
Interoperability between DEVS and non-DEVS models using DEVS/SOA
José L. Risco-Martı́n1, Alejandro Moreno2, J. M. Cruz1 and Joaquı́n Aranda2

1Departamento de Arquitectura de Computadores y Automática
Facultad de Informática

Universidad Complutense de Madrid (UCM)
28040 Madrid, Spain

{jlrisco,jmcruz}@dacya.ucm.es

2Departamento de Informática y Automática
Escuela Técnica Superior de Informatica

Universidad Nacional de Educación a Distancia (UNED)
28040 Madrid, Spain

amoreno@bec.uned.es, jaranda@dia.uned.es

Keywords: DEVS, Matlab, Standard, Interoperability,
DEVS/SOA

Abstract

The absence of standarization could delay the progress of
novel technological advances. Whereas, the guidance of uni-
form engineering specifications aims to amplify interoper-
ability uppon systems. Extending functionality among differ-
ent modeling and simulation frameworks opens a broad out-
reach to researchers. In this paper, we propose an approach
supporting interoperability among DEVS compilant models
and Matlab functionality in consort with a multi-platform
web-based distributed simulation framework handling The
Service oriented Architecture (SOA). To prevent the lack of
homogeneous criteria, we employ recently developed inter-
operability concepts accompanied by Discrete EVent Sys-
tem (DEVS) Specification formalism to implement a standard
for interoperability: a distributed simulation environment in-
volving the DEVS/SOA JAVA and .NET simulation engines
to simulate DEVS and non-DEVS models. Furthermore, we
present a distributed sample model following the DEVS mod-
els specification interface while integrating Matlab utilities.

1. INTRODUCTION
Interoperability is a quality that denotes the ability of di-

verse independent systems to work together [1]. If two or
more organisms are capable of comunicating and exchanging
data between themselves, the overall system is interoperable.
Achieving a high degree of inteoperability in simulation is
meant to be a primer objective uppon the research community
[2]. The main reason is to assist the confluence between the
large variety of legacy simulation frameworks and the rapidly
developed modern simulations.

There are several current DEVS implementations pro-

viding interoperability employed at different levels. The
DEVS/CORBA [3] distributed simulation environment of-
fers an alternative implementation of discrete event sys-
tem specification (DEVS) modeling and simulation theory
based on CORBA communication middleware. Moreover,
the DEVS/HLA [4] simulation environment supports high
level model building using DEVS methodology as well as
supplying heterogeneous simulation models interoperability
based on HLA concepts. HLA is a network middleware layer
that supports message exchanges among simulation compo-
nents, called federates, in a neutral format and also provides
a range of services to support dynamic and efficient exe-
cution of simulations. However, experience with HLA has
been disappointing and forced proponents to acknowledge
the difference between enabling heterogeneous simulations to
exchange data, so-called technical interoperability, and sub-
stantive interoperability - the desired outcome of exchanging
meaningful data so that coherent interaction among federates
takes place [5]. Tolk introduced the Levels of Conceptual In-
teroperability Model (LCIM) which identified seven levels of
interoperability among participating systems [6]. These lev-
els also can be viewed as a refinement of the operational in-
teroperability type which is one of three defined by Dimario
[7]. The operational type concerns linkages between systems
in their interactions with one another, the environment, and
with users. The additional levels provide more elaboration to
the catch-all category of substantive interoperability and, are
missing from HLA standard as such.

A similar DEVS interoperability conceptualization is the
work presented by Wuztler [8]. An approach that supports si-
multaneous execution of a set of DEVS-based models written
in different programming languages throughout a definition
of an abstract model. In spite of this similarity, our approach
is encouraged by the newly approved DEVS interoperability
standarization guidelines.

Recently, within a working group of the Simulation Inter-



Figure 1. Conceptual Architecture of Standard

operability Standards Organization, a standard has been under
development to support interoperability of DEVS models im-
plemented in different platforms as well as with legacy sim-
ulations. Figure 1 illustrates an architectural approach pro-
posed to accommodate the various combinations and permu-
tations of possible application, both currently known, as well
as those that will emerge in the future. The basic idea is to
define two sets of interfaces; the DEVS model Interface and
the DEVS Simulator Interface, as well as a DEVS Simula-
tion Protocol that operates between the two. The interfaces
protocols are based on those in GenDEVS, an implementa-
tion at the heart of the DEVJAVA M&S environment [9].
DEVS/C++, DEVSJAVA and xDEVS are platform specific
implementations while DEVSML [10] and XFD-DEVS [11]
are platform independent implementations in XML which can
transform to any platform specific implementations. As a di-
rect consequence of the model-simulator separation there can
be multiple ways in which the same model can be simulated -
all adhering to the abstract simulator specification. From the
above introduction, we can infer that the standard will have
multiple simulation scenarios.

In this work, we describe a Discrete Event System Speci-
fication (DEVS) simulation interoperability among two dif-
ferent DEVS Model implementations. A DEVS-compilant
model written in Java executed along with a model extended
by Matlab functionality. In addition, we succesfully demon-
strate the application of DEVS/SOA net-centric modeling and
simulation environment that uses XML-based SOA as fron-
tend for DEVS simulator interoperation. Our proposal certi-
fies the formerly stated conceptual architecture of standard
approved by the Simulation Interoperability Standards Orga-
nization. The interoperability experiment basis insures both
sides of Figure 1.

2. BACKGROUND
2.1. DEVS

DEVS formalism consists of models, the simulator and the
experimental frame. We will focus our attention to the speci-

fied two types of models i.e. atomic and coupled models. The
atomic model is the irreducible model definition that specifies
the behavior for any modeled entity. The coupled model is the
aggregation/composition of two or more atomic and coupled
models connected by explicit couplings. The formal defini-
tion of parallel DEVS is given in [12]. An atomic model is
defined by the following equation:

M = 〈X ,S,Y,δint ,δext ,δcon,λ 〉 (1)

where,

• X is the set of input values

• S is the state space

• Y is the set of output values

• δint : S→ S is the internal transition function

• δext : Q×Xb→ S is the external transition function

– Q = {(s,e) : s ∈ S,0≤ e≤ ta(s)} is the total state
set, where e is the time elapsed since last transition

– Xb is a set of bags over elements in X

• δcon is the confluent transition function, subject to
δcon (s,�) = δint(s)

• λ : S→ Y is the output function

• ta(s) : S→ℜ
+
0 ∪∞ is the time advance function.

The formal definition of a coupled model is described as:

N = 〈X ,Y,D,EIC,EOC, IC〉 (2)

where,

• X is the set of external input events

• Y is the set of output events

• D is a set of DEVS component models

• EIC is the external input coupling relation

• EOC is the external output coupling relation

• IC is the internal coupling relation.

The coupled model N can itself be a part of component in
a larger coupled model system giving rise to a hierarchical
DEVS model construction.

Figure 2 shows a coupled DEVS model. M1 and M2 are
DEVS models. M1 has two input ports: “in1” and “in2”, and
one output port: “out”. The M2 has one input port: “in1”,



Figure 2. Coupled DEVS model

and two output ports: “out1” and “out2”. They are connected
by input and output ports internally (this is the set of inter-
nal couplings, IC). M1 is connected by external input “in” of
Coupled Model to “in1” port, which is an external input cou-
pling (EIC). Finally, M2 is connected to output port “out” of
Coupled Model, which is an external output coupling (EOC).

There are varied libraries for expressing DEVS models
across the globe, such as DEVSJAVA [9], DEVS/C++ [9],
CD++ [13], xDEVS [14], etc., and all of them have efficient
implementations for executing the DEVS protocol. Provid-
ing the advantages of Object Oriented frameworks such as
encapsulation, inheritance, and polymorphism. Plus, they all
manage the simulation time, coordinates event schedules, and
supply a library for simulation, a graphical user interface to
view the results, and other utilities.

Detailed descriptions about DEVS Simulator, Experimen-
tal Frame and of both atomic and coupled models can be
found in [12].

2.2. DEVS/SOA
The Service oriented Architecture (SOA) is a framework

consisting of various W3C standards, in which various com-
putational components are made available as “services” inter-
acting in an automated manner achieve machine-to-machine
interoperable interaction over the network. Web-based sim-
ulation requires the convergence of simulation methodol-
ogy and WWW technology (mainly Web Service technol-
ogy). The fundamental concept of web services is to inte-
grate software application as services. Web services allow
the applications to communicate with other applications us-
ing open standards. We are offering DEVS-based simula-
tors as a web service, which are based on these standard
technologies: communication protocol (Simple Object Ac-
cess Protocol, SOAP), service description (Web Service De-
scription Language, WSDL), and service discovery (Univer-
sal Description Discovery and Integration, UDDI).

Figure 3 shows the framework of our distributed simula-
tion using SOA. The complete setup requires one or more
servers that are capable of running DEVS Simulation Service.
The capability to run the simulation service is provided by the
server side design of DEVS Simulation protocol.

Currently, there exists two implementations of

Figure 3. DEVS/SOA distributed architecture

DEVS/SOA. One for Java DEVS-based models (DEVS/SOA
JAVA) and another for .NET DEVS-based model
(DEVS/SOA .NET) [15].

The Simulation Service framework is two layered frame-
work. The top-layer is the user coordination layer that over-
sees the lower layer. The lower layer is the true simulation
service layer that executes the DEVS simulation protocol as
a Service. The lower layer is transparent to the modeler and
only the top-level is provided to the user. The top-level has
three main services: upload DEVS model, compile DEVS
model, and simulate DEVS model. The second lower layer
provides the DEVS Simulation protocol services: initialize
simulator i, run transition in simulator i, run lambda func-
tion in simulator i, inject message to simulator i, get time
of next event from simulator i, get time advance from sim-
ulator i, get console log from all the simulators, and finalize
simulation service. The explicit transition functions, namely,
the internal transition function, the external transition func-
tion, and the confluent transition function, are abstracted to a
single transition function that is made available as a Service.
The transition function that needs to be executed depends on
the simulator implementation and is decided at the runtime.
For example, if the simulator implements the Parallel DEVS
formalism, it will choose among internal transition, external
transition or confluent transition.

The client is provided a list of servers hosting DEVS Ser-
vice. He selects some servers to distribute the simulation of
his model. Then, the model is uploaded and compiled in all
the servers. The main server selected creates a coordinator
that creates simulators in the server where the coordinator
resides and/or over the other servers selected. This whole
framework is known as DEVS/SOA framework and details
are available at [16], [17].

Summarizing from a user’s perspective, the simulation pro-
cess is done through three steps (Figure 4): (1) write a DEVS
model (actually DEVSJAVA, xDEVS and DEVS.NET are
supported), (2) provide a list of DEVS servers. Select N num-
ber of servers from the list available, and (3), run the simula-
tion (upload, compile and simulate) and wait for the results.



Figure 4. Execution of DEVS SOA-Based M&S

2.3. Matlab
Matlab is a numerical computing environment and pro-

gramming language [18]. Created by The MathWorks, Mat-
lab allows easy matrix manipulation, plotting of functions
and data, implementation of algorithms, creation of user in-
terfaces, and interfacing with programs in other languages.

Yet, for a long time Matlab was criticized since the soft-
ware is a proprietary product of The MathWorks, users are
subject to vendor product and services substantial switch-
ing costs. However, lately an additional tool called the Mat-
lab Builder under the Application Deployment tools section
has been provided to deploy Matlab functions as library files
which can be used with .NET or Java application building
environment.

Matlab Java Builder (JA) allows to integrate Matlab ap-
plications into Java programs by creating Matlab based Java
classes that can be deployed royalty-free on desktop machines
or Web servers. The Matlab Builder JA product creates the
Java classes by encrypting Matlab functions and generating a
Java wrapper around them.

Nevertheless, the drawback is that the computer where
the application has to be deployed needs Matlab Component
Runtime (MCR) for the Matlab files to function normally.
Contrariwise MCR can be distributed freely with library files
generated by the Matlab compiler.

3. DEVS INTEROPERABILITY
3.1. Introduction

Within the purpose of certifiyng the interoperability stan-
dard of cross-platform DEVS models aboard our approach,
we refer to the semantic level interoperability [19]. As shown
in Figure 5 we concentrate our efforts to satisfy the interop-
eration standards architecture involving different DEVS and
non-DEVS models implementations, as well as, cooperation
and information exchange among distributed simulators that
differ on the computation principles.

Right side of Figure 5 suggests interoperation between a
DEVS model implementation developed with Java program-

Figure 5. DEVS & Matlab Interoperability Conceptual Ar-
chitecture of Standard

ming language and non-DEVS functionality that benefits
from functions encoded on Matlab programming language.
Interoperability across distinct DEVS models achieved by the
inheritance of the DEVS model interface xDEVS.

Moreover, Figure 5 illustrates standard distributed simu-
lation among different DEVS simulation engines supported
by our DEVS/SOA interface. A multi-platform simulation
that comprehends a Java sustained simulation environment
toghether with a .NET based simulation framework. Since
both simulation platforms are based on web services us-
ing WSDL specification, they can be considered platform-
independent simulation engines, i.e., a standard communi-
cation between both simulation platforms can be performed
without any kind of middleware.

3.2. Modeling approach
In order to carry out our approach we take advantage of

existing DEVS model implementation interface xDEVS [14],
a DEVS Application Programming Interface (API) written in
Java. To support our implementation modeling requirements,
the Java API xDEVS specifies an interface for both atomic
and coupled models. Although rigorously speaking, there is
not a formal standard DEVS model interface, we are adopt-
ing the xDEVS interface as a point of union for two different
simulation platforms (see Table 1).

Figure 6 depicts our integration methodology. In the first
place we have DEVS model interface, naturallly implemented
as an xDEVS interface. Keeping track of Figure 6 inheritance
path, we slide down from DEVS model interface xDEVS to
DEVS models implementations which ensure DEVS formal-
ism especifications. These DEVS models can be implemented
as full DEVS models or otherwise act as an adapter for Mat-
lab integration. Further on, we explain in more detail Matlab
integration tecnical requirements, now we focus on Matlab
functionality abstraction.

Figure 6 illustrates Matlab Java wrapper function assem-
bly process with Matlab Builder support. The application tool
Matlab Java Builder allows the user to deploy Matlab func-
tions by creating Matlab based Java classes which can be used
with Java application building environment. This additional
Matlab tool creates the Java classes by encrypting Matlab



Table 1. xDEVS interface of a DEVS model

public interface Devs {

//DEVS time advance function.

double ta();

//DEVS internal transition function.

void deltint();

//DEVS external transition function.

void deltext(double e, Message x);

//DEVS confluent function.

void deltcon(double e, Message x);

//DEVS output function.

Message lambda();

}

Figure 6. Implementation Overview

functions and generates a Java wrapper around them. The sys-
tem introduces Matlab computation capabilities to our DEVS
model adapter as non-DEVS functionality. The DEVS model
implementation playing as a Matlab connector requests the
inclusion of the encrypted Matlab functions translated as java
classes in order to take advantage of their computing capacity.
In addition, Figure 6 points out the major handicap concern-
ing to the system operability, the machine where the appli-
cation has to be deployed needs Matlab Component Runtime
(MCR) for the Matlab files to function normally.

Now, we take a quick look at the tecnical procedures for
Matlab integration. To enable Java applications to exchange
data with Matlab methods they invoke, Java Builder pro-
vides an API. This package provides a set of data conver-
sion classes. Each class represents a Matlab data type. As
seen on Figure 6 Matlab integration within the DEVS model
adapter requires the linkage to the Java Builder API. This
API assists the information exchange process management
among a Java application environment and Matlab program-

Figure 7. Cross Platform Coupled Model

ming framework.
Summarizing from a global perspective, we developed

a DEVS model component within xDEVS interface global
guidelines fulfilled with a Java model implementation. Al-
ternatively, exploiting Matlab numerical computing environ-
ment we generated a wrapper of the desired Matlab funcional-
ity managed by the specified model interface implementation.

Via the DEVS Simulator environment incorporated in the
xDevs framework, we are capable of modeling and simulate
atomic and coupled models that share the same semantics
given the DEVS mathematical specification, but differ in the
computing environment basis. As we have seen so far, imple-
mentations of both Java compilant models and Matlab core
based models that share a common DEVS interface have been
presented. Now, the DEVS Simulator xDevs that remains un-
changed is able to simulate the formerly stated interoperable
DEVS models implementations.

3.3. Simulation approach
The above methodology can be extended for DEVS/SOA

simulation framework (left side of Figure 5). As explained
above, DEVS/SOA environment provides DEVS-based sim-
ulators as a web service, which are based on standard com-
munication technologies. Each atomic or coupled compo-
nent may be implemented using different simulation en-
gines, called platforms. Figure 7 depicts an example of multi-
platform DEVS model. Even though the standard interface
of interoperability for DEVS simulator engines does not
cope with a formal specification, we assume the distributed
DEVS/SOA framework architecture as the railway junction
among two different simulation platforms.

Next, we will describe the combination of our extended
DEVS model in addition with DEVS/SOA distributed simula-
tion context. As soon as we build up the xDEVS based model
with Matlab non-DEVS functionaility aforementioned. As il-
lustrated on Figure 4, by means of DEVS/SOA framework,
we request the list of servers hosting DEVS service. Then,



we select the servers to distribute the simulation of the whole
model. Next, the entire model is uploaded and compiled in
the chosen servers. The server selected as the leader creates
the coordinator that in turn creates simulators in the servers
where the coordinator resides over the other servers selected.
The rest of the behavior of the application is the same that in
our previous architecture. Messages are passed by means of
an adapter pattern, they may be translated into different plat-
forms. However, an outcome that affects DEVS/SOA current
architecture heterogeneousness and usability is that the user
must send the entire multi-platform model implementation.
An efficient solution is proposed on the yet unpublished paper
[17] based on a slight modification of the coordinator creation
process. The structure description language DEVSML is ap-
plied to determine the root coupled model. This DEVSML
document contains the location of each submodel and the
main server. The document is transfered to the main server
which will distribute the sub-models among its correspond-
ing servers, and the simulation begins. On the other hand,
again, the mayor drawback is that the server that allocates
the non-DEVS model extended by Matlab functions needs
to reference the Matlab MCR. A complete demonstration of
DEVS/SOA running a DEVSJAVA, xDEVS and DEVS.NET
hybrid model can be found at [15].

4. CASE STUDY
In this section we describe a model of a barrel filler that

embraces interoperation among distributed DEVS and non-
DEVS models implementations. Filling a barrel is a typical
engineering process that involves both continuous and dis-
crete event archetypes. This experiment is motivated on a
simple example that can be found at Zeigler’s book [12], but
with a different unrelated purpose. Figure 8 shows the system
structure, it has one continuous input port inflow, and two out-
put ports for observing the contents, one discrete output port,
barrel, and one continuous port, cout. There is also a contin-
uous state variable contents. The derivative of the continuous
state variable contents is established by the input value of in-
flow. Barrels are sent out at the discrete output port barrel
whenever the variable contents reaches the value 10. At that
point, contents is reinitialized.

In order to build a model of a barrel filler we implemented a
coupled model that involves an integrator atomic model with
an additional reset entrance and a simple model consisting of
a threshold level detector.

Even though the integrator atomic model fulfills the mealy
discrete time specified system (Mealy DTSS) formalism, it
is shown [12] how these systems can be specified as DEVS
models. A mealy DTSS is represented as a DEVS in a man-
ner similar to a memoryless function with the difference that
the state is updated when receives an input. The system will
passivate untill it collects an input. Next, it evolves to the tran-

Figure 8. Barrel Filler Model

sition state, delivers the output, and in the internal transition
function computes the next state and makes σ = ∞, waiting
for the arrival of the new period. In the barrell filler sample,
the integrator block comprises the state variable contents, the
two input port inflow and reset and the output port cout. Com-
putes next state handling the integration function parameter-
ized by the inflow value reliant on the reset entrance value
within the internal transition.

Integrator = 〈X ,S,Y,δint ,δext ,δcon,λ 〉 (3)

where,

• X = {in f low× reset|in f low ∈ℜ,reset ∈ {true, f alse}}

• S = {contents|contents ∈ℜ}

• Y = {cout|cout ∈ℜ}

• δext : σ = h

• δint : σ = ∞

– case reset:

∗ f alse : dcontents/dt = in f low
∗ true : contents = 0

• δcon (s,�) = δint(s)

• λ : cout = contents

• ta(s) : σ

In contrast, the atomic model that embodies a threshold
level detector (state event trigger) exemplifies DEVS formal-
ism throghout a a DEVS model. The level detector model
only updates the internal event state variable to true and trig-
gers the internal transition function (σ = 0) whenever the in-
put port value crosses the threshold level. Right before the in-
ternal transition passivates, the system delivers the state event
value throgh the output port.



Figure 9. Global Implementation Overview

Level = 〈X ,S,Y,δint ,δext ,δcon,λ 〉 (4)

where,

• X = {in|in ∈ℜ}

• S = {state event ∈ {true, f alse}}

• Y = {out ∈ {true, f alse}}

• δext : case reset:

– in≥ 10 : state event = true, σ = 0

• δint : σ = ∞

• δcon (s,�) = δint(s)

• λ : out = state event

• ta(s) : σ

At last, as illustrated on Figure 8, to complete the coupling
we link the output port cout of the Integrator with the level
detector input port and the output port of the level detector
component with the input port reset of the Integrator module.

Now, the main goal is to segregate the integration duty
ahead to the Matlab computing environment. On our first
step, with Matlab Java Builder JA support, we generated a
Java wrapper that embraces the Matlab integration function
“ode45” as shown in Figure 9. With the xDevs model inter-
face as the skeleton, along with previous integrator and level
detector DEVS models description, without leaving away
Matlab immerse functionality, we are ready to simulate the
coupled interoperable model example.

Following Figure 4 steps and Java based DEVS/SOA sim-
ulator servers. First we pick out the servers to distribute the
complete barrel filler model simulation. Then the combined
model is uploaded and compiled in the selected servers. The

Figure 10. Distributed DEVS/SOA of a Barrel Filler

Figure 11. Execution performance of the Barrel Filler
Model

main server creates the coordinator and in turn the coordina-
tor creates the corresponding simulators. Finally, as presented
on Figure 10, the simulation is executed as a distributed cou-
pled DEVS model with Matlab engaged operability.

To illustrate the execution performance of the above ex-
ample, we have drawn a graph (see Figure 11). The X axis
posts the time elapsed, while the Y axis presents the measure
unit for the barrel filler inflow and the internal variable con-
tents status value. The blue series pictures the inflow value
at time “t”, while the red series illustrates the value of the
internal variable contents at time “t + h”. Whenever the con-
tents reaches the tolerance limit level 10, the level detector
component triggers an state event on the way to rearrange the
Integrator internal initial value to 0. As can be seen on Fig-
ure 11 we attach a source generator to the model input which
propagates the oscillation of a sine function and impacts on
the deviation of the internal variable contents value.



5. CONCLUSION AND FUTURE WORK
The approach proposed in this paper, expects to be an

initial implementation for the application of recently devel-
oped interoperability standards. We focused our efforts in the
need for modeling and simulate atomic and coupled mod-
els that share the same semantics given the DEVS mathe-
matical specification, but differ in the computing environ-
ment basis. We showed a simulation involving a DEVS
model implementation developed with the native program-
ming language of a DEVS simulator environment framework
(xDEVS) along with a non-DEVS model that benefits from
functions encoded on Matlab programming language. Fur-
thermore, we described an approach supporting interoperabil-
ity among DEVS models and Matlab functionality in consort
with a web-based distributed simulation framework handling
The Service oriented Architecture (SOA).

In spite of the work presented on this paper and others
[8], interoperability over cross-platform DEVS models im-
plementations relies somewhere within a long distance run
early stages, towards a full DEVS capacity inter-operation.
In regard to the approach discussed in this research work,
the most tempting future objective might be the develop-
ment of a distributed or non-centric simulation framework
for independent Matlab functional blocks as DEVS models
combined with DEVS/SOA simulation engine. Matlab oper-
ational DEVS simulation engine throughout the World Wild
Web wraps another level uppon the interoperability standard.
However, in this work we provided new technologies to sup-
port interoperability between DEVS and non-DEVS based
models, developing a platform-independent simulation layer
by means of our DEVS/SOA framework. Since the xDEVS
interface was used as a “standard” at the modeling layer in
this article, our future work includes the extension of our
DEVS/SOA architecture to this layer.

REFERENCES
[1] Wikipedia, Available at: http://en.wikipedia.org/wiki/.

[2] S. Mittal, B. P. Zeigler, and J. L. Risco-Martı́n,
“Implementation of formal standard for interoper-
ability in M&S/Systems of Systems integration with
DEVS/SOA,” International Command and Control C2
Journal, in review.

[3] Y. K. Cho, X. Hu, and B. P. Zeigler, “The RT-
DEVS/CORBA environment for simulation-based de-
sign of distributed real-time systems,” Simulation,
vol. 79, pp. 197–210, 2003.

[4] B. P. Zeigler, S. B. Hall, and H. S. Sarjoughian, “Ex-
ploiting HLA and DEVS to promote interoperability
and reuse in lockheed’s corporate environment,” SIM-
ULATION, vol. 73, no. 5, pp. 288–295, 1999.

[5] S. Mittal, B. P. Zeigler, J. L. Risco-Martı́n, F. Sahin, and
M. Jamshidi., Systems of Systems Engineering. John
Wiley & Sons, 2008, ch. Modeling and Simulation for
Systems of Systems Engineering, pp. 101–149.

[6] A. Tolk and J. A. Muguira, “The levels of conceptual
interoperability model (LCIM),” Proceedings Fall Sim-
ulation Interoperabiliry Workshop, 2003.

[7] M. J. DiMario, “Systems of systems interoperability
types and characteristics in joint command and control,”
Proceedings of the 2006 IEEE/SMC International Con-
ference on System of Systems Engineering, April 2006.

[8] T. Wuztler and H. S. Sarjoughian, “Simulation inter-
operability across parallel DEVS models expressed in
multiple programming languages,” Proceedings of the
DEVS Integrative M&S Symposium, 2006.

[9] “Arizona Center of Integrative M&S (ACIMS),”
http://www.acims.arizona.edu, 2008.

[10] S. Mittal, J. L. Risco-Martı́n, and B. P. Zeigler, “DE-
VSML: Automating DEVS execution over SOA to-
wards transparent simulators,” in Special Session on
DEVS Collaborative Execution and Systems Modeling
over SOA, DEVS Integrative M&S Symposium DEVS’
07, Spring Simulation Multi-Conference, 2007.

[11] S. Mittal, B. P. Zeigler, and M. H. Hwang, “XML-based
Finite Deterministic DEVS (XFD-DEVS),”
http://www.saurabh-mittal.com/fddevs.

[12] B. P. Zeigler, T. Kim, and H. Praehofer, Theory of Mod-
eling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press, 2000.

[13] G. Wainer, “CD++: a toolkit to develop devs models,”
Softw. Pract. Exper., vol. 32, no. 13, pp. 1261–1306,
2002.

[14] J. L. Risco-Martı́n and J. M. Cruz, “xDEVS: DEVS java
API,” http://www.dacya.ucm.es/jlrisco.

[15] J. L. Risco-Martı́n, “Demo of interoperability in
DEVS/SOA,” http://www.dacya.ucm.es/jlrisco.

[16] S. Mittal, J. L. Risco-Martı́n, and B. P. Zeigler, “DEVS-
based web services for net-centric T&E,” in Summer
Computer Simulation Conference, SCSC 2006, 2006.

[17] S. Mittal, J. L. Risco-Martin, and B. P. Zeigler,
“DEVS/SOA: A cross-platform framework for net-
centric modeling and simulation using DEVS,” Submit-
ted to SIMULATION: Transactions of SCS, in review,
2007.



[18] “The Mathworks,” http://www.mathworks.com/.

[19] B. P. Zeigler and P. Hammonds, Modeling and
simulation-based data engineering: introducing prag-
matics into ontologies for net-centric information ex-
change. Elsevier Academic Press, 2007.


