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Abstract—Efficient sorting is vital for overall performance
of the underlying application. This paper presents Butterfly
Network Sort (BNS) for sorting large data sets. A minimal
version of the algorithm Min-Max Butterfly is also shown
for searching minimum and maximum values in data. Both
algorithms are implemented on GPUs using OpenCL exploiting
data parallelism model. Results obtained on different GPU
architectures show better performance of butterfly sorting in
terms of sorting time and rate. The comparison of butterfly
sorting with other algorithms:bitonic, odd-even and rank sort
show significant speedup improvements against all on Nvidia
Quadro-6000 GPU with relatively better sorting time and rate.

Index Terms—Parallel Computing, GPU, Sorting Algorithms,
OpenCL

1. INTRODUCTION

Parallelism, concurrency enabled at hardware, has played
vital role in advancements of micro-processor architectures
in the area of high performance computing. Such high
performance, in one case, is accomplished by more than
one processors working together on a single compute unit
forming multicore CPUs[1]. However for high performance
data-computation intensive applications, requiring massive
parallelism, such core-processors are not sufficient. Recently
GPUs (Graphic Processing Units), introduced primarily for
higher resolution games, are now widely used for parallel
computation where concurrent threads run simultaneously
over multiple processing elements. High resolution games
and scientific applications requiring high computations, are
amongst the greatest beneficiaries. Earlier credits to NVIDIA
(GeForce3) by adding programmable graphics pipeline to
GPUs and AMD/ATI (Radeon9700) introducing floating
point math capability, has led GPUs for general purpose com-
putation as the name “GPGPU” i.e. General Purpose Graphic
Processing Units coined by M.J Harris[2]. Recent develop-
ments in dedicated and heterogeneous parallel programming
model and APIs like NVIDIA-CUDA and OpenCL specifica-
tion by Khronos Group, enabled GPUs offload CPU burden
working as co-processor for fast numerical crunching [3],
[4]. The GPU itself is a multi-core processor where dozens
of streaming processors with hundreds of cores support
thousands of threads [5] running concurrently. CPU bound
programs with high data in-dependency perform relatively

NVIDIA Intel
Architecture

Details GT320M GTX
260

Quadro
6000

Core2Quad
Q8400

Micro-
processors 3 27 14 2

Cores per
Processor 8 8 32 2

Total-
Cores 24 216 448 4

Clock-Rate
in MHz 1100 1242 1147 2660

FLOPS 158 874.8 1030.4 42.56
Memory-

Bandwidth
(GB/s)

9.95 91.36 144 -

TABLE I: Specifications of CPU and GPUs

better on GPUs. Generally large and complex applications
have both data-dependent and independent modules which
require both CPU and GPU working together as the name
“GPU Computing” [6]. GPUs are adopted widely for com-
putation intensive numerical simulations as they provide best
price/performance ratio[7]. Table-1 highlights specification
details of the GPUs and CPU focused in this paper for im-
plementation of sorting algorithms. Performance comparison
in GFLOPS shows that GPUs surpass CPUs by a wide range.

Several tools and APIs are available for programming GPU
with a trade off for scalability, compatibility and user friend-
liness. Two of such tools and APIs are CUDA (Compute
Unified Device Architecture) by NVIDIA1 and OpenCL
(Open Computing Language) by the Khronos2. Although
CUDA is more scalable but designed specifically for NVIDIA
platforms where as OpenCL is an open standard for het-
erogeneous computing targeting different platforms meeting
its specification [8], [9]. OpenCL encompasses C99 based
language extension for writing kernel code (device-program)
and an API for manipulating (host-program) these kernels.
Host program, running on CPU, controls access to kernel
code run simultaneously by threads for data-task parallelism.
The crux of parallel computing is finding sequential and
parallel modules in the application to be run on CPU and
GPU respectively. Threads are managed at hardware level

1NVIDIA Coporation www.nvidia.org
2OpenCL Specification. www.khronos.org/opencl

www.nvidia.org


Fig. 1: 2D Addressing scheme for work-items

and developer only organizes the work domain into work
items (threads) and to workgroups. Just like CUDA’s thread,
a workitem in OpenCL nomenclature is the basic execution
unit. Workitems are identified uniquely by a global ad-
dressing scheme obtained through get−global−id(0) built in
function. Inside a workgroup workitems can be identified by
local addressing with scope only to workgroup they belong
to. Workitems belonging to different workgroups can have
same local addressing but not global one. The organization
of workitems inside NDRange for a 2-dimensional scheme
is shown in Fig.1. The entire problem domain, ND-Range,
can be in 1D, 2D or 3D. The dimension size varies from
device to device with a limit of up to maximum of 3
dimensions 0, 1 and 2. For example in Quadro 6000 total
thread size for the 3-dimension is 1024*1024*64. Threads are
executed in groups called a thread block/warp which consists
of 32 threads per block. Number of threads per block with
their respective memory access distribution greatly affect
throughput of memory accessing instructions. Objective of
the GPU implementation for a sorting algorithm is minimiz-
ing time spent in sorting data. This time is vital for overall
efficiency of the whole application, for example in discrete
event simulators where FES (Frequent Even Set) sorting time
is of great concern in overall performance of simulation.
Selecting a sorting algorithm depends on both application
and underlying hardware architecture. The paper is organised
as followsn. A related work on parallel sorting is presented
in section II. Section III briefly discusses design, algorithm
and implementation of butterfly sorting on GPU architecture.
Performance analysis and concluding remarks are reported in
section IV and V respectively.

2. RELATED WORK

Sorting is the most common operation performed in nu-
merical computation and thus is one of the widely studied
area in computer science. Sorting algorithms are very rich
in literature. The focus here is on parallel sorting algorithms

relating to GPUs only. A quick overview of parallel algo-
rithms is presented in [10]. A quick-sort implementation
on GPU using CUDA is considered in[11]. The quick-sort
algorithm discussed in [11] works in two steps, creation of
sub-sequences and assigning threads to the sub-sequences
generated in first step. Their algorithm works in divide
and conquer fashion on left-right sequences formation in
accordance to the current value, greater or smaller than the
value of pivot. The results in [11] show better performance
of quick sort over bitonic and radix sort with complexity of
O(n log(n)). A GPU implementation of merge sort and radix
sort is presented in [12]. In this case, the radix sort divides
the sequence of N − items into N/P blocks. In next phase,
in order to maximize coherence of scatters and minimize it
to global memory, every sequence then is sorted by radix
sort exploiting shared memory on the chip. The merge
sort algorithm discussed in [12] adopts same divide-conquer
approach by dividing sequence into p number of equal size
blocks/tiles. An adaptive bitonic sorting algorithm is shown
in [13]. Their implementation achieves optimal complexity of
O
(

nlogn
p

)
for sorting n numbers on p streaming processors.

A GPU implementation of bitonic sort is discussed in [14]
and CUDA based in-place bitonic sort is implemented in [15].
An overview of sorting on queues is covered in[16] focusing
mainly on traffic simulations for studying the behavior of
transport agents in large groups. A parallel implementation
of odd-even sort suggested in [17] shows that parallelism can
be introduced at each stage only internally i.e. at compare-
exchange process but not stage by stage meaning that no two
stages can be executed in parallel as output at any stage si
is input for subsequent stage si+1. Same holds true for both
min-max butterfly and full butterfly sorting where consecutive
two stages can not be executed in parallel.

3. BUTTERFLY NETWORK SORTING

A. Overview

Network Routing and sorting on hypercube is of high concern
for efficiency and throughput as mentioned in [18], [19]. Gen-
erally sorting N size data on a k-dimensional hypercube with
p− processors require running time of Θ((nlogn)/p) with
p = 2k. We have considered 2×2 butterfly acting as compare-
exchange circuit for both min-max butterfly and full butterfly
sorting. The output values are placed at upper and lower
wing of the butterfly. Searching minimum and maximum in
this way increases over all throughput of several applications
and dynamic systems involving operations on such smallest
and largest values. The butterfly-network structure can be
found in many diverse set of areas like FFT calculation
in DSP, Benes network for switching fabrics, Hamiltonian
cycle construction in network flows, dealing with min-max
fairness problems and several other semi/complete sorting
applications.



B. Working and Algorithms

1) Min-Max Butterfly: The min-max butterfly finds mini-
mum and maximum in large volume of data in relatively
small time. Min-max butterfly for searching minimum and
maximum in N size data has total of log2N stages. Com-
plexity in terms of butterflies (comparators) is (N/2)log2N
butterflies where N/2 are number of butterflies in each stage.
An example diagram of length 8 min-max butterfly is shown
in Fig.2. Here x(0), x(1)...x(7) can be any random values.
At each stage N/2 butterflies are carried out in parallel where
each butterfly fetches two values, Posstart and Posend, from
queue and then compares these values to be placed either at
its upper or lower wing accordingly as shown in the algorithm
below. After successful complete run of the algorithm in this
case minimum and maximum values, 0 and 7, are output
at x(0) and x(7) respectively. The min-max algorithm is
carried out stage by stage with parallelism introduced in
butterflies in execution in parallel inside a single stage. In
addition to finding minimum and maximum in data, the min-
max butterfly does complete sorting in special cases where
input data is completely in descending order and vice versa.

7

3

2

5

6

4

0

1

3

7

2

5

4

6

0

1

2

5

3

7

0

1

4

6

0

1

3

6

2

5

4

7

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Fig. 2: 8x8 Min-Max Butterfly

The min-max butterfly algorithm works as follows;-

2) Full Butterfly Sort: The butterfly sort orders input data
following any distribution type:uniform, random, exponential
etc. Like min-max butterfly, in full butterfly sort the number
of butterflies in any stage are constant i.e. N/2. For com-
plexity in terms of total butterflies, we first find total number
of stages which is given by the following formula.

T.Stages = log2N +

log2N−1∑

i=1

i (1)

T.Butterflies = N/2× T.Stages (2)

In equation 1 log2N are total number of out-kernals repre-
sented by the first do−parallel block of the algorithm where

input : datarandom,size=N
output: datasorted
begin

for xout ← 1 to log2(size) do
PowerX = radixxout ;
do parallel T

yIndex = t/ (PowerX/radix);
kIndex = t% (PowerX/radix);
Posstart = kIndex + yIndex × PowerX;
Posend = kIndex + yIndex × PowerX +
PowerX/radix;
if Posstart > Posend then

swap(Posstart,Posend)
end

end
end

end
Algorithm 1: Min/Max Butterfly Sorting Network

Fig. 4: Time breakdown for memory transfer and GPU
execution of each stage/sub-stage for input data of size 16

as
∑log2N−1

i=1 i are total number of in-kernels represented
by second do− parallel block in the algorithm. The visual
profiler output for input data of size 16 clarifies this fact as
shown in Fig. 4. Figure3 shows an example of 16x16 full
butterfly network.

C. Visual Profiler Analysis

NVIDIA profiler presents some visual information of the
code with the one shown in Fig. 4. Number of workgroups
and their size plays significant role in over performance of the
application. Throughput is also affected by global memory
access that is typically accessed in 32, 64 or 128-byte chunks
[20]. Fig.5 shows number of diverging threads in case of one
stage of the full butterfly sort for input sizes 128 and 512
using float data type that is 4-byte long. For each butterfly two
memory accesses are carried out; PosStart and PosEnd, for
each memory load and store operation in 32, 64 or 128 byte
chunks. After every access, the chunk size may be changed
depending on device compute capability rules. Host program
sets globalSize and localSize for workgroup size and for
number of concurrent threads executing kernel respectively,
which are given as follows:-
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Fig. 3: 16x16 Full Butterfly Sorting

input : datarandom,size=N
output: datasorted
begin

for xout ← 1 to log2(size) do
PowerX = radixxout ;
do parallel T

yIndex = t/ (PowerX/radix);
kIndex = t% (PowerX/radix);
Posstart = kIndex + yIndex × PowerX;
Posend = PowerX − kIndex − 1 + yIndex ×
PowerX;
if Posstart > Posend then

swap(Posstart,Posend)
end

end
if x > 1 then

for xin ← x to 1 do
PowerX = radixxin ;
do parallel T

yIndex = t/ (PowerX/radix);
kIndex = t% (PowerX/radix);
Posstart = kIndex + yIndex ×
PowerX;
Posend = kIndex + yIndex × PowerX
+ PowerX/radix;
if Posstart > Posend then

swap(Posstart,Posend)
end

end
end

end
end

end
Algorithm 2: Full Butterfly Sorting

Work Group
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2048 bytes

Fig. 5: Thread Divergence

globalSize = size/2

localSize =

{
globalSize/8

256

∀globalSize < 256

otherwise

Throughput is affected mainly by global-local workgroup
size ratio and distribution of memory accesses inside threads
as shown in Fig. 6. Memory load (ρl) and store (ρs) through-
put for all stages (st) from visual profiler are analysed as
percentage average values for data of various sizes (n) by
using following equations:

ρl =
∑

st

[
gld32 × 32 + gld64 × 64 + gld128 × 128

n× sizeof(float)

]

ρlavg
=

ρl
st
× 100



ρs =
∑

st

[
gst32 × 32 + gst64 × 64 + gst128 × 128

n× sizeof(float)

]

ρsavg
=

ρs
st
× 100

4. PERFORMANCE ANALYSIS

Performance of the sorting algorithms discussed here is eval-
uated both on CPU and GPUs considering their sequential
and parallel implementations in terms of sorting time, sorting
rate and speedup.

A. Experimental Setup

All simulations are carried out in OpenCL 1.2 and standard
C compiler for different queue sizes in the power of 2.
Input data of type float, is taken from a random number
generator with size in the range of 210 to 225. Variable dec-
laration/initializations, random variate generators and other
memory reads/writes to/from queues are mainly limited to
CPU in host program. Actual sorting, butterfly computation,
is carried out on GPU in kernel code. Hardware architec-
tures used for simulations are Nvidia-Quadro6000, GeForce
GTX260 and GeForce GT320M for parallel implementation
and Intel Core2Quad CPU Q8400 for serial implementation.
Visual profiler analysis are carried out on NVIDIA-GeForce
GTX 260 of compute capability 1.33.

B. Results

1) Sorting Time: Sorting time of the algorithm is recorded
as real time in seconds and is the time spent by the algorithm
only for sorting data and excludes any other time spent
in variable initialization, memory read/write and contention
times etc. Sorting times for min-max butterfly and full-
butterfly sorting on different GPU and CPU architectures are
depicted in fig 7a and fig 8a respectively. Performance is
improved by exploiting high parallelism inside any stage of
the algorithm. Sorting time and rate values for full butterfly
sorting are relatively better than bitonic sort, odd even sort
and rank sort as shown in [17].

2) Sorting Rate: Sorting rate is the ratio of queue size to
sorting time. Sorting rates for bitonic, odd/even and rank
reported in[17] and are used only for comparisons with
sorting rates of min-max butterfly and full butterfly. Our
results for sorting rates, Fig 7b and Fig.8b, of min-max and
full butterfly sort show better performance than all the three
algorithms.

3Nvidia Compute Capability. www.nvidia.co.uk/object/cuda gpus uk.
html

3) Speedup: Figure [9a,9b,9c] report improvement in
speedups of our butterfly sort against others. It achieves
2x speedup over bitonic sort, a speedup of nearly 104x
on Quadro6000 over rank and odd even sort for parallel
implementation and speedup of nearly 103x against odd-
even and rank sort for serial implementation. Speedup factor
increases for large queue sizes on GPUs with larger number
of cores.

5. CONCLUSION

We tested parallel and serial implementation of novel sorting
algorithms: min-max butterfly and full butterfly sorting on
different GPU and CPU architectures and evaluated better
performance of our algorithms in comparison to bitonic, odd-
even and rank-sort in terms of sorting time, sorting rate and
speedup. In future the work will be transported to multiple
GPUs with optimization techniques like memory coalescing
etc and uses of these algorithms for hold− operation.
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Fig. 6: Memory load (ρl)-store (ρs) counts and Thread Divergencecounts for a single stage of full butterfly sort. The position
of peak’s observable in (a) and (b) conform to the length of the work-group sizes and are un-avoidable because the work-
group sizes cannot be exceeded beyond 512. The thread divergence grows exponentially as the size increases. Figure (c)
showing the log scales reports a step again conforming to the length of the work-group size. This step is explained in
Figure-5
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