
DEVS Modeling and Simulation Methodology with MS4 Me Software Tool

Chungman Seo, Bernard P. Zeigler, Robert Coop, and Doohwan Kim

RTSync Corp.
530 Bartow Drive Suite A

Sierra Vista, AZ, 85635, USA
cseo, zeigler, robert.coop, dhkim@rtsync.com

Keywords: Sequence Diagram, State Diagram, DEVS
Natural Language, MS4 Me Software Tool

Abstract
 There are many implementations of DEVS Modeling
and Simulation in various computer languages and software
tools. Most of them focus on modeler-friendly approaches
which mean a user should have knowledge of modeling and
computer languages. In this paper, we introduce high and
low level design methodology to help domain experts (who
might not have an in-depth understanding of DEVS
modeling theory) solve their domain problems with DEVS
modeling and simulation software called MS4 Modeling
Environment (MS4 M)e. The tool enables high level model
design through a sequence diagram from which template
DEVS models are automatically created. The sequence
design is converted to a System Entity Structure (SES)
document representing a coupled model. The template
DEVS models are written to constrained natural language
called DEVS Natural Language (DNL) to express DEVS
atomic modesl which MS4 Me displays to a state diagram as
a low level model design. The state diagram contains
detailed information from the domain experts who provide
logic, variables, and message types for each atomic model.
More in-depth technical implementation details are
provided by DEVS modelers working together with domain
experts. In this manner, MS4 Me provides a collaborative
DEVS modeling and simulation environment for domain
experts and DEVS modelers.

1. INTRODUCTION

 It is hard for domain experts to create a simulation
model in their domain of interest with only a technical guide
or manual. Although such users have knowledge of specific
domains, they need to understand how to make models with
modeling and simulation theory. Most simulation tools help
users easily implement their domain models by hiding
complex modeling theory and knowledge of computer
language implementing the modeling theory. They provide
graphic interfaces to gather information required to generate
models. In this case, the simulation tools stick to specific
domain areas such as OPNET [1], and Arena [2].

 One of the broadly applicable modeling and simulation
theories is DEVS (Discrete Event System Specification)
modeling and simulation [3]. There are many
implementations of DEVS modeling and simulation in
various computer languages and software tools. CD++ [4],
PowerDEVS [5] and ADEVS [6] are implemented using
C++. DEVS-Suite [7] is implemented using Java. Most of
them focus on modeler-friendly approaches which mean a
user should have knowledge of both modeling theory and
the underlying computer languages to create models. To
reduce time to create models, a DEVS software tool needs
to provide a collaboration environment to inject domain
knowledge into generic frameworks such as UML [8].
 The aim of the MS4 Modeling Environment software
tool is to help users develop DEVS models and simulate
them. It provides a sequence diagram to allow users to
express the overall system structure and each component’s
behavior without having to have knowledge of DEVS
theory or a computer language. Moreover, the sequence
diagram generates template DEVS models described in
restricted natural language from the system design. The
template DEVS model is expressed in DEVS Natural
Language (DNL) [9] which enables sharing information
between domain experts and modelers. MS4 Me generates
Java language models from the DNL files automatically. To
implement more realistic models, a DNL document can
include tag blocks for handling logic codes, and
specification of variables, message types, and input/output
ports. The DNL document is represented to a state diagram
which manipulates states and message transitions to alter
model’s behaviors. The sequence diagram depicts a coupled
model in a restricted natural language for expressing System
Entity Structures (SES) [10]. An SES file is converted to a
coupled model through a pruning and transformation
process.
 One of the powerful capabilities of the MS4 Me tool is
the ability to couple multiple models into a larger and more
complete system. The SES language is used to describe how
a system is decomposed into subsystems when viewed from
a certain perspective, different specializations of a system
that might occur, messages sent from one system to another,
and variables that a system might have [9].

 In this paper, we introduce a model development
methodology in three stages to create domain models using
the collaboration environment supported by MS4 Me.
Through collaborative work between domain experts and
modelers, the time for domain modeling can be reduced and
efficiency for modeling can be increased.
 In the rest of the paper, section 2 addresses features of
MS4 Me software tool and shows a sequence diagram to
explain how to use MS4 Me. Section 3 addresses modeling
and simulation methods with MS4 Me. A military example
using the model development methodology in three stages
explained in section 3 is shown in section 4. The paper’s
summary and future work are in the section 5.

2. MS4 MODELING ENVIRONMENT SOFTWARE

MS4 Modeling Environment (MS4 Me) is a software
tool for DEVS Modeling and Simulation based on Java
computer language and Eclipse RCP environment [11]
developed by MS4Systems (ms4systems.com). It provides a
top down modeling methodology with a sequence diagram
which represents the overall system structure as well as
bottom up modeling method with a state diagram which
constructs behaviors of an atomic model. The sequence
diagram generates System Entity Structure (SES)
documents expressed in restricted natural language [9], and
the state diagram is expressed in a DEVS Natural Language
(DNL) document and represents a DEVS atomic model with
restricted natural language [10]. MS4 Me automatically
generates atomic models implemented in the Java language
from the DNL files, and a coupled model through running a
PES file generated by a pruning process for the SES
document. For advanced users who are familiar with
restricted natural languages for SES and DNL documents,
MS4 Me provides editing capability with highlighted
keywords used in SES documents and DNL documents.

2.1. MS4 Me Launch Page

Figure 1. Launch Page of MS4 Me

 Figure 1 shows the MS4 Me Launch Page which
outlines the work flow of how to use MS4 Me, and enables

users to reach ses files, pes files, and dnl files in project
folders directly. The Launch Page starts with a New Project
button which guides to create a project for DEVS modeling
and Simulation. Also, a project is created by a New Project
menu in a File menu. The project has a src folder containing
seven sub folders which are Models.animation, Models.dnl,
Models.java, Models.pes, Models.ses, Models.txt, and
Models.xml. After creating a project, users can generate any
domain models with the sequence diagram, the state
diagram, ses editor, and dnl editor. As an easy way to
generate a system, MS4 Me provides a sequence diagram
which describes DEVS model entities and message relations
among them, and generates a SES document for the system
when saving the sequence design. After finishing
constructing the system, the sequence diagram generates dnl
files from the SES document. In the launch page, the
Sequence Diagram icon links to System Entity Structure
(SES), and the System Entity Structure (SES) icon links to
Atomic Model represented by dnl files. The SES document
is viewed as a SES Tree, and the Prune SES provides a
pruning interface that generates Pruned Entity Structure
(PES) documents. To simulate the designed system, users
can use a pes file or a Java file to display the system in the
simulation viewer using View Simulation button in the
launch page.

2.2. Sequence Diagram and SES Document
 The sequence diagram generates a simple scenario of a
system with entities and message arrows. An Entity in the
sequence diagram GUI represents an atomic or coupled
model and has properties describing variables,
specialization, decomposition, and multiple aspects for SES
document [10]. An entity with a decomposition property is
shown as a coupled model. This paper focuses on DEVS
modeling not SES. For more information about SES
handling in MS4 Me, refer to [9]. With a decomposition
property, the sequence diagram can express the hierarchical
structures of DEVS models.

Figure 2. Sequence Diagram for HelloExample

 Figure 2 shows the HelloExample sequence diagram
where MyWorld entity with thicker line is a coupled model
having two atomic models. A top model will be viewed with
Person and MyWorld models. The Person model sends a
Hello message to MyWorld model and the MyWorld model
sends a GoodMorning message to the Person model. In the
sequence diagram for a MyWorld, there is a MyWorld
entity with underscore to show ports for the coupled
MyWorld model. The ports connect messages from outside
models to the models in the MyWorld coupled model.

Figure 3. SES Document of HelloExample

 Figure 3 shows a SES Document from a HelloExample
sequence diagram. MS4 Me editor highlights reserved
keywords which are in red for the SES document. Keyword
highlighting and syntactic error checking make it easy for
advanced users to generate SES documents. For more
detailed information on SES natural language keywords,
refer to [9]. Words in blue are entities generated to SES or
DNL files. This feature allows users to easily navigate to
files related to entities.
 The system in the sequence diagram expresses
conceptual design which means there are no concrete
implementations for logics, message types, and variables
used in each model. To implement models with such
detailed information, appropriate atomic models must be
created. The sequence diagram automatically creates atomic
models for all entities from a ses file except entities with
decomposition

2.3. State Diagram and DNL Document

 DNL document represents behaviors, input ports, and
output ports of an atomic model with restricted natural
language. In case of the atomic models generated from a
sequence diagram, the behaviors of the atomic models are
determined by interactions of messages between entities.
For example, if Person entity sends Hello message to
MyWorld entity, the Person model starts with internal
transition after passing certain time and generates an output
event (message) to Hello port. After sending the message,
the Person model waits for an external event from
GoodMorning port. After receiving a message from the port,
the Person model waits forever. This is a basic rule to
generate DNL documents from the SES document.

 Figure 4 shows a DNL document for the Person entity
in the above sequence diagram. The DNL editor has
syntactic checking function through highlighting reserved
keywords for the DNL document. The DNL document in
figure 4 contains definitions of input and output ports, an
internal event, an output message, and an external event.
The DNL file is automatically converted to a Java file
implemented for an atomic model in MS4 Me environment.
The Java file is more complicated than the DNL file. So,
users only construct the DNL files and MS4 Me takes care
of the others.

Figure 4. DNL Document for Person Entity

 The advanced users code a DNL document in the DNL
editor directly. To make it easy to construct a DNL
document, MS4 Me provides a state diagram seen in figure
5. The double rectangles signify an initial state, here
sendHello, with 1 unit time advance value, and the arrow
means a state transition with either internal or external event.
The single rectangle indicates a state containing a state
name and time advance. There are two characters (!,?) under
the transition. The exclamation mark (!) means that an
internal event occurs and an output port generates a message.
The question mark (?) means that a message comes through
an input port and an external event is triggered. Figures 4
and 5 represent the same atomic model.

Figure 5. State Diagram for Person.dnl

 In the state diagram there is a rectangle labeling
configuration in to provide additional information not
obtained from the sequence diagram. The configuration can
contain definition of variables, and additional information
required to generate Java codes such as initializing variables,
adding libraries, and adding Java codes in the model. The
DNL document can contain actual piece of Java code

between <% and %> called tag blocks. The tag blocks
enable the DNL document to cover all aspects of Java
atomic models. The model implemented in Java language
can import any existing libraries and add any methods
which are out of scope of the DNL document made with the
restricted natural language. The internal and external events,
and output message need to be implemented with actual
Java codes. The DNL document contains the Java codes in
the tag blocks for internal event, external event, and output
message. For more details for restricted DEVS Natural
Language, refer to [9].

2.4. Simulation Viewer

 The simulation viewer shows a coupled model and its
sub models. To open the simulation viewer, a PES file
should be created using Prune SES in the PES menu that
appears after opening the SES file. The simulation viewer
opens when clicking Run PES file in SimViewer menu on a
PES editor. After pruning, a Java coupled model is created
in Models.java folder. The simulation can be controlled
using Restart, Pause, Run, Step, and Run to buttons in the
bottom of the simulation viewer. Once the Java coupled
model is created, users can run the coupled model to open a
simulation viewer out of MS4 Me.

Figure 6. Simulation Viewer for HelloExample

 Figure 6 shows the whole coupled model of
HelloExample consisting of one atomic model (Person) and
one coupled model (MyWorld). Each model shows its own
ports and connections between the ports. Simulation status
shows in right hand side of the simulation viewer. Step
button makes the model be simulated for one cycle. “Run
to” button opens a GUI to set simulation time or cycles and
runs the model until reaching the simulation time or cycles.
The Run button simulates the model until finishing the

simulation. The Pause button is used to stop simulation. The
Restart button resets the model to a beginning state.

2.5. Other capabilities

 MS4 Me supports dynamic structure modeling which
creates and delete models and couplings during simulation
time. This capability can reduce simulation time and
construct more realistic models. For more detail information
of how to create dynamic structure models, refer to MS4 Me
user guide [12].
 MS4 Me provides graphing capability which enables
plotting of the values of variables during runs of the model.
A ‘graph’ command is used in a DNL file to create a graph
instance with a label of a variable, a title of a graph, and a
variable which comes during simulation. For examples of
the graphing capability, refer to MS4 Me user guide [12].

3. MODELING AND SIMULATION

METHODOLOGY WITH MS4 ME

 Many modeling software tools are implemented to
create simulation models and execute them. Beginners who
want to learn a simulation tool take some time to understand
how to create a model and how to use the tool, and require
computer programing knowledge for implementing detail
logics in their models. Those tools usually do not provide
two level designs such as high level design and low level
design. High level design is considered as an abstract level
design or conceptual design with which domian experts
create systems with their point of view. Low level design is
an implementation of specific modeling and simulation
based on the high level design. Modeling experts produce
models requiring modeling skills learned from many years.
 MS4 Me provides two level designs for domain experts
and modelers seen in figure 7. The domain experts’ design
starts with making scenarioes for systems which they want
to simulate. The scenarioes could be abstracted to simple
scenarioes expressed in the sequence diagram. With the
sequence diagram, the domain experts generate template
models from the SES document and validate system
behaviors through a simulation viewer. For detailed
implementation of each atomic model, they may define
message types for each event and variables used in the
models, and provide event handling logic. Domain experts
should know basic DEVS atomic model behaviors. For
example, if a model gets a message on an input port, an
external event handler can be given logic to process the
message. The external event could affect model’s variables
or output messages. In the case of an internal event, the
domain expert expresses how output messages are generated
with information which comes from the model’s variables
or ramdomly generated values. Also, an internal event
handler can be given logic to process the state transition in a

manner similar to that of the external event handler. To
refine the model, the modeler translates the logic into Java
code that is stored in a tag block. If there are no errors in the
Java folder, the domain expert can run the simple scenario
which contains all required logic in the atomic models, and
validate the simple scenario, checking instances of
input/output message and model variables. The first
development stage is basic implementation of the scenario
with a sequence diagram and a state diagram. In the first
stage, a modeler can help a domain expert convert logics
into Java codes.

Figure 7. Two level designs for collaboration environment in
MS4 Me

 The sequence diagram shows one cycle of behaviors of
the system which the domain expert designs. The atomic
models’ behavoirs are described out of the sequence
diagram. For example, a model receives an input message
containing a value and compares the received value and a
variable to decide a next state. The next state could be the
initial state not a different next state decided in the sequence
diagram. Given that the sequence diagram does not express
this situation, a modeler can alter the behavior of an atomic
using its state diagram. The modeler can add/delete a state
symbol (rectangle shape) and transition symbol (arrow) in
the state diagram to change model’s behaviors. Otherwise,
he/she can put code in the tag blocks to alter the model’s
behaviors. When implementing a change in an atomic
model’s behaviors the modeler could modify the sequence
diagram to more easily implement the change. This is the
second development stage which implements detailed
behaviors of atomic models. The domain expert designs
complex behaviors of atomic models and the modeler
implements atomic models with the complicated behaviors.

 Through the second stage, the detailed scenario model
is created. The next stage is to test the model with an
experiment frame model which consists of a generator and a
transducer models. The generator model generates system
conditions and decides how many the system model is
executed (simulated). The transducer model collects
messages from the system model and displays statistics in a
chart. A domain expert and a modeler decide which values
are generated in the generator model and which messages
are observed in the transducer model. After that, the squence
diagram is modified to add an experiment frame model to
the system. The generator model sends a configuration
message to the system and the system sends a observing
message to the transducer model. The new sequence
diagram generates new SES document. The modeler can
generate a full coupled model which consists of the system
model and the experiment frame model based on the
previous implementation from the second stage.
 The domain expert simulates the final model coming
from the third stage and can see the simulation results on the
various charts.

4. MILITARY APPLICATION EXAMPLE

We will illustrate a battle model implemented by our

collaboration environment using MS4 Me. The example is a
battle between two combat units with different weapon
systems. Simple behaviors of the example are the following.
 There are NT and ST combat units in a simple scenario.
NT consists of NCommand, NCo1, and NCo2. ST is made
of SCommand, SCo1, and SCo2. NCommand sends an
attack message to NCo1 which attacks SCo2. SCo2 reports
an attacked status to SCommand. SCommand initiates an
attack order to SCo1 and SCo2. SCo1 fires its weapons to
an assigned target. SCommand checks total damage from
SCo1 and SCo2, and sends attack messages to SCo1 and
SCo2. After attacking NCo1 and NCo2 from SCo1 and
SCo2, NCo1 and NCo2 fire their weapons to SCo1 and
SCo2. The simple scenario ends with two firings in NT and
ST.
 To define message types, variables, and logics, we
assign a hitting rate and a property value to each weapon.
ST uses K9, M130, SPIKE, and M150 as weapons and NT
uses M240, M120, M160 and M100. The damage status is
calculated by number of attacked ammunition. The
condition of finishing the simulation is that any weapon’s
property value is less than 30% of the initial value. The first
stage implements a sequence diagram from the simple
scenario and inserts required basic information into template
models. The second stage implements looping behaviors in
the models to get the result of the combat. The third stage
implements an overall system with an experimental frame
model and the battle model. To start simulation, the
generator in the experimental frame sends an

AssignWeapon message to the NT and ST models. After
calculating property values for component models in NT
and ST, the transducer model stops the simulation if there is
a model with less than 30% property value allowing it to
continue otherwise. In this example, the generator generates
four AssignWeapon messages containing combination of
weapon systems for NT and ST models.

 Hitting (%) Property($)

K9 65 3000000
M130 50 2000000
SPIKE 70 2500000

ST

M150 55 2500000
M240 55 2500000
M120 60 3000000
M160 70 2800000

NT

M100 65 2000000
Table 1. Initial values of each weapon

 ST(SCo1, SCo2) NT(NCo1, NCo2)

K9 M240
1 round

M130 M120
SPIKE M160

2 round
M150 M100

K9 M160
3 round

M130 M100
SPIKE M240

4 round
M150 M120

Table 2. Assigning weapons to ST and NT

 Table 1 shows initial hitting rate and property value for
each weapon system. Each model having one of the
weapons has a hitting rate and a property value in its
variables. The generator generates four messages with
information in table 2.

Figure 8. Overall Sequence Diagram for the final stage on the

example
 Figure 8 displays overall sequence diagram for a battle
between two combat units. The EFCoupled entity sends a
message containing weapons’ information addressed in table

2. The NCo1, NCo2, SCo1, and SCo2 models use assigned
weapons when they fight each other. When they are attacked,
NT and ST report their damage to the EFCoupled model to
check a simulation stop condition. After a winner is decided,
the EFCoupled model sends AssignWeapon messages to NT
and ST model for another round.

Figure 9. Simulation viewer of the example

 Figure 9 shows a simulation viewer for a battle between
combat units. ST, NT, and EFCoupled models have their
component models. Each component model has a model
name and its state.

Figure 10. Bar charts displaying results of each round

 Figure 10 shows bar charts containing property values
of four models in NT and ST. The combat unit with the
lowest property value loses the battle. In the result of the
simulation, ST model wins for four rounds.

5. CONCLUSIONS

In this paper, we introduced a MS4 Me software tool

which helps users easily implement DEVS modeling and
simulation in any domain. DEVS modeling and simulation

used in the MS4 Me tool is implemented in Java and based
on the Eclipse RCP environment with plug-in extensibility.
It provides SES, PES, and DNL editors to provide content
assistance and check for syntactic errors in SES, PES, and
DNL documents. The editor capability is for advanced users
who have learned DEVS modeling and simulation. For
novice users, MS4 Me provides sequence and state
designers for generating SES and DNL documents from
graphic input. The sequence diagram helps domain users
easily design their systems with entities and message
passing. One of unique features in the environment is
automatic generation of template DNL documents from SES
documents. Domain experts save time to make atomic
models with this MS4 Me feature. The template DNL
document contains behaviors, input ports, and output ports
derived from the sequence diagram. Detailed information on
message types, event handling logics, and variables is
required to implement realistic models from template
models. The information can be inserted into DNL
documents through a DNL editor or a state designer. The
logics are described in Java codes placed in tag blocks in the
DNL document. A SES document generates through a
pruning process a PES document which creates a coupled
model and opens a simulation viewer.

We proposed three model development stages to
develop a domain model which a domain expert designs and
a modeler refines the design. The domain expert and the
modeler can share model design and implementation
through MS4 Me software. The first stage includes creating
a basic system with a simple scenario. The basic system is
made of atomic models with event handling logics and
variables. The domain user validates the system through a
simulation viewer. The second stage elaborates models’
behaviors in the simple system using a state designer. This
allows expressing non-sequential behavior patterns which
are not covered by the sequence designer. After the second
stage, the domain system has been completely described.
The final stage is to add an experiment frame model to the
domain system. The experiment frame model adds
simulation control to the domain system and observes
simulation outputs during execution. After finishing the
simulation, the experiment frame model provides statistical
results in charts. We used a military example to apply three
model development stages with MS4 Me.

For continued development of its capabilities, work on
MS4 Me will seek to remove current limitations and
enhance its user assistance features. For example, in the
current version there is a limitation on automatic generation
of atomic models from SES documents that contain
advanced SES constructs. In enhancing its assistance
features, the goal is to enable domain experts to create
domain systems with minimum intervention of modelers
while still hiding the complexities of the underlying DEVS
formalism. In this way, MS4 Me recognizes that each type

of user is indispensible. MS4 Me strongly differs from
efforts to support domain-driven modeling environments for
specific applications (e.g. [13,14]) in which the DEVS
modeler is in principle eliminated. Rather its goal is to
provide a generic, DEVS modeling and simulation
environment enabling domain experts and DEVS modelers
to truly collaborate, each contributing his/her unique
knowledge and skills.

References

[1] www.opnet.com/solutions/network_rd/modeler.html
[2] W. David Kelton, Randall P. Sadowski, Nancy B. Swets,

Simulation with Arena, McGraw-Hill, 2010
[3] Zeigler, B.P., Kim, T.G., and Praehofer, H., Theory of

Modeling and Simulation, 2nd ed., Academic Press,
New York, 2000.

[4] Gabriel A. Wainer, Discrete-Event Modeling and
Simulation: A Practitioner’s Approach, CRC Press,
2009.

[5] Federico Bergero, Ernesto Kofman, PowerDEVS: atool
for hybrid system modeling and real-time simulation,
Simulation, vol.87 no. 1-2 113-132 Jan 2011.

[6] James J. Nutaro, Building software for Simulation, wiley,
2011,

[7] http://acims.asu.edu/software/devs-suite
[8]Shaikh, R., H. Vangheluwe, 2011, “Transforming
UML2.0 class diagrams and statecharts to atomic DEVS”,
Symposium on Theory of Modeling & Simulation, 205—
212, Boston, MA, USA.
[9] Zeigler, Bernard P., Sarjoughian, Hessam S. Guide To
Modeling And Simulation Of Systems Of Systems
Series: Simulation Foundations, Methods And Applications
Springer Pub. Co., pp. 330, 2013.
[10] Zeigler, B.P and Phillip Hammonds (2007),
“Modeling&Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric
Information Exchange”, ”, Academic Press, Boston,. 448
pages
[11] http://www.eclipse.org/home/categories/rcp.php
[12] MS4 Me user guide (www.ms4system.com)
[13] Ferayorni, A., H. S. Sarjoughian, 2007, “Domain
driven modeling for simulation of software architectures”,
Summer Computer Simulation Conference, 1-8, San Diego,
CA, USA.
[14]Mittal, S., Douglass, S.: From domain specific
languages to DEVS components: application
to cognitive M&S. In: Proceedings of the 2011 Symposium
on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, pp. 256–265. Society
for Computer Simulation
International (2011)

