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Abstract 
Time is a critical factor in airlines industry. Among all 
factors contributing to an aircraft turnaround time, 
passenger boarding delays is the most challenging one. 
Airlines do not have control over the behavior of 
passengers, thus their only key in reducing passenger 
boarding time is in implementing efficient boarding 
strategies. In this work we attempt to use discrete-event 
cellular DEVS to provide a comprehensive evaluation of 
aircraft boarding strategies. We have developed a simulation 
benchmark consisting of various boarding strategies 
including Back-to-Front, Window Middle Aisle, and 
Reverse Pyramid. Our simulation models are highly precise 
and adaptive, providing a powerful analysis apparatus for 
investigating any existing or yet to be discovered boarding 
strategy. We explain the details of our models and present 
the results both visually and numerically to evaluate the 
three implemented boarding strategies. This research is an 
on-going effort aiming to optimize and reduce passenger 
boarding delays in commercial aircrafts.  .  
 
1. INTRODUCTION 
Airlines generate revenue by utilizing and flying airplanes. 
One of the factors for reducing airlines cost is the quick 
turnaround of their airplanes. A turnaround time is used to 
measure the efficiency of airline’s operation in a traditional 
metric. Usually turnaround time is measured by the time 
between an airplane’s arrival and its departure  [1]. Some 
factors that influent the turnaround time include passenger 
deplaning, baggage unloading, fueling, cargo, airplane 
maintenance, cargo loading, baggage loading, and passenger 
boarding. The most difficult factor to control is passenger 
boarding time since airlines have little control over 
passengers. Therefore, airlines have to be cautious in 
making changes to decrease boarding time  [2]. Many 
researchers have proposed and investigated different 
boarding strategies aiming at reducing the boarding time 
even by a couple of minutes  [2]- [10]. Among the existing 
boarding strategies the following are the most well-known 
techniques: Back-to-Front, Random Strategy, Outside-in 
Method (or Window Middle Aisle), Rotating zone, Reverse 

Pyramid, Optimal Method, Practical Optimal Method, and 
Efficient Strategy. 
Aiming at evaluating the efficiency of various existing and 
new boarding strategies, we have implemented a discrete-
event simulation benchmark based on the Discrete-Event 
System Specification (DEVS  [12] and Cell-DEVS  [14]) 
formalism. Our benchmark consists of DEVS-based models 
that are perfectly suitable for executing various simulations 
on any type of aircraft. Our simulation results are visually 
presented as 2-D animations, making it easily 
understandable by non-experts. In this work we only 
simulate three of the above mentioned boarding strategies: 
Back-to-Front, Window Middle Aisle, and Reverse 
Pyramid. We also compare our simulation results to the 
Optimal strategy to present the degree of efficiency of the 
given strategies.  
This work attempts to present the power of DEVS and Cell-
DEVS in analyzing and investigating aviation-related 
challenges. We demonstrate how flexible, adaptive, and 
precise Cell-DEVS is in simulating passenger behavior. 
This paper is organized as follows: Section 2 provides a 
brief background about various boarding strategies and 
highlights some of the related works. Section 3 presents our 
model assumptions. Section 4 discusses the high-level and 
low-level design. The DEVS and Cell-DEVS 
implementation details are introduced in Section 5. Section 
6 provides the simulation results. The concluding remarks 
are given in Section 7. 
 
2. BACKGROUND 
Since there is yet no “best” boarding strategy, airlines 
around the world try different methods from time to time. 
Below we summarize some of the currently available 
techniques.  
Back-to-Front: This boarding plan is known as the 
“traditional” boarding method. Passengers are boarded to 
from the back row of the aircraft and continue with the rows 
up to the front. The zones can be any number reaching from 
two to the number of actual rows. This strategy is easy to 
implement, however, it is very likely that it is an inefficient 
method because congestion is created in a reduced area.  [1] 
Random Strategy: This boarding plan is when passengers 
are not assigned to specific seats but line up at the gate 
counter and are admitted in the order that they arrive. People 
can choose any unoccupied seat as soon as they get onboard. 
Passenger will start to rush into plane to get a better seat. 



This makes the boarding process faster; however, this 
reduces the passenger comfort level  [4]. 
Outside- in Method: This method is also called “Window 
Middle Aisle”.  Passengers who are assigned to window 
seats will board first. When it is finished, middle and aisle 
seats follow. This method has so far revealed very efficient 
boarding time. It potentially reduces passenger interference 
caused by loading luggage and completely reduces 
passengers interfering with each other among the rows. This 
method is relatively easy to implement  [9]. 
Rotating Zone: This method starts with the last zone in the 
back to be seated, then continues with the first row in the 
front. After this, the order continues again with the furthest 
yet unoccupied zone in the back, then the front one and so 
on. The advantage of this method is that passengers who are 
boarding at the back and in the front will not interfere with 
each other  [9]. 
Reverse Pyramid: This method is to make passenger order 
from the outer back till the inner front of cabin. This method 
is in fact a combination of Back-to-Front and Window to 
Aisle. This strategy is proved to be an efficient method by 
American West Airlines  [2]. 
Optimal Method: This method is to make passengers board 
in order from Back-to-Front but in every other row. This 
methods aims at reducing the interference among passengers 
from the back and the front, and giving passengers enough 
space to load their luggage, which reduces the luggage delay 
in return. However, this method is not practical based on 
South West Airline experience. It is a challenge to arrange 
all the passengers in the proper order  [8].  
Practical Optimal Method: This technique defines four 
boarding groups.  First group is all passengers in even rows 
in one side of the airplane. The second group is all 
passengers in even rows in another side of the airplane. The 
third and fourth group is the passengers in odd rows in each 
side of the airplane. This method is not as efficient as the 
optimal method, but it is practical and it proved to be a 
successfully boarding method [8].  
A number of studies have been conducted previously by 
implementing various boarding strategies using different 
simulation techniques including: Linear Programming  [10], 
Discrete-Event simulation  [2], and even Cellular Automata . 
A comprehensive literature survey about passenger boarding 
simulation techniques are reported in  [11]. In this work, we 
have implemented precise and aircraft-independent boarding 
strategies and provide a comparison of their efficiency. Our 
simulation is based on the discrete-event DEVS and Cell-
DEVS theory. Unlike CA, Cell-DEVS does not require 
updating the entire cellular grid at every time step. Rather, 
only cells with updated neighbor values are evaluated. This 
improvement overcomes the issue of the original CA by 
reducing the overall execution cost, leading to faster 
computations. We show that precise simulations results, 

comparable to those produced by complex mathematical 
modeling techniques (like those reported in  [10] using linear 
programming), can be obtained from the collective behavior 
of discrete-event cellular grids. The Cell-DEVS cell space is 
composed of very simple cells that make local decisions 
solely based on the information gathered from their 
immediate neighbors. To implement our DEVS and Cell-
DEVS models we used CD++  [13] development toolkit. 
CD++ is an open-source object-oriented modeling and 
simulation environment that implements both DEVS and 
Cell-DEVS theories in C++. The tool provides a 
specification language that defines the model’s coupling, the 
initial values, the external events, and the local transition 
rules for Cell-DEVS models. CD++ also includes an 
interpreter for Cell-DEVS models. The language is based on 
the formal specifications of Cell-DEVS. The model 
specification includes the definition of the size and 
dimension of the cell space, the shape of the neighborhood 
and the border. 
 
3. MODELING ASSUMPTIONS 
Here we present the common parameters and assumptions 
that were considered for the three boarding strategies (i.e. 
Back-to-Front, Window Middle Aisle (WMA), Reverse 
Pyramid) we have implemented. Based on  [9], we define 
ranges for four different parameters as given in Table 1. The 
first two parameters define the walking speed of a passenger 
and the time that one passenger needs to sit down at their 
assigned seat and have their luggage stored in the overhead 
compartment or underneath the seat in the front. The third 
parameter is the amount of time a passenger takes to get up 
of their seat, allowing other passengers to sit within that 
row. The Passenger flow rate defines the number of 
passengers that enter the airplane in a certain amount of 
time. All of these parameters are given in the form of a 
range from min_value to max_value. We have mapped these 
ranges to our Cell-DEVS model to precisely implement a 
near-reality model of passenger boarding strategies. Details 
of these mappings are given in the next section when the 
model’s rules are explained. 

Table 1. Basic Parameters Ranges.  [9]  
Parameter Range  Unit 
Walking 
Speed 

0.27…0.44 [m/s] 

Clearing 
Time 

6…30 [s] 

Get up out 
of seat  

3…4.2 [s] 

Passenger 
flow rate 

0.2 …1 [pax/s] 

 
There are two basic elements that interfere the boarding 
process: aisle interference, and seat interference  [9]. Aisle 
interference is introduced when a passenger is blocked by 



another passenger in the aisle, while seat interference is 
when a passenger tries to get to a seat near the window but 
is blocked by another passenger already seated near the 
aisle. Given these two interferences, three types of delays 
are recognized: walking delay, luggage delay, variable 
seated passenger delay. For simplicity, at this stage we have 
implemented our three boarding strategy models with fixed 
delay times. The corresponding delay values used in our 
models are given in Table 2.  

Table 2. Various Delay Values  [9]. 
Parameter  Time Unit 
Walking delay 2270 ms 
Luggage Delay 18000 ms 
Two passengers 
get out of seats 

4200 ms 

Middle 
passenger gets 
out of seat 

3600 ms 

Aisle passenger 
gets out of seat 

3000 ms 

 
4. SYSTEM DESIGN 
Our aircraft model defines an Airbus 320 internal space 
layout with two different seating areas (first and economy 
classes) giving a total of 26 rows and 150 seats, a single 
middle aisle, and an entrance door as given in Figure 1 .    

 
Figure 1. System Overview. 

To model the proposed system using DEVS, we define a 
DEVS coupled model composed of an atomic DEVS 
component and a coupled Cell-DEVS grid as illustrated in 
Figure 2. Our DEVS component “Passenger Generator” is 
in charge of generating passengers with specific seat 
numbers and injecting them into the Aircraft cellular model.  

 
Figure 2. DEVS Conceptual Model of the System. 

The two subsystems (Passenger Generator and Aircraft) are 
interconnected through input/output ports defined in the Top 
coupled DEVS specification. The atomic Passenger 
Generator component is defined as follows: 

 
Figure 3. Passenger Generator DEVS Specification. 

 
This internal behavior of the generator is translated from its 
state diagram illustrated in Figure 4. Basically, the 
Passenger Generator is always in waiting mode. Whenever 
the cellular Aircraft model requests a new passenger 
entrance (indicated when the aircraft door is not occupied by 
a passenger), the Passenger Generator calculates an 
unassigned seat and sends the seat number as a value to the 
“in” port of the Aircraft Cell-DEVS model. When a seat 
number arrives at the input port of the door cell, it is simply 
regarded as a passenger who is assigned that specific seat 
number.  

 
Figure 4. Passenger Generator State Diagram. 

 
Obviously, the seat numbers generated by the Passenger 
Generator model cannot be duplicates and the order they are 
sent out to the Aircraft differs from one strategy to another. 
This is discussed in Section 5.1 – 5.3.  
The Aircraft Cell-DEVS model is defined as a coupled 
DEVS model with 430 cells, where each cell is a DEVS 
machine. The model’s layout is illustrated in Figure 5 where 
yellow cells denote seats, red cell is a passenger, and gray 
cells in the middle demonstrate the aisle. The aircraft door is 
a gray cell in the bottom left corner of the model. 

 
Figure 5. Aircraft Cell-DEVS Model. 

 



The Aircraft model is defined as following: 
[aircraft] 
 type : cell 
 width : 10 
 height : 43 
 neighbors : aircraft(-1,-1) aircraft(-1,0)   
 neighbors : aircraft(-1,1)  aircraft(0,-4)  
 neighbors : aircraft(0,-3)  aircraft(0,-2) 
 neighbors : aircraft(0,-1)  aircraft(0,0)    
 neighbors : aircraft(0,1)   aircraft(0,2) 
 neighbors : aircraft(0,3)   aircraft(1,-1) 
 neighbors : aircraft(1,0)   aircraft(1,1) 
This yields a 10 by 43 cellular space where each cell defines 
fourteen cells in its neighborhood, as shown in Figure 6. 
The cellular neighborhood indicates that the value of a cell 
is affected by those residing in its neighborhood. Thanks to 
Cell-DEVS theory, when the value of a cell changes, only 
its neighborhood cells are notified rather than the entire cell 
space. 

 
Figure 6. Aircraft Model Cellular Neighborhood. 

In order to recognize different cells (passenger, door, aisle, 
occupied and empty seats, etc.) we have defined our model 
states as follows (refer to Table 3): 

Table 3. Cellular State Values. 
State Name State Value Color  Description  

Wall 0 Black Wall or 
obstacle  

Aisle (Seat 
Row 
Represent) 

1  , 51-76 Grey Passenger 
aisle  

Door Open 2 Green Boarding 
door is open 

Cabin  3 Blue Cabin or 
bathroom or 
cafe 

Empty 
Passenger 
Seat  

100-3000 white Passenger 
seat 

Walking 
Passenger 

10,000-
300,000 

Red Walking 
Passenger 

Seats with 
passenger 

4 Yellow Seat is 
occupied 
with 
passenger 

Door Closed 9 Green All the 
passengers 
have been 
boarded.  

 
Figure 7 Demonstrates a screenshot of the aircraft’s front 
where all seats are occupied (yellow), the door is closed 
(green), and no passenger is in the aisle (grey). 

 

 
Figure 7. Mapping State Values to Cells. 

 
5. IMPLEMENTATION DETAILS 
Seat numbers are generated randomly but are injected into 
the Aircraft model in a different sequence order depending 
on the boarding strategy. Thus three different versions of the 
Passenger Generator model were implemented to 
accommodate these restrictions. Although, the three models 
define the exact same DEVS specification that was 
illustrated in Figure 3, the internal behavior given by the 
external transition function is slightly different. Next we 
will present these variations. 
 
5.1. Seat Generation in Back-to-Front Strategy 
The Back-to-Front strategy includes six boarding zones: 
zone_1 (rows 1 to 3, business seats), zone_2 (rows 22 to 26), 
zone_3 (rows 17 to 21), zone_4 (rows 12 to 16), zone_5 
(rows 7 to 11), and zone_6 (rows 4 to 6). Seat numbers are 
generated based on zones with a simple formula that 
considers the row number and the seat capacity within that 
row (6 for economy rows 4-26, and 4 for first class rows 1-
3). The code snippet in Figure 8 illustrates how seats within 
each zone are created upon initialization of the DEVS 
model. 
//First class seats 
 for(int i = 1;i < 4; i++){ 
   for(int j = 2; j < 6; j++){ 
     v1.push_back(10000*i+j);}} 

//Economy class: rows 22-26 
  for(int i = 22; i < 27; i++){ 
    for(int j = 1; j < 7; j++){ 
     v2.push_back(10000*i+j);}} 

//Economy class: rows 7-11 
  for(int i =7; i < 12; i++){ 
    for(int j = 1; j < 7;j++){ 
     v5.push_back(10000*i+j);}} 

//Economy class: rows 4-6 
  for(int i = 4; i < 7; i++){ 
    for(int j = 1; j < 7; j++){ 
     v6.push_back(10000*i+j);}} 

Figure 8. Back-to-Front Seat Number Generation. 
 
Given all seat numbers, upon each request from the Aircraft 
cellular model, the Passenger Generator model injects a 
random seat number from within the current boarding zone. 
In our implementation we simply handle this by shuffling 
the seat numbers within each zone as following: 

random_shuffle(v1.begin(), v1.end()); 
With Back-to-Front strategy, random seat numbers are sent 
out to the Aircraft in the order of zone_1, zone_6, zone_5, 



zone_4, zone_3, zone_2. Only when all seat numbers from a 
given zone are sent out, the seat numbers from next zone are 
selected. This behavior is implemented within the DEVS 
external transition function which is triggered when the 
Aircraft requests a passenger by sending an input through 
port “in” of the Passenger Generator model. This is shown 
in Figure 9. 

if (!v1.empty()){ 
    seatNum = v1[0]; 
    v1.erase(v1.begin()); 
 } 
 else if (!v2.empty()){ 
    seatNum = v2[0]; 
    v2.erase(v2.begin()); 
 } 

Figure 9. Back-to-Front Random Seats Selection. 
 

5.2. Seat Generation in Window Middle Aisle (WMA) 
Strategy 

The WMA strategy defines four zones: zone_1 (rows 1 to 3, 
business seats), zone_2 (window seats of rows 4 to 26), 
zone_3 (middle seats of rows 4 to 26), and zone_4 (aisle 
seats of rows 4 to 26). The first zone seats are generated 
similar to Back-to-Front Strategy, then the seats for the 
remaining three zones are generated as presented in Figure 
10. 

//First class seats 
for(int i = 1;i < 4; i++){ 
 for(int j = 2; j < 6; j++){ 
 v1.push_back(10000*i+j);}} 

//Economy class: window 
  for(int i = 4; i < 27; i++){ 
   v2.push_back(10000*i+1); 
   v2.push_back(10000*i+6);}  

//Economy class: middle 
for(int i =4; i < 27; i++){ 
  v3.push_back(10000*i+2); 
  v3.push_back(10000*i+5);} 

//Economy class: aisle 
for(int i = 4; i < 27; i++){ 
v4.push_back(10000*i+3); 
v4.push_back(10000*i+4);} 

Figure 10. WMA Seat Number Generation. 
As discussed in Back-to-Front strategy, the seat numbers are 
sent to the Aircraft by selecting random seat numbers from 
within each zone, given a zone sequence of: first class 
(zone_1), window seats (zone_2), middle seats (zone_3), 
and aisle seats (zone_4). Only when a zone is completely 
seated, the next zone is selected for seating (random fashion 
is only within each zone, the zones follow WMA sequence). 
 
5.3. Seat Generation in Reverse Pyramid (RP) Strategy 
Similar to Back-to-Front, the RP strategy defines six zones: 
zone_1 (rows 1 to 3, business seats), zone_2 (window seats 
of rows 13 to 26), zone_3 (window seats of rows 8 to 12 and 
middle seats of rows 18 to 26), zone_4 (middle seats of rows 
8 to 17 and window seats of rows 4 to 7), zone_5 (aisle seats 
of rows 17 to 26 and middle seats of rows 4 to 7), and 
zone_6 (aisle seats of rows 4 to 16). Figure 11 provides the 
implementation of zone_3 and zone_4.  
 
 
 
 

//zone3 
for(int i = 8; i < 13; i++){ 
 v3.push_back(10000*i+1); 
 v3.push_back(10000*i+6); 
    } 
for (int i = 18; i < 27; i++){ 
 v3.push_back(10000*i+2); 
 v3.push_back(10000*i+5); 
    }  

//zone4 
for(int i = 8; i < 18; i++){ 
 v3.push_back(10000*i+2); 
 v3.push_back(10000*i+5); 
    } 
for (int i = 4; i < 8; i++){ 
 v3.push_back(10000*i+1); 
 v3.push_back(10000*i+6); 
    }  

Figure 11. RP Seat Number Generation. 
 
Unlike the DEVS Passenger Generator model which has to 
behave differently under various boarding strategies, the 
Aircraft Cell-DEVS model is exactly the same. The 
following section reveals its details. 
 
5.4. Aircraft Rules Specification and Implementation 
Based on the Cell-DEVS model defined in Section 3, the 
Aircraft model implements a series of rules that are 
evaluated for every cell on the cell space over time steps. As 
mentioned before, the three boarding strategies use the exact 
same Cell-DEVS Aircraft model, since the boarding pattern 
really depends on the order at which passengers are called to 
enplane. This is handled by the DEVS Passenger Generator 
model described in the previous section. Here we will 
present the cellular model rules and explain how simulation 
evolves based on the discrete-event and continuous-time 
property of DEVS theory. 
The rules are divided into two groups: 
1) pre-seat rules: a set of 9 rules with responsibilities to 

send requests to the Passenger Generator model to 
release passengers, and guide passengers at the aircraft 
door to walk to the beginning of the seats aisle. The 
area that pre-seat rules applies to is from cell (0, 0) to 
cell (6, 0) where cell(y, x) defines the y and x 
coordinates of the cell on the grid. The affected area by 
pre-seat rules is highlighted in a surrounding solid box 
in Figure 12. 

2)  seating rules: a set of 33 rules handling passengers’ 
forward movement within the aisle and occupation of 
seats. These rules only apply to the cells that represent 
the seats (both first class and economy) and the aisle, as 
well as passengers on these cells. This area is 
highlighted in Figure 12 with a surrounding dashed 
box. 

 
Figure 12. Areas Evaluated by "pre-seat" (solid box) and 

"seating" (dashed box) Rules. 
A rule in Cell-DEVS is the local computing function which 
is defined in the form of {result} delay {precondition}. This 



indicates that when the precondition is met, the state of the 
cell changes to the designated result after the duration 
specified by delay. If the precondition is not met, then the 
next rule is evaluated until a rule is satisfied or there are no 
more rules. In the space below we will present some of the 
rules implemented in Aircraft model. 
For instance, the following rule (from pre-seat rules): 
rule: {(0,0)+send(out1,2)} 0 {(0,0)=2} 

defines that whenever the door cell is unoccupied, a request 
for passenger entrance should be sent to the Passenger 
Generator model immediately. 
Now let’s consider the seating rules for a scenario where a 
passenger is walking down the aisle with a window seat 
assigned to her. There are four possible scenarios, thus four 
evaluation rules: 
1) Aisle seat and middle seat is occupied: 
rule: 1 #Macro(WBothSeatDelayAddUp)  
   {(0,0)> 10000 and (0,-1)=4 and (0,-2)=4} 
 
2) Only aisle seat is occupied 
rule: 1 #Macro(WAisleSeatDelayAddUp) 
{(0,0)>10000 and (0,-1)=4 and (0,-2)>100} 
 
3) Only middle seat is occupied 
rule: 1 #Macro(WMiddleSeatDelayAddUp) 
{(0,0)> 10000 and (0,-2)=4) and (0,-1)>100} 
 
4) Neither the aisle seat nor the middle seat is occupied 
rule: 1 #Macro(WNoneSeatDelayAddUp) 
{(0,0)>10000 and (0,-1)>100 and (0,-2)>100)} 
 
The #Macros defined in the above rules are the fixed delays 
applied to the passenger when he/she gets to the assigned 
row. These delays are defined in a “boarding.inc” file with a 
format presented in . The delay values are conducted from 
the literature and are addressed in Table 2. 

 
Figure 13. Macros Defining Delay Values. 

Due to space limitation, we are not able to show all the 
rules, however the logic and the format is very similar to 
what we just presented above. 
6. SIMULATION RESULTS 
CD++ also provides a visualization tool, called CD++ 
Modeler, which takes the result of the Cell-DEVS 
simulation as input and generates a 2-D representation of the 
cell space evolution over the simulation time (presented in 
Figure 14). We will use this feature to visually present the 
results of our simulations. 

 
Figure 14. CD++ Animation for Cell-DEVS. 

 
Given the common Cell-DEVS model file (“Aircraft.MA”) 
we execute the overall simulation by including the desired 
Passenger Generator DEVS model for that specific boarding 
strategy (Back-to-Front, WMA, and RP). The simulation 
results are captured in the following screenshots. 

 
Figure 15. Back-to-Front Strategy. 



Figure 15 shows four simulation scenarios of the Back-to-
Front strategy: (a) one passenger has entered the aircraft and 
currently occupying the door, (b) the first class zone is 
completely seated, (c) the last back two zones are also 
seated, (d) the last passenger is about to be seated. 
Similar simulation results were also conducted for the other 
two strategies. As illustrated in Figure 16 for the WMA 
strategy, the four scenarios describe when: (a) the first class 
passengers are seated, (b) all window passengers are seated, 
(c) all middle passengers are seated, (d) the last three aisle 
passengers are about to be seated. 

 
Figure 16. Window Middle Aisle (WMA) Strategy. 

 
Finally, the Reverse Pyramid (RV) simulation screenshots 
are presented in with (a) to (d) seating sequence.  
In order to compare the performance of the implemented 
strategies, we collected the overall execution time for the 
simulations. As demonstrated in Figure 18, the Window 
Middle Aisle strategy is the most efficient seating pattern 
with an overall simulation time of 26.16 minutes. In order to 
compare our results to an ideal (but not practical) strategy, 
we had also implemented an Optimal strategy where 
passengers were seated in a descending order starting from 
the back of the aircraft. Under this strategy, each row was 
seated in the windows-middles-aisles order, one row at a 
time. Clearly, this strategy is not practical since it will cause 
huge line ups at the gates, trying to get passengers entering 
the airplane one by one at a descending order of seat number 
(with exception for first class passengers). 
 

 
Figure 17. Reverse Pyramid Strategy. 

 
Figure 18. Strategies Comparative Results. 

 
7. CONCLUSION 
We presented a simulation study investigating the efficiency 
of aircraft’s passenger boarding strategies. We used the 
Discrete-Event DEVS and Cell-DEVS theory to evaluate 
three boarding strategies: Back-to-Front, Window Middle 
Aisle, and Reverse Pyramid. With the obtained simulation 
results, we concluded that among the three implemented 
boarding strategies, the Window Middle Aisle provided the 
least boarding time, while the Back-to-Front was the most 
inefficient method. Given the ideal smallest boarding time 
of 18.55 minutes from the Optimal Strategy, our most 
efficient boarding strategy exceeds this by about 7 minutes 
which in airlines world it is still a significant time incurring 
huge costs. We are currently implementing other boarding 
strategies, as well as variable walking and luggage storing 
delays, aiming at exploring better options to save time, 
satisfying both passengers and airliners.  

38.18

26.16
29.35

18.55

0

10

20

30

40

50

Back to

Front

Window

Middle

Aisle

Reverse

Pyramid

Optimal

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)



 
8. REFERENCE 
[1] Briel, M. H., Villalobos, J., & L.Hogg, G. “The Aircraft 

Boarding Problem”. 12th Industrial Engineering 
Research Conference (2003).  

[2] Menkes, H.L., Van den Briel, J. V. “American West 
Airlines Develops Efficient Boarding Strategies”. 
Interfaces, 35:191 – 201, 2005. 

[3] Ferrari, P., Nagel, K. “Robustness of efficient boarding 
in airplanes”. Transportation Research Record, 
1915:44–54, 2005. 

[4] McFadden, L. C. “A Study of Airline Boarding 
Problem”. Journal of Air Transport Management.2008. 

[5] Van Landeghem, H., Beuselinck, A. “Reducing 
passenger boarding time in airplanes: a simulation 
based approach”. European Journal of Operational 
Research, 142(2):294–308, 2002. 

[6] Marelli, S., Mattocks, G., Merry, R. “The role of 
computer simulation in reducing airplane turn time”. 
Aero Magazine, 1998. 

[7] Nyquist, D.C., McFadden, K.L. “A study of the airline 
boarding problem. Journal of Air Transport 
Management”. 14:197–204, 2008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[8] Steffen, J. H. “Optimal boarding method for airline 

passengers”. Journal of Air Transport Management, 
14:146 – 150, 2008. 

[9] Muller, J. “Optimal Boarding Methods for Airline 
Passengers”. Haumburge University Internal Report. 
2009. 

[10] Bazargan, M. “A Linear Programmming Approach for 
Aircraft Boarding Strategy”. ScienceDirect. 2007. 

[11] Audenaert, J., Verbeeck, K., Berghe, G.V. “Multi-agent 
based simulation for boarding”. Proceedings of the 21st 
Belgian–Netherlands Conference on Artificial 
Intelligence. pp. 3–10. 2009. 

[12] Zeigler, B., Praehofer, P. H., and Kim, T. G. “Theory of 
Modeling and Simulation”. Academic Press. 2000. 

[13] G. Wainer, “CD++: A Toolkit to Develop DEVS 
Models”, Software – Practice and Experience, 32(13), 
pp. 1261-1306, 2002. 

[14] G. Wainer, “Discrete-Event Modeling and Simulation: 
a Practitioner’s approach”. CRC Press. Taylor and 
Francis. 2009. 


