
Creating Suites of Models with System Entity Structure: Global Warming Example

Bernard P. Zeigler, Chungman Seo, Robert Coop, and Doohwan Kim

RTSync Corp.

530 Bartow Drive Suite A
Sierra Vista, AZ, 85635, USA

zeigler, cseo, robert.coop, dhkim@rtsync.com

Keywords: System Entity Structure, Suite of Models,
component-based modeling, Systems of systems

Abstract
 We describe how to develop a suite of models in the
MS4 Modeling Environment. The approach employs the
operation of merging of System Entity Structures supported
by the environment. After construction, the suite of models
can be hosted on Model Store, the cloud-based repository of
models provided by MS4 systems as a basis for further
collaborative model development. A suite of models,
relating to Global Warming is used as an example. We
discuss enhanced browsing as necessary to enable a
developer to work effectively in a marketplace environment.

1. INTRODUCTION

 As has been described in a number of publications
(see e.g., [1-5]) the System Entity Structure (SES)
supports development, pruning, and generation of a family
of simulation models, In this paper, we introduce an
expanded concept involving multiple families supported by
MS4 Me [6], the Modeling Environment developed by
MS4Systems.com . Figure 1 contrasts a suite of models
with a single family of models. In Figure 1a) an SES
implements a single family of models while in Figure 1b) a
set of non-overlapping SESs represents a set of families of
unrelated models. Finally Figure 1c) depicts a set of
intersecting SESs representing a suite of related families of
models. In such a suite, there are SESs that are “components
of other SESs. This use of the term “components”
transfers the “component of” concept from its use in
component-based model construction [7] to the domain of
SES construction. Thus, an SES is a component of another
SES in the sense that the models the first SES generates are
components of models generated by the second SES. The
operation of composing DEVS models to create a coupled
model [8] is mirrored by the merging operation for
composing SESs [5]. As will be explained, merging
generalizes the DEVS construction process in which
individual models can be developed, tested and then

composed to create hierarchical models in stage-wise
fashion. This is to say, merging supports hierarchical
composition in which families of models are generated and
tested via pruning and transforming their SESs in bottom-up
manner.

Figure 1 Suites of Models supported by the SES

2. GLOBAL WARMING SUITE OF MODELS

Global warming provides a domain where suites of models
are related by common carbon-driven warming processes
potentially causing a variety of climate-variation effects.
The following is an example of such families of models and
the questions they address:

• Greenhouse effect Model Family: What is the
greenhouse effect that causes warming of the
earth?

• PolarIce Melting Model Family: How does
global warming cause increased melting of the
Polar Ice Cap?

• PermaFrost Melting Model Family: How does
the warming of the permafrost contribute to ever
increasing global warming?

• SeaLevel Rising Model Family: How does the
global warming contribute to the rising of the sea
level?

• Storm Intensity Increasing Model Family: How
does the global warming contribute to the
increasing intensity of storms?

• Flood Increasing Model Family: How does the
global warming contribute to the increasing
incidence of floods?

• Drought Increasing Model Family: How does the
global warming contribute to the increasing
incidence of droughts?

Appendix 1 contains more description of the models in this
collection. Each model family is a set of models pruned
and generated from a corresponding SES. As illustrated in
Figure 2, these SESs form a set that is related by a
composition relation. Here an arrow indicates composition,
i.e., an SES is composed of the SESs and atomic entities
sending arrows to it. For example, the GreenHouseEffect
SES is composed only of atomic entities while it is a
component in many other SESs, reflecting the case that
greenhouse gases are a cause of the related climate change
phenomena.

Figure 2 Suite of Models for Global Warming

3. UNDERSTANDING THE SYSTEM ENTITY

STRUCTURE

 To explain how to develop model families we start with
manual creation of DEVS coupled models and evolve to the
next level where the SES automates most of this work. To
start, consider the Flood Increasing model family, an
instance of which is illustrated in Figure 3. Here the
components are the model families for Sea and Polar Ice
,Record and Graph Flooding, Greenhouse Effect , Storm
and Land Flood The couplings are depicted by arrows
from output ports to input ports. For example, there is a
coupling from the output port, outRain of Storm to the input
port, inRain of LandPlot.

Figure 3 Flood increasing model

 A common way of creating a coupled model requires
defining a class for it with a constructor that adds its
components and their couplings. For example,

public FloodIncreasing(){

//create instances of component classes and add them to the model

SeaAndPolarIce SeaAndPolarIce = new
SeaAndPolarIce();
addChildModel(SeaAndPolarIce);

RecordAndGraphFlooding
RecordAndGraphFlooding = new
RecordAndGraphFlooding();
addChildModel(RecordAndGraphFlooding);

GreenHouseEffect GreenHouseEffect = new
GreenHouseEffect();
addChildModel(GreenHouseEffect);

Storm Storm = new Storm();
addChildModel(Storm);

LandFlood LandFlood = new LandFlood();
addChildModel(LandFlood);

// add the couplings

addCoupling(LandFlood.outFloodLevel,RecordAn
dGraphFlooding.inFloodLevel);
addCoupling(Storm.outRain,LandFlood.inRain);
addCoupling(GreenHouseEffect.outTemperature,
Storm.inTemperature);
addCoupling(GreenHouseEffect.outTemperature,
SeaAndPolarIce.inTemperature);
addCoupling(SeaAndPolarIce.outSeaLevel,LandF
lood.inSeaLeve);
}

The SES generates class definition containing these kinds of
imperative commands from declarative statements in the
form of constrained natural language sentences. For

example, to generate the same model you can write the
following SES specification:

//describe the components

From the FloodIncreasingsys perspective,
FloodIncreasing is made of GreenHouseEffect,
Storm, SeaAndPolarIce, LandFlood, and
RecordAndGraphFlooding!

//describe the couplings

From the FloodIncreasingsys perspective,
GreenHouseEffect sends Temperature to Storm!
From the FloodIncreasingsys perspective,
Storm sends Rain to LandFlood!
From the FloodIncreasingsys perspective,
GreenHouseEffect sends Temperature to
SeaAndPolarIce!
From the FloodIncreasingsys perspective,
SeaAndPolarIce sends SeaLevel to LandFlood!

In addition to components and couplings, an SES can
include specializations that provide alternative choices for
components. For example, the SES for GreenHouseEffect
of shown in outline in Figure 4, depicts a specializations
rateOfIncrease for FossilFuelBurning with alternatives
FastIncrease, SlowIncrease, and ZeroIncrease. Similarly,
GreenHouseGasDilution is a specialization for
GreeHouseGas with values FastDilution, SlowDilution, and
ZeroDilution. Such specializations multiply to provide a
combinatorial space of possibilities constituting the family
of models generated by the SES. Appendix 2 contains
description of some basic natural language SES statements.

Choice of alternatives from specializations is done in a
process called pruning [6]. After pruning, a transformation
algorithm creates the hierarchical coupled model
corresponding to the pruned entity structure.

 Figure 4 Outline of SES for GreenHouseEffect

4. DEVELOPING A SUITE OF MODELS

The process for developing, merging, pruning, and
transforming an SES is illustrated in Figure 5. Note that
before pruning, the SES components of a target SES are
merged (recursively) to give the merged version of the
target SES. The merged SES is then pruned and
transformed to a hierarchical coupled model. For example,
to create the merged SES for FloodIncreasing, the unmerged
SES is merged with the component SESs (see Figure 2)
GreenHouseEffect, SeanAndPolarIce, and LandFlood.
where the latter is merged from components,
LandFloodScape and LandFloodPlots.

Figure 5 Developing, merging, pruning, transforming SESs

 To develop a new family of models in a suite of
models, you develop the target SES for it, looking for
existing models that you can use as components. Such
existing models include families of models generated by
SESs as well as atomic models in the repository. An
existing family of models generated by an SES becomes a
component SES when you terminate the top down
specification of the target SES at a leaf entity with the same
name as this SES. This component SES will be merged into
the target SES in the process illustrated in Figure 5. For
needed components that are currently not available in the
suite of models, you go through the same procedure, with
the additional task of recursively developing the
components in the manner of the target. Of course you may
decide at any point to develop a model as an atomic model
rather than as one generated by an SES.

5. MARKETPLACE OF MODELS

 To summarize, in a suite of models, each component
SES represents a family of models that can be pruned and

transformed to execute in a simulation. Component SESs
can be merged to a new SES with the same compositional
properties. This functionality leads to the concept of a
marketplace of models. SES supports families of models for
combinatorial generation of architectural alternatives for
exploration and optimization. As an ontological framework,
the SES supports composition of models drawn from one or
more model repositories. Operations on SES objects such
as merging ease development by maintaining coherence of
shared constructs among modifiable components. Merging
enables divide-and-conquer component-based development
of suites of models. Another operation, called mapping,
supports tailoring and restructuring of SES components for
different objectives [5].

Figure x Supporting marketplace of models

 The concept of marketplace of models extends the
support for developing suites of models by using Web
Services backed by Cloud Technology. MS4 Systems is
developing environments to support the workflow
development processes for a marketplace of models. The
MS4 Store technology supplies the requisite Cloud-based
model repositories. The MS4 Modeling Environment (Me)
provides a range of support to enable evolution of users
from neophyte to expert. For the student it provides an
introduction to a simplified DEVS, Finite Deterministic
DEVS. It then goes on to provide advanced support for
developing full-fledged DEVS models in Java. For
collaborative team developers, it provides the composition
and integration facilities based on the SES described above.
Going beyond team development, it provides support for
market-oriented development of models. As illustrated in
Figure 6 for the Global Warming suite of models, such
support involves browsing the SES structures of models
aimed at enabling comprehension of model content and
functionality. Such comprehension is necessary to
realistically enable a developer to acquire and re-use a
simulation model developed by someone else.

Figure 6 Browsing support provided by MS4 Me

6. CONCLUSIONS

 This paper reviewed the System Entity Structure concept
and its support for developing a suite of models in the MS4
Modeling Environment. We described the operation of
merging SESs and its key role in the methodology for such
development. As an ontological framework for modeling
and simulation, the SES provides the basis for other
advanced operations such as mapping and tailoring, in
support of reuse, composition and integration. The
framework also supports browsing and comprehension of
model suite structure and behavior. Further research is
needed to develop the most efficient and effective ways of
generating views of SES entities, relationships, and
variables. After construction, the suite of models can be
hosted on Model Store, the cloud-based repository of
models provided by MS4 systems as a basis for
collaborative and market-oriented model development.

References

1. Kim, T., Lee, C., Christensen, E., Zeigler, B.: System

entity structuring and model base management.
Systems, Man and Cybernetics, IEEE Transactions on
20(5), 1013–1024 (1990)

2. Rozenblit, J., Zeigler, B.: Representing and
constructing system specifications using the system
entity structure concepts. In: Proceedings of the 25th
conference on Winter simulation, pp. 604–611. ACM
(1993)

3. Couretas, J. M., Zeigler, B. P. And Patel, U., 1999a,
Automatic Generation Of System Entity Structure
Alternatives: Application To Initial Manufacturing
Facility Design. Transactions Of The Society For
Computer Simulation, 16.

4. Hagendorf O., Pawletta T. (2009) A Framework for
Simulation Based Structure and Parameter
Optimization of Discrete Event Systems.in Discrete-
Event Modeling and Simulation: Theory and
ApplicationsGabriel A. Wainer (Editor), Pieter J.
Mosterman (Editor), CRC Press, 2010

5. Zeigler, B.P and Phillip Hammonds (2007),
“Modeling&Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric
Information Exchange”, ”, Academic Press, Boston,.
448 pages

6. Zeigler, Bernard P., Sarjoughian, Hessam S. Guide To
Modeling And Simulation Of Systems Of Systems
Series: Simulation Foundations, Methods And
Applications Springer Pub. Co., pp. 330, 2013.

7. Verbraeck. Component-based distributed simulations.
the way forward? In Proceedings of the 18th Workshop
on Parallel and Distributed Simulation
(PADS’04),pages 141–148, 2004.

8. M. R¨ohl and A. M. Uhrmacher. Composing
simulations from xml-specified model components. In
Proceedings of the Winter Simulation Conference 06,
pages 1083–1090. ACM, 2006.

Appendix 1: Global Warming Suite of Models

Each global warming model is addressed to a particular
question as illustrated in the following breakdown:

Greenhouse effect Model

What is the greenhouse effect that causes warming of the
earth?

The greenhouse effect is the warming of the earth due to the
accumulation of “greenhouse” gases in the atmosphere.
Burning of fossil fuels such as oil and coal to power cars
and generate electricity emits carbon dioxide into the
atmosphere. The accumulated carbon dioxide traps the sun’s

energy reflected off the earth’s surface, as if it were a
greenhouse roof. The trapped energy warms the gases
and raises the earth’s temperature. A second source of
carbon dioxide (C02) is gas released from permafrost in the
polar region when it is heated due to the greenhouse effect –
thus constitution a vicious feedback cycle.

PolarIceMelting Model

How does global warming cause increased melting of the
Polar Ice Cap?

Increased melting of the ice at the Arctic Pole is caused by
warming due to the Greenhouse effect.

PermaFrostMelting Model

How does the warming of the permafrost contribute to ever
increasing global warming?

Melting of the permafrost (ground that is permanently
frozen) is also caused by warming due to the Greenhouse
effect. However, it also contributes to this effect since upon
melting it also releases sequestered C02 to the atmosphere.

SeaLevelRising Model
How does the global warming contribute to the rising of the
sea level?

The level of the oceans’ surface (sea level) is rising due to
the Greenhouse effect as the ice of the Polar Ice Cap melts
(caused by warming) and pours into the sea.

StormIntensityIncreasing Model

How does the global warming contribute to the increasing
intensity of storms?

The intensity of storms is increased by the Greenhouse
effect causing more severe and frequent precipitation
(rainfall and snowfall.)

FloodIncreasing Model
How does the global warming contribute to the increasing
incidence of floods?

Floods are increasing in frequency and severity due to the
sea level rising and storms growing in intensity both as a
result of warming caused by the Greenhouse effect.

DroughtIncreasing Model

How does the global warming contribute to the increasing
incidence of droughts?

Similar to the case of floods, droughts are also increasing in
frequency and severity due to global warming. The
greenhouse effect warms the atmosphere and dries the
moisture in the atmosphere thus reducing the amount of
water reach the earth’s surface.

Appendix 2: Basic Statements for the System Entity
Structure

The "Made of" statement

This statement tells how a modeled component is made of,
or composed from, more basic components. Alternatively, it
tells how the entity representing a component is
decomposed into smaller entities using the aspect relation.
From the <perspective> perspective, the <coupled model>
is made of <component1>, <component2>, …, and
<componentN> !
Example: two aspects
From the floodHiRes perspective, LandFlood is made of
LandFloodScape and LandFloodPlots!
From the floodLoRes perspective, LandFlood is made of
LandFloodScape!

The "Sends" (Internal Coupling) statement

A series of these statements tells how the components of a
coupled model are coupled. i.e., how their output and input
ports are connected together.
From the <perspective> perspective, <component1> sends
<Message> to <component2>!
or

From the <perspective> perspective, <component1> sends
<outPort> to <component2> as <inPort>!

From the floodHiRes perspective, LandFlood sends Rain to
LandFloodScape!
From the floodHiRes perspective, LandFlood sends
SeaLevel to LandFloodScape!

The "Sends" (External Input Coupling) statement

A series of these statements tells how the input ports of a
coupled model are coupled to input ports of its components
From the floodHiRes perspective, LandFlood sends Rain to
LandFloodScape!
From the floodHiRes perspective, LandFlood sends
SeaLevel to LandFloodScape!

The "Sends" (External Output Coupling) statement

A series of these statements tell how the output ports of a
coupled model are coupled to output ports of its components.

From the <perspective> perspective, <component> sends
<Message> to <coupled model>!

From the floodHiRes perspective, LandFloodPlots sends
Flooded to LandFlood !
From the floodHiRes perspective, LandFloodScape sends
FloodLevel to LandFlood!

The "Can be" (Specialization) statement

Specifies alternative choices for a component that can be
made in pruning. A component can be though of as a place
holder into which one of the alternatives can be "plugged."

<component> can be <alternative1>,<alternative2>,
<alternative>, ... in <specialization>!

LandFloodPlot can be lowLying, seaLevelLying, or
highLying in aboveGroundHeight!

The "Merge All" statement

Merges a set of SESs into a target SES, the set is the set of
SESs found in the repository whose root entities exist as leaf
entities in the target SES
MergeAll from <SES>
mergeAll from GreenHouseEffect.ses !

