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Abstract 

 SimStudio is a Modeling & Simulation environment 

based on the DEVS formalism (Discrete EVent Systems 

Specification). Its architecture aims at integrating in a single 

platform tools for modeling, simulation, analysis and 

collaboration, by proposing model transformation features 

(code generation, among others) in order to smooth the 

modeling and simulation cycle. To achieve this, SimStudio 

is built upon the DEVS formalism, recognized by many as a 

“universal” simulation formalism, and upon a unifying 

language for representing DEVS models. Models are at the 

heart of the infrastructure we propose, in line with the 

Model-Driven Engineering (MDE) approach, at the 

boundary between software engineering and simulation. 

 

1. INTRODUCTION 

 Scientists have identified a set of issues present in the 

Modeling and Simulation (M&S) domain [CGTI 2005] 

[GSAT 2005]. These issues concern several aspects: 

– The lack of interdisciplinary collaborations. Indeed, 

modeling teams and computer scientists often seem to work 

in parallel and not in collaboration, leading on the one hand 

to poorly crafted and rarely robust software, and on the 

other hand to applications that are disconnected from the 

actual needs of end users or not enough spread. 

– The simulation of models more and more complicated, 

either because they approach more and more the complexity 

of the real world (multi-scales, finer granularity), or because 

they integrate more facets than before. 

– The lack of large and perennial M&S systems. At the 

moment, there are only a few complete, stable and 

recognized software suites for realizing an M&S project. 

 

 The SimStudio project [Traoré 2008] aims at designing 

a software environment solving at least partially these 

issues. This platform let users develop models in a 

collaborative way, either through web or desktop 

applications, by giving them access to model repositories 

fed by the community. Thanks to model transformations and 

notably code generation, the creation of operational 

solutions is facilitated. SimStudio exploit the potential of 

both Model Driven Engineering and the DEVS (Discrete 

EVent System Specification) formalism, presented in 

section 2. Several works have already been conducted in 

this perspective, and are evoked in section 3. In addition to 

modeling and simulation components, SimStudio is also 

designed to include analysis and visualization features. Its 

architecture, outlined in section 4, is based on a plugin 

system which will allow the addition of modules and the 

integration of existing tools, via model transformations. The 

communications between these heterogeneous modules rely 

on a model representation language entitled DML (DEVS 

Markup Language) [Touraille et al. 2009], sketched in 

section 5. 

 

2. THE DEVS FORMALISM 

 Based on system theory, the DEVS formalism [Zeigler 

et al. 2000] provides a sound basis for modeling and 

simulation of discrete event systems, but also for integrating 

heterogeneous models. Many variants exist, but only two 

are fundamental: Classic DEVS (C-DEVS) and Parallel 

DEVS (P-DEVS). These two formalisms describe the same 

class of systems; we focus our works on P DEVS because it 

makes the handling of simultaneous events more intuitive, 

and is more suited to parallel computations than C-DEVS. 

DEVS has been used for several years in many applications, 

and was applied to a broad range of domains 

[Kim et al. 2000] [Muzy et al. 2005] [Farooq et al. 2007] 

[Innocenti et al. 2009]. 

 

 Representing a system in DEVS can be done in two 

ways [Zeigler et al. 2000]. The first one consists in 

designing an atomic model, which describes the system as 

an entity holding a state (S), exhibiting an autonomous 

behavior specified with internal state changes (δint) and a 

time advance function (ta), reacting to environmental 

stimuli, i.e. external events (δext), and generating events as 

its state changes through time (λ). Exchanges with the 

environment are performed through input (X) and output 

(Y) ports, which receive or generate events with which 

values are associated. In addition to this, P-DEVS atomic 

models also specify the behavior to adopt when a conflict 
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arises between an internal event (autonomous state change) 

and an external event (response to the environment) (δcon). 

 

 The second way to specify a system with DEVS is by 

defining a coupled model. Coupled models have input and 

output ports, and aggregate components that can be either 

atomic models or coupled models themselves. These 

components are connected by their output and input ports 

(couplings); thereby, events generated by a model become 

stimuli for others. 

 

 DEVS strength resides in its expressive power. Indeed, 

it was constructed in an incremental way starting from 

minimal specifications, by adopting at each step a higher 

abstraction level bringing additional knowledge, while at the 

same time demonstrating the morphisms with lower levels. 

It is therefore possible to prove [Zeigler et al. 2000] that 

there exists a DEVS model for every discrete event system. 

But we can go further: indeed, the DEVS „protocol‟ can be 

used as a “universal” simulator or a simulation “common 

knowledge bus”, enabling the coupling of models written in 

heterogeneous formalisms and according to different 

paradigms. Two methods exist to integrate a non-DEVS 

model in the DEVS framework: co-simulation and model 

transformation [Schmidt 2006]. The latter consists in 

converting non-DEVS models to the DEVS formalism in 

order to obtain model specifications in a uniform language. 

Vangheluwe represents the different possible 

transformations using a diagram of formalism 

transformations [Vangheluwe 2000]. 

 

3. RELATED WORKS 

 DEVS simulators being precisely defined by the 

formalism, their implementation is quite simple. 

Consequently, we can find many DEVS simulation libraries. 

Among them, DEVSJava [DEVSJava 2004] proposes 

several tools, for example a graphical interface for visual 

modeling. However, DEVSJava does not take into account 

the entire M&S cycle, and is specific to both DEVS and 

Java. Along the same lines, JDevs [Filippi et al. 2002] 

includes a graphical module for editing models, as well as a 

DEVS simulator and two visualization tools (2D and 3D). 

Regarding the integration of heterogeneous models, we can 

distinguish between two approaches: 

– An approach centered on models, which consists in 

standardizing model representation to make it possible to 

exchange and compose them easily, as we did with DML. 

Several works had already been performed in this direction, 

but were either too restrictive to exploit all of DEVS 

expressive power [Risco Martín et al. 2007] 

[Janoušek et al. 2006], or specific to a given programming 

language [Mittal et al. 2007a]. 

– An approach centered on simulators (co-simulation), 

where the standardization effort is focused on inter-

simulators communications instead of models. This domain 

was explored by the USA Department of Defense which 

proposed HLA (High Level Architecture) [HLA 2000] as a 

solution to the simulator interoperability issue. This solution 

seems to be much used for military simulations that involve 

heterogeneous and geographically distributed simulators, 

but requires an important implementation effort to be put 

into action. A more flexible approach, using a service 

oriented architecture and more precisely web services, can 

be found in [Mittal et al. 2007b]. 

 

 The Virtual Laboratory Environment project (VLE) 

[Quesnel et al. 2009] falls within the realm of multi-

modeling, by allowing the user to specify its models in 

several DEVS variants (Cell-DEVS, DS-DEVS...) and to 

couple them using the co-simulation principle. The software 

environment includes graphical design and visualization 

modules. However, the collaborative aspects and the access 

to high performance computing resources are not taken into 

account. 

 

 James II [Himmelspach 2007] is a generic M&S 

framework where one can plug formalisms and simulators 

as Java classes. However, to our knowledge, this platform 

does not make it possible to couple models defined in 

heterogeneous formalisms. Moreover, the plugins are highly 

coupled to the architecture, limiting the seamless integration 

of existing tools. 

 

 Another quite complete M&S software environment is 

described in [Bonaventura et al. 2010]. CD++Builder is an 

Integrated Development Environment with goals very 

similar to SimStudio: graphical interface for specifying 

models, code generation, result analysis tools and so on. The 

specification of atomic models can be done either in C++ or 

using the DEVS-Graph graphical syntax. The authors 

defined several formats for storing models, events, 

simulation results and so on. The software environment is 

developed using some of the Eclipse Modeling Project 

tools, but without exploiting all the MDE potential of this 

framework. 

 

 Finally, in [Posse et al. 2003], the authors expose a 

model-driven solution with a mindset similar to the one we 

adopted. They define a DEVS metamodel using the AToM
3
 

tool [De Lara et al. 2002], a metamodeling and model 

transformation platform. From this metamodel, they 

generate a graphical DEVS modeling environment, and also 

specify the necessary transformations to generate Python 

code compatible with the PythonDEVS simulator. 

 



4. SIMSTUDIO ARCHITECTURE 

 Based on the DEVS formalism, the SimStudio 

environment aims at providing a complete M&S toolchain, 

which would assist the model developer from model design 

to results analysis. In order to incorporate the existing tools 

and make it possible to easily add new features, SimStudio 

uses a modular software architecture relying on plugins. The 

platform is constituted of a simulation kernel, on which are 

plugged software components that can be classified along 

several axes (Figure 1): 

– A Modeling axis, which encompasses the graphical 

and textual tools for model design. “Adaptor” modules can 

also be provided to integrate existing modeling tool by 

transforming their output specification in a format 

understandable by SimStudio. 

– An Analysis axis, with tools for formal analysis, 

statistical analysis, etc. 

– A Visualization axis, handling the display of 

simulation results as charts, animations and so on, and 

possibly providing virtual reality features by letting the user 

interact with the simulation run. 

– A Management axis, providing orthogonal services 

such as user management, model storage and querying, 

plugins configuration, etc. 

 

 The role of the simulation kernel is to automatically 

generate an operational solution from a model specification, 

then to handle its deployment and execution on various 

types of platforms, according to the user‟s choice. This can 

range from a simple execution offline or on a server to a 

distribution on a computing grid or cluster. 

 However, in order for these modules to communicate 

together, SimStudio must be based on a common language; 

we think that the DEVS formalism is the most adapted tool 

to fulfill this role, thanks to its expressive power. Indeed, 

the use of DEVS as a common denominator provides two 

important advantages: 

1. The possibility to couple heterogeneous models, 

which can use different paradigms (continuous/discrete), 

different formalisms (differential equations, Petri nets, 

cellular automata...), different abstraction levels, etc. 

2. The access to a rigorously defined operational 

semantic. DEVS strictly discriminate between models and 

simulators. As a consequence, a DEVS simulator is 

“universal” in the sense that it can simulate any DEVS 

model. By providing the model developers with the 

transformations needed to convert a model in a DEVS 

model, and the access to an efficient and configurable 

simulator, we avoid many repeated implementation efforts: 

the user can focus on modeling, without worrying about 

simulation. 

 

 Consequently, an essential prerequisite is the definition 

of a DEVS metamodel that is generic enough to support 

existing models and flexible enough to be usable in practice. 

Such a metamodel will enable a Model Driven Engineering 

(MDE) approach, in which the definition of new plugins 

(except for management modules) will boil down to the 

development of transformations from (resp. to) a DEVS 

model, conforming to the metamodel, to (resp. from) other 

models representing a range of views on the same system 

under study. 
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Figure 1. Overview of SimStudio architecture. 



 In the following section, we present the DEVS 

metamodel we developed, called DML (DEVS Markup 

Language) as proposed in [Hill 2000]. 

 

5. DML, A UNIFYING DEVS METAMODEL 

 The architecture of SimStudio is based on the use of a 

standardized representation of every aspect of DEVS 

models, defined by a metamodel. The latter must take into 

account a broad range of use cases, and must consequently 

propose a solution for specifying the following elements: 

– DEVS model structure, i.e. state variables, input and 

output ports, and couplings. 

– Atomic model dynamics, described by the various 

transition functions (internal, external and confluent). 

– Model parameterization and initialization. 

– Model behavior, corresponding to simulation results, 

represented by trajectories. 

– Possibly graphical attributes, for model and results 

visualization. 

 

 In addition to this, in order to fulfill its unifying 

function, the metamodel must define a family of models 

independent of all platforms [Bézivin et al. 2008], a 

principle that can be found in the Model Driven 

Architecture (MDA is the Object Management Group MDE 

proposal) as the notion of Platform-Independent Model 

(PIM). Indeed, model developers must dispose of a 

“common language” to exchange and make their models 

interact, though they might be written for different 

simulators and in different programming languages. The 

principal difficulty consequently resides in representing the 

model dynamics: how can one describe an algorithm 

independently of all programming language, without at the 

same time depriving the model developer from all the 

libraries and functionalities peculiar to those languages? 

 

 Before answering this question, we must choose the 

metametamodel to which DML will conform. For 

standardization and interoperability reasons, we perform the 

communications between SimStudio components using 

XML (eXtensible Markup Language) 

[Abiteboul et al. 1999] documents. With the aim of rapidly 

developing a prototype, we specified our DEVS metamodel 

with XML Schema, because of its simplicity and the 

profusion of existing tools, e.g. for describing 

transformations with the Extensible Stylesheet Language 

Transformation (XSLT). As we will explain in section 6, we 

have since then adopted a framework more adapted to 

MDE, which provides more powerful model manipulation 

features. 

 

 In the next subsections, we present more precisely 

DML by addressing the requirements evoked previously. 

5.1. Models Structure 

 DEVS models structure relies on the notion of set; this 

notion is easily captured in XML by the concept of type, 

largely used in programming. Input and output ports, state 

variables and parameters are consequently represented as 

type instances, which can be: 

– intrinsic, i.e. supported by default, such as integers, 

real numbers or character strings; 

– user-defined, using XML schemas. The model 

developer can create its own types to exploit them in his 

models. The XML schemas can also be generated from 

classes or structures, should the model be retro-engineered 

from existing code. 

– library-dependent. In practical applications, the model 

developer may need to use certain types defined in libraries 

of a given programming language. To find a compromise 

between platform independence and the liberty needed by 

the model developer, we propose to use the notion of 

abstract data types (ADT) [Liskov et al. 1974]. Before 

being usable, these types must be bound to a specific 

implementation in the targeted programming language. For 

example, an ADT RandomNumberGenerator could be 

bound to the Java class 
umontreal.iro.lecuyer.rng.MT199937 

[L‟Ecuyer et al. 2002] and to the C++ class 

boost::mt19937. 

 

 Code 1 shows a sample description for model state 

variables. This model holds two variables: sigma, a real 

number, and buffer, an instance of the Queue ADT. In order 

to generate the corresponding code in target languages, 

bindings between ADTs and concrete types must be 

provided. For this purpose, we define library models that 

indicate what types must be used to fulfill the role of given 

ADTs. Code 2 and Code 3 give the mapping of the Queue 

ADT in the Java Class Library and in the Standard C++ 

Library. 

 

<state> 

  <variable> 

    <name>buffer</name> 

    <type kind="libDependent">Queue</type> 

  </variable> 

  <variable> 

    <name>sigma</name> 

    <type>double</type> 

  </variable> 

</state> 

Code 1. Description of state variables. 

 



<type id="Queue"> 

  java.util.LinkedList<String> 

</type> 

Code 2. Extract from the "Java Class Library" model. 

 

<type id="Queue"> 
  std::queue<std::string> 

</type> 

Code 3. Extract from the "Standard C++ Library" model. 

 

 These library models will be used during the 

transformations from DEVS models to operational 

solutions, enabling the automatic generation of a model 

specific to the target language (cf. the notion of Platform 

Specific Model (PSM) in MDA). Thus, instances of the 

Queue type will be linked lists of strings in Java, and queues 

of strings in C++. The various transformations necessary are 

detailed in subsection 5.4. 

 

5.2. Representation of Algorithms 

 The approach we took to represent model dynamics is 

based on similar principles. Indeed, we need to represent the 

logic of model functions in a way that is independent from 

the platform, but we need to let the user free to use peculiar 

features of a language or a library. Consequently, we use to 

describe these functions a combination of generic code, 

which can be mapped directly in existing imperative 

languages, and of abstract code snippets that need to be 

implemented for each target language (cf. Code 4). 

 

<if> 

  <test> 

    <binaryExpr op="equality"> 

      <lhs><var>sigma</var></lhs> 

      <rhs><literal>0</literal></rhs> 

    </binaryExpr> 

  </test> 

  <then> 

    <codeSnippet kind="libDependent"  

                 id=  "enqueue"> 

      <param id="queue">buffer</param> 

      <param id="element"> 

        <codeSnippet kind="simDependent"  

                     id=  "getValueOnPort"> 

          <param id="port">in</param> 

         </codeSnippet> 

      </param> 

    </codeSnippet> 

  </then> 

</if> 

Code 4. XML representation of a “semi-generic” code. 

 In this example, an element is added to the buffer if the 

sigma variable equals zero. The insertion into the queue 

cannot be described in a generic way since it depends on the 

concrete type used. For instance, in Java, the insertion will 

be performed with the offer method of java.util.LinkedList, 

whereas in C++, the method std::queue::push will be called. 

 

 Moreover, some parts of the code do not depend only 

on the target language but also on the target simulator. For 

example, fetching a value on an input port is done in many 

different ways in the various existing implementations. It is 

therefore necessary to permit the specification of simulator-

dependent code snippets, like getValueOnPort in our 

example. Eventually, we use three independence levels, in 

relation to (i) programming languages, (ii) libraries and (iii) 

simulators. As previously, to obtain an executable 

specification, these independences need to be “resolved” 

using platform models and transformations. 

 

 Thanks to this solution, DML gives a great flexibility 

for writing models. Most existing DEVS models, which 

were developed in various DEVS tools, can be represented, 

and the quantity of code that needs to be written to port a 

model from a platform to another is limited to the minimum. 

Only ADTs and abstract code snippets need to be 

concretized in a specific implementation. This stage can 

even be simplified by collectively constructing “catalogs” of 

types and snippets along with their implementation in the 

most popular languages – these catalogs would in fact be a 

kind of platform models. Similarly, DEVS framework 

authors can publish their simulator model to facilitate the 

integration of their tool in SimStudio. 

 

 Besides being used to describe DEVS models transition 

functions, this “semi-generic” code is also used in DML to 

describe parameterization and initialization. Indeed, these 

two stages sometimes boil down to simple variables 

initializations, but can also be more complex (random 

number generation, file reading, etc.). 

 

5.3. Simulation Results 

 The behavior of a DEVS model is entirely represented 

by all its potential input/output trajectories, meaning all the 

pairs (input trajectory, output trajectory) that the model can 

generate, an input (resp. output) trajectory being the set of 

events generated on input (resp. output) ports during a 

simulation run. However, it is often convenient to also 

observe the evolution of the model state variables, as well as 

the behavior of the sub-models in the case of a coupled 

model. All this simulation results are represented in DML as 

sets of values annotated by a timestamp denoting simulation 

time. These trajectories can then be exploited to analyze the 

behavior of the model, graphically render the simulation, or 

feed another model with data. 



5.4. Overview of the Conformity Relations and 

Transformations 

 In the previous paragraphs, we evoked several times the 

transformations needed to obtain an operational solution 

from a DML model. Figure 2 presents these various 

transformations, as well as the conformity relations between 

models, metamodels and metametamodels used in 

SimStudio. In this example, we transform some DEVS 

model into code understandable by the DEVS-

MetaSimulator (DEVS-MS) [Touraille et al. 2010], the 

simulator we developed for the SimStudio kernel, written in 

C++. 

 

 We employ in this figure the notations used in 

[Favre et al. 2006]: 

– χ means “conforms to”; 

– τ means “is transformed into”. 

 

 On the other hand, we denote transformation models by 

dashed rectangles. They are connected by a dotted line to 

the relations “is transformed into” (τ) where they are used. 

The best way to analyze this figure is to read it from bottom 

to top and from left to right. At the heart of the architecture 

reside DML models; they conform to the DML metamodel 

presented previously, itself conforming to the XML Schema 

metametamodel. The achievement of an operational solution 

is performed through successive refinements 

(transformations towards a target platform), until obtaining 

a source code for a given simulator. 

 As a first stage, we perform a transformation from a 

DML model to a model said “DML-Lang”, specific to a 

target programming language. This transformation, 

described by an XSLT model, consists in replacing the 

“generic” code parts by their equivalent in the destination 

language. Elements such as assignments, conditional 

branches, loops, etc., are translated, as well as the 

specifications of user-defined types. 

 

 The “DML-Lang” metamodel is very similar to DML, 

except for the code elements that now contain mixed content 

(text and XML tags): the generic structure of functions has 

been generated, but the library and simulator-dependent 

snippets has not been transformed yet. This will be covered 

by a second transformation. 

 

 The latter involves two types of platform models: 

library models and simulator models, all conforming to the 

“Code snippets” metamodel and specifying mapping 

between abstract operations used in the DML model and 

concrete operations to be performed. Authors of DEVS tools 

must have the possibility to override mappings expressed in 

the library models, for example to use certain data structures 

integrated in their inheritance hierarchy. For this reason, we 

handle the two types of dependent snippets in a single step, 

thanks to a higher order transformation (“Snippets fusion”) 

which merges the two transformation models into a new one 

(“DML2DEVS-MS”). Concretely, this transformation 

generates an XSLT model that applies the replacements 

defined by the two models (library and simulator) while 
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giving the priority to the ones specified for the simulator. 

The generated transformation can then be applied to the 

DML-Lang model to obtain a DML-Sim model. Issuing 

from this transformation, all the elements of the DML 

model representing code (notably all the transition 

functions) have been translated into the target language. 

 

 All is left to do is generated the complete code 

permitting the integration of the model into the target tool. 

Usually, this involves generating a class, defining input and 

output ports, couplings, etc. This must be done in respect 

with the constraints peculiar to the target framework: 

inheriting from a base class, defining certain attributes and 

so on. Since the operations needed can be quite disparate, 

we leave the DEVS simulators authors free to define their 

own transformation models conforming to XSLT. 

 

 Eventually, several model repositories will be available, 

providing: 

– DML models, meant to be reused either in a 

standalone manner or as components in coupled models; 

– library models, offering a large choice to the user; 

– simulator models and associated transformation 

models, so as to enlarge the scope of DML to the maximum 

of existing tools. 

 

6. CONCLUSION AND FUTURE WORKS 

 In this article, we presented the architecture of 

SimStudio, an M&S environment that encompasses in a 

single platform tools for modeling, analysis, simulation and 

visualization. Its aim is to accelerate the M&S cycle by (i) 

facilitating the conception of models thanks to modeling 

modules and model repositories; (ii) automating the 

generation of executable artefacts, in a variety of simulators, 

thanks to model transformations; (iii) integrating analysis 

tools into the platform to smooth the iterative process of 

conception/simulation/analysis. 

 

 Endued with a modular architecture, SimStudio enables 

the addition of new features and the integration of existing 

tools thanks to a Model Driven Engineering approach and 

the use of a generic and flexible DEVS metamodel. 

 

 The ideas presented in this paper have known quite an 

evolution recently, and many developments have been 

performed towards achieving SimStudio goals. They are 

still in progress, but are worth mentioning here. First of all, 

we now use a set of tools nicely suited for MDE, which are 

developed by the Eclipse Modeling Project (EMP) 

[Gronback 2009]. Indeed, EMP provides a range of tools for 

metamodeling, i.e. describing abstract syntax (Eclipse 

Modeling Framework), creating concrete syntaxes, either 

graphical (Graphical Modeling Framework) or textual 

(Textual Modeling Framework) and developing model 

transformations and text generators (Model to Model 

Transformation, Model to Text Transformation). 

 

 At the time of this writing, one of our master students is 

in the process of finalizing a graphical editor for DEVS 

models, using GMF and the DEVS-Driven Modeling 

Language [Traoré 2009]. We also started the specification in 

Ecore of the DEVS metamodel presented here, but it still 

lacks the ability to describe the dynamics of atomic models. 

Regarding the structure of DEVS models, the metamodel is 

operational and can already be used to specify models and 

generate DEVS-MS and CD++ code thanks to model-to-text 

transformations written with Xpand. We also experimented 

model-to-model transformations, using the Atlas 

Transformation Language, by generating an XHTML 

documentation from a model specification. 

 

 In the close future, we will carry on the implementation 

of the DEVS metamodel by including support for “semi-

generic” code, as exposed in this paper. Another 

development will be writing the transformation from models 

produced by the graphical editor to models conforming to 

the DEVS metamodel. Finally, we will try to increase the 

number of supported existing tools, by including for 

example DEVSJava. In the long term, we plan to 

experiment with formalism transformations by writing 

model transformations from existing metamodels (e.g. Petri 

Net [Wachsmuth 2007]) to the DEVS metamodel. 
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