
Simulation of Aircraft Boarding Strategies with Discrete-Event Cellular DEVS

Shafagh Jafer Wei Mi
Department of Electrical, Computer, Software, and Systems Engineering

Embry-Riddle Aeronautical University, Daytona Beach, FL
 jafers@erau.edu miw@my.erau.edu

Keywords: aircraft boarding, discrete-event, Cell-DEVS,
enplane, passenger delay.

Abstract
Time is a critical factor in airlines industry. Among all
factors contributing to an aircraft turnaround time,
passenger boarding delays is the most challenging one.
Airlines do not have control over the behavior of
passengers, thus their only key in reducing passenger
boarding time is in implementing efficient boarding
strategies. In this work we attempt to use discrete-event
cellular DEVS to provide a comprehensive evaluation of
aircraft boarding strategies. We have developed a simulation
benchmark consisting of various boarding strategies
including Back-to-Front, Window Middle Aisle, and
Reverse Pyramid. Our simulation models are highly precise
and adaptive, providing a powerful analysis apparatus for
investigating any existing or yet to be discovered boarding
strategy. We explain the details of our models and present
the results both visually and numerically to evaluate the
three implemented boarding strategies. This research is an
on-going effort aiming to optimize and reduce passenger
boarding delays in commercial aircrafts. .

1. INTRODUCTION
Airlines generate revenue by utilizing and flying airplanes.
One of the factors for reducing airlines cost is the quick
turnaround of their airplanes. A turnaround time is used to
measure the efficiency of airline’s operation in a traditional
metric. Usually turnaround time is measured by the time
between an airplane’s arrival and its departure [1]. Some
factors that influent the turnaround time include passenger
deplaning, baggage unloading, fueling, cargo, airplane
maintenance, cargo loading, baggage loading, and passenger
boarding. The most difficult factor to control is passenger
boarding time since airlines have little control over
passengers. Therefore, airlines have to be cautious in
making changes to decrease boarding time [2]. Many
researchers have proposed and investigated different
boarding strategies aiming at reducing the boarding time
even by a couple of minutes [2]- [10]. Among the existing
boarding strategies the following are the most well-known
techniques: Back-to-Front, Random Strategy, Outside-in
Method (or Window Middle Aisle), Rotating zone, Reverse

Pyramid, Optimal Method, Practical Optimal Method, and
Efficient Strategy.
Aiming at evaluating the efficiency of various existing and
new boarding strategies, we have implemented a discrete-
event simulation benchmark based on the Discrete-Event
System Specification (DEVS [12] and Cell-DEVS [14])
formalism. Our benchmark consists of DEVS-based models
that are perfectly suitable for executing various simulations
on any type of aircraft. Our simulation results are visually
presented as 2-D animations, making it easily
understandable by non-experts. In this work we only
simulate three of the above mentioned boarding strategies:
Back-to-Front, Window Middle Aisle, and Reverse
Pyramid. We also compare our simulation results to the
Optimal strategy to present the degree of efficiency of the
given strategies.
This work attempts to present the power of DEVS and Cell-
DEVS in analyzing and investigating aviation-related
challenges. We demonstrate how flexible, adaptive, and
precise Cell-DEVS is in simulating passenger behavior.
This paper is organized as follows: Section 2 provides a
brief background about various boarding strategies and
highlights some of the related works. Section 3 presents our
model assumptions. Section 4 discusses the high-level and
low-level design. The DEVS and Cell-DEVS
implementation details are introduced in Section 5. Section
6 provides the simulation results. The concluding remarks
are given in Section 7.

2. BACKGROUND
Since there is yet no “best” boarding strategy, airlines
around the world try different methods from time to time.
Below we summarize some of the currently available
techniques.
Back-to-Front: This boarding plan is known as the
“traditional” boarding method. Passengers are boarded to
from the back row of the aircraft and continue with the rows
up to the front. The zones can be any number reaching from
two to the number of actual rows. This strategy is easy to
implement, however, it is very likely that it is an inefficient
method because congestion is created in a reduced area. [1]
Random Strategy: This boarding plan is when passengers
are not assigned to specific seats but line up at the gate
counter and are admitted in the order that they arrive. People
can choose any unoccupied seat as soon as they get onboard.
Passenger will start to rush into plane to get a better seat.

This makes the boarding process faster; however, this
reduces the passenger comfort level [4].
Outside- in Method: This method is also called “Window
Middle Aisle”. Passengers who are assigned to window
seats will board first. When it is finished, middle and aisle
seats follow. This method has so far revealed very efficient
boarding time. It potentially reduces passenger interference
caused by loading luggage and completely reduces
passengers interfering with each other among the rows. This
method is relatively easy to implement [9].
Rotating Zone: This method starts with the last zone in the
back to be seated, then continues with the first row in the
front. After this, the order continues again with the furthest
yet unoccupied zone in the back, then the front one and so
on. The advantage of this method is that passengers who are
boarding at the back and in the front will not interfere with
each other [9].
Reverse Pyramid: This method is to make passenger order
from the outer back till the inner front of cabin. This method
is in fact a combination of Back-to-Front and Window to
Aisle. This strategy is proved to be an efficient method by
American West Airlines [2].
Optimal Method: This method is to make passengers board
in order from Back-to-Front but in every other row. This
methods aims at reducing the interference among passengers
from the back and the front, and giving passengers enough
space to load their luggage, which reduces the luggage delay
in return. However, this method is not practical based on
South West Airline experience. It is a challenge to arrange
all the passengers in the proper order [8].
Practical Optimal Method: This technique defines four
boarding groups. First group is all passengers in even rows
in one side of the airplane. The second group is all
passengers in even rows in another side of the airplane. The
third and fourth group is the passengers in odd rows in each
side of the airplane. This method is not as efficient as the
optimal method, but it is practical and it proved to be a
successfully boarding method [8].
A number of studies have been conducted previously by
implementing various boarding strategies using different
simulation techniques including: Linear Programming [10],
Discrete-Event simulation [2], and even Cellular Automata .
A comprehensive literature survey about passenger boarding
simulation techniques are reported in [11]. In this work, we
have implemented precise and aircraft-independent boarding
strategies and provide a comparison of their efficiency. Our
simulation is based on the discrete-event DEVS and Cell-
DEVS theory. Unlike CA, Cell-DEVS does not require
updating the entire cellular grid at every time step. Rather,
only cells with updated neighbor values are evaluated. This
improvement overcomes the issue of the original CA by
reducing the overall execution cost, leading to faster
computations. We show that precise simulations results,

comparable to those produced by complex mathematical
modeling techniques (like those reported in [10] using linear
programming), can be obtained from the collective behavior
of discrete-event cellular grids. The Cell-DEVS cell space is
composed of very simple cells that make local decisions
solely based on the information gathered from their
immediate neighbors. To implement our DEVS and Cell-
DEVS models we used CD++ [13] development toolkit.
CD++ is an open-source object-oriented modeling and
simulation environment that implements both DEVS and
Cell-DEVS theories in C++. The tool provides a
specification language that defines the model’s coupling, the
initial values, the external events, and the local transition
rules for Cell-DEVS models. CD++ also includes an
interpreter for Cell-DEVS models. The language is based on
the formal specifications of Cell-DEVS. The model
specification includes the definition of the size and
dimension of the cell space, the shape of the neighborhood
and the border.

3. MODELING ASSUMPTIONS
Here we present the common parameters and assumptions
that were considered for the three boarding strategies (i.e.
Back-to-Front, Window Middle Aisle (WMA), Reverse
Pyramid) we have implemented. Based on [9], we define
ranges for four different parameters as given in Table 1. The
first two parameters define the walking speed of a passenger
and the time that one passenger needs to sit down at their
assigned seat and have their luggage stored in the overhead
compartment or underneath the seat in the front. The third
parameter is the amount of time a passenger takes to get up
of their seat, allowing other passengers to sit within that
row. The Passenger flow rate defines the number of
passengers that enter the airplane in a certain amount of
time. All of these parameters are given in the form of a
range from min_value to max_value. We have mapped these
ranges to our Cell-DEVS model to precisely implement a
near-reality model of passenger boarding strategies. Details
of these mappings are given in the next section when the
model’s rules are explained.

Table 1. Basic Parameters Ranges. [9]
Parameter Range Unit
Walking
Speed

0.27…0.44 [m/s]

Clearing
Time

6…30 [s]

Get up out
of seat

3…4.2 [s]

Passenger
flow rate

0.2 …1 [pax/s]

There are two basic elements that interfere the boarding
process: aisle interference, and seat interference [9]. Aisle
interference is introduced when a passenger is blocked by

another passenger in the aisle, while seat interference is
when a passenger tries to get to a seat near the window but
is blocked by another passenger already seated near the
aisle. Given these two interferences, three types of delays
are recognized: walking delay, luggage delay, variable
seated passenger delay. For simplicity, at this stage we have
implemented our three boarding strategy models with fixed
delay times. The corresponding delay values used in our
models are given in Table 2.

Table 2. Various Delay Values [9].
Parameter Time Unit
Walking delay 2270 ms
Luggage Delay 18000 ms
Two passengers
get out of seats

4200 ms

Middle
passenger gets
out of seat

3600 ms

Aisle passenger
gets out of seat

3000 ms

4. SYSTEM DESIGN
Our aircraft model defines an Airbus 320 internal space
layout with two different seating areas (first and economy
classes) giving a total of 26 rows and 150 seats, a single
middle aisle, and an entrance door as given in Figure 1 .

Figure 1. System Overview.

To model the proposed system using DEVS, we define a
DEVS coupled model composed of an atomic DEVS
component and a coupled Cell-DEVS grid as illustrated in
Figure 2. Our DEVS component “Passenger Generator” is
in charge of generating passengers with specific seat
numbers and injecting them into the Aircraft cellular model.

Figure 2. DEVS Conceptual Model of the System.

The two subsystems (Passenger Generator and Aircraft) are
interconnected through input/output ports defined in the Top
coupled DEVS specification. The atomic Passenger
Generator component is defined as follows:

Figure 3. Passenger Generator DEVS Specification.

This internal behavior of the generator is translated from its
state diagram illustrated in Figure 4. Basically, the
Passenger Generator is always in waiting mode. Whenever
the cellular Aircraft model requests a new passenger
entrance (indicated when the aircraft door is not occupied by
a passenger), the Passenger Generator calculates an
unassigned seat and sends the seat number as a value to the
“in” port of the Aircraft Cell-DEVS model. When a seat
number arrives at the input port of the door cell, it is simply
regarded as a passenger who is assigned that specific seat
number.

Figure 4. Passenger Generator State Diagram.

Obviously, the seat numbers generated by the Passenger
Generator model cannot be duplicates and the order they are
sent out to the Aircraft differs from one strategy to another.
This is discussed in Section 5.1 – 5.3.
The Aircraft Cell-DEVS model is defined as a coupled
DEVS model with 430 cells, where each cell is a DEVS
machine. The model’s layout is illustrated in Figure 5 where
yellow cells denote seats, red cell is a passenger, and gray
cells in the middle demonstrate the aisle. The aircraft door is
a gray cell in the bottom left corner of the model.

Figure 5. Aircraft Cell-DEVS Model.

The Aircraft model is defined as following:
[aircraft]
 type : cell
 width : 10
 height : 43
 neighbors : aircraft(-1,-1) aircraft(-1,0)
 neighbors : aircraft(-1,1) aircraft(0,-4)
 neighbors : aircraft(0,-3) aircraft(0,-2)
 neighbors : aircraft(0,-1) aircraft(0,0)
 neighbors : aircraft(0,1) aircraft(0,2)
 neighbors : aircraft(0,3) aircraft(1,-1)
 neighbors : aircraft(1,0) aircraft(1,1)
This yields a 10 by 43 cellular space where each cell defines
fourteen cells in its neighborhood, as shown in Figure 6.
The cellular neighborhood indicates that the value of a cell
is affected by those residing in its neighborhood. Thanks to
Cell-DEVS theory, when the value of a cell changes, only
its neighborhood cells are notified rather than the entire cell
space.

Figure 6. Aircraft Model Cellular Neighborhood.

In order to recognize different cells (passenger, door, aisle,
occupied and empty seats, etc.) we have defined our model
states as follows (refer to Table 3):

Table 3. Cellular State Values.
State Name State Value Color Description

Wall 0 Black Wall or
obstacle

Aisle (Seat
Row
Represent)

1 , 51-76 Grey Passenger
aisle

Door Open 2 Green Boarding
door is open

Cabin 3 Blue Cabin or
bathroom or
cafe

Empty
Passenger
Seat

100-3000 white Passenger
seat

Walking
Passenger

10,000-
300,000

Red Walking
Passenger

Seats with
passenger

4 Yellow Seat is
occupied
with
passenger

Door Closed 9 Green All the
passengers
have been
boarded.

Figure 7 Demonstrates a screenshot of the aircraft’s front
where all seats are occupied (yellow), the door is closed
(green), and no passenger is in the aisle (grey).

Figure 7. Mapping State Values to Cells.

5. IMPLEMENTATION DETAILS
Seat numbers are generated randomly but are injected into
the Aircraft model in a different sequence order depending
on the boarding strategy. Thus three different versions of the
Passenger Generator model were implemented to
accommodate these restrictions. Although, the three models
define the exact same DEVS specification that was
illustrated in Figure 3, the internal behavior given by the
external transition function is slightly different. Next we
will present these variations.

5.1. Seat Generation in Back-to-Front Strategy
The Back-to-Front strategy includes six boarding zones:
zone_1 (rows 1 to 3, business seats), zone_2 (rows 22 to 26),
zone_3 (rows 17 to 21), zone_4 (rows 12 to 16), zone_5
(rows 7 to 11), and zone_6 (rows 4 to 6). Seat numbers are
generated based on zones with a simple formula that
considers the row number and the seat capacity within that
row (6 for economy rows 4-26, and 4 for first class rows 1-
3). The code snippet in Figure 8 illustrates how seats within
each zone are created upon initialization of the DEVS
model.
//First class seats
 for(int i = 1;i < 4; i++){
 for(int j = 2; j < 6; j++){
 v1.push_back(10000*i+j);}}

//Economy class: rows 22-26
 for(int i = 22; i < 27; i++){
 for(int j = 1; j < 7; j++){
 v2.push_back(10000*i+j);}}

//Economy class: rows 7-11
 for(int i =7; i < 12; i++){
 for(int j = 1; j < 7;j++){
 v5.push_back(10000*i+j);}}

//Economy class: rows 4-6
 for(int i = 4; i < 7; i++){
 for(int j = 1; j < 7; j++){
 v6.push_back(10000*i+j);}}

Figure 8. Back-to-Front Seat Number Generation.

Given all seat numbers, upon each request from the Aircraft
cellular model, the Passenger Generator model injects a
random seat number from within the current boarding zone.
In our implementation we simply handle this by shuffling
the seat numbers within each zone as following:

random_shuffle(v1.begin(), v1.end());
With Back-to-Front strategy, random seat numbers are sent
out to the Aircraft in the order of zone_1, zone_6, zone_5,

zone_4, zone_3, zone_2. Only when all seat numbers from a
given zone are sent out, the seat numbers from next zone are
selected. This behavior is implemented within the DEVS
external transition function which is triggered when the
Aircraft requests a passenger by sending an input through
port “in” of the Passenger Generator model. This is shown
in Figure 9.

if (!v1.empty()){
 seatNum = v1[0];
 v1.erase(v1.begin());
 }
 else if (!v2.empty()){
 seatNum = v2[0];
 v2.erase(v2.begin());
 }

Figure 9. Back-to-Front Random Seats Selection.

5.2. Seat Generation in Window Middle Aisle (WMA)
Strategy

The WMA strategy defines four zones: zone_1 (rows 1 to 3,
business seats), zone_2 (window seats of rows 4 to 26),
zone_3 (middle seats of rows 4 to 26), and zone_4 (aisle
seats of rows 4 to 26). The first zone seats are generated
similar to Back-to-Front Strategy, then the seats for the
remaining three zones are generated as presented in Figure
10.

//First class seats
for(int i = 1;i < 4; i++){
 for(int j = 2; j < 6; j++){
 v1.push_back(10000*i+j);}}

//Economy class: window
 for(int i = 4; i < 27; i++){
 v2.push_back(10000*i+1);
 v2.push_back(10000*i+6);}

//Economy class: middle
for(int i =4; i < 27; i++){
 v3.push_back(10000*i+2);
 v3.push_back(10000*i+5);}

//Economy class: aisle
for(int i = 4; i < 27; i++){
v4.push_back(10000*i+3);
v4.push_back(10000*i+4);}

Figure 10. WMA Seat Number Generation.
As discussed in Back-to-Front strategy, the seat numbers are
sent to the Aircraft by selecting random seat numbers from
within each zone, given a zone sequence of: first class
(zone_1), window seats (zone_2), middle seats (zone_3),
and aisle seats (zone_4). Only when a zone is completely
seated, the next zone is selected for seating (random fashion
is only within each zone, the zones follow WMA sequence).

5.3. Seat Generation in Reverse Pyramid (RP) Strategy
Similar to Back-to-Front, the RP strategy defines six zones:
zone_1 (rows 1 to 3, business seats), zone_2 (window seats
of rows 13 to 26), zone_3 (window seats of rows 8 to 12 and
middle seats of rows 18 to 26), zone_4 (middle seats of rows
8 to 17 and window seats of rows 4 to 7), zone_5 (aisle seats
of rows 17 to 26 and middle seats of rows 4 to 7), and
zone_6 (aisle seats of rows 4 to 16). Figure 11 provides the
implementation of zone_3 and zone_4.

//zone3
for(int i = 8; i < 13; i++){
 v3.push_back(10000*i+1);
 v3.push_back(10000*i+6);
 }
for (int i = 18; i < 27; i++){
 v3.push_back(10000*i+2);
 v3.push_back(10000*i+5);
 }

//zone4
for(int i = 8; i < 18; i++){
 v3.push_back(10000*i+2);
 v3.push_back(10000*i+5);
 }
for (int i = 4; i < 8; i++){
 v3.push_back(10000*i+1);
 v3.push_back(10000*i+6);
 }

Figure 11. RP Seat Number Generation.

Unlike the DEVS Passenger Generator model which has to
behave differently under various boarding strategies, the
Aircraft Cell-DEVS model is exactly the same. The
following section reveals its details.

5.4. Aircraft Rules Specification and Implementation
Based on the Cell-DEVS model defined in Section 3, the
Aircraft model implements a series of rules that are
evaluated for every cell on the cell space over time steps. As
mentioned before, the three boarding strategies use the exact
same Cell-DEVS Aircraft model, since the boarding pattern
really depends on the order at which passengers are called to
enplane. This is handled by the DEVS Passenger Generator
model described in the previous section. Here we will
present the cellular model rules and explain how simulation
evolves based on the discrete-event and continuous-time
property of DEVS theory.
The rules are divided into two groups:
1) pre-seat rules: a set of 9 rules with responsibilities to

send requests to the Passenger Generator model to
release passengers, and guide passengers at the aircraft
door to walk to the beginning of the seats aisle. The
area that pre-seat rules applies to is from cell (0, 0) to
cell (6, 0) where cell(y, x) defines the y and x
coordinates of the cell on the grid. The affected area by
pre-seat rules is highlighted in a surrounding solid box
in Figure 12.

2) seating rules: a set of 33 rules handling passengers’
forward movement within the aisle and occupation of
seats. These rules only apply to the cells that represent
the seats (both first class and economy) and the aisle, as
well as passengers on these cells. This area is
highlighted in Figure 12 with a surrounding dashed
box.

Figure 12. Areas Evaluated by "pre-seat" (solid box) and

"seating" (dashed box) Rules.
A rule in Cell-DEVS is the local computing function which
is defined in the form of {result} delay {precondition}. This

indicates that when the precondition is met, the state of the
cell changes to the designated result after the duration
specified by delay. If the precondition is not met, then the
next rule is evaluated until a rule is satisfied or there are no
more rules. In the space below we will present some of the
rules implemented in Aircraft model.
For instance, the following rule (from pre-seat rules):
rule: {(0,0)+send(out1,2)} 0 {(0,0)=2}

defines that whenever the door cell is unoccupied, a request
for passenger entrance should be sent to the Passenger
Generator model immediately.
Now let’s consider the seating rules for a scenario where a
passenger is walking down the aisle with a window seat
assigned to her. There are four possible scenarios, thus four
evaluation rules:
1) Aisle seat and middle seat is occupied:
rule: 1 #Macro(WBothSeatDelayAddUp)
 {(0,0)> 10000 and (0,-1)=4 and (0,-2)=4}

2) Only aisle seat is occupied
rule: 1 #Macro(WAisleSeatDelayAddUp)
{(0,0)>10000 and (0,-1)=4 and (0,-2)>100}

3) Only middle seat is occupied
rule: 1 #Macro(WMiddleSeatDelayAddUp)
{(0,0)> 10000 and (0,-2)=4) and (0,-1)>100}

4) Neither the aisle seat nor the middle seat is occupied
rule: 1 #Macro(WNoneSeatDelayAddUp)
{(0,0)>10000 and (0,-1)>100 and (0,-2)>100)}

The #Macros defined in the above rules are the fixed delays
applied to the passenger when he/she gets to the assigned
row. These delays are defined in a “boarding.inc” file with a
format presented in . The delay values are conducted from
the literature and are addressed in Table 2.

Figure 13. Macros Defining Delay Values.

Due to space limitation, we are not able to show all the
rules, however the logic and the format is very similar to
what we just presented above.
6. SIMULATION RESULTS
CD++ also provides a visualization tool, called CD++
Modeler, which takes the result of the Cell-DEVS
simulation as input and generates a 2-D representation of the
cell space evolution over the simulation time (presented in
Figure 14). We will use this feature to visually present the
results of our simulations.

Figure 14. CD++ Animation for Cell-DEVS.

Given the common Cell-DEVS model file (“Aircraft.MA”)
we execute the overall simulation by including the desired
Passenger Generator DEVS model for that specific boarding
strategy (Back-to-Front, WMA, and RP). The simulation
results are captured in the following screenshots.

Figure 15. Back-to-Front Strategy.

Figure 15 shows four simulation scenarios of the Back-to-
Front strategy: (a) one passenger has entered the aircraft and
currently occupying the door, (b) the first class zone is
completely seated, (c) the last back two zones are also
seated, (d) the last passenger is about to be seated.
Similar simulation results were also conducted for the other
two strategies. As illustrated in Figure 16 for the WMA
strategy, the four scenarios describe when: (a) the first class
passengers are seated, (b) all window passengers are seated,
(c) all middle passengers are seated, (d) the last three aisle
passengers are about to be seated.

Figure 16. Window Middle Aisle (WMA) Strategy.

Finally, the Reverse Pyramid (RV) simulation screenshots
are presented in with (a) to (d) seating sequence.
In order to compare the performance of the implemented
strategies, we collected the overall execution time for the
simulations. As demonstrated in Figure 18, the Window
Middle Aisle strategy is the most efficient seating pattern
with an overall simulation time of 26.16 minutes. In order to
compare our results to an ideal (but not practical) strategy,
we had also implemented an Optimal strategy where
passengers were seated in a descending order starting from
the back of the aircraft. Under this strategy, each row was
seated in the windows-middles-aisles order, one row at a
time. Clearly, this strategy is not practical since it will cause
huge line ups at the gates, trying to get passengers entering
the airplane one by one at a descending order of seat number
(with exception for first class passengers).

Figure 17. Reverse Pyramid Strategy.

Figure 18. Strategies Comparative Results.

7. CONCLUSION
We presented a simulation study investigating the efficiency
of aircraft’s passenger boarding strategies. We used the
Discrete-Event DEVS and Cell-DEVS theory to evaluate
three boarding strategies: Back-to-Front, Window Middle
Aisle, and Reverse Pyramid. With the obtained simulation
results, we concluded that among the three implemented
boarding strategies, the Window Middle Aisle provided the
least boarding time, while the Back-to-Front was the most
inefficient method. Given the ideal smallest boarding time
of 18.55 minutes from the Optimal Strategy, our most
efficient boarding strategy exceeds this by about 7 minutes
which in airlines world it is still a significant time incurring
huge costs. We are currently implementing other boarding
strategies, as well as variable walking and luggage storing
delays, aiming at exploring better options to save time,
satisfying both passengers and airliners.

38.18

26.16
29.35

18.55

0

10

20

30

40

50

Back to

Front

Window

Middle

Aisle

Reverse

Pyramid

Optimal

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

8. REFERENCE
[1] Briel, M. H., Villalobos, J., & L.Hogg, G. “The Aircraft

Boarding Problem”. 12th Industrial Engineering
Research Conference (2003).

[2] Menkes, H.L., Van den Briel, J. V. “American West
Airlines Develops Efficient Boarding Strategies”.
Interfaces, 35:191 – 201, 2005.

[3] Ferrari, P., Nagel, K. “Robustness of efficient boarding
in airplanes”. Transportation Research Record,
1915:44–54, 2005.

[4] McFadden, L. C. “A Study of Airline Boarding
Problem”. Journal of Air Transport Management.2008.

[5] Van Landeghem, H., Beuselinck, A. “Reducing
passenger boarding time in airplanes: a simulation
based approach”. European Journal of Operational
Research, 142(2):294–308, 2002.

[6] Marelli, S., Mattocks, G., Merry, R. “The role of
computer simulation in reducing airplane turn time”.
Aero Magazine, 1998.

[7] Nyquist, D.C., McFadden, K.L. “A study of the airline
boarding problem. Journal of Air Transport
Management”. 14:197–204, 2008.

[8] Steffen, J. H. “Optimal boarding method for airline

passengers”. Journal of Air Transport Management,
14:146 – 150, 2008.

[9] Muller, J. “Optimal Boarding Methods for Airline
Passengers”. Haumburge University Internal Report.
2009.

[10] Bazargan, M. “A Linear Programmming Approach for
Aircraft Boarding Strategy”. ScienceDirect. 2007.

[11] Audenaert, J., Verbeeck, K., Berghe, G.V. “Multi-agent
based simulation for boarding”. Proceedings of the 21st
Belgian–Netherlands Conference on Artificial
Intelligence. pp. 3–10. 2009.

[12] Zeigler, B., Praehofer, P. H., and Kim, T. G. “Theory of
Modeling and Simulation”. Academic Press. 2000.

[13] G. Wainer, “CD++: A Toolkit to Develop DEVS
Models”, Software – Practice and Experience, 32(13),
pp. 1261-1306, 2002.

[14] G. Wainer, “Discrete-Event Modeling and Simulation:
a Practitioner’s approach”. CRC Press. Taylor and
Francis. 2009.

