
From SysML models to DEVS executable code: The role of DEVS-XML
G.D. Kapos, V. Dalakas, M. Nikolaidou, D. Anagnostopoulos

Department of Informatics and Telematics
Harokopio University of Athens

70, El. Venizelou Str, 17671, Kallithea, Athens, Greece
{gdkapos, vdalakas, mara, dimosthe}@hua.gr

Keywords: DEVS, SysML models, Model transformation,
Automated simulation code generation

Abstract
The authors have previously proposed a methodology for in-
tegrating simulation capabilities into SysML models, with
the aid of the DEVS SysML profile that facilitates the con-
struction DEVS simulation models based on SysML system
models. In this paper, the proposed conceptual integration of
SysML and DEVS models is materialized, by providing a
concrete mapping of DEVS SysML profile entities to DEVS-
XML elements, which is properly extended for this purpose.
DEVS-XML is a declarative, platform independent language,
which, however, may facilitate automatic simulation code
generation and execution in various DEVS simulation execu-
tion environments. Thus, automatic simulation code genera-
tion and execution based the original system model described
in SysML, applying MDA concepts and utilizing DEVS-
XML, becomes feasible. Such an approach may facilitate a
system engineer, familiar with SysML, to use a DEVS-based
simulator to evaluate system models without the necessity of
understanding DEVS theory and simulation-specific proper-
ties.

1. INTRODUCTION
In model-based system engineering, a central system

model is used to perform all engineering activities in the spec-
ification, design, integration, validation, and operation of a
system (definition by INCOSE [1]). Such activities are com-
monly served by independently/autonomously defined sys-
tem models. System evaluation is an engineering activity
which may performed in a model-based fashion using sim-
ulation.

In the simulation community, discrete simulation method-
ologies provide the means to define custom system models,
which are consequently simulated using corresponding simu-
lation environments. In this case, both system modeling and
system simulation are treated as a unified activity.

This contribution presents an effort to bridge the commu-
nity of system engineering with simulation community, com-
bining a widely accepted graphical modeling language for
complex systems with an established formalism for discrete
event simulation. Such an effort would benefit both worlds

as it could offer validity and reliability to the final results.
SysML [13] was proposed as a general-purpose graphical
modeling language of describing models of a broad range of
systems and systems-of-systems. Specific activities may be
accomplished either by the system engineer using a SysML
modeling tool (for example system design) or by specific
tools in an automated fashion (for example system valida-
tion) or even by a combination of both. DEVS (Discrete
Event System Specification) formalism provides a concep-
tual framework for specifying discrete event simulation mod-
els executed on a variety of simulators [21], as DEVS-C++,
DEVSJava [22] , cell-DEVS [19], DEVS/RMI [23] or even
DEVS/SOA [9], which offers DEVS simulators as web ser-
vices. In any case, executable models are defined either in
C++ or Java.

Since SysML has become a standard by the Object Man-
agement Group (OMG), the need to integrate SysML mod-
eling tools and simulation environments is evident. Appar-
ently SysML supports a variety of diagrams describing sys-
tem structure and states, necessary to perform simulation,
thus, there are a lot of efforts from both research and indus-
trial communities to simulate SysML models [17]. In most
cases, SysML models defined within a modeling tool are ex-
ported in XML format and, consequently, transformed into
simulator specific models and forwarded to the simulation en-
vironment. Depending on the nature and specific characteris-
tics of systems under study, there is a diversity of approaches
on simulating models defined in SysML, which utilize differ-
ent SysML diagrams. In [15], a method for simulating the be-
havior of continuous systems using mathematical simulation
is presented, utilizing SysML parametric diagrams, which al-
low the description of complex mathematical equations. Sys-
tem models are simulated using COBs. It should be noted
that in any case SysML models should be defined in a way,
which facilitates simulating them [18]. In [14], simulation is
performed using Modelica. To ensure that a complete and ac-
curate Modelica model is constructed using SysML, a corre-
sponding profile is proposed to enrich SysML models with
simulation-specific capabilities. All these approaches are bet-
ter suited for system with continuous behavior.

Simulation of discrete event systems is utilized, based on
system behavior described in SysML activity, sequence or
state diagrams. In [5], system models defined in SysML are



translated to be simulated using Arena simulation software.
SysML models are not enriched with simulation-specific
properties, while emphasis is given to system structure rather
than system behavior. Model Driven Architecture (MDA)
concepts are applied to export SysML models from a SysML
modeling tool and, consequently, transformed into Arena
simulation models, which should be enriched with behavioral
characteristics before becoming executable. In [20], the uti-
lization of Colored Petri Nets is proposed to simulate SysML
models. If the system behavior is described using activity and
sequence diagrams in SysML, it may be consequently simu-
lated using discrete event simulation via Petri Nets.

The authors have previously proposed, an integrated ap-
proach to transform SysML models to executable discrete
event simulation models, utilizing MDA concepts for model
transformation, as in [5] and [17]. Ideally, the simulation
models extracted from SysML models should be executable
without the additional programming effort from the system
engineer, while model transformation should be bidirectional
(from and to SysML models). To enable the construction of
executable simulation models, discrete event simulation capa-
bilities should be embedded within SysML models utilizing
profile mechanism. Furthermore, the simulation methodology
adopted should be popular and facilitate the execution of sim-
ulation models on a variety of simulators, while supported
system models should be similar with SysML models to ease
model transformation. SysML and DEVS follow the same ap-
proach for system representation, since they both facilitate
the description of systems as a hierarchy of interacting com-
ponents. These similarities could be exploited in order to in-
tegrate them and support the transformation of SysML mod-
els to valid executable DEVS simulation models and vice-
versa. Embedding DEVS formalism detail description within
SysML models enhances their expressiveness in terms of sys-
tem validation, since it enables the straightforward execution
of these models on existing, popular and effective simulation
environments. At the same time, one might consider that it
restricts the modeler when defining system behavior. Thus
DEVS-related constraints should be applied only when sys-
tem validation activity is performed, using a DEVS SysML
profile properly extending SysML meta-model for simulation
purposes. SysML models defined using DEVS SysML pro-
file could be consequently simulated in any DEVS simulator,
if transformed in DEVS-XML [4]. The purpose of this pa-
per is to provide a concrete mapping of DEVS SysML profile
entities to DEVS-XML elements, which is properly extended
for this purpose.

The rest of the paper is structured as follows: The proposed
approach for simulating SysML models using DEVS formal-
ism is discussed in Section 2. In Section 3 the DEVS SysML
profile is described, emphasizing the corresponding meta-
model and provided functionality. In Section 4 the transfor-

mation between SysML models defined using DEVS profile
and executable simulation models defined in DEVS-XML is
discussed. Conclusions and future work reside in Section 5.

2. SYSML MODEL SIMULATION USING
DEVS

SysML system models should be defined independently of
specific implementations or tools and support different lev-
els of detail to accommodate all engineering activities. In
such case, simulation is considered as a discrete activity con-
ducted independently of system modeling and supported by
autonomous tools, though, performed based on the system
model defined using SysML. Note that, this SysML model
should be enriched with simulation-specific capabilities to
serve system validation activity.

It is evident that the structure of a system in both SysML
and DEVS is defined in a similar fashion, allowing the bidi-
rectional mapping between SysML and DEVS models [10],
as summarized in Table 1. Both coupled and atomic DEVS
models correspond to SysML blocks, while DEVS coupled
model description is similar with SysML Internal Block Dia-
gram (IBD) diagram corresponding to each block further de-
composed to other ones. DEVS state variables correspond to
SysML block value properties, while SysML constraints may
be used to depict the way state variables are interrelated to
indicate system states.

Based on the similarity of SysML and DEVS system model
definition, it is proposed to use DEVS in order to simulate
system models defined in SysML. Though, in order for a
SysML system model to be simulated using DEVS, DEVS
atomic model behavior (e.g., DEVS functions) should be
somehow included within the corresponding SysML model.
The formal method proposed by OMG of extending or re-
stricting UML/SysML to effectively model a specific domain,
like DEVS formalism, is the definition of stereotypes grouped
by means of a profile [11]. Using DEVS specific stereotypes
of SysML behavior diagrams defined in DEVS SysML pro-
file, their functionality can be restricted to conform to DEVS
formalism (e.g., the description of DEVS atomic model func-
tions).

Using the proposed DEVS SysML profile, one may define
a SysML system model enclosing simulation capabilities us-
ing DEVS, utilizing the directed mapping between DEVS for-
malism and SysML meta-model (Fig. 1). As depicted in the
figure, a platform-independent representation of SysML mod-
els (PIM) can be extracted by any SysML modeling tool us-
ing XML Metadata Interchange (XMI) [12], which defines an
XML representation of UML and SysML meta-model. This
SysML model contains all DEVS specific entities described
using DEVS SysML profile, since they are formally defined
as stereotypes of SysML entities. It can also be considered as
a representation of DEVS formalism meta-model. The pro-



Table 1. Mapping between DEVS Formalism and SysML Entities
DEVS Formalism SysML Entity
Atomic model Block

Input port for events Flow Port with Item Flow
Output port for events Flow Port with Item Flow
State variables Value properties & Constraints
Parameters Value properties
DEVS atomic model functions Behavior diagrams
(deltint, deltext, lambda, ta) (either Activity, Sequence, State Machine)

Coupled model Internal Block Diagram
Components Blocks/Parts
Internal coupling Connectors between Flow Ports of IBD’s Parts
External coupling Connectors between Flow Ports of the IBD’s Enclosing Block and its Parts

Figure 1. Proposed SysML Model Simulation Approach us-
ing DEVS

posed DEVS SysML profile and a corresponding API is im-
plemented in Magic Draw [7], which is a standard UML mod-
eling tool supporting SysML and a user-friendly program-
ming interface.

In the DEVS simulation domain, an XML representation of
DEVS can used to define a PIM, and consequently translated
into code executed on a variety of DEVS simulators, as for
example DEVSJAVA. There exist several efforts under con-
sideration ([2], [4], [6], [8], [16]) for XML-based DEVS mod-
eling and interpretation in different programming languages.
An XML data encapsulation is accomplished in [2] within
the DEVS environment as a unifying communication method
among the entities in any SoS architecture. In [8] the problem
of model interoperability is addressed, with a novel approach
of developing DEVSML as the transformation medium to-
wards composability and dynamic scenario construction. The
composed coupled models are then validated using atomic
and coupled DTDs. In this case, model behavior is not empha-

sized. In [6] an XML Schema is introduced for XLSC, a lan-
guage for modeling atomic and coupled DEVS models. It was
shown that a) XLSC can express a model’s behavior as well
as its structure and b) was shown how an XLSC model can be
simulated. An interpreter was prototypically implemented in
Java and employed to directly execute the model’s functions
and update the model’s state. In this case, atomic model be-
havior can be described in XML using a series of actions de-
picting specific instructions included in the simulation code.
In [4], DEVSXML was proposed, as a platform-independent,
XML-based format for describing DEVS executable mod-
els. DEVSXML is consequently transformed into executable
code for existing DEVS Simulators, using translators as the
ones proposed in [4] for DEVSJava simulator. DEVSXML
was proposed to establish DEVS model mobility and promote
interoperability between discrete DEVS simulators indepen-
dently of the programming language they are implemented
in (either C++ or Java) and the way they operate (either in
a distributed or centralized fashion). The tools presented in
literature are most of the times either under development or
not available in public for evaluation. Among these tools, the
one presented in [16] is the most advanced, and is currently
used to transform DEVSJava code into XML and vice versa
for a subset of the DEVS formalism, FD-DEVS [3]. The lat-
ter DEVS-XML version is referred as XFD-DEVS and offers
XSD definitions among with a tool for the transformation.
After reviewing XML DEVS versions available in the litera-
ture, we have decided to adopt DEVSXML ([16]), since it is
generic, while atomic model behavior is described in an ab-
stract, non-implementation specific fashion, better suited for
DEVS SysML profile.

The system engineer may specify his/her system model in
SysML using a SysML modeling tool, add simulation proper-
ties according to the DEVS profile, extract the SysML model
in XMI and transform it into a DEVS executable model using
DEVSXML. This process is fully automated and conforms to
MDA guidelines.

In this paper, emphasis is given on system model trans-
formations between the two different platform independent
models (PIMs) to translate DEVS SysML entities, defined



-name : String
-msgType : MsgContentType

«Flow Port»

Port

«Action»

 DEVS State Modification-internalOutputPort : String
-externalOutputPort : String

«Connection»

External Output
Connection

«Block Definition Diagram»

DEVS Model

«Block Definition Diagram»

DEVS State
Definition Model

-name : String
-condition : Condition

«Constraint Block»

DEVS State Constraint

-internalOutputPort : String
-internalInputPort : String

«Connection»

Internal Connection

«State Machine Diagram»

DEVS Atomic
Internal Model

-externalInputPort : String
-internalInputPort : String

«Connection»

External Input
Connection

-port : InputPort
-value : MsgContentType

«Condition»

DEVS Input

«Internal Block Diagram»

Coupling

-name : String
-type : OclAny

«ValueProperty»

DEVS State Variable

«Parametric Diagram»

DEVS State
Association Model

«Action»

DEVS State Check

«Activity Diagram»

DEVS Atomic
External Model

-port : OutputPort
-value : OclAny

«Transition Effect»

DEVS Output

«Timing Condition»

Time Advance

«Action»

DEVS State Var
Modification

«Block»

DEVS Coupled

«Transition»

DEVS Internal
Transition

«Block»

DEVS Atomic

-name : String

«Block»

DEVS

«State»

DEVS State

«Parameter»

Parameter

«Flow Port»

OutputPort

«Flow Port»

InputPort

Destination
state

1..*
Origin state

1..*

1..*

0..*

1..*

0..*

1..*

Defines

1..*

1..*

1..*

1..* 1..*

1..*

Figure 2. DEVS Profile Meta-model

according to DEVS SysML profile, into DEVS models de-
fined in DEVSXML [4]. Such a transformation facilitates
automated DEVS code generation based for SysML models
conforming to DEVS SysML profile. The proposed profile
is briefly described in the following section, while proposed
stereotypes are discussed in [10].

3. DEVS SYSML PROFILE
DEVS SysML profile entities are summarized in Fig. 2.

They are defined as stereotypes of SysML entities, since, ac-
cording to OMG, the stereotype mechanism is used to ex-
tend/restrict SysML functionality. Associations included in
the meta-model are aggregations, compositions, generaliza-
tions and generic associations, where textual description is
given, while multiplicity constraints are also used.

Any SysML system model described using a Block Defi-
nition Diagram (BDD) is considered as a DEVS model. Sys-
tem blocks (with unidirectional ports) are identified as DEVS
blocks and categorized as either DEVS Coupled or DEVS
Atomic blocks. A DEVS Coupled block consists of a set of
other blocks (atomic or coupled) and a Coupling element, ex-
pressed as an IBD. The coupling of a DEVS Coupled block
defines the interconnections between (a) the ports of part
blocks (internal connections) and (b) the ports of the con-
tainer DEVS Coupled block and its parts (external connec-
tions). All this information is included in any SysML Internal

Block Diagram (IBD) corresponding to a complex SysML
block. When the SysML block is characterized as a DEVS
Coupled block, by using the corresponding stereotype, re-
lated DEVS structural constraints are applied to ensure that
all couplings between container and part block port are prop-
erly defined. So far, no specific DEVS-related entities are de-
fined.

On the other hand, DEVS-related entities should be de-
fined for any SysML block characterized as DEVS Atomic
block, by applying the corresponding stereotype, in order to
describe simulation model behavior. DEVS Atomic model be-
havior is defined as transitions between discrete model states
[21]. Thus, a set of states and simulation model behavior must
be described for any DEVS Atomic block, using a series of di-
agrams and the corresponding DEVS stereotypes. When the
DEVS Atomic stereotype is applied on a system block in a
BDD diagram, DEVS structural constraints are also applied
to the specific block to ensure the definition of DEVS ports
and state variables.

System states are defined in the DEVS State Definition
Model as DEVS State constraints and are further explained as
combinations of state variable values in the DEVS State As-
sociation Model. The latter, a stereotype of the PD, is used to
show the constraint each DEVS State enforces on State Vari-
able values. State Variables are defined as value properties of
DEVS Atomic blocks, e.g., value properties of corresponding
DEVS Atomic blocks included in the diagram.



Figure 3. Profile screenshot - Cash Dispenser DEVS Atomic External Model

The DEVS Atomic Internal Model of a DEVS Atomic block
specifies the behavior of the atomic DEVS model in case of
internal state transition. Therefore, it is declared as a stereo-
type of State Machine Diagram (SMD), where DEVS Inter-
nal Transitions between the DEVS States, already defined in
DEVS State Definition Model, occur at predefined Time Ad-
vances and may produce DEVS Output to some of the output
ports of the atomic block.

The DEVS Atomic External Model of a DEVS Atomic block
specifies the behavior of the atomic DEVS model in case of
external state transition caused by the arrival of a specific in-
put. It is declared as a stereotype of Activity Diagram (AD),
where possible DEVS States and DEVS Input are combined.
Each combination results in a set of actions, where current
state and state variable values of the atomic block may be
modified.

A screenshot of the previously mentioned DEVS Atomic
External Model of an ATM component (Cash Despencer) is
shown in Fig. 3. It is defined using the DEVS SYSML pro-
file implemented in Magic Draw modeling tool. The pro-
posed stereotypes are defined using standard tool interface,
constraints, model customization, and the provided API.

4. TRANSFORMING DEVS SYSML
MODEL TO DEVS-XML

DEVS SysML Profile enables system modelers to inte-
grate the required simulation-specific information in the sys-
tem model itself. Therefore, an equivalent DEVS model may

always be constructed for every valid SysML model con-
structed using the profile. Although, the theoretical equiva-
lent DEVS model may be of some interest, the executable
DEVS model may be much more valuable from a practical
perspective. To this end, expressing a DEVS SysML model
in DEVS-XML is crucial, as the latter may automatically be
transformed to code for a series of specific DEVS simulation
environments ([4]).

Here we present how SysML models created using DEVS
SysML profile may be transformed to DEVS-XML docu-
ments. A noticeable characteristic of this transformation is
that the first part (DEVS SysML model) is a complex, con-
ceptual model, created by a systems modeler using a GUI
modeling tool, while the second part (DEVS-XML) is a plain
XML document of a specific schema that can be compiled
to executable code for DEVS simulation environments. This
fact reveals that the two parts are not on the same level of ab-
straction within the proposed MDA process and implies a not
so straightforward transformation definition.

In order to present the transformation in a more compre-
hensive, yet standardized way, we have decided to express
the transformation using UML class diagrams. In UML class
diagrams one may define complex model structures (using
classes, their attributes and relations), as well as (directed)
associations between elements of these models. These are the
core concepts used for presenting the transformation. As far
as the DEVS SysML model(left) part, we use a rearranged
version of the DEVS SysML metamodel, in order to match
DEVS-XML’s structure and simplify the mapping. On the



DEVS-XML (right) part we use a class representation of the
DEVS-XML structure defined in [4].

A set of conventions have been used in the diagrams, in or-
der to make them more clear and readable. Each of the two
different representations (DEVS SysML Profile and DEVS-
XML) is placed in a dashed-line rectangle. Furthermore,
DEVS SysML Profile classes are not filled with color, while
DEVS-XML elements are light-grey. The multiplicity of each
end of composition associations is implied to be 1, unless
differently specified. Finally, mappings from DEVS SysML
Profile elements to DEVS-XML elements are defined using
thick directed associations.

For presentation reasons, the transformation of DEVS
SysML models to DEVS-XML documents is divided in three
class diagrams concerning (a) Coupled DEVS models, (b)
structural part of Atomic DEVS models, and (c) behavioral
part of Atomic DEVS models, respectively.

4.1. Mapping DEVS Coupled Models
Fig. 4 illustrates the mapping of DEVS SysML coupled

models to respective DEVS-XML elements. The DEVS Cou-
pled entity maps to COUPLED DEVS element. Each of them
consists of a series of properly mapped sub-entities and sub-
elements, respectively. It is worth mentioning that, due to the
more complex nature of the DEVS SysML metamodel, the
notion of inheritance is used and depicted as a directional as-
sociation with empty, triangular arrow head. For example, the
DEVS Coupled entity inherits the name attribute, as well as
InputPorts and OutputPorts from its superclass: DEVS. Simi-
larly, both InputPort and OutputPort have the same structure
due to their common origin: class Port.

The DEVS Coupled entity also has a set of internal DEVS
models and coupling information. Due to its simple, struc-
tural nature the mapping to respective DEVS-XML elements
is rather straightforward.

4.2. Mapping DEVS Atomic Models: Struc-
ture

In a similar fashion, DEVS SysML Atomic Structural enti-
ties are mapped to respective DEVS-XML elements, in Fig. 5.
However, there is a limitation in DEVS-XML: it does not
correlate state set values with state variable values, a fea-
ture found very useful, when defining DEVS SysML mod-
els. This means that DEVS-XML does not define any state
variable-dependent constraint that must hold in order to con-
sider a state as current state. Thus, we have extended DEVS-
XML, so that it becomes expressive enough to contain all
DEVS-SysML simulation-related information. The two in-
troduced elements (STATE SET VALUE and CONDITION)
are easily identified in Fig. 5 due to their darker, grey fill
color. With these additional elements it is possible to define

DEVS-SysML DEVS-XML

-INTERNAL_OUTPUT : String
-EXTERNAL_OUTPUT : String

T_External_Output_Coupling_Spec

-EXTERNAL_INPUT : String
-INTERNAL_INPUT : String

T_External_Input_Coupling_Spec

EXTERNAL_OUTPUT_COUPLING

-componentNames : String [1..*]

COMPONENT_REFERENCE_LIST

EXTERNAL_INPUT_COUPLING

-INTERNAL_OUTPUT : String
-INTERNAL_INPUT : String

T_Internal_Coupling_Spec

-name : String
-msgType : MsgContentType

Port

-name : String
-msgType : MsgContentType

Port

-internalOutputPort : String
-externalOutputPort : String

External Output
Connection

-internalOutputPort : String
-internalInputPort : String

Internal Connection

-externalInputPort : String
-internalInputPort : String

External Input
Connection

-SIGNAL_NAME : String
-SIGNAL_TYPE : String

PORT_SIGNAL_SPEC

-SIGNAL_NAME : String
-SIGNAL_TYPE : String

PORT_SIGNAL_SPEC

INTERNAL_COUPLING

COUPLED_DEVS
DEVS Coupled

MODEL_NAME

T_Port_Spec

T_Port_Spec

-name : String

DEVS

PORT_NAME

-name : String

DEVS

PORT_NAME

OutputPort

InputPort

OUTPUTS

Coupling

INPUTS

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

Figure 4. Mapping DEVS-SysML to DEVS-XML: Coupled
DEVS models

a STATE SET VALUE with its standing CONDITION. At-
tributes expr1 and expr2 are mathematical expressions that
may contain state variable names as variables, while comp at-
tribute is a comparison operator. The recursive part of the def-
inition of CONDITION element (AND, OR) allows the cre-
ation of rather complex conditions.

4.3. Mapping DEVS Atomic Models: Behavior
The mapping of DEVS atomic models behavioral aspects

(depicted in Fig. 6) is particular in that DEVS-XML fol-
lows the classic DEVS form (internal transition, output,
time advance, and external transition functions), while DEVS
SysML profile introduces a much more compact form, to fa-
cilitate system engineer to describe DEVS model behavior in
a simplified fashion. The main reason is the integration of in-
ternal transition, output, and time advance functions in DEVS
Atomic Internal Model, a variation of SysML state machine



DEVS-XMLDEVS-SysML

-STATE_VARIABLEnAME : String
-STATE_VARIABLE_TYPE_ELEM/ENUM

T_State_Variables_Spec

-DEVS State Variable
-DEVS State Constraint Parameter

Association

-name : String
-msgType : MsgContentType

Port

-name : String
-msgType : MsgContentType

Port

-STATE_SET_NAME : String

STATE_SET

-name : String
-condition : Condition

DEVS State Constraint

-expr1 : String
-comp : String
-expr2 : String
-AND : CONDITION [0..1]
-OR : CONDITION [0..1]

CONDITION

-SIGNAL_NAME : String
-SIGNAL_TYPE : String

PORT_SIGNAL_SPEC

-SIGNAL_NAME : String
-SIGNAL_TYPE : String

PORT_SIGNAL_SPEC

ATOMIC_DEVS

STATE_SET_VALUES

-name : String
-type : OclAny

DEVS State Variable

-text : String

STATE_SET_VALUE

DEVS State
Association Model

STATE_VARIABLES

DEVS State
Definition Model

MODEL_NAME

DEVS Atomic

T_Port_Spec

T_Port_Spec

-name : String

DEVS

PORT_NAME

PORT_NAME

OutputPort

Parameter

InputPort

OUTPUTS

STATES

INPUTS

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

Figure 5. Mapping DEVS-SysML to DEVS-XML: Atomic
DEVS models structure

diagrams. However, this issue does not affect model trans-
formation, other than making the mapping between DEVS
SysML profile entities and DEVS-XML tags more complex.
For example, each DEVS SysML profile Origin State en-
tity included in DEVS Atomic Internal Model is mapped to
three different DEVS-XML STATE CONDITION elements,
one for discrete function, e.g. internal transition, output and
time advance.

5. CONCLUSIONS-FUTURE WORK
In this paper, the transformation of SysML models, in-

cluding simulation capabilities through DEVS SysML pro-
file, to DEVS-XML documents was explored. DEVSXML
format describing DEVS executable models, consequently
transformed in specific DEVS Simulator code, may serve
as platform independent model for system simulation, while
XMI exported from SysML modeling tools supporting DEVS

DEVS-SysML DEVS-XML

EXTERNAL_TRANSITION_FUNCTION

CONDITIONAL_OUTPUT_FUNCTION

INTERNAL_TRANSITION_FUNCTION

CONDITIONAL_TIME_ADVANCE

TIME_ADVANCE_FUNCTION

STATE_VARIABLE_UPDATE

STATE_VARIABLE_UPDATE

 DEVS State Modification

CONDITIONAL_FUNCTION

CONDITIONAL_FUNCTION

TRANSITION_FUNCTION

TRANSITION_FUNCTION

«Action»

DEVS State Check

-port : InputPort
-value : MsgContentType

DEVS Input

ATOMIC_DEVS

OUTPUT_FUNCTION

STATE_CONDITION

STATE_CONDITION

STATE_CONDITION

STATE_CONDITION

Destination State

TIME_ADVANCE

-port : OutputPort
-value : OclAny

DEVS Output

DEVS Atomic
External Model

DEVS State Var
Modification

DEVS Atomic
Internal Model

Time Advance

DEVS Internal
Transition

DEVS Atomic

NEW_STATE

NEW_STATE

Origin State

EVENT

SEND

PORT

0..*

0..*

1..*

1..*

1..*

1..*

1..*

Figure 6. Mapping DEVS-SysML to DEVS-XML: Atomic
DEVS models behavior

SysML profile plays the same role for system modeling. Cur-
rently, we are focusing on testing the conversion tool to trans-
form DEVS SysML models in XMI to DEVSXML and vice-
versa and exploring the transformation of DEVS-XML mod-
els to DEVSJava code.

Applying the proposed concepts, DEVS SysML models
can be transformed to executable DEVS models in DEVS-
Java. Though, the conditions under which they should be val-
idated, called Experimentation Framework in DEVS formal-
ism, must be coded in DEVS simulator by the system en-
gineer. Our future plans focus on the definition of the Ex-
perimentation Framework in SysML by properly extending
DEVS SysML profile. This should help the system engineer
to define in SysML a) the system model, b) its simulation-
specific properties and c) the conditions under which it should
be validated and, consequently, automatically produce exe-
cutable simulation code for DEVS simulators.



REFERENCES
[1] L. Baker, P. Clemente, B. Cohen, L. Permenter,

B. Purves, and P. Salmon. Foundational Concepts for
Model Driven System Design. INCOSE Model Driven
System Design Interest Group, International Council on
Systems Engineering, July 2000.

[2] M. Hosking and F. Sahin. An xml based system of sys-
tems discrete event simulation communications frame-
work. In SpringSim ’09: Proceedings of the 2009 Spring
Simulation Multiconference, pages 1–9, San Diego, CA,
USA, 2009. Society for Computer Simulation Interna-
tional.

[3] M. H. Hwang and B. Zeigler. Reachability graph of
finite and deterministic devs networks. Automation Sci-
ence and Engineering, IEEE Transactions on, 6(3):468–
478, July 2009.

[4] J. L. R. Martı́n, S. Mittal, M. A. López-Pe na, and J. M.
de la Cruz. A w3c xml schema for devs scenarios. In
SpringSim ’07: Proceedings of the 2007 spring simula-
tion multiconference, pages 279–286, San Diego, CA,
USA, 2007. Society for Computer Simulation Interna-
tional.

[5] L. McGinnis and V. Ustun. A simple example of
SysML-driven simulation. In Proceedings of the
2009 Winter Simulation Conference, pages 1703–1710,
Austin, TE, USA, December 2009.

[6] N. Meseth, P. Kirchhof, and T. Witte. Xml-based devs
modeling and interpretation. In SpringSim ’09: Pro-
ceedings of the 2009 Spring Simulation Multiconfer-
ence, pages 1–9, San Diego, CA, USA, 2009. Society
for Computer Simulation International.

[7] MG. SysML Plugin for Magic Draw, 2007.

[8] S. Mittal, J. L. Risco-Martı́n, and B. P. Zeigler. Devsml:
Automating devs execution over soa towards transpar-
ent simulators. In DEVS Symposium, Spring Simulation
Multiconference, pages 287–295. ACIMS Publications,
March 2007.

[9] S. Mittal, J. L. Risco-Martı́n, and B. P. Zeigler.
Devs/soa: A cross-platform framework for net-centric
modeling and simulation in devs unified process. Simu-
lation, 85(7):419–450, 2009.

[10] M. Nikolaidou, V. Dalakas, L. Mitsi, G.-D. Kapos, and
D. Anagnostopoulos. A sysml profile for classical
devs simulators. In Proceedings of the Third Interna-
tional Conference on Software Engineering Advances
(ICSEA 2008), pages 445–450, Malta, October 2008.
IEEE Computer Society.

[11] OMG. OMG Unified Modeling Language: Su-
perstructure, version 2. Available online via
http://www.omg.org/ docs/formal/05-07-04.pdf, August
2004.

[12] OMG. MOF 2.0 XMI Mapping Specification. Version
2.1.1. O. M. G. Inc, December 2007.

[13] OMG. Systems Modeling Language (SYSML) Specifi-
cation. Version 1.0. O. M. G. Inc, September 2007.

[14] C. J. J. Paredis and T. Johnson. Using omg’s sysml
to support simulation. In WSC ’08: Proceedings of
the 40th Conference on Winter Simulation, pages 2350–
2352. Winter Simulation Conference, 2008.

[15] R. Peak, R. Burkhart, S. Friedenthal, M. Wilson, M. Ba-
jaj, and I. Kim. Simulation-based design using sysml-
part 1: A parametrics primer. In INCOSE Intl. Sympo-
sium, San Diego, CA, USA, 2007.

[16] J. L. Risco-Martı́n, J. M. De La Cruz, S. Mittal, and B. P.
Zeigler. eudevs: Executable uml with devs theory of
modeling and simulation. Simulation, 85(11-12):750–
777, 2009.

[17] O. Schonherr and O. Rose. First steps towards a gen-
eral SysML model for discrete processes in production
systems. In Proceedings of the 2009 Winter Simulation
Conference, pages 1711–1718, Austin, TE, USA, De-
cember 2009.

[18] D. R. Tamburini. Defining executable design & simula-
tion models using sysml, March 2006.

[19] G. Wainer and N. Giambiasi. Timed cell-devs: mod-
elling and simulation of cell spaces, 2001.

[20] R. Wang and C. Dagli. An executable system architec-
ture approach to discrete events system modeling using
SysML in conjunction with colored petri nets. In IEEE
Systems Conference 2008, pages 1–8, Montreal, April
2008. IEEE Computer Press.

[21] B. P. Zeigler, H. Praehofer, and T. Kim. Theory of Mod-
eling and Simulation. Academic Press, 2nd edition,
2000.

[22] B. P. Zeigler and H. S. Sarjoughian. Introduction to
DEVS Modeling and Simulation with JAVA. DEVSJAVA
Manual, 2003.

[23] M. Zhang, B. P. Zeigler, and P. Hammonds. Devs/rmi-
an auto-adaptive and reconfigurable distributed simula-
tion environment for engineering studies. ITEA Journal,
2005.


