
Verifying Trace Inclusion between an Experimental Frame and a Model
V. Albert1, A. Nketsa1 and C. Seguin2

1CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

2DCSD / CD; ONERA - Centre Midi-Pyrénées; 2, av. Edouard Belin, BP 4025 - 31055 Toulouse Cedex 4, France
valbert@laas.fr, alex@laas.fr, christel.seguin@onera.fr

Keywords: Experimental Frame, Abstraction, Applicability,
Component, Formal Matching

Abstract
The concept of experimental frame is employed to define
circumstances under which a model is simulated and ob-
served. Verifying the applicability of an experimental frame
to a model is a key part to ensure that the intended purpose
of a simulation can be reach. We assume that the specifi-
cation of an experimental frame and a model are two soft-
ware components in the formal sense. This paper suggests
a component-based approach to build the right simulation
used for system models verification and validation. We use
Input/Output automata for components’ behaviour specifica-
tion. Behavioural signature is employed to specify the exper-
imental frame and model capabilities. Then we formally de-
fine applicability conditions with matching rules to verify the
trace inclusion between an experimental frame and a model.
This approach is illustrated with an application case, i.e. au-
tonomous intelligent cruise controller.

1. INTRODUCTION
The concept of model abstraction is described by F.K.

Frantz [1] as a method used to reduce the complexity of a
real system while maintaining the validity of the simulation
results with respect to the questions the simulation is sup-
posed to answer. An abstraction is valid if it maintains the
validity of the results of the simulation, which depend on the
questions raised, i.e. the intended purpose. Thereby, captur-
ing the dual relationships between a model and its intended
purpose is a key part of the M&S process [2].

In that context, challenging issues in Modelling and
Simulation (M&S) are mostly related to the specifica-
tion/documentation of both, models capabilities and proper-
ties expected from these models to reach the intended pur-
pose. There are many works which suggests processes and
good practices for such documentation [3] [4] [5] [6].
Those proposals, and in a broader scope, the M&S process,
cruelly lack of formal methods. Some works have been done
in integrating formal method in M&S [7] [8]. The idea is
to construct a formal specification of models and to perform
formal analysis on this formal specification. Furthermore, if a
formal specification of the intended purpose is also provided,

model validation become feasible by formal analysis too.
This paper describes a formal approach to verify that the

system behaviours which are included in the model allows
to reach the expected behaviours of the intended purpose.
We first describe such a property within the well-established
M&S framework suggested by B.P. Zeigler [9]. Then, we
redefine this property on a component-based approach to in-
corporating formal methods. We suggest using behavioural
typing [10] [11] [12] to specify the data of interest for for-
mal analysis. Finally, we establish matching rules for map-
ping between model’s behaviours and simulation’s expected
behaviours. We illustrate our approach with an autonomous
intelligent cruise controller system.

2. TRACE INCLUSION PROPERTY
WITHIN THE M&S FRAMEWORK

2.1. M&S framework
Figure 1 illustrates the framework for Modelling & Sim-

ulation suggested by B.P. Zeigler [9] and its entities. The
system is the real or virtual element used as a source of ob-
servable data and subject to modelling. Through a modelling
activity we obtain a model which is typically a set of in-
structions, controls, equations or constraints to generate its
behaviour. Modelling is the process of abstraction of some
aspects of the structure or the behaviour of the real system
regarding some questions. Those questions can be rigorously
described with the concept of experimental frame. The exper-
imental frame is a specification of the conditions in which a
system is observed or experimented on. As suggested by the
author, it can be seen as a system that interacts with the sys-
tem to obtain the data of interest in given conditions.

Since a model is only a partial/simplified/abstract repre-
sentation of the real system we used to call it the substitute
of the real system. The validity of a model is defined as the
degree to which a model faithfully represents a system in an
experimental frame of interest.

The simulation is a method allowing to approximate the be-
haviour of the real system by executing the model over time.
The simulator is a computer system used to execute the model
and generate its behaviour based on model instructions and
injected inputs.

A simulator is correct if it faithfully generates the model
output values given the model state and the input values. The

correctness of a simulator refers to the principle of separat-
ing preoccupations between model design and its implemen-
tation.

System

Model

Simulator

Real

Experimental Frame

Modelling Simulation

Figure 1. M&S process and its entities

2.2. Zoom on the concept of experimental
frame

An experimental frame has three components as illustrated
figure 2: a generator which generates a set of input segments
for the system; an acceptor which selects the data of interest
of the system while monitoring whether the desired experi-
mental conditions are complied with and a transducer which
observes and analyses the output segments of the system.

An experimental frame is given in [13] as a structure
〈T,X ,Y,ΩX ,ΩY ,SU〉 where T is a time base, X is the set of
simulation observation points, Y is the set of simulation con-
trol points, ΩY ⊆ (Y,T) is the set of segments injected onto
the model inputs, ΩX ⊆ (X ,T) is the set of segments observed
onto the model outputs and SU is a set of conditions, also
called summary mappings, which establish relationships be-
tween inputs and outputs within the frame. A summary map-
ping can be seen as a set of pre- and post-conditions mapping
the stimulation variables to the observation variables and so
on monitoring the experimentation. If, for example, we con-
sider the Boolean observation point alarm in the experimental
frame: ”If the value of alarm is true in one state of the exe-
cution, then there is a previous state in the execution where
altitude≤ 10” is a summary mapping.

2.3. M&S relations
Besides validity and correctness concepts, B.P. Zeigler de-

fined three fundamental relationships: morphism, applicabil-
ity and derivability.

2.3.1. Morphism
A morphism relation establishes a correspondence between

a ”concrete” model and an ”abstract” or simplified model,
the abstract model being the substitute of the concrete model.

System

Model

or

Generator Transducer

Experimental Frame

Acceptor

Y X
ω<t0,tn>

t0 tn

ρ<t0,tn>

t0 tn

Results

SU

Figure 2. The experimental frame and its components

Then we can consider a set of models of a same system hi-
erarchized by a morphism relation. The concrete model is a
model with more capabilities, meaning that it can be used
for a greater number of experimental frames. However, for a
given experimental frame, the abstract model can be as capa-
ble as the concrete model. What must be remembered is that,
for a given experimental frame, an abstract model must be as
valid as the concrete model.

If we consider, as in Figure 3 [9], two systems S and S′

such that S is greater than S′ in terms of the number of states.
There has been abstraction between S and S′ by state aggre-
gation. For each state of system S′, a correspondence is estab-
lished, illustrated by bold print arrows, with one or a set of
system S states. This matching is called a homomorphism if,

when S′ performs a transition, for example a α′→ b then S per-
forms the transition concerning the corresponding states, i.e.
A α→ B. We will say that the transition function has been pre-
served. Similarly, a homomorphism implies the preservation
of the output function. This means that the output produced
by system S′ in status q, for example at state b, must be the
same as the output produced by system S in the correspond-
ing state, in this case B. If two systems are homomorphic,
they have equivalent behaviour.

A
B C D

a b c d

Homomorphism

Transition function preservation

α
β χ

α′ β′ χ′

Figure 3. Morphism by state aggregation

2.3.2. Applicability and derivability
The applicability relation determines whether an experi-

mental frame can be applied to a model. This relation is very
important as it serves to state whether a use objective can

be reached with a specific M&S application. Only few mod-
els can implement experimentation conditions required by an
experimental frame used to reach objectives and may possi-
bly supply valid simulation results. B.P. Zeigler also defines
a derivability relation between experimental frames. This re-
lation refers to the degree to which an experimental frame
defines more restrictive conditions (which allow fewer obser-
vations) than another. Figure 4 [9] below illustrates the mor-
phism, applicability and derivability relations. Experimental
frame EF4, not very restrictive, applies to models M1, M2 and
M3. Model M4 is too abstract to accommodate EF4 as well
as experimental frames EF1, EF2 and EF3 which are more
restrictive than EF4. EF2 is applicable to Ml. EF3, which is
less restrictive than EF2 is therefore also applicable. In this
case, we can say that M1 is too concrete or complex for the
given experimental frame but not less valid. No models can
accommodate EF1.

EF1

EF2

EF3

EF4

M1

M2

M3

M4

Experimental Frame
More restrictive Model more able

MorphismDerivability

Applicability

Figure 4. Morphism, applicability and derivability relations

2.4. EF-Model applicability according to their
behaviours

A system is a structure

S = 〈T,XS,ΩS,YS,Q,∆,Λ〉 where

• T is the time base,

• X is the set of input values,

• Ω⊆ (X ,T) is the set of acceptable input segments,

• Y is the set of output values,

• Q is the set of states,

• ∆ : Q×Ω→ Q is the transition function,

• Λ : Q×X → Y is the output function.

A system is an entity characterised by a set of states Q or-
dered on a time base T which reacts to a set of input segments
ω on X , originating from its environment. The future of the
system is determined according to the current state and an in-
put segment, by the transition function ∆. The output function
Λ defines a set ΩYM of output trajectory ρ on Y given a current
state and an input segment.

Consider an experimental frame EF =
〈T,XEF ,YEF ,ΩXEF ,ΩYEF ,SU〉 and a model M =
〈T,XM,ΩXM ,YM,Q,∆,Λ〉. EF specifies the executions
required to correctly perform a specific experimentation
(observation of a system of interest). Then ΩYEF are the
simulation results that the experimenter wishes to observe,
whereas ΩXEF are the stimuli injected in the simulation.
Similarly, ΩXM are model acceptable inputs segments and all
ρ ∈ΩYM are the possible simulation results.

We say that an experimental frame is applicable to a model
according to their behaviours if:

ΩYEF ⊆ΩXM

ΩYM ⊆ΩXEF

3. COMPONENT-BASED APPROACH FOR
TRACE INCLUSION VERIFICATION

We suggest a component-based approach to describe a
M&S product. We say that the experimental frame and the
model of the system of interest are two components as de-
fined by [14]. A component has a set of ports and is coupled
to another through connectors via their respective ports. A
component can be either coupled, i.e. it results from a com-
ponents’ composition or atomic, i.e. it cannot be decomposed
any more.

Behavioural type systems have been defined in recent years
with the aim to be able to check the compatibility of com-
municating concurrent objects, not only regarding data ex-
changed, but also regarding the matching of their respective
behaviour. A behavioural type provides a notion of compli-
ance of components to their interfaces, namely a signature.
By signature analysis we can verify such compliance, in our
case the applicability of the experimental frame to the model.

3.1. Component’s behaviour specification
We use IOA (Input/Output Automata) [15] to describe the

dynamic behaviour of components.
An IOA is an n-uplet

A = 〈D, I,O,dom,S,σ,Σ,δ,S0〉 where

• D is a set of data types (integer, real, string, etc.),

• I is a finite set of names representing the set of input
variables,

• O is a finite set of names representing the set of output
variables,

• dom : I∪O→D is the typing function which allocates a
type of data to each variable,

• S is the set of states,

• σ : S → ((I ∪O) → dom(I ∪O)) is the configuration
function, i.e. mapping of values with the typed in-
put/output variables for each state.

• Σ is the set of event names. These names are the state
transition labels. ε is the set of non-observable events.

• δ⊂ S×Σ×S is the transition relation, a transition iden-
tifies a change to the inputs, the outputs or the states.

• S0 ⊂ S is the set of initial states possible, the states in
which the automaton can be if no inputs have yet been
transformed.

I ∪O∪Σ is the vocabulary used to define the automaton.
For the sake of simplicity, we will assume that the names used
in the vocabulary are unique.

Example If, for example, we consider a communication
system with a shared memory, the behaviour of which is de-
scribed by the IOA buffer in Figure 5. In this example, a
variable queue is defined to describe a sequence of messages.
This variable is declared as a table of length len that can
contain m messages of type idm with an initial value empty.
This automaton is composed of an initial state s0, where
the sequence is empty, and a state s1 where the sequence is
not empty. These states are connected by transition relations.
These transitions are triggered by two types of events:

• send(m) is an input event where each message is
added to the head of the sequence queue using the con-
figuration function add(m),

• recv(m) is an output event, where each message is
deleted from the sequence queue using the configura-
tion function remove().

The configuration functions modify the value of the vari-
able queue for each state. For example, if len=2, queue
can have the values (0,0),(idm1,0),(idm1, idm2),(idm2,0).

In the IOA theory, we can synchronise an IOA output event
with the input event of another IOA if these events have the
same name. For example, if output event send(m) appears
in an IOA then this event can be synchronised with input
event send(m) of another IOA. Figure 5, for example, il-
lustrates two other IOAs client and serveur which exchange
messages via buffer.

Figure 5. Automaton of a shared memory communication
system

3.2. Behavioural signature specification
Definition 3..1 (Run (or trace)). An IOA run is a sequence
(finite or not) σ(s0)l0 . . .σ(si)li . . . where si is a state (s0 is an
initial state) and li is an event name such that any (si li si+1)
of a run is a transition of the automaton. A run can also be
defined by a path taken from the computation tree of an au-
tomaton.

We call a temporal interfacing constraint an execution
property defined with respect to a given vocabulary (names
of events and input/output variables).

The properties of invariants are constraints on the configu-
ration function. For example, if we consider altitude to be an
input variable of the automaton’s vocabulary. The constraint
”variable altitude is positive or zero” is an example of an in-
variant. The automaton that satisfies this invariant includes
an integer input variable called altitude and a configuration
function σ such that, for any state s, σ(s)(altitude)≤ 0.

The temporal properties are constraints which link the con-
figuration and the transitions. There are two separate types of
time-dependent properties:

• linear versus computation tree: refers to the constraints
on all executions of the automaton versus those on the
computation tree taken from the automaton,

• past versus future.

If, for example, we consider the Boolean output variable
alarm in the vocabulary of an automaton: ”If the value of
alarm is true in one state of the execution, then there is a
previous state in the execution where altitude≤ 10”” is a lin-
ear time and past property. ”If altitude ≤ 10 in one node of
the computation tree of an automaton, then we should be able
to find a path and a subsequent node in the path which satis-
fies alarm = true”” is an example of a computation tree and
future property.

Temporal properties with a vocabulary which refers to
clock variables are timed properties. ”If altitude ≤ 10 was
true for at least ten units of time then alarm = true” is an
example of a timed property.

Definition 3..2 (Execution set satisfied by a TIC). If we have
an automaton A and TIC a constraint defined on the vocabu-
lary included in the vocabulary of A. We note ‖T IC‖A the set
of executions of A which satisfies the TIC.

3.3. Matching rules for signature analysis
We propose to formalise an EF by a TIC on the vocabulary

IEF ∪OEF ∪ΣEF . The EF inputs therefore are the simulation
results that the experimenter wishes to observe, whereas the
EF outputs are the stimuli injected in the simulation. We sug-
gest to formalise a model of a system of interest by a TIC on a
vocabulary IM∪OM∪ΣM . The model inputs must be supplied
by the outputs of the experimental frame whereas the model
outputs are all the possible simulation results.

Model and experimental frame can be connected if they
have compatible vocabularies:

• IEF ⊆ OM: all the results of interest of the experimental
frame are supplied by the simulation and the simulation
may supply more results than necessary.

• OEF = IM: all the stimulations planned by the experi-
mentation can be performed and all the inputs necessary
to perform the simulation are defined by the experimen-
tation (the exact matching is required here since non-
assigned model inputs may lead to bias in the simulation
results).

• ΣEF ⊆ ΣM: all the events of interest in the experimenta-
tion can be observed during the simulation, but the simu-
lation allows more events to be observed than necessary.

Compatibility of the vocabularies is the first condition nec-
essary for using simulation with respect to an experimentation
frame. We will now clarify how to check the applicability of
an experimental frame to a model by comparing traces ful-
filled by the corresponding TICs.

Definition 3..3 (Restriction of an automaton). The re-
striction of an automaton 〈D, I,O,dom,S,σ,Σ,δ,S0〉 to a
subset I′ ∪ O′ ∪ Σ′ of its vocabulary is an automaton
〈D, I′,O′,dom,S,σ/I′ ∪O′,Σ′,δ/Σ′,S0〉 in which the config-
urations and restricted transitions are defined below.

Definition 3..4 (Restriction of a configuration). The restric-
tion σ/I′∪O′ of a configuration σ : S→ ((I∪O)→ dom(I∪
O)) restricted to a vocabulary I′∪O′ such that I′∪O′ ⊂ I∪O
is the configuration σ′/I′ ∪O′ : S→ ((I′ ∪O′)→ dom(I′ ∪
O′)) such that σ/I′∪O′(s)(x) = σ(s)(x) for all x ∈ I′∪O′.

Intuitively, the restriction of a configuration keeps for each
state the value of a subset of variables of interest and puts
aside the values of all other variables.

Definition 3..5 (Restriction of a transition). The restriction
δ/Σ′ of a transition relation δ ⊂ S× Σ× S restricted to a
vocabulary Σ′ ⊂ Σ is the transition relation δ/Σ′ ⊂ S×Σ′ ∪
{ε}×S such that :

• for all e ∈ Σ′, for all (s,s′) ∈ S× S, if (s,e,s′) ∈ δ then
(s,e,s′) ∈ δ/Σ′,

• for all e ∈ Σ−Σ′, for all (s,s′) ∈ S× S, if (s,e,s′) ∈ δ

then (s,ε,s′) ∈ δ/Σ′.

Intuitively, the restrictions of a transition relation keep the
structure of a transition relation unchanged, but identify the
names of a subset of events of interest and masks the other
names with non-observable events ε.

Definition 3..6 (Restriction of a run). A run restricted to a
vocabulary is the initial run in which the initial configuration
function and the initial function relation are replaced by their
respective restrictions.

If we have EF and M, two TICs for the respective vocabu-
laries VEF = IEF ∪OEF ∪ΣEF and VM = IM ∪OM ∪ΣM such
that these vocabularies are compatible. EF is fully applica-
ble to M according to their behaviours if, and only if, all
traces of M restricted to the vocabulary of EF are traces of
EF: ‖M‖VM/VEF

= ‖EF‖VEF
.

The exact matching being not required, intuitively, this
means that:

• ‖M‖VM/VEF
⊂ ‖EF‖VEF

: the behaviours of the model are
in the envelope of significant behaviours with respect to
the EF.

• ‖EF‖VM
⊂‖M‖VM/VEF

: all the experimentations planned
by the EF can be performed on the model.

When the first condition is false, there are model execu-
tions which are not EF executions. We identify two cases:

1. There is a test coverage risk. This may be the case if
the model considers input variables with other values
than those planned by the EF. The EF does not there-
fore explore all executions of the simulation. This means
that either the unexplored executions are not relevant for
the experimentation, or that the EF is not comprehensive
enough.

2. There is a bias in the simulation or in the reference defi-
nition. This may be the case as the model considers out-
put variables with other values than those expected by
the EF. This means either that the simulation results are
incorrect or that the EF assumptions are false.

When the second condition is false, there are executions
envisaged by the EF which are not model executions. Here
again, we identify two cases:

3. Some experiments are outside the usage domain of the
simulation model. This may be the case if the EF con-
siders output variables with more values than those ac-
cepted by the model. The EF therefore plans to explore
simulation executions outside the scope recommended
by the model and the simulation results can no longer be
guaranteed. The model or EF must be modified.

4. There is a risk concerning the completeness of the
model. This may be the case if the EF considers the in-
put variables with more values than those supplied by the
simulation results. This means that either there is some-
thing to be learnt from the simulation if we reduce the
uncertainties of the EF, or that the simulation overlooks
the implementation of some cases.

Figure 6 illustrates these four cases.

||M||VM/VEF

∩
||EF ||VEF

||M||VM/VEF

||EF ||VEF

1. ΩXM > ΩYEF

2. ΩYM 6= ΩXEF

3. ΩXM < ΩYEF

4. ΩYM ⊂ΩXEF

Figure 6. Level of EF/Model behavioural applicability

4. APPLICATION
We illustrate our approach on the design of an embedded

system, the control unit of an autonomous, intelligent cruise
controller (AICC) [16] [17]. The AICC is more than a reg-
ular cruise controller which maintains a speed required by a
driver, it adapts the speed vehicle according to the distance
and speed of the vehicle ahead. The safe speed is the max-
imum speed that keeps the car within a safe distance of the
vehicle ahead. The wanted speed is the speed the driver re-
quests. The control unit must keep the speed of the vehi-
cle within ±2km.h−1 of the safe speed or the wanted speed,
whichever is lower.

4.1. Modelling
4.1.1. Structural definition
The structural definition of the model of the system of in-

terest is given figure 7 below. It is an important step since
it allows defining the boundaries between the model and the
experimental frame [18] [19]. In that way, we can clearly
distinguish among what drives the model, what is observed
as its output and the model itself. It must be avoided to incor-
porate data-gathering facilities into the model, which would
make the model not only more complex but also unsuitable
for reuse or for association with different experimental frame.

Defining the boundaries between the model and the experi-
mental frame is equivalent to change the scope of the model
[20]. So, selecting the scope of the model implicitly includes
selecting the exogenous parameters. All other components of
the global system (e.g. AICC vehicle) now belong to the ex-
perimental frame to represent the environment of the cruise
controller. Some of these elements can be abstracted or sim-
plified if their contributions are not relevant to the experimen-
tation.

The system of interest consists of the cruise controller cal-
culation module which computes a throttle setting according
to data from the driver and the sensors. Those data include
a brake and gas commands, coast and acc controls to re-
spectively decrease and increase the required speed. The safe
speed and the speed are retrieved from speed sensors.

In that context, the experimental frame consists on scenar-
ios of brake, gas and required speed and a function to compute
the safe speed according to the distance and speed of lead ve-
hicle. This is done by the generator. The transducer observes
the throttle setting and update the vehicle speed accordingly.
The acceptor continually tests the run-control segments to sat-
isfy a set of constraints, e.g. the speed of the vehicle must re-
main within±2km.h−1 of the safe speed or the wanted speed.

Experimental Frame

Accepteur

Model
AICC

Computation Unit

Speed

Gas

Break
Coast
Acc

Safe Speed
Throttle Setting Throttle Setting

Speed

Transducer

Generator

Gas

Break
Coast

Acc

Safe Speed

Speed

Wanted Speed

Figure 7. Structural definition of the AICC simulation

4.1.2. Behavioural definition
The behaviour of the AICC calculation module is given by

automaton figure 8. When the cruise controller is OFF, and
the COAST button is pressed, the cruise controller goes to
state ON and the desired speed is maintained. In this state,
pressing the COAST button leads to decreasing the driver re-
quired speed, while pressing the ACC button leads to increas-
ing the driver required speed. A brake or a gas command turns
OFF the cruise controller. The second automaton figure 9 is
used to continually check which speed must be used for cruise
control, i.e. safe speed or wanted speed.

The behaviour of the experimental frame is given by au-
tomata figure 10. The transducer (right side of the figure)
updates the vehicle speed according to the throttle setting.
Initially, the required speed is greater than the safe speed.
The generator (left side of the figure) initializes the speed and

Figure 8. IOA 1 of the model: calculation module

Figure 9. IOA 2 of the model: update speed

the safe speed then it turns on the cruise controller with the
COAST button. The cruise controller adapts the speed with
the safe speed. Then a break command turns off the cruise
controller.

The acceptor is specified with temporal logics. If
properties A♦ speed>=curr speed-2 and A♦
speed<=curr speed+2 are true, this means the speed of
the vehicle always remains within ±2km.h−1 of the current
speed.

4.2. Trace inclusion verification
In fact, the proposed scenario consists in validating the

speed selection process: if the safe speed is lower than
the required speed, the cruise controller must maintain the
speed to the safe speed. Otherwise, it must maintain the
speed to the required speed. This requirement can be ex-
pressed with the following formula: if the property E♦
curr speed==wanted speed is true, this means that
there is a sequence of alternating delay transitions and action
transitions where the current speed was equals to the required

Figure 10. IOA of the experimental frame

speed. With the generator defined above, the property is false.
The safe speed is always lower than the required speed, the
experimental frame does not therefore explore all executions
of the simulation. We are in the first case where the model
considers input variables with other values than those planned
by the experimental frame.

5. CONCLUSION
This paper introduced an applicability verification ap-

proach based on formal matching rules between a model and
its intended purpose. We used the concept of experimental
frame, proposed in the M&S theory, to address the problem
within a well-founded methodological framework. It also al-
lowed us to treat a recurring problem in that the simulation
intended purpose is often not well-defined. We have shown
that the model is not the only cause of any bias to a simula-
tion but that the experimentation performed with this model
may also have been poorly defined.

The issue of matching is founded on the principle that an
intended purpose and a model are two components, in the
formal meaning of the term, i.e. interacting through their
interfaces and only through their interfaces. We turned to
component-based engineering techniques to iteratively en-
hance the concept of an experimental frame of ”symbolic
concepts” and determining the system behaviours that must
be included in the model.

The generator defines the logical order of the stimuli in-
jected in the simulation. The transducer defines the logical
order of the observations. We specified these two components
using automata. The acceptor, specified using temporal logic,
consists in verifying whether a requirement has been verified
based on stimulus/observation pairs. As for the properties re-
lated to the verification of applicability between the experi-
mental frame and the model, we also defined temporal logic
properties for EF states to determine which case of applicabil-
ity we found ourselves in. While this approach is consistent,
an effort remains to be made to find more or less systematic
applicability properties.

With such an approach, the applicability verification can
be performed either on the development ab initio of a simu-
lation necessary and sufficient to satisfy an intended purpose,
or on the reuse of an already existing simulation model to
satisfy an intended purpose. Furthermore, developers are free
to associate a model with different experimental frames, each
corresponding to a particular simulation objective of use. If
we consider that morphisms between models of a same sys-
tem are well documented, juggling between abstractions and
previous simulation results allows verifying the applicability
of a ”new” simulation without executing the simulation. In
the same way, one can put another model of the system of
interest in the experimental frame and verify by matching if
this model can accommodate the experimental frame.

REFERENCES
[1] F. K. Frantz, A taxonomy of model abstraction tech-

niques, in: WSC ’95: Proceedings of the 27th confer-
ence on Winter simulation, IEEE Computer Society,
Washington, DC, USA, 1995, pp. 1413–1420.

[2] M. K. Traoré, A. Muzy, Capturing the dual relationship
between simulation models and their context., Simula-
tion Modelling Practice and Theory 14 (2) (2006) 126–
142.

[3] O. Balci, W. F. Ormsby, J. T. Carr, III, S. D. Saadi,
Planning for verification, validation, and accreditation
of modeling and simulation applications, in: WSC ’00:
Proceedings of the 32nd conference on Winter simu-
lation, Society for Computer Simulation International,
San Diego, CA, USA, 2000, pp. 829–839.

[4] R. G. Sargent, Verification and validation of simulation
models, in: WSC ’05: Proceedings of the 37th confer-
ence on Winter simulation, Winter Simulation Confer-
ence, 2005, pp. 130–143.

[5] D. Brade, Vv&a ii: enhancing modeling and simulation
accreditation by structuring verification and validation
results, in: WSC ’00: Proceedings of the 32nd confer-
ence on Winter simulation, Society for Computer Sim-
ulation International, San Diego, CA, USA, 2000, pp.
840–848.

[6] W. L. Oberkampf, T. G. Trucano, C. Hirsch, Verifica-
tion, validation, and predictive capability in computa-
tional engineering and physics, Appl. Mech. Rev. 57 (5)
(2004) 345–385.

[7] M. K. Traoré, Analyzing static and temporal properties
of simulation models, in: WSC ’06: Proceedings of the
38th conference on Winter simulation, Winter Simula-
tion Conference, 2006, pp. 897–904.

[8] C. J. Jacques, G. A. Wainer, Using the cd++ devs tookit
to develop petri nets, in: 2002 Summer Computer Sim-
ulation Conference, 2002.

[9] B. P. Zeigler, H. Praehofer, T. G. Kim, Theory of Mod-
elling and Simulation, Academic Press, San Diego, Cal-
ifornia, USA, 2000.

[10] C. Carrez, A. Fantechi, E. Najm, Behavioural contracts
for a sound assembly of components, in: In FORTE,
Springer, 2003, pp. 36–39.

[11] F. Arbab, Abstract behavior types: a foundation model
for components and their composition, in: Sci. Comput.
Program., Vol. 55, Elsevier North-Holland, Inc., Ams-
terdam, The Netherlands, 2005, pp. 3–52.

[12] E. Lee, Y. Xiong, Behavioural types for component-
based design, Technical Memorandum UCB/ERL
M02/29.

[13] B. P. Zeigler, Theory of Modelling and Simulation,
Krieger Publishing Co., Inc., Melbourne, FL, USA,
1984.

[14] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[15] L. Alfaro, T. A. Henzinger, Interface automata, in: Pro-
ceedings of the Ninth Annual Symposium on Foun-
dations of Software Engineering (FSE), ACM, Press,
2001, pp. 109–120.

[16] U. Palmquist, Intelligent cruise control and roadside in-
formation, IEEE Micro 13 (1) (1993) 20–28.

[17] S. Schulz, J. W. Rozenblit, K. Buchenrieder, Towards an
application of model-based codesign: An autonomous,
intelligent cruise controller, in: Proceedings of the 1997
IEEE Conference and Workshop on Engineering of
Computer Based Systems, 1997, pp. 73–80.

[18] V. Albert, A. Nketsa, Signature matching applied to sim-
ulation/frame duality, The Fourth International Confer-
ence on Systems (ICONS 2009) (2009) 190–196.

[19] V. Albert, A. Nketsa, M. Paludetto, C. Seguin,
R. Jacquart, J. Casteres, Simulation validity assess-
ment: simulation objectives of use description guide-
lines, Tech. rep., LAAS-CNRS and ONERA-CERT
(2009).

[20] D. S. Weld, Reasoning about model accuracy, Artif. In-
tell. 56 (2-3) (1992) 255–300.

