
A Model-Driven Software Environment for Modeling,

Simulation and Analysis of Complex Systems

Luc Touraille

12
, Mamadou K. Traoré

12
, David R.C. Hill

12

1
 Clermont Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 CLERMONT-FERRAND

2
CNRS, UMR 6158, LIMOS, F-63173 AUBIERE

touraille@isima.fr, traore@isima.fr, david.hill@univ-bpclermont.fr

Keywords: DEVS, Model Driven Engineering,

interoperability, software environment

Abstract

 SimStudio is a Modeling & Simulation environment

based on the DEVS formalism (Discrete EVent Systems

Specification). Its architecture aims at integrating in a single

platform tools for modeling, simulation, analysis and

collaboration, by proposing model transformation features

(code generation, among others) in order to smooth the

modeling and simulation cycle. To achieve this, SimStudio

is built upon the DEVS formalism, recognized by many as a

“universal” simulation formalism, and upon a unifying

language for representing DEVS models. Models are at the

heart of the infrastructure we propose, in line with the

Model-Driven Engineering (MDE) approach, at the

boundary between software engineering and simulation.

1. INTRODUCTION

 Scientists have identified a set of issues present in the

Modeling and Simulation (M&S) domain [CGTI 2005]

[GSAT 2005]. These issues concern several aspects:

– The lack of interdisciplinary collaborations. Indeed,

modeling teams and computer scientists often seem to work

in parallel and not in collaboration, leading on the one hand

to poorly crafted and rarely robust software, and on the

other hand to applications that are disconnected from the

actual needs of end users or not enough spread.

– The simulation of models more and more complicated,

either because they approach more and more the complexity

of the real world (multi-scales, finer granularity), or because

they integrate more facets than before.

– The lack of large and perennial M&S systems. At the

moment, there are only a few complete, stable and

recognized software suites for realizing an M&S project.

 The SimStudio project [Traoré 2008] aims at designing

a software environment solving at least partially these

issues. This platform let users develop models in a

collaborative way, either through web or desktop

applications, by giving them access to model repositories

fed by the community. Thanks to model transformations and

notably code generation, the creation of operational

solutions is facilitated. SimStudio exploit the potential of

both Model Driven Engineering and the DEVS (Discrete

EVent System Specification) formalism, presented in

section 2. Several works have already been conducted in

this perspective, and are evoked in section 3. In addition to

modeling and simulation components, SimStudio is also

designed to include analysis and visualization features. Its

architecture, outlined in section 4, is based on a plugin

system which will allow the addition of modules and the

integration of existing tools, via model transformations. The

communications between these heterogeneous modules rely

on a model representation language entitled DML (DEVS

Markup Language) [Touraille et al. 2009], sketched in

section 5.

2. THE DEVS FORMALISM

 Based on system theory, the DEVS formalism [Zeigler

et al. 2000] provides a sound basis for modeling and

simulation of discrete event systems, but also for integrating

heterogeneous models. Many variants exist, but only two

are fundamental: Classic DEVS (C-DEVS) and Parallel

DEVS (P-DEVS). These two formalisms describe the same

class of systems; we focus our works on P DEVS because it

makes the handling of simultaneous events more intuitive,

and is more suited to parallel computations than C-DEVS.

DEVS has been used for several years in many applications,

and was applied to a broad range of domains

[Kim et al. 2000] [Muzy et al. 2005] [Farooq et al. 2007]

[Innocenti et al. 2009].

 Representing a system in DEVS can be done in two

ways [Zeigler et al. 2000]. The first one consists in

designing an atomic model, which describes the system as

an entity holding a state (S), exhibiting an autonomous

behavior specified with internal state changes (δint) and a

time advance function (ta), reacting to environmental

stimuli, i.e. external events (δext), and generating events as

its state changes through time (λ). Exchanges with the

environment are performed through input (X) and output

(Y) ports, which receive or generate events with which

values are associated. In addition to this, P-DEVS atomic

models also specify the behavior to adopt when a conflict

mailto:touraille@isima.fr
mailto:traore@isima.fr
mailto:david.hill@univ-bpclermont.fr

arises between an internal event (autonomous state change)

and an external event (response to the environment) (δcon).

 The second way to specify a system with DEVS is by

defining a coupled model. Coupled models have input and

output ports, and aggregate components that can be either

atomic models or coupled models themselves. These

components are connected by their output and input ports

(couplings); thereby, events generated by a model become

stimuli for others.

 DEVS strength resides in its expressive power. Indeed,

it was constructed in an incremental way starting from

minimal specifications, by adopting at each step a higher

abstraction level bringing additional knowledge, while at the

same time demonstrating the morphisms with lower levels.

It is therefore possible to prove [Zeigler et al. 2000] that

there exists a DEVS model for every discrete event system.

But we can go further: indeed, the DEVS „protocol‟ can be

used as a “universal” simulator or a simulation “common

knowledge bus”, enabling the coupling of models written in

heterogeneous formalisms and according to different

paradigms. Two methods exist to integrate a non-DEVS

model in the DEVS framework: co-simulation and model

transformation [Schmidt 2006]. The latter consists in

converting non-DEVS models to the DEVS formalism in

order to obtain model specifications in a uniform language.

Vangheluwe represents the different possible

transformations using a diagram of formalism

transformations [Vangheluwe 2000].

3. RELATED WORKS

 DEVS simulators being precisely defined by the

formalism, their implementation is quite simple.

Consequently, we can find many DEVS simulation libraries.

Among them, DEVSJava [DEVSJava 2004] proposes

several tools, for example a graphical interface for visual

modeling. However, DEVSJava does not take into account

the entire M&S cycle, and is specific to both DEVS and

Java. Along the same lines, JDevs [Filippi et al. 2002]

includes a graphical module for editing models, as well as a

DEVS simulator and two visualization tools (2D and 3D).

Regarding the integration of heterogeneous models, we can

distinguish between two approaches:

– An approach centered on models, which consists in

standardizing model representation to make it possible to

exchange and compose them easily, as we did with DML.

Several works had already been performed in this direction,

but were either too restrictive to exploit all of DEVS

expressive power [Risco Martín et al. 2007]

[Janoušek et al. 2006], or specific to a given programming

language [Mittal et al. 2007a].

– An approach centered on simulators (co-simulation),

where the standardization effort is focused on inter-

simulators communications instead of models. This domain

was explored by the USA Department of Defense which

proposed HLA (High Level Architecture) [HLA 2000] as a

solution to the simulator interoperability issue. This solution

seems to be much used for military simulations that involve

heterogeneous and geographically distributed simulators,

but requires an important implementation effort to be put

into action. A more flexible approach, using a service

oriented architecture and more precisely web services, can

be found in [Mittal et al. 2007b].

 The Virtual Laboratory Environment project (VLE)

[Quesnel et al. 2009] falls within the realm of multi-

modeling, by allowing the user to specify its models in

several DEVS variants (Cell-DEVS, DS-DEVS...) and to

couple them using the co-simulation principle. The software

environment includes graphical design and visualization

modules. However, the collaborative aspects and the access

to high performance computing resources are not taken into

account.

 James II [Himmelspach 2007] is a generic M&S

framework where one can plug formalisms and simulators

as Java classes. However, to our knowledge, this platform

does not make it possible to couple models defined in

heterogeneous formalisms. Moreover, the plugins are highly

coupled to the architecture, limiting the seamless integration

of existing tools.

 Another quite complete M&S software environment is

described in [Bonaventura et al. 2010]. CD++Builder is an

Integrated Development Environment with goals very

similar to SimStudio: graphical interface for specifying

models, code generation, result analysis tools and so on. The

specification of atomic models can be done either in C++ or

using the DEVS-Graph graphical syntax. The authors

defined several formats for storing models, events,

simulation results and so on. The software environment is

developed using some of the Eclipse Modeling Project

tools, but without exploiting all the MDE potential of this

framework.

 Finally, in [Posse et al. 2003], the authors expose a

model-driven solution with a mindset similar to the one we

adopted. They define a DEVS metamodel using the AToM
3

tool [De Lara et al. 2002], a metamodeling and model

transformation platform. From this metamodel, they

generate a graphical DEVS modeling environment, and also

specify the necessary transformations to generate Python

code compatible with the PythonDEVS simulator.

4. SIMSTUDIO ARCHITECTURE

 Based on the DEVS formalism, the SimStudio

environment aims at providing a complete M&S toolchain,

which would assist the model developer from model design

to results analysis. In order to incorporate the existing tools

and make it possible to easily add new features, SimStudio

uses a modular software architecture relying on plugins. The

platform is constituted of a simulation kernel, on which are

plugged software components that can be classified along

several axes (Figure 1):

– A Modeling axis, which encompasses the graphical

and textual tools for model design. “Adaptor” modules can

also be provided to integrate existing modeling tool by

transforming their output specification in a format

understandable by SimStudio.

– An Analysis axis, with tools for formal analysis,

statistical analysis, etc.

– A Visualization axis, handling the display of

simulation results as charts, animations and so on, and

possibly providing virtual reality features by letting the user

interact with the simulation run.

– A Management axis, providing orthogonal services

such as user management, model storage and querying,

plugins configuration, etc.

 The role of the simulation kernel is to automatically

generate an operational solution from a model specification,

then to handle its deployment and execution on various

types of platforms, according to the user‟s choice. This can

range from a simple execution offline or on a server to a

distribution on a computing grid or cluster.

 However, in order for these modules to communicate

together, SimStudio must be based on a common language;

we think that the DEVS formalism is the most adapted tool

to fulfill this role, thanks to its expressive power. Indeed,

the use of DEVS as a common denominator provides two

important advantages:

1. The possibility to couple heterogeneous models,

which can use different paradigms (continuous/discrete),

different formalisms (differential equations, Petri nets,

cellular automata...), different abstraction levels, etc.

2. The access to a rigorously defined operational

semantic. DEVS strictly discriminate between models and

simulators. As a consequence, a DEVS simulator is

“universal” in the sense that it can simulate any DEVS

model. By providing the model developers with the

transformations needed to convert a model in a DEVS

model, and the access to an efficient and configurable

simulator, we avoid many repeated implementation efforts:

the user can focus on modeling, without worrying about

simulation.

 Consequently, an essential prerequisite is the definition

of a DEVS metamodel that is generic enough to support

existing models and flexible enough to be usable in practice.

Such a metamodel will enable a Model Driven Engineering

(MDE) approach, in which the definition of new plugins

(except for management modules) will boil down to the

development of transformations from (resp. to) a DEVS

model, conforming to the metamodel, to (resp. from) other

models representing a range of views on the same system

under study.

Executable code

Grid, web services, local

Standard format (DML)

S
ta

n
d
a
rd

 fo
rm

a
t (D

M
L

)S
ta

n
d
ar

d
 f
o
rm

a
t
(D

M
L

)
Standard format (DML)

Analysis modules

Modeling modules

Visualization modules

Orthogonal modules

(model library, user

management,…)

transformation

deployment

results

Adaptor

Figure 1. Overview of SimStudio architecture.

 In the following section, we present the DEVS

metamodel we developed, called DML (DEVS Markup

Language) as proposed in [Hill 2000].

5. DML, A UNIFYING DEVS METAMODEL

 The architecture of SimStudio is based on the use of a

standardized representation of every aspect of DEVS

models, defined by a metamodel. The latter must take into

account a broad range of use cases, and must consequently

propose a solution for specifying the following elements:

– DEVS model structure, i.e. state variables, input and

output ports, and couplings.

– Atomic model dynamics, described by the various

transition functions (internal, external and confluent).

– Model parameterization and initialization.

– Model behavior, corresponding to simulation results,

represented by trajectories.

– Possibly graphical attributes, for model and results

visualization.

 In addition to this, in order to fulfill its unifying

function, the metamodel must define a family of models

independent of all platforms [Bézivin et al. 2008], a

principle that can be found in the Model Driven

Architecture (MDA is the Object Management Group MDE

proposal) as the notion of Platform-Independent Model

(PIM). Indeed, model developers must dispose of a

“common language” to exchange and make their models

interact, though they might be written for different

simulators and in different programming languages. The

principal difficulty consequently resides in representing the

model dynamics: how can one describe an algorithm

independently of all programming language, without at the

same time depriving the model developer from all the

libraries and functionalities peculiar to those languages?

 Before answering this question, we must choose the

metametamodel to which DML will conform. For

standardization and interoperability reasons, we perform the

communications between SimStudio components using

XML (eXtensible Markup Language)

[Abiteboul et al. 1999] documents. With the aim of rapidly

developing a prototype, we specified our DEVS metamodel

with XML Schema, because of its simplicity and the

profusion of existing tools, e.g. for describing

transformations with the Extensible Stylesheet Language

Transformation (XSLT). As we will explain in section 6, we

have since then adopted a framework more adapted to

MDE, which provides more powerful model manipulation

features.

 In the next subsections, we present more precisely

DML by addressing the requirements evoked previously.

5.1. Models Structure

 DEVS models structure relies on the notion of set; this

notion is easily captured in XML by the concept of type,

largely used in programming. Input and output ports, state

variables and parameters are consequently represented as

type instances, which can be:

– intrinsic, i.e. supported by default, such as integers,

real numbers or character strings;

– user-defined, using XML schemas. The model

developer can create its own types to exploit them in his

models. The XML schemas can also be generated from

classes or structures, should the model be retro-engineered

from existing code.

– library-dependent. In practical applications, the model

developer may need to use certain types defined in libraries

of a given programming language. To find a compromise

between platform independence and the liberty needed by

the model developer, we propose to use the notion of

abstract data types (ADT) [Liskov et al. 1974]. Before

being usable, these types must be bound to a specific

implementation in the targeted programming language. For

example, an ADT RandomNumberGenerator could be

bound to the Java class
umontreal.iro.lecuyer.rng.MT199937

[L‟Ecuyer et al. 2002] and to the C++ class

boost::mt19937.

 Code 1 shows a sample description for model state

variables. This model holds two variables: sigma, a real

number, and buffer, an instance of the Queue ADT. In order

to generate the corresponding code in target languages,

bindings between ADTs and concrete types must be

provided. For this purpose, we define library models that

indicate what types must be used to fulfill the role of given

ADTs. Code 2 and Code 3 give the mapping of the Queue

ADT in the Java Class Library and in the Standard C++

Library.

<state>

 <variable>

 <name>buffer</name>

 <type kind="libDependent">Queue</type>

 </variable>

 <variable>

 <name>sigma</name>

 <type>double</type>

 </variable>

</state>

Code 1. Description of state variables.

<type id="Queue">

 java.util.LinkedList<String>

</type>

Code 2. Extract from the "Java Class Library" model.

<type id="Queue">
 std::queue<std::string>

</type>

Code 3. Extract from the "Standard C++ Library" model.

 These library models will be used during the

transformations from DEVS models to operational

solutions, enabling the automatic generation of a model

specific to the target language (cf. the notion of Platform

Specific Model (PSM) in MDA). Thus, instances of the

Queue type will be linked lists of strings in Java, and queues

of strings in C++. The various transformations necessary are

detailed in subsection 5.4.

5.2. Representation of Algorithms

 The approach we took to represent model dynamics is

based on similar principles. Indeed, we need to represent the

logic of model functions in a way that is independent from

the platform, but we need to let the user free to use peculiar

features of a language or a library. Consequently, we use to

describe these functions a combination of generic code,

which can be mapped directly in existing imperative

languages, and of abstract code snippets that need to be

implemented for each target language (cf. Code 4).

<if>

 <test>

 <binaryExpr op="equality">

 <lhs><var>sigma</var></lhs>

 <rhs><literal>0</literal></rhs>

 </binaryExpr>

 </test>

 <then>

 <codeSnippet kind="libDependent"

 id= "enqueue">

 <param id="queue">buffer</param>

 <param id="element">

 <codeSnippet kind="simDependent"

 id= "getValueOnPort">

 <param id="port">in</param>

 </codeSnippet>

 </param>

 </codeSnippet>

 </then>

</if>

Code 4. XML representation of a “semi-generic” code.

 In this example, an element is added to the buffer if the

sigma variable equals zero. The insertion into the queue

cannot be described in a generic way since it depends on the

concrete type used. For instance, in Java, the insertion will

be performed with the offer method of java.util.LinkedList,

whereas in C++, the method std::queue::push will be called.

 Moreover, some parts of the code do not depend only

on the target language but also on the target simulator. For

example, fetching a value on an input port is done in many

different ways in the various existing implementations. It is

therefore necessary to permit the specification of simulator-

dependent code snippets, like getValueOnPort in our

example. Eventually, we use three independence levels, in

relation to (i) programming languages, (ii) libraries and (iii)

simulators. As previously, to obtain an executable

specification, these independences need to be “resolved”

using platform models and transformations.

 Thanks to this solution, DML gives a great flexibility

for writing models. Most existing DEVS models, which

were developed in various DEVS tools, can be represented,

and the quantity of code that needs to be written to port a

model from a platform to another is limited to the minimum.

Only ADTs and abstract code snippets need to be

concretized in a specific implementation. This stage can

even be simplified by collectively constructing “catalogs” of

types and snippets along with their implementation in the

most popular languages – these catalogs would in fact be a

kind of platform models. Similarly, DEVS framework

authors can publish their simulator model to facilitate the

integration of their tool in SimStudio.

 Besides being used to describe DEVS models transition

functions, this “semi-generic” code is also used in DML to

describe parameterization and initialization. Indeed, these

two stages sometimes boil down to simple variables

initializations, but can also be more complex (random

number generation, file reading, etc.).

5.3. Simulation Results

 The behavior of a DEVS model is entirely represented

by all its potential input/output trajectories, meaning all the

pairs (input trajectory, output trajectory) that the model can

generate, an input (resp. output) trajectory being the set of

events generated on input (resp. output) ports during a

simulation run. However, it is often convenient to also

observe the evolution of the model state variables, as well as

the behavior of the sub-models in the case of a coupled

model. All this simulation results are represented in DML as

sets of values annotated by a timestamp denoting simulation

time. These trajectories can then be exploited to analyze the

behavior of the model, graphically render the simulation, or

feed another model with data.

5.4. Overview of the Conformity Relations and

Transformations

 In the previous paragraphs, we evoked several times the

transformations needed to obtain an operational solution

from a DML model. Figure 2 presents these various

transformations, as well as the conformity relations between

models, metamodels and metametamodels used in

SimStudio. In this example, we transform some DEVS

model into code understandable by the DEVS-

MetaSimulator (DEVS-MS) [Touraille et al. 2010], the

simulator we developed for the SimStudio kernel, written in

C++.

 We employ in this figure the notations used in

[Favre et al. 2006]:

– χ means “conforms to”;

– τ means “is transformed into”.

 On the other hand, we denote transformation models by

dashed rectangles. They are connected by a dotted line to

the relations “is transformed into” (τ) where they are used.

The best way to analyze this figure is to read it from bottom

to top and from left to right. At the heart of the architecture

reside DML models; they conform to the DML metamodel

presented previously, itself conforming to the XML Schema

metametamodel. The achievement of an operational solution

is performed through successive refinements

(transformations towards a target platform), until obtaining

a source code for a given simulator.

 As a first stage, we perform a transformation from a

DML model to a model said “DML-Lang”, specific to a

target programming language. This transformation,

described by an XSLT model, consists in replacing the

“generic” code parts by their equivalent in the destination

language. Elements such as assignments, conditional

branches, loops, etc., are translated, as well as the

specifications of user-defined types.

 The “DML-Lang” metamodel is very similar to DML,

except for the code elements that now contain mixed content

(text and XML tags): the generic structure of functions has

been generated, but the library and simulator-dependent

snippets has not been transformed yet. This will be covered

by a second transformation.

 The latter involves two types of platform models:

library models and simulator models, all conforming to the

“Code snippets” metamodel and specifying mapping

between abstract operations used in the DML model and

concrete operations to be performed. Authors of DEVS tools

must have the possibility to override mappings expressed in

the library models, for example to use certain data structures

integrated in their inheritance hierarchy. For this reason, we

handle the two types of dependent snippets in a single step,

thanks to a higher order transformation (“Snippets fusion”)

which merges the two transformation models into a new one

(“DML2DEVS-MS”). Concretely, this transformation

generates an XSLT model that applies the replacements

defined by the two models (library and simulator) while

XML

Schema

DML

model

DML-C++

model

DEVS-MS

model

χ

τ τ

DML2C++

DML-Sim

DEVS-MS

code

C++

grammar

τ

XSLT

DML DML-Lang

Standard

C++ library

model

DEVS-MS

model

DML2

DEVS-MS

Code

snippets

Snippets

fusion

DEVS-MS

generationτ

χ
χ

χ

χ χ

χ χ

χ

χ

χ

χ

χ
χ

χ

χ
EBNF

Metametamodels

Metamodels

Models

χ

χ

Figure 2. Models, metamodels, metametamodels and transformations involved in the SimStudio kernel.

giving the priority to the ones specified for the simulator.

The generated transformation can then be applied to the

DML-Lang model to obtain a DML-Sim model. Issuing

from this transformation, all the elements of the DML

model representing code (notably all the transition

functions) have been translated into the target language.

 All is left to do is generated the complete code

permitting the integration of the model into the target tool.

Usually, this involves generating a class, defining input and

output ports, couplings, etc. This must be done in respect

with the constraints peculiar to the target framework:

inheriting from a base class, defining certain attributes and

so on. Since the operations needed can be quite disparate,

we leave the DEVS simulators authors free to define their

own transformation models conforming to XSLT.

 Eventually, several model repositories will be available,

providing:

– DML models, meant to be reused either in a

standalone manner or as components in coupled models;

– library models, offering a large choice to the user;

– simulator models and associated transformation

models, so as to enlarge the scope of DML to the maximum

of existing tools.

6. CONCLUSION AND FUTURE WORKS

 In this article, we presented the architecture of

SimStudio, an M&S environment that encompasses in a

single platform tools for modeling, analysis, simulation and

visualization. Its aim is to accelerate the M&S cycle by (i)

facilitating the conception of models thanks to modeling

modules and model repositories; (ii) automating the

generation of executable artefacts, in a variety of simulators,

thanks to model transformations; (iii) integrating analysis

tools into the platform to smooth the iterative process of

conception/simulation/analysis.

 Endued with a modular architecture, SimStudio enables

the addition of new features and the integration of existing

tools thanks to a Model Driven Engineering approach and

the use of a generic and flexible DEVS metamodel.

 The ideas presented in this paper have known quite an

evolution recently, and many developments have been

performed towards achieving SimStudio goals. They are

still in progress, but are worth mentioning here. First of all,

we now use a set of tools nicely suited for MDE, which are

developed by the Eclipse Modeling Project (EMP)

[Gronback 2009]. Indeed, EMP provides a range of tools for

metamodeling, i.e. describing abstract syntax (Eclipse

Modeling Framework), creating concrete syntaxes, either

graphical (Graphical Modeling Framework) or textual

(Textual Modeling Framework) and developing model

transformations and text generators (Model to Model

Transformation, Model to Text Transformation).

 At the time of this writing, one of our master students is

in the process of finalizing a graphical editor for DEVS

models, using GMF and the DEVS-Driven Modeling

Language [Traoré 2009]. We also started the specification in

Ecore of the DEVS metamodel presented here, but it still

lacks the ability to describe the dynamics of atomic models.

Regarding the structure of DEVS models, the metamodel is

operational and can already be used to specify models and

generate DEVS-MS and CD++ code thanks to model-to-text

transformations written with Xpand. We also experimented

model-to-model transformations, using the Atlas

Transformation Language, by generating an XHTML

documentation from a model specification.

 In the close future, we will carry on the implementation

of the DEVS metamodel by including support for “semi-

generic” code, as exposed in this paper. Another

development will be writing the transformation from models

produced by the graphical editor to models conforming to

the DEVS metamodel. Finally, we will try to increase the

number of supported existing tools, by including for

example DEVSJava. In the long term, we plan to

experiment with formalism transformations by writing

model transformations from existing metamodels (e.g. Petri

Net [Wachsmuth 2007]) to the DEVS metamodel.

References

Abiteboul S.; Buneman P.; Suciu D. 1999. Data on the

Web: From Relational to Semistructured Data and XML.

Morgan Kaufmann.

Bézivin J.; Vallecillo-Moreno A.; García-Molina J.; Rossi

G. 2008. “MDA at the Age of Seven: Past, Present and

Future.” European Journal for the Informatics Professional,

vol. IX, no. 2, April, pp. 4-7.

Bonaventura M.; Wainer G.A.; Castro R. 2010. “Advanced

IDE for Modeling and Simulation of Discrete Event

Systems.” In Proceedings of the 2010 Spring Simulation

Conference (SpringSim‟10), DEVS Symposium, April

11-15, Orlando, Florida, USA, Article No. 125

CGTI – Groupe Conseil Général des Technologies de

l‟Information. 2005. “La politique française dans le domaine

du calcul scientifique”. Report no. II.B.14, March.

De Lara J.; Vangheluwe H. 2002. “AToM3: A Tool for

Multi-formalism and Meta-modelling.” In Proceedings of

the 5th International Conference on Fundamental

Approaches to Software Engineering, April 6-14, Grenoble,

France, Lecture Notes In Computer Science, vol. 2306,

pp. 174-188.

DEVSJava. 2004. ACIMS software site:

http://www.acims.arizona.edu/SOFTWARE/software.shtml

Last accessed May 2009.

Farooq U.; Wainer G.; Balya B. 2007. “DEVS Modeling of

Mobile Wireless Ad Hoc Networks.” Simulation Modelling

Practice and Theory, vol. 15, no. 3, pp. 285-314.

Favre J.; Estublier J.; Blay-Fornarino M. 2006. L’ingénierie

dirigée par les modèles. Au delà du MDA, Hermès –

Lavoisier.

Filippi J.B.; Delhom M.; Bernardi F. 2002. “The JDEVS

Hybrid Modelling and Simulation Environment.” In

Proceedings of the iEMSs First Biennial Meeting:

International Congress on Environmental Modelling and

Software (iEMSs 2002), International Environmental

Modelling and Software Society, Lugano, Switzerland, vol.

3, pp. 283-288.

Gronback R.C. 2009. Eclipse Modeling Project – A

Domain-Specific Language (DSL) Toolkit. Addison-Wesley

Professional.

GSAT - Groupe Simulation – Académie des Technologies.

2005. “Enquête sur les frontières de la simulation numérique

en France. La situation en France et dans le monde.

Diagnostic et propositions”. Report from the French

Technologies Academy, May.

Hill D. 2000. “Contribution à la modélisation de systèmes

complexes : application à la simulation d‟écosystèmes”.

French Research Habilitation Thesis, Blaise Pascal

University.

Himmelspach J. 2007. “Konzeption, Realisierung und

Verwendung eines allgemeinen Modellierungs-,

Simulations- und Experimentiersystems - Entwicklung und

Evaluation effizienter Simulationsalgorithme”. PhD Thesis,

Universität Rostock.

HLA; IEEE 1516-2000, “IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA) -

Framework and Rules.” Institute of Electrical and

Electronics Engineers, May 1.

Innocenti E.; Silvani X.; Muzy A.; Hill D. 2009. “A

software framework for fine grain parallelization of cellular

models with OpenMP: Application to fire spread.”

Environmental Modelling & Software, vol. 24, pp. 819-831.

Janoušek V.; Polášek P.; Slavíček P. 2006. “Towards DEVS

Meta Language.” In Proceedings of ISC 2006, June 7,

Palermo, Italy, pp. 69-73.

Kim D.; Cao H.; Buckley S.J. 2000. “Modeling and

Simulation of Supply Chain Management Based on DEVS

and CORBA Framework.” In Proceedings of the 2000 AI,

Simulation and Planning in High Autonomy Systems

Conference, March 6-8, Tucson, Arizona, USA,

pp. 282-289.

L'Ecuyer P.; Meliani L.; Vaucher J. 2002. “SSJ: A

Framework for Stochastic Simulation in Java.” In

Proceedings of the 2002 Winter Simulation Conference,

December 8-11, San Diego, California, USA, vol. 1,

pp. 234-242.

Liskov B.; Zilles S. 1974. “Programming with abstract data

types.” ACM SIGPLAN Notices, vol. 9, no. 4, pp. 50-59.

Mittal S.; Risco-Martín J.-L.; Zeigler B.P. 2007.

“DEVSML: automating DEVS execution over SOA towards

transparent simulators.” In Proceedings of the 2007 ACM

Spring Simulation Multiconference, March 25-29, Norfolk,

VA, USA, vol. 2, pp. 287-295.

Mittal S.; Risco-Martín J.-L.; Zeigler B.P. 2007. “DEVS-

based simulation web services for net-centric T&E.” In

Proceedings of the 2007 Summer Computer Simulation

Conference, July 15-18, San Diego, CA, USA, pp. 357-366.

Muzy A.; Innocenti E.; Aïello A.; Santucci J.F.; Santoni

P.A.; Hill D. 2005. “Modelling and simulation of ecological

propagation processes: application to fire spread.”

Environmental Modelling & Software, vol. 20, Issue 7, July,

pp. 827-842.

Posse E.; Bolduc J.-S. 2003. “Generation of DEVS

Modelling & Simulation Environments.” In Proceedings of

the 2003 SCS Summer Computer Simulation Conference,

July, Montréal, Canada, pp. 295-300.

Quesnel G.; Duboz R.; Ramat E. 2009. “The Virtual

Laboratory Environment - An Operational Framework for

Multi-Modelling, simulation and analysis of complex

dynamical systems.” Simulation Modelling Practice and

Theory, vol. 17, April, pp. 641-643.

Risco-Martín J.-L.; Mittal S.; López-Peña M. A.; De La

Cruz J. M. 2007. “A W3C XML Schema for DEVS

Scenarios.” In Proceedings of the 2007 ACM Spring

Simulation Multiconference, March 25-29, Norfolk, VA,

USA, vol. 2, pp. 279-286.

Schmidt D.C. 2006. “Model-Driven Engineering - Guest

Editor's Introduction.” IEEE Computer, February, vol. 39,

no. 2, pp. 25-31.

Touraille L.; Traoré M.K.; Hill D.R.C. 2009. “A Markup

Language for the Storage, Retrieval, Sharing and

Interoperability of DEVS Models.” In Proceedings of the

2009 ACM/SCS Spring Simulation Multiconference, March

22-27, San Diego, CA, USA, Article no. 163.

Touraille L.; Traoré M.K.; Hill D.R.C. 2010. “Enhancing

DEVS Simulation through Template Metaprogramming:

DEVS-MetaSimulator”, In Proceedings of the 2010

ACM/SCS Summer Simulation Multiconference, July

11-15, Ottawa, ON, Canada, pp. 394-402.

Traoré M.K. 2008. “SimStudio: a Next Generation

Modeling and Simulation Framework.” In Proceedings of

the ACM/IEEE 1st International Conference on Simulation

http://www.acims.arizona.edu/SOFTWARE/software.shtml

Tools and Techniques for Communications, Networks and

Systems & Workshops, March 3-7, Marseille, France,

Article no. 67.

Traoré M.K. 2009. “A Graphical Notation for DEVS.” In

Proceedings of the 2009 ACM/SCS Spring Simulation

Multiconference, March 22-27, San Diego, CA, USA,

Article no. 162.

Vangheluwe H.L.M. 2000. “DEVS as a Common

Denominator for Multi-formalism Hybrid Systems

Modelling.” IEEE International Symposium on Computer-

Aided Control System Design, September 25-27,

Anchorage, Alaska, USA, pp. 129-134.

Wachsmuth G. 2007. “Metamodel Adaptation and Model

Co-Adaptation.” ECOOP‟07. vol. 4609 of LNCS., Springer

pp. 600-624.

Zeigler B.P.; Praehofer H.; Kim T.G. 2000. Theory of

Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems. Academic Press.

Biographies

 Luc Touraille is a PhD student at the LIMOS CNRS

laboratory under Dr. Traore and Dr. Hill supervision. He is

working on the DEVS formalism and more particularly on

applying Model Driven Engineering techniques to this

domain. He holds a M.Sc. and a French “diplôme

d‟Ingénieur” in Computer Science & Software Engineering.

 Mamadou K. Traoré obtained his PhD in Computer

Science in 1992. He is Associate Professor at the Blaise

Pascal University (Clermont-Ferrand - France) since 1995.

His current research focuses on formal specification,

symbolic manipulation and automated code synthesis of

simulation models (http://www.isima.fr/~traore).

 David R.C. Hill is currently Vice President of Blaise

Pascal University in charge of ICT. Since 1990, Professor

Hill has authored or co-authored papers in various domains

with a particular focus on ecological modeling and life

science simulation. More information can be found here:

http://www.isima.fr/~hill.

http://www.isima.fr/~traore
http://www.isima.fr/%7Ehill

