equipped with a single Intel
Pentium 4 3 Ghz CPU, 2 GB PC 3200 DDR 400 SDRAM
memory, a 80 GB 7200 RPM hard disk, and a Gigabit Eth-
ernet card. The root node has an extra Gigabit Ethernet
card to access public Internet.

A multiscale decomposable DEVS coupled model is
generated with a particular cost pattern listed in Table 2.
Six cost patterns are used to represent a wide range
of computational workload of the model: Cunitstep and
Cexp for low workload, Cpareto and Cin�gau for medium
workload, and Cuni f orm and Clognormal for high workload.
Specifically, the model is characterized by T �d� k� n�
as discussed in Section 5.2. Simulation activity of each
atomic component is assigned based on one of the work-
load patterns. Each atomic component executes its proac-
tive temporal behavior that is bound to the given activity
value. Simulation activity of a coupled component is the
aggregation of activities of its child components. There
exists no I/O exchange between components. The gen-
erated coupled model is partitioned into a set of parti-
tion blocks by each algorithm. The blocks are then dis-
patched to a set of processors, and decomposed models
in the blocks are executed in parallel. Quality and perfor-
mance of algorithms are computed by applying qualitative
and quantitative measures to the blocks. We conducted ex-
periments using the simulation environment that we devel-
oped for this research.

A set of measures used in our experiments is listed in
Table 3. The cost of a partition block is computed by four
cost measures: �norm , �di f f , �dist , and ��ar . The quality
of a set of partition blocks is evaluated by two QoP mea-
sures: min�max and a�g-di f f . QoP evolution is traced by
profiling the quality of the set until the best partitioning

Volume 82, Number 12 SIMULATION 819

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

Table 3. A set of measures for quality and performance evaluation

Measure Mathematical representation Description

�norm faggr �P Bi ��max �faggr �P B j ��Pj�1 normalized cost

�di f f

�P
j�1 � faggr �P Bi �� faggr �P Bj �� cost difference

�dist

�P
j�1 � faggr �P Bi �� faggr �P Bj �� cost distance

��ar

�
� faggr �PBi���P

j�1 faggr �P Bj ��P� cost variance

min - max �max� faggr �P Bi ��Pi�1 �min� faggr �P Bi ��Pi�1� min-max disparity

a�g-di f f

�P
i�1

�P
j�1 � faggr �P Bi�� faggr �P B j ���P average difference

�total max���PBi ��Pi�1 total execution time

�accum
�P

i�1 ��P Bi � accumulated execution time

�a�g
�P

i�1 ��P Bi ��P average execution time

�sqrt

��P
i�1 ��PBi ��P square root execution time

faggr �PBi� =
�

c�t j �, where c�t j � is the cost of a model t j 	 PBi � ��PBi � = time need to execute all models in PBi .

result is attained. Execution time of the set is collected by
four time measures: �total , �accum , �a�g, and �sqrt .

Figure 4 represents the QoP experimental results of
T �7� 4� 400�. Two QoP measures min�max and a�g�di f f
are used to evaluate the quality of the partitioning re-
sults produced by each algorithm. For a particular num-
ber of partition blocks P , a cost pattern Cpattern , and a
QoP measure, each algorithm is applied to 20 different
computational workloads. The average of the 20 experi-
ments is computed and illustrated as a single point in the
figure. We measured QoP of partitioning results by vary-
ing P from 2 to 100. The GMP algorithm produces su-
perior QoP outcomes compared to other algorithms for
both QoP measures. This is mainly because the GMP al-
gorithm minimizes the cost disparities between partition
blocks with minimum model decomposition. However,
QoP outcomes of other algorithms were highly sensitive
to P , Cpattern , and QoP measures. The QoP experimental
results are shown in Figure 4. All experimental results in
the figure are summarized in Table 4.

Figure 5 represents the execution time measurement re-
sults of T �7� 4� 50�. Two time measures, �accum and �a�g,
are used to evaluate the performance of the partitioning
results produced by each algorithm. The model execu-
tion time is measured for the case of only one partition
block allocation per processor. For a particular number of
processors np and Cpattern , and a time measure, each al-
gorithm is applied to five different computational work-

loads. In most experiments, the GMP algorithm requires
the shortest execution time. The execution time measure-
ment results are shown in Figure 5. All experimental re-
sults in the figure are summarized in Table 5.

7. Summary and Conclusions

In this paper we have presented a new GMP algo-
rithm, which efficiently decomposes a multiscale model
into a set of partition blocks using the cost modeling
and analysis method. It also produces monotonically im-
proved partitioning results with minimum model decom-
position. The method enables abstracting subjective, het-
erogeneous, domain-dependent information into objec-
tive, homogeneous, domain-independent cost informa-
tion. With the selection of different methods of cost mea-
sures, cost evaluation, and cost aggregation, the proposed
algorithm performs various partitioning strategies with-
out any modification of the generic partitioning logics.
Because each cost measure is a parametric method, and
partitioning logic is described over the homogeneous cost
space, the algorithm is generic and applicable to any fam-
ily of models provided that there is a way to manipulate
the appropriate cost information.

Algorithm analysis and experimental results show that
the GMP algorithm is efficient and produces high-quality
partitioning results. The algorithm execution time is O�n�

820 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

Figure 4. QoP evaluation of partitioning results over various cost patterns and numbers of partition blocks. A point in each figure represents
the average of 20 different executions with respect to a set of a cost pattern, a number of partition blocks, and a partitioning algorithm,
C pattern , P, �parti tion . Cpattern 	 �Cunitstep�Cexp�Cpareto�Cin�gaus �Cuni f orm �Clognorm�. 2 � P � 100. �parti tion 	 �Random� Ratio-Cut�GM P�.
Two QoP measures, min�max and a�g�di f f , are applied to T �7� 4� 400�. The lower value on the Y -axis represents the better result.

Volume 82, Number 12 SIMULATION 821

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

Figure 5. Model execution time measurement of partitioning results over various cost patterns and numbers of processors. Each mark in the
figure is the average of five different executions with respect to a set of a cost pattern, a number of processors, and a partitioning algorithm,
C pattern , np, �parti tion . Cpattern 	 �Cunitstep�Cexp�C pareto�Cin�gaus �Cuni f orm �Clognorm�. 2 � np � 7. �parti tion 	 �Random� Ratio�Cut�GM P�.
Two execution time measures, �accum and �a�g , are applied to T �7� 4� 50�. The lower value on the Y -axis represents the better result.

822 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

Table 4. A summary of QoP experiments of T �7� 4� 400�

min�max a�g�di f f

Cost pattern Random (s) Ratio-cut (s) GMP (s) Random (s) Ratio-cut (s) GMP (s)

Cunitstep�x� 33.44 170.28 14.77 198.79 402.94 165.11

Cexp�x� 62.18 218.27 22.57 484.83 559.83 284.50

Cpareto�x� 110.44 292.09 56.84 788.20 929.16 595.32

Cin�gaus�x� 139.83 609.87 53.60 984.37 1520.27 603.98

Cuni f orm�x� 1799.33 8000.09 689.31 12492.31 19945.52 7521.78

Clognorm�x� 3077.86 15873.68 1303.46 18884.30 37774.36 14240.95

Average 870.51 4194.05 356.76 5638.80 10188.68 3901.94

Table 5. The summary of execution time measurements of T �7� 4� 50�

�accum �a�g

Cost pattern Random (s) Ratio-cut (s) GMP (s) Random (s) Ratio-cut (s) GMP (s)

Cunitstep�x� 30.04 22.71 19.55 7.87 5.95 4.94

Cexp�x� 45.78 37.88 36.21 12.43 9.98 9.15

Cpareto�x� 55.45 42.71 39.04 15.12 11.72 10.29

Cin�gaus�x� 114.21 91.71 75.63 29.79 23.96 18.86

Cuni f orm�x� 1482.88 1200.13 963.97 384.65 315.87 244.92

Clognorm�x� 2696.38 2108.15 1825.97 682.74 551.43 459.97

Average 737.46 583.88 493.39 188.77 153.15 124.69

in the worst-case scenario. The experimental results show
that the GMP algorithm produces partitioning results that
are superior to those from other algorithms.

A set of GMP-based multiscale model partitioners
has been implemented over distributed network middle-
ware to support large-scale discrete-event oriented simu-
lations. Because the algorithm is generic, concise, and re-
configurable, it can easily evolve to accommodate static
and dynamic resource management system components
that efficiently handle multiscale models in large-scale
distributed and parallel simulation systems.

The pace of M&S driven systems biology research
using constructive, multiscale models is expected to in-
crease. However, for efficient execution of these mod-
els, we need generic but domain-aware, multiscale par-
titioning algorithms. The GMP algorithm meets this re-
quirement and has been successfully implemented as a
part of multiscale model partitioners in various large-scale
distributed simulation frameworks. A wide range of dis-
tinctive multiscale, constructive, modular biological sys-
tem models can be easily managed by changing or re-
vising cost functions without any modification of generic
partitioning programming logics. This ability positions
the GMP algorithm to be effective in large-scale M&S

driven systems biology research. We anticipate applying
the GMP algorithm in our computational systems biology
research.

Acknowledgments

The authors would like to thank Sean H. J. Kim, Dr James
Nutaro, Dr Hessam Sarjoughian, and the anonymous re-
viewers for their constructive comments and suggestions
that helped improve the content of the paper. This research
has been supported in part by the CDH Research Founda-
tion R21-CDH-00101, NSF DMI-0122227, and DOE Sci-
DAC DE-FC02-01ER41184. We are grateful for the Com-
putational and Systems Biology Postdoctoral Fellowship
funding provided to Sunwoo Park by the CDH Founda-
tion. A preliminary version of this paper was presented at
the Challenges of Large Applications in Distributed En-
vironments (CLADE) 2003, International Workshop on
Heterogeneous and Adaptive Computation, June 2003.

Volume 82, Number 12 SIMULATION 823

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

Appendix

A. Length of the component list clist after i node
expansions li

As described in Algorithm 1, clist is initially populated
with child nodes of the root node in a cost tree. Thus, the
initial length of the clist l0 is equivalent to the number of
the nodes � 0. When a node expansion occurs, a coupled
node is removed from the clist and its child nodes are
stored back to the clist . That is, the length of the clist at
the i th node expansion li is equivalent to li�1 � � i where
i � 1 and � i is the number of child nodes of the removed
coupled node at the i th node expansion. Given � 0 and � i ,
li is deduced as follows:

l0 � � 0

l1 � l0 � 1� � 1 � � 0 � � 1 � 1

l2 � l1 � 1� � 2 � �� 0 � � 1 � 1�� 1� � 2

� � 0 � � 1 � � 2 � 2

l3 � l2 � 1� � 3 � �� 0 � � 1 � � 2 � 2�� 1� � 3

� � 0 � � 1 � � 2 � � 3 � 3

� � �

li�1 � li�2 � 1� � i�1

� �� 0 � � � � � � i�2 � �i � 2��� 1� � i�1

� � 0 � � � � � � i�1 � �i � 1�

li � li�1 � 1� � i

� �� 0 � � � � � � i�1 � �i � 1��� 1� � i

� � 0 � � � � � � i � i�

By replacing li�1 by the sum of � up to (i � 1)th node
expansions, we rewrite li as follows:

li � li�1 � 1� � i �
i�1�
j�0

�� j � 1�� 1� � i

�
�� i�1�

j�0

� j � � i

���
�� i�1�

j�0

1� 1

��

�
i�

j�0

� j � i� i � 1� (23)

Assume the initial partitioning requires E expansions to
guarantee that a partition has at least one cost node. Then,
by applying equation (23) to the while loop (line 6, Algo-
rithm 1) with substitution of E for i , we assert the con-
straint using E , � j , and P as follows in the partitioning
algorithm, where P is the number of partition blocks:

lengthO f �clist�
 number O f �parray�

�
�� E�

j�0

� j � E

��
 P� (24)

B. Total number of node expansions in the initial
partitioning E

To make analysis simple, let � i be a constant K (i.e. K -
ary tree), which implies that every coupled node has only
K child nodes. No expansion occurs when K � P and E
expansions occur when 1
 K
 P . By substituting K
for � i in equation (24), we obtain�� E�

j�0

K � E

��
 P � ��E � 1�K � E�
 P

� �K � 1�E
 �P � K �

� E

P � K

K � 1
� 1
 K
 P� (25)

provided that P and K , the total number of node expan-
sions needed in the initial partitioning, is represented by

E �
��

P�K
K�1

�
� 1
 K
 P

0� K � P
� (26)

8. References

[1] Kitano, H. 2002. Computational systems biology. Nature 420:206–
210.

[2] Idekeer, T., T. Galitski, and L. Hood. 2001. A new approach to de-
coding life: Systems biology. Annual Review of Genomics and
Human Genetics 2:343–372.

[3] Hood, L. 2003. Systems biology: Integrating technology, biology, and
computation. Mechanisms of Ageing and Development 124(1):9–
16.

[4] Park, S. 2003. Cost-based partitioning for distributed simulation of
hierarchical, modular DEVS models. PhD Dissertation. Depart-
ment of Electrical and Computer Engineering, University of Ari-
zona.

[5] Park, S., C. A. Hunt, and G. E. P. Ropella. 2005. Pisl: A large-scale
in silico experimentation framework for agent-directed physio-
logical models. In Proceedings of the 2005 Agent-Directed Sim-
ulation Symposium, Spring Simulation Conference, San Diego,
CA.

[6] Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling
and Simulation, 2nd edn. San Diego, CA: Academic Press.

824 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

PARTITIONING FOR MULTISCALE CONSTRUCTIVE MODELS

[7] Vangheluwe, H. L. 2000. DEVS as a common denominator for multi-
formalism hybrid systems modeling. In Proceedings of the 2000
IEEE International Symposium on Computer-Aided Control Sys-
tem Design, Anchorage, AK.

[8] Zeigler, B. P. 2003. DEVS today: Recent advances in discrete
event-based information technology. In Proceedings of the
11th IEEE/ACM International Symposium on Modeling, Analy-
sis and Simulation of Computer Telecommunications Systems
(MASCOTS 2003), Orlando, FL, pp. 141–161.

[9] Djafarzadeh, R., G. Waineer, and T. Mussivand. 2005. DEVS mod-
eling and simulation of the cellular metabolism by mitochondria.
In Proceedings of the 2005 DEVS Integrative M&S Symposium,
Spring Simulation Conference, San Diego, CA, pp. 55–62.

[10] Hu, X., and D. H. Edwards. 2005. Behaviorsim: A simulation envi-
ronment to study animal behavioral choice mechanisms. in Pro-
ceedings of the 2005 DEVS Integrative M&S Symposium, Spring
Simulation Conference, San Diego, CA.

[11] Biermann, S., A. M. Uhrmacher, and H. Schumann. 2004. Support-
ing multi-level models in systems biology by visual methods. In
Proceedings of the 18th European Simulation Multiconference,
Magdeburg, Germany.

[12] Uhrmacher, A. M., D. Degenring, and B. P. Zeigler. 2005. Discrete
event multi-level models for systems biology. Lecture Notes in
Computer Science Vol. 3380. Berlin: Springer, pp. 66–89.

[13] Seo, C., S. Park, B. Kim, S. Cheon, and B. P. Zeigler. 2004. Im-
plementation of distributed high-performance devs simulation
framework in the grid computing environment. In Proceedings of
the 2004 Advanced Simulation Technologies Conference (ASTC
’04) – High Performance Computing Symposium 2004 (HPCS
2004), Arlington, VA.

[14] Cheon, S., C. Seo, S. Park, and B. P. Zeigler. 2004. Design and im-
plementation of distributed DEVS simulation in a peer-to-peer
network system. In Proceedings of the 2004 Advanced Simula-
tion Technologies Conference (ACTS ’04) – Design, Analysis,
and Simulation of Distributed Systems Symposium 2004 (DASD
2004), Arlington, VA.

[15] Pothen, A. 1996. Graph partitioning algorithms with applications
to scientific computing. In Parallel Numerical Algorithms, D.
E. Keyes, A. Sameh, and V. Venkatakrishnan, eds. Dordrecht:
Kluwer, pp. 323–368.

[16] Fjällström, P.-O. 1998. Algorithms for graph partitioning: A survey.
Linkköping Electronic Articles in Computer and Information Sci-
ence 3(10).

[17] Alpert, C. J., and A. B. Kahng. 1995. Recent directions in netlist
partitioning: A survey. SIAM Journal on Scientific Computing
16(1–2):452–469.

[18] Schloegel, K., G. Karypis, and V. Kumar. 2004. Graph partitioning
for high performance scientific simulations. Computing Reviews
45(2).

[19] Karypis, G., and V. Kumar. 1998. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing 20:359–92.

[20] Barnard, S. T., and H. D. Simon. 1994. A fast multilevel implemen-
tation of recursive spectral bisection for partitioning unstructured
problems. Concurrency: Practice and Experience 6:101–17.

[21] Saab, Y. G. 2004. An effective multilevel algorithms for bisect-
ing graphs and hypergraphs. IEEE Transactions on Computers
53(6):641–52.

[22] Möller, M. O., and R. Alur. 2001. Heuristics for hierarchical parti-
tioning with application to model checking. In Proceedings of the
11th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, Livingston,
Scotland, pp. 71–85.

[23] Walshaw, C. 2004. Multilevel refinement for combinatorial optimi-
sation problems. Annals of Operations Research 131(1–4):325–
72.

[24] Kim, K., T. Kim, and K. Park. 1998. Hierarchical partitioning al-
gorithm for optimistic distributed simulation of DEVS models.
Journal of Systems Architecture 44:433–55.

[25] Zhang, G., and B. P. Zeigler. 1990. Mapping hierarchical dis-
crete models to multiprocessor system: Concept, algorithm, and
simulation. Journal of Parallel and Distributed Computing
9:271–80.

[26] Kernighan, B., and S. Lin. 1970. An efficient heuristic procedure
for partitioning graphs. The Bell Technical Journal 49:291–307.

[27] Dutt, S. 1993. New faster Kernighan–Lin-type graph-partitioning
algorithms. In Proceedings of the 1993 IEEE/ACM Interna-
tional Conference on Computer-aided Design, Santa Clara, CA,
pp. 370–7.

[28] Fiduccia, C. M., and R. M. Mattheyses. 1982. A linear-time
heuristic for improving network partitions. In Proceedings of the
IEEE/ACM 19th Design Automation Conference, Las Vegas, NV,
pp. 175–81.

[29] Diekmann, R., B. Monien, and R. Preis. 1994. Using helpful sets
to improve graph bisections. Technical Report TR-RF-94-008,
Department of Computer Science, University of Paderborn, Ger-
many.

[30] Gilbert, J. R., and E. Zmijewski. 1987. A parallel graph partitioning
algorithm for a message-passing multiprocessor. International
Journal of Parallel Programming 16(6):427–49.

[31] Berger, M. J., and B. H. Bokhari. 1987. A partitioning strategy
for non-uniform problems across multiprocessors. IEEE Trans-
actions on Computers 36:570–80.

[32] Williams, R. D. 1991. Performance of dynamic load balancing al-
gorithms for unstructured mesh calculations. Concurrency: Prac-
tice and Experience 3:457–81.

[33] Fox, G. C. 1988. A Review of Automatic Load Balancing and De-
composition Methods for the Hypercube. New York: Springer-
Verlag, pp. 63–76.

[34] Farhat, C., and M. Lesoinne. 1993. Automatic partitioning of
unstructured meshes for the parallel solutions of problems in
computational mechanisms. International Journal for Numerical
Methods in Engineering 36:745–64.

[35] Simon, H. D. 1991. Partitioning of unstructured problems for paral-
lel processing. Computing Systems in Engineering 2(2–3):135–
48.

[36] Pothen, A., H. D. Simon, and K. P. Liu. 1990. Partitioning sparse
matrices with eigenvectors of graphs. SIAM Journal on Matrix
Analysis and Applications 11(3):430–52.

[37] Barnes, E. R. 1982. An algorithm for partitioning the nodes of
a graph. SIAM Journal for Algorithms and Discrete Methods
3:541–50.

[38] Boppana, R. B. 1987. An average case analysis. In Proceedings of
the 28th Annual IEEE Symposium on Foundations of Computer
Science, Los Angeles, CA, pp. 67–75.

[39] Hendrickson, B., and R. Leland. 1995. An improved spectral graph
partitioning algorithm for mapping parallel computations. SIAM
Journal on Scientific Computing 16(2):452–69.

[40] Banan, M., and K. D. Hielmstad. 1992. Self-organization of archi-
tecture by simulated hierarchical adaptive random partitioning.
In Proceedings of the International Joint Conference of Neural
Networks (IJCNN), Vol. 3, pp. 823–8.

[41] Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon.
1989. Optimization by simulated annealing: an experimental
evaluation. Part I: Graph partitioning. Operations Research
37(6):865–92.

[42] den Bout, D. E. V., and T. K. Miller, III. 1994. Graph partition-
ing using annealed neural networks. IEEE transaction on Neural
Networks 1(2):192–203.

[43] Rolland, E., H. Pirkul, and F. Glover. 1996. Tabu search for graph
partitioning. Annals of Operations Research 63:209–32.

[44] Bui, T. N., and B. R. Moon. 1996. Genetic algorithm and graph
partitioning. IEEE Transactions on Computers 45(7):841–55.

[45] Cardellini, V., M. Colajanni, and P. S. Yu. 2003. Request redirection
algorithms for distributed web systems. IEEE Transactions on
Parallel and Distributed Systems 14(1):355–68.

[46] Floyd, S., and V. Paxson. 2001. Difficulties in simulating the inter-
net. IEEE/ACM Transactions on Networking 9(4):392–403.

Volume 82, Number 12 SIMULATION 825

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Park, Hunt, and Zeigler

[47] Arlitt, M., and T. Jin. 2000. A workload characterization study of
the 1998 World Cup web site. IEEE Network 14:30–7.

[48] Barford, P., and M. Crovella. 1999. A performance evaluation of
hyper text transfer protocols. Proceeding of ACM Sigmetrics
27(1):188–97.

Sunwoo Park is a postdoctoral fellow at the University of Cali-
fornia at San Francisco, Department of Biopharmaceutical Sci-
ences, San Francisco, California, USA.

C. Anthony Hunt is a Professor at the University of California
at San Francisco, Department of Biopharmaceutical Sciences,
San Francisco, California, USA.

Bernard P. Zeigler is a Professor at the University of Arizona
at San Francisco, Department of Electrical and Computer Engi-
neering, Tucson, Arizona, USA.

826 SIMULATION Volume 82, Number 12

 © 2006 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on April 28, 2008 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

