
Research Article
A Scalable GVT Estimation Algorithm for PDES:
Using Lower Bound of Event-Bulk-Time

Yong Peng, Long Qin, and Quanjun Yin

College of Information Systems and Management, National University of Defense Technology, Changsha, Hunan 410073, China

Correspondence should be addressed to Yong Peng; yongpeng@nudt.edu.cn

Received 5 April 2015; Accepted 18 August 2015

Academic Editor: Chaudry Masood Khalique

Copyright © 2015 Yong Peng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Virtual Time computation of Parallel Discrete Event Simulation is crucial for conducting fossil collection and detecting the
termination of simulation.The triggering condition of GVT computation in typical approaches is generally based on the wall-clock
time or logical time intervals. However, the GVT value depends on the timestamps of events rather than the wall-clock time or
logical time intervals. Therefore, it is difficult for the existing approaches to select appropriate time intervals to compute the GVT
value. In this study, we propose a scalable GVT estimation algorithm based on Lower Bound of Event-Bulk-Time, which triggers the
computation of the GVT value according to the number of processed events. In order to calculate the number of transientmessages,
our algorithm employs Event-Bulk to record the messages sent and received by Logical Processes. To eliminate the performance
bottleneck, we adopt an overlapping computation approach to distribute the workload of GVT computation to all worker-threads.
We compare our algorithm with the fast asynchronous GVT algorithm using PHOLD benchmark on the shared memory machine.
Experimental results indicate that our algorithm has a light overhead and shows higher speedup and accuracy of GVT computation
than the fast asynchronous GVT algorithm.

1. Introduction

Due to its remarkable availability, reproducibility, and cost-
effectiveness, parallel simulation is a crucial approach for
studying, developing, and evaluating mathematical models
of systems in different domains, such as economics [1],
medicine [2], human behaviors [3], and military [4]. Par-
allel Discrete Event Simulation (PDES) is realized through
partitioning simulation problems into several distinct objects
and then allocating the resulting partitions to different LPs
that run concurrently. Such a parallel mechanism requires
synchronization protocols to prevent causality violations or
to guarantee state consistency in case of causality violations.
In general, the existing synchronization protocols fall into
two categories: conservative synchronization protocol and
optimistic synchronization protocol (Time Warp) [5].

In optimistic synchronization protocols, Global Virtual
Time (GVT) is defined as the minimum among the local vir-
tual times of all processes and the timestamps of all messages
in transit [6, 7]. A transient message is a delayed message
that has been sent but has not been received. Any processed

event with a timestamp smaller than the GVT value will not
be rolled back. Moreover, the memory associated with it can
be safely reclaimed. An efficient GVT algorithm is crucial
for the optimistic time synchronization strategy to handle
causality errors, reclaim memory, and detect the termination
of simulation execution [8]. Numerous GVT algorithms have
been devised and implementedwithin PDES simulators, such
as GTW [9], ROSS [10], WARPED [11], ParaSol [12], and
ROOT-Sim [13]. Because of its high performance, scalability,
simple programming model, and application transparent
parallelization, ROOT-Sim is probably the most advanced
and widely used open source speculative PDES platform
[14, 15].

Designs of GVT algorithms focus on either shared
memory or distributed memory computers [16, 17]. Shared
memory algorithm assumes that certain variables are acces-
sible by all processors. So they perform well on symmetric
multiprocessing machines [15, 18, 19]. Distributed memory
algorithm does not use global variables and therefore is more
scalable. For them both, time interval approach is a common
solution for triggering GVT computation. However, the GVT

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 680283, 15 pages
http://dx.doi.org/10.1155/2015/680283

http://dx.doi.org/10.1155/2015/680283


2 Mathematical Problems in Engineering

value depends on the timestamps of events rather than wall-
clock time or logical time intervals. Therefore, it is difficult
for traditional algorithms to select appropriate time intervals
to obtain an accurate GVT value.

In this study, we propose a scalable GVT estimation
algorithm based on Lower Bound of Event-Bulk-Time (LB-
EBT). In our algorithm, the start of GVT computation is
triggered by the end of the Event-Bulk (EB) instead of wall-
clock time or logical time intervals. Processors use EBs to
record the number of events sent and received by LPs, as
well as the LVT of each LP and the timestamps of events
in transit. GVT computation via the EB approach can avoid
message acknowledgement, which is a common solution for
the problem of transient event in distributedGVT algorithms
[16, 17, 20, 21]. In our algorithm, the size of Event-Bulk is
negatively correlated with the accuracy of GVT computation
but positively correlated with the performance of GVT
computation. Through tuning the size of Event-Bulk, we can
achieve a balance between the performance and accuracy
of GVT computation. In addition, to make the algorithm
scalable and efficient, we adopt an overlapping computation
approach to distribute the workload of GVT computation to
all worker-threads.

In experiments, we test our algorithm using PHOLD
benchmark [22] in a prototypal test-bed on the shared
memory machine. We conduct three sets of experiments
to study the overhead, speedup, and accuracy of GVT
computation. In addition, we compare our algorithm with
a fast asynchronous GVT algorithm (FA-GVT) that triggers
the GVT computation according to wall-clock time intervals.
Experimental results indicate that our algorithmoutperforms
the FA-GVT algorithm in terms of speedup and accuracy.

2. Related Work

2.1. Distributed Memory Algorithms. In GVT algorithms for
distributed memory platforms, LPs communicate their LVTs
and the timestamps of events in transit with each other by
exchanging messages. GVT algorithms have to tackle two
problems: the LVT simultaneous reporting problem and the
transient message problem [20, 21]. The LVT simultaneous
reporting problem is that it is difficult to measure LVTs
of all LPs running concurrently on different processors (or
threads) at the same wall-clock time. The transient message
problem is caused by delay messages. Processors that send or
receive messages do not consider the timestamps of transient
messages when they compute LVT values [23].

In the early studies of GVT algorithms, researchers often
apply overlapping intervals and message acknowledgement
techniques to solve these two problems above. For example,
wall-clock time slices are used as LPs’ intervals to compute
the GVT value [23–25]. The startup of GVT computation
is triggered by control messages that are broadcasted [24,
26, 27] or circulated [25, 28, 29] among LPs. The limita-
tion of overlapping intervals is the difficulty in selecting
appropriate time intervals. In case of a large time interval,
the accuracy of GVT value decreases. At the same time,
the memory for storing processed events and the states of
LPs increases. Contrarily, in case of a small time interval,

the number of control messages transmitted among LPs
increases.Message acknowledgement scheme is awidely used
technique for the transient message problem in early GVT
algorithms [25–27]. However, this technique comes with
some limitations. For example, acknowledging individual
messages schemedoubles the number ofmessages to decrease
the performance of simulations. Although some methods,
such as acknowledging batches of messages [30] and piggy-
back acknowledgement [21, 24], were devised to reduce the
acknowledgement overhead, the acknowledgement scheme
becomes complex.

Another more efficient solution than the earlier GVT
algorithms is to combine consistent snapshot and the global
reductionmethod. Consistent snapshot (or two cutsmethod)
GVT algorithmwas firstly proposed byMattern [31]. A vector
structure called vector clock is used to monitor the number
of transient messages in his algorithm. A token carrying the
vector clock is passed among LPs to construct the cuts. LVTs
of LPs and timestamps of messages in transit are recorded
in cuts to calculate the GVT value. Consistent snapshot
method is more efficient than message acknowledgement
technique in solving transient message problem. However,
the size of the vector clock is dependent on the number of LPs,
which hampers the scalability of the algorithm. An improved
version of Mattern’s algorithm was proposed by Choe and
Tropper [32], which uses a scalar counter instead of vector
clock to monitor the number of transient messages. Other
similar algorithms with Mattern’s algorithm can be found in
[17, 28, 33]. Global reduction algorithms do not pass tokens
among LPs but use reduction operation at the synchroniza-
tion point to collect the timestamps of the transient messages
and the LVTs of LPs. A global reduction GVT algorithm
was proposed by Perumalla and Fujimoto [34]. Other similar
GVT algorithms based on global reduction method are in
[35, 36]. The main drawback of these algorithms is that all
LPs have to synchronize for reduction operations.

Other GVT algorithms with different ideas are repre-
sented as follows. To compute GVT value, D’Souza et al.
applied a GVT manager to collect information from all LPs
[37]. Similarly, Chen and Szymanski used hierarchy GVT
masters to collect GVT reports from LPs passively and then
distribute the newGVTvalue to LPs [17]. Bauer et al. assumed
that the maximum delay of messages transmitted on network
is known [38]. They devised network atomic operation
method to create zero-cost consistent cuts to calculate GVT.
Deelman and Szymanski proposed a continuouslymonitored
GVT algorithm that allows LPs to calculate the GVT value
based on the local information [39].

2.2. Shared Memory Algorithms. In shared memory algo-
rithms, the shared variable approach is a general method for
calculating the GVT value. For example, fast asynchronous
GVT algorithm (FA-GVT) proposed by Xiao et al. [19] is a
typical GVT algorithm for shared memory machines. The
FA-GVT algorithm triggers GVT computation according to
wall-clock time intervals and relies on shared variables that
are accessed by worker-threads to compute the GVT value
under the control of a critical section. Due to the existence of
the critical section, FA-GVT algorithm is neither scalable nor



Mathematical Problems in Engineering 3

1

1

1

1

2

2

4

2 3

3

2 3

3

Events

Transient events
Event-BulksSending basic messages 

Sending Event-Bulk Reports 
Processes

Wall-clock 
time

GVT master

Computing GVT value and sending 
GVT Notifying messages 

P4

Pk

i

P1

P2

P3

Figure 1: The principle of LB-EBT GVT algorithm.

wait-free for LPs. Fujimoto and Hybinette proposed a similar
approach [18].

In order to improve the scalability of the algorithm
proposed by Fujimoto and Hybinette, Pellegrini and Quaglia
proposed a wait-free GVT computation algorithm on shared
memory machines. Pellegrini and Quaglia used memory
atomic operations on certain shared counters/flags to track
the advancement of worker-threads within the different
phases of GVT computation [15]. Experiments reveal that
Pellegrini’s approach is more efficient and more scalable than
the algorithm in [18]. Rizvi et al. proposed a GVT algorithm
based on Unacknowledged Message List (UML) scheme [21].
They assumed that certain variables are accessible by all
processors. In addition, Rizvi et al. used a dedicated controller
LP to monitor the GVT computation process.

3. Design of LB-EBT GVT Algorithm

3.1. Algorithm Description

3.1.1. Principle of Our Algorithm. We assume that there is a
GVT master process in our algorithm, which is in charge
of computing the GVT value and reporting the new GVT
value to processors. Figure 1 gives an example to illustrate the
principle of our algorithm. The process of a round of GVT
computation in our algorithm consists of two phases.

In the first phase, each processor constructs Event-Bulks
(EBs) and sends the data of EBs to the GVT master via
EB Report messages. At the startup of a round of GVT
computation, each processor maintains a scale counter to
record the number of event/antievent processed by it. Once
the value of the counter reaches the size of EB (the size of
EB is two in this example shown in Figure 1), the processor
ends current EB and starts to construct the subsequent EB.
At the same time, the processor sends an EB Report message
to GVT master. EB Report message carries the data that
is necessary for computing the GVT value. Therefore, our

algorithm uses EBs (instead of wall-clock or logical time
intervals) to trigger the computation of GVT value. The size
of EB of a processor at a round of GVT computation is only
determined by the processor according to the requirements
of memorymanagement, the accuracy of GVT value, and the
frequency of committing events.

In the second phase, GVT master computes the GVT
value and sends the new GVT value to processors. During
the simulation execution, the GVT master is listening to
EB Report messages from processors. Once receiving EB
Report messages from all processors, GVT master performs
GVT computation and then sends the new GVT value to all
processors via GVT Notifying messages.

Due to all workload ofGVT computation being processed
in GVT master, GVT master becomes the performance
bottleneck when there is a larger amount of processors.
The algorithm mentioned above is a centralized algorithm
and is not scalable [17]. To overcome this drawback, we
remove the GVTmaster and distribute the workload of GVT
computation to all processors via a communication topology
of processors. The communication topology acts as a route
to pass EB Report messages and GVT Notifying messages
among processors.

The communication topology of processors is represented
as a complete 𝑘-ary tree [40]. Parameter 𝑘 is an integer and
subject to 0 < 𝑘 < 𝑁 (𝑁 is the number of processors).
In graph theory, 𝑘-ary tree is a rooted tree in which each
node has 𝑘 children at most. A complete 𝑘-ary tree is a
𝑘-ary tree, which is maximally space efficient. It must be
completely filled on every level except the last level [40]. The
communication topology of our algorithm is represented as
𝑇(𝑁, 𝑘) and depicted in Figure 2.

After employing the communication topology of pro-
cessors, a round of GVT computation in our algorithm is
extended to three phases. In the first phase, whenever any
processor (including leaf processors) ends its EB, it sends
control messages to all leaf processor(s) to request them to



4 Mathematical Problems in Engineering

Processors

Filiation relationships of processor
Sending control messages to leaf processors
Reporting the EBR messages 

Pk+1

Pk

P1

P2 P3

· · ·

· · · · · · · · · · · ·

· · ·

Pk+i Pk+i+1 PN

Figure 2: Communication topology of LB-EBT GVT algorithm.

report EBReportmessages (rather than sending anEBReport
message toGVTmaster asmentioned before).Once receiving
a control message, a leaf processor has two choices according
to the index of its current EB. In case that the index is smaller
than the index in the control message, the leaf processor ends
current EB and sends an EB Report message to its parent
processor. Otherwise, the leaf processor just discards the
control message. In the communication topology, EB Report
messages in any GVT computation round are sent by the leaf
processors firstly.

In the second phase, a nonleaf processor records its EB
and starts to construct the subsequent EB at the end of current
EB. The processor does not send EB Report messages to
its parent processor until it receives EB Report message(s)
from all its children processors. However, once receiving EB
Report message(s) from all its children processors and even
the number of processed events is less than the size of EB, the
processor ends its current EB. At the same time, the processor
handles the data of its current EB and the data of all EBReport
messages from all its children processors and then sends the
result to its parent processor via an EB Report message.

In the final phase, when the root processor receives EB
Report messages for one round of GVT computation from
all its children processor, it performs GVT computation and
then sends the new GVT value to its children processor via
GVT Notifying messages. Once a processor receives a GVT
Notifying message, it updates its local GVT value and then
sends GVT Notifying messages to its children processors.

GVT Notifying messages are sent to descendant processors
until all leaf processors get the new GVT value.

By using the communication topology of processors, the
workload of GVT computation is distributed to all processor.
Our algorithm does not use a GVT monitor or GVT master
to perform GVT calculation like other algorithms [17, 21,
32, 37]. Each processor maintains a counter indicating the
index of the current EB and increases the counter at the
end of the EB. Once a processor ends an EB, it then
starts subsequent EB immediately and does not need to be
blocked or synchronized. The startup of subsequent round
of GVT computation can be triggered before the completion
of the previous round. While a processor performs GVT
computation for one round, other processors can processEBR
messages for anotherGVT computation round.Theoretically,
a processor can process any number of basic messages and
construct any number of EBs before a GVT computation
round finishes. According to the indices of EBRmessages and
the communication topology, the root processor can calculate
the number of transient messages in each round and knows
which round ofGVTcomputation is completed.This solution
is suitable for large-scale simulation systems and can reduce
the overhead of GVT computation.

In addition, EB Report messages and basic event/anti-
event messages are labeled with the index of EB before they
are sent to destination processors. Processors can correctly
process EB Report messages and even EB Report messages
or event/antievent messages are not transferred in First-In-
First-Out (FIFO) manner. In other words, our approach is
not dependent on the FIFO communication channels, which
is the precondition of some literature algorithms, such as the
TimeQuantumGVT algorithm [17] and theHypercubeGVT
algorithm [26].

3.1.2. DesignDetail. Wedefine some concepts before describ-
ing the algorithm in detail. In our algorithm, the messages
used to carry remote events/antievents are called basic
messages formalized in Table 1. In addition, EB messages
and the GVTmessages (including EB Report messages, GVT
Notifying messages, and control messages) are also defined
in Table 1. According to the definition of EB, we define the
notion of Event-Bulk-Time (EBT).The EBT of an EB consists
of the 𝐿𝑉𝑇 and the 𝑀𝑇𝑆 of EB. The Lower Bound of EBT is
therefore the minimum of these two parts.

We define three operators for a processor node 𝑃
𝑖
in

the communication topology: 𝑝(𝑖), 𝑐(𝑖), and 𝑖𝑠𝐿𝑒𝑎𝑓(𝑖), to
describe our algorithm in detail. Operator 𝑝(𝑖) described by
(1) is used to obtain the parent processor node of 𝑃

𝑖
:

𝑝 (𝑖) = {𝑗 | 𝑗 = ⌈
(𝑖 − 2)

𝑘
+ 1⌉ , 𝑗 > 0} , (1)

where 𝑖 and 𝑗 are the identifiers of child processor and parent
processor, respectively. 𝑘 is the factor of 𝑇(𝑁, 𝑘). ⌈𝑥⌉ is the
integer part of 𝑥.

Operator 𝑐(𝑖) in (2) obtains the set of children nodes of a
processor 𝑃

𝑖
:

𝑐 (𝑖)

= {𝑗 | 𝑗 = 𝑖 ∗ 𝑘 + 1 − 𝑚, 𝑚 = 0, 1, . . . , 𝑘 − 1, 𝑗 ≤ 𝑁} .
(2)



Mathematical Problems in Engineering 5

Table 1: Formations of messages.

Name Formalization Explanation

Basic message 𝐵𝑀(𝑒𝑏𝑖, 𝑡𝑠, 𝑒𝑑)
𝑒𝑏𝑖 is the index of the message, 𝑡𝑠 is the timestamp of the
event, and 𝑒𝑑 is the data of positive event or antievent.

Event-Bulk 𝐸𝐵(𝑒𝑏𝑖, 𝑆𝑖𝑧𝑒, 𝐿𝑉𝑇,𝑀𝑇𝑆, 𝑆𝑛𝑡𝐶, 𝑅𝑒𝑐V𝑀𝑎𝑝)

𝑒𝑏𝑖 is the index of the EB, 𝑆𝑖𝑧𝑒 is the size of EB, 𝐿𝑉𝑇 is
the local virtual time of the processor, 𝑀𝑇𝑆 is the
minimum timestamp of the events sent by the processor
during the EB, 𝑆𝑛𝑡𝐶 is the number of events sent by the
processor during the EB, and 𝑅𝑒𝑐V𝑀𝑎𝑝 is used to
record the number of remote events received by the
processor during the EB. 𝑅𝑒𝑐V𝑀𝑎𝑝 is a map whose key
field is the index of the in-coming remote events and
value field is the number of in-coming remote events.

Event-Bulk Report message 𝐸𝐵𝑅(𝑖, 𝑒𝑏𝑖, 𝐿𝑉𝑇,𝑀𝑇𝑆, 𝑇𝑀𝑀𝐴𝑃)

𝑖 is the identifier of the processor that sends the
message; the definitions of ebi, 𝐿𝑉𝑇, and 𝑀𝑇𝑆 are the
same as those in EB; 𝑇𝑀𝑀𝐴𝑃 is a data structure
similar to 𝑅𝑒𝑐V𝑀𝑎𝑝 of EB and is used to record the
number of events that may be in transit.

GVT Notifying message 𝐺𝑁(𝑟𝑖, 𝑔V𝑡) 𝑟𝑖 is the index of GVT computation round and 𝑔V𝑡 is
the new GVT value.

Control message 𝐶𝑀(𝑒𝑏𝑖) 𝑒𝑏𝑖 is the index of the EB wanted to be reported.

Node 𝑃
𝑗
is the first child of 𝑃

𝑖
in case of 𝑚 = 𝑘 − 1. If

having no first child, a processor cannot have any children
and becomes a leaf node. Whether processor 𝑃

𝑖
is a leaf node

processor can be determined by this condition. The operator
𝑖𝑠𝐿𝑒𝑎𝑓(𝑖) is described as

𝑖𝑠𝐿𝑒𝑎𝑓 (𝑖) = (𝑖 − 1) ∗ 𝑘 + 2 > 𝑁 ? false:true. (3)

Beyond these three operators, the set of leaf nodes is
described by the operator 𝑙𝑒𝑎𝑓𝑃(𝑁, 𝑘) according to the
following equation:

𝑙𝑒𝑎𝑓𝑃 (𝑁, 𝑘) =
{

{

{

{𝑁} , 𝑘 = 1

{𝑗 | 𝑎 + 𝑏 ≤ 𝑗 ≤ 𝑁} , 𝑘 ̸= 1,

(4)

where 𝑎 = (𝑘
𝑙
− 1)/(𝑘 − 1) − 𝑘

𝑙−1
+ 1 is the ID of the first

processor node on the deepest nonleaf level of 𝑇(𝑁, 𝑘) and
𝑏 = ⌈(𝑁−(𝑘

𝑙
−1)/(𝑘−1))/(𝑘−1)⌉+1 is the number of nonleaf

processor nodes on the deepest nonleaf level of 𝑇(𝑁, 𝑘), with
𝑙 = ⌈log𝑁(𝑘−1)+1

𝑘
⌉. 𝑎+𝑏 is the identifier of the first leaf processor

node.
All operators described above are only executed at the

startup of the simulation to construct the communication
topology and will not be executed any more during the
simulation execution unless the topology is changed.

The pseudocode of LB-EBT GVT algorithm is given in
Algorithm 1. At the startup of simulation, the algorithm ini-
tializes parameters including the number of worker-threads,
the number of LPs, the Stop Time of a simulation, and the size
of EB. Then, the algorithm records the number of processed
basic messages and updates LVT (see line S4). Besides, the
algorithm tracks the number of remote basic messages that
are sent and received (see line S6 and line S10).Theminimum
timestamp of remote basic messages is also recorded in
MTSMAP (see line S9). Once the number of processed basic

messages reaches the size of current EB or the LVT is greater
than the Stop Time of the simulation, the processor ends the
current EB and then requests the leaf processors to report
their EBRmessages (see lines S13–S17).

Once receiving an EBR message, a processor records the
number of transient message(s) carried by the EBR message
and calculates the minimum of LVTs and the minimum
timestamp of transient messages (see lines S24–S28). If all
children have reported 𝐸𝐵𝑅 messages, nonroot processors
will send an EBR message to its parent processor (see lines
S29–S39).

Once the root processor processed all EBRmessages from
its children processors for one round of GVT computation,
the minimum of each LB-EBT is stored in MTSMAP or
LVTMAP of the root processor (see lines S32-S33). And then
the root processor can obtain the number of transient events
through calculating the data in TMCMAP. If there are tran-
sient events, GVT value is determined by theminimum value
of all LB-EBT. Otherwise, the GVT value is the minimum of
𝐿𝑉𝑇𝑠 of the EBs in one round of GVT computation (see line
S36). Finally, the new GVT value will be calculated by the
root processor and then sent to its children processors viaGN
messages.

3.2. Example. We describe the process of GVT computation
in our algorithm step by step through an example shown in
Figure 3.We assume that there are four processors in a system.
Factor 𝑘 in the communication topology of processor𝑇(𝑁, 𝑘)

is two. Processor 𝑃
1
is the root processor node that has two

children processor nodes: 𝑃
2
and 𝑃
3
. Processor 𝑃

4
is the child

of 𝑃
2
. Then, 𝑃

3
and 𝑃

4
are leaf processors.

The process of the 𝑖th round of GVT computation shown
in Figure 3 is described below.

Step 1. All processors begin to construct their 𝑖th EBs.



6 Mathematical Problems in Engineering

// LB-EBT GVT algorithm for the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
𝑖

S0 LVT = 0; GVT = 0; ebi = 0; eventProcessed = 0; eventSnt = 0;MTS = ∞; 𝑇𝑀𝑀𝐴𝑃 is empty; EBMap is
empty; TMCMAP[ebi] = 0;MTSMAP[ebi] = ∞; LVTMAP[ebi] = ∞; /∗initialization of processor 𝑝

∗

𝑖
/

S1 Configuring the schedules, generating the communication topology, and generating LPs.
S2 while (GVT < StopTime)
S3 for any basic messages BM(j, ts, ed)
S4 process(BM.ed); eventProcessed++; LVT = BE.ts;
S5 if BM(j, ts, ed) is a remote basic message from 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑗

S6 𝑇𝑀𝑀𝐴𝑃TMCMAP[BM.j]− = 1; /∗record the count of received remote messages∗/
S7 end if
S8 for any remote basic message BM(ebi, ts, ed) sent
S9 MTS = min(MTS, BE.ts);
S10 eventSnt++;
S11 end for
S12 end for
S13 if (eventProcessed >= EB.Size‖LVT > StopTime) /∗finish an EB∗/
S14 𝑇𝑀𝑀𝐴𝑃[ebi]+ = eventSnt; record the current EB to EBMap;
S15 eventSnt = 0; eventProcessed = 0; ebi++;
S16 send control messages to 𝑙𝑒𝑎𝑓𝑃(𝑁, 𝑘)/∗request leaf 𝑃 to send an 𝐸𝐵𝑅 messages∗/
S17 end if
S18 for any control message
S19 if LeafP(i) and index of control message is not less than ebi
S20 send EB report message 𝐸𝐵𝑅(𝑖, 𝑒𝑏𝑖, 𝐿𝑉𝑇,𝑀𝑇𝑆, 𝑇𝑀𝑀𝐴𝑃) to 𝑝(𝑖)

S21 end if
S22 end for
S23 for any EB Report message 𝐸𝐵𝑅(𝑗, 𝑒𝑏𝑖, 𝐿𝑉𝑇,𝑀𝑇𝑆, 𝑇𝑀𝑀𝐴𝑃)

S24 for each key k in EBR.TMMAP
S25 TMCMAP[k]+ = EBR.TMMAP[k];
S26 end for
S27 MTSMAP[EBR.ebi] = min(MTSMAP[EBR.ebi], EBR.MTS);
S28 LVTMAP[EBR.ebi] = min(LVTMAP[EBR.ebi], EBR.LVT);
S29 if all processor in 𝑐(𝑖) have reported EBRmessages
S30 record the current EB to EBMap;
S31 TMCMAP[ebi]+ = EBMap[ebi].SntC;
S32 MTSMAP[EBR.ebi] = min(MTSMAP[EBR.ebi], EBMap[ebi].MTS);
S33 LVTMAP[ebi] = min(LVTMAP[ebi], EBMap[ebi].LVT);
S34 eventSnt = 0; eventProcessed = 0; ebi++;
S35 if 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑖
is the root processor /∗calculate the new value of GVT∗/

S36 GVT = min
𝑘<=𝑒𝑏𝑖

(min
𝑘
(MTSMAP[k]|TMCMAP[k] > 0, LVTMAP[k]));

S37 send GN(ebi, gvt) to 𝑐(𝑖); /∗send GVT notifying message to its children∗/
S38 else
S39 send 𝐸𝐵𝑅(𝑖, 𝑒𝑏𝑖, 𝐿𝑉𝑇,𝑀𝑇𝑆, 𝑇𝑀𝑀𝐴𝑃) to 𝑝(𝑖); /∗send EB report to parent∗/
S40 end if
S41 end if
S42 end for
S43 for any GVT notifying message GN(j, gvt)
S44 GVT = GN.gvt; /∗update GVT∗/
S45 if notLeafP(i)
S46 send GN(j, gvt) to 𝑐(𝑖); /∗send GVT notifying message to its children∗/
S47 end if
S48 end for
S49 end while

Algorithm 1: LB-EBT GVT algorithm.



Mathematical Problems in Engineering 7

Sending GVT Notifying message 

Event-Bulk

Sending Event-Bulk ReportsProcessor

Wall-clock time

Sending control messages

Pk

P1

P2

P3

P4

i

i

i + 1

GN (i, 3.3)

GN (i, 3.3)

GR (i, 3.3)

i

i

i

EB (i, 5.2, 6.8, 3, [(i, 2)]) EBR (4, i, 5.2, 6.8, [(i, 1)])

EB (i, 4.2, 3.8, 4, [(i, 3)])

EBR (2, i, 4.2, 3.8, [(i, 2)])

EB (i, 8.5, 4.6, 5, [(i, 3), (i + 1, 1)])

EB (i, 6.3, 3.3, 2, [(i, 3)])

EBR (3, i, 6.3, 3.3, [(i, −1)])

Figure 3: GVT calculation process of LB-EBT GVT algorithm.

Step 2. Before sending a basic message, a processor sets the
index of the basic message as the index of current EB. Once
receiving a basic message, the processor adds a key-value pair
record to 𝑅𝑒𝑐V𝑀𝑎𝑝 of its current EB. The key is the index of
the basic message. The number of basic messages stored in
the record of 𝑅𝑒𝑐V𝑀𝑎𝑝 of the current EB increases by one.

Step 3. Once the number of processed events in the 𝑖th EB
of a processor reaches the size of the 𝑖th EB, the processor
ends the 𝑖th EB. At the same time, the processor sends
control messages to ask the leaf processors to report their
EBR messages. As shown in Figure 3, processor 𝑃

4
ends its

𝑖th EB and then sends a control message to another leaf
processor𝑃

3
. Since processor𝑃

4
is a leaf processor, it sends an

EBR message, namely, 𝐸𝐵𝑅(4, 𝑖, 5.2, 6.8, [(𝑖, 1)]), to its parent
processor 𝑃

2
at the end of its 𝑖th EB. The LVT of 𝑃

4
is 5.2

and three basic messages have been sent during the 𝑖th EB.
The minimum timestamp of these three basic messages is
6.8. 𝑃
4
receives two basic messages during the EB. These two

messages are sent during the EB. The number of transient
messages known to a processor during the 𝑖th EB is the
number of the sent messages subtracted from the number
of the received messages by the processor. Therefore, the
number of transient messages known to 𝑃

4
is one.

Step 4. A processor does not send an EBR message to its
parent until receiving EBR messages from all its children
(e.g., processor 𝑃

2
). Each processor maintains three map data

structures (𝑇𝑀𝐶𝑀𝐴𝑃,𝑀𝑇𝑆𝑀𝐴𝑃, and 𝐿𝑉𝑇𝑀𝐴𝑃) to record

the data of EBR messages from its children processors. The
key field of these three maps records the indices of EBR
messages. Once a parent processor receives EBR messages
from all its children, it updates its 𝑇𝑀𝐶𝑀𝐴𝑃, 𝑀𝑇𝑆𝑀𝐴𝑃,
and 𝐿𝑉𝑇𝑀𝐴𝑃with EBRmessages according to the following
rules (an EBR message from a child processor is denoted as
𝐸𝐵𝑅(𝑐, 𝑖)).

Rule 1. For each key 𝑘 in 𝐸𝐵𝑅(𝑐, 𝑖).𝑅𝑒𝑐V𝑀𝑎𝑝,

𝑇𝑀𝐶𝑀𝐴𝑃 [𝑘] + = 𝐸𝐵𝑅 (𝑐, 𝑖) .𝑅𝑒𝑐V𝑀𝑎𝑝 [𝑘] . (5)

Rule 2. If (𝑀𝑇𝑆𝑀𝐴𝑃[𝑖] > 𝐸𝐵𝑅(𝑐, 𝑖).𝑀𝑇𝑆),

𝑀𝑇𝑆𝑀𝐴𝑃 [𝑖] = 𝐸𝐵𝑅 (𝑐, 𝑖) .𝑀𝑇𝑆. (6)

Rule 3. If (𝐿𝑉𝑇𝑀𝐴𝑃[𝑖] > 𝐸𝐵𝑅(𝑐, 𝑖).𝐿𝑉𝑇),

𝐿𝑉𝑇𝑀𝐴𝑃 [𝑖] = 𝐸𝐵𝑅 (𝑐, 𝑖) .𝐿𝑉𝑇. (7)

For example, after processing the EBR message from 𝑃
4

and its 𝑖th EB,𝑇𝑀𝐶𝑀𝐴𝑃[𝑖] of processor𝑃
2
is 2.𝑀𝑇𝑆𝑀𝐴𝑃[𝑖]

is 3.8. Similarly, 𝐿𝑉𝑇𝑀𝐴𝑃[𝑖] of 𝑃
2
is 4.2.The EBRmessage of

𝑃
2
sent to 𝑃

1
is therefore 𝐸𝐵𝑅(2, 𝑖, 4.2, 3.8, [(𝑖, 2)]).

Step 5. When the root processor 𝑃
1
has received all the 𝑖th

EBR messages from all of its children processors during the
𝑖th round of GVT computation, the new GVT value can be
calculated from𝑇𝑀𝐶𝑀𝐴𝑃,𝑀𝑇𝑆𝑀𝐴𝑃, and 𝐿𝑉𝑇𝑀𝐴𝑃 of the
root processor according to the following equation:

𝑔V𝑡 = min
𝑘≤𝑖

(min
𝑘

((𝑀𝑇𝑆𝑀𝐴𝑃 [𝑘] | 𝑇𝑀𝐶𝑀𝐴𝑃 [𝑘] > 0) , 𝐿𝑉𝑇𝑀𝐴𝑃 [𝑘])) . (8)

For the example shown in Figure 3, the𝑇𝑀𝐶𝑀𝐴𝑃 of𝑃
1
is

[(𝑖, 3), (𝑖+1, 1)] and the𝑀𝑇𝑆𝑀𝐴𝑃 is [(𝑖, 3.3)].The 𝐿𝑉𝑇𝑀𝐴𝑃

of 𝑃
1
is [(𝑖, 4.2)]. These three maps indicate that all remote

messages sent before the 𝑖th round of GVT computation



8 Mathematical Problems in Engineering

have been received and processed. There are three transient
messages in the 𝑖th round of GVT computation. The new
GVT value is the smaller one between 𝑀𝑇𝑆𝑀𝐴𝑃[𝑖] and
𝐿𝑉𝑇𝑀𝐴𝑃[𝑖].Therefore, the GVT value is 3.3 in the 𝑖th round
of GVT computation.

Step 6. At the end of the 𝑖th round of GVT computation, the
root processor sends GN messages to its children processors
to notify them of the newGVT value.Then,GN messages are
sent to its descendant processors until all leaf processors get
the new GVT value.

3.3. Algorithm Implementation. We implemented our algo-
rithm on a multicore shared memory machine for prototyp-
ical test. As the multicore machine is prevalent, multithread-
ing techniques are commonly used in the speculative PDES
[19, 41, 42].

Our algorithm is implementedwithin a simulation engine
that consists of a number of schedulers. Each scheduler
is bound to a worker-thread and in charge of carrying
out the function of a processor. At the initial phase of a
simulation, the simulation engine firstly uses the pthread
multithreaded library to configure the number of schedulers
according to the available idle CPU cores of the machine and
then generates the communication topology for schedulers
according to their identifiers. Finally, the engine creates all
LPs and averagely dispatches them to the schedulers.

A scheduler maintains two queues for storing and pro-
cessing events. One of these two queues, called msg cached
queue, is a concurrent queue which is used to temporar-
ily store basic messages sent by the LPs hosted on some
other schedulers. The other queue is called event priority
queue, which is a priority queue. A scheduler uses the
event priority queue to schedule LPs for processing event
according to Lowest-Timestamp-First scheme [43]. In case
a LP sends a remote event (via the basic message) to the
LP hosted by another scheduler, the sender LP directly
inserts the event into the msg cached queue of the sched-
uler hosting the receiver LP. After a scheduler dispatching
a given number (the size of EB) of events or discov-
ering that the event priority queue is empty, it will pop
events from msg cached queue and push them into the
event priority queue for processing.

During simulation execution, a scheduler records the
data (the number of events sent/received and minimum
timestamp of events sent in one GVT computation round) to
its current EB. In addition, a scheduler maintains three map
data structures (𝑇𝑀𝐶𝑀𝐴𝑃, 𝑀𝑇𝑆𝑀𝐴𝑃, and 𝐿𝑉𝑇𝑀𝐴𝑃) to
record the data of EBRmessages from its children schedulers.
Once a scheduler is notified with the new GVT value by its
parent scheduler, it forces all LPs hosted on it to perform fossil
collection via calling the commit function of each LP.

Although there are some more simple GVT algorithms
than ours on shared memory machines, they rely on the
observability property of TimeWarp systems [15, 18, 19]. The
observability property of Time Warp systems requires the
msg cached queue being observable to the scheduler, which
is impossible for TimeWarp systems on distributed memory
machines. Our algorithm does not rely on this property,

Table 2: Description of experimental parameters.

𝑀 The number of LPs in the PHOLD model.

𝛾
The remote event ratio of the PHOLD
model.

𝜆

Themean time delay of an event in
PHOLD model, which is set to 1 second
in the simulation time.

𝑁

The number of worker-threads (processor
core, the worker-thread, and the
processor represent the same meaning in
this paper) used in experiments. Each
scheduler of LB-EBT simulator is mapped
onto a worker-thread during the whole
simulation execution.

𝑆
The size of the EB, which is identical for
all schedulers in LB-EBT GVT algorithm.

𝑘
The branch factor of the communication
topology in our algorithm.

Δ𝑡

Δ𝑡 is the check point period of FA-GVT.
The check point period of LB-EBT GVT
algorithm is not constant and depends on
the size of EB.

which makes our algorithm more suitable for distributed
memory machines. Therefore, although our algorithm is car-
ried out on shared memory machines due to the convenience
of programming, debugging, and testing, it can be migrated
to distributed memory systems with trivial modifications.

4. Experimental Results

4.1. Experiment Configuration. We use PHOLD benchmark
to conduct three experiments on sharedmemorymachines to
compare FA-GVT algorithm as the baseline algorithm with
our LB-EBT GVT algorithm. In first experiment, we study
the overhead of our algorithm and optimize parameter 𝑘 of
communication topology 𝑇(𝑁, 𝑘). In the second experiment,
we compare the speedup and scalability of our LB-EBT GVT
algorithm with those of FA-GVT. In the final experiment,
we evaluate the accuracy of our algorithm and compare the
results with FA-GVT algorithm.The number of initial events
per LP is set to 16 in all experiments. The parameter setting
in experiments is depicted in Table 2.

All experiments are run on a DELL R610 server with
24GB RAM and two Intel Xeon processors running on
2.4GHz. Each processor has six cores and 12 threads (for
a total of 24 threads) that share a L1 cache with 2MB and
a L2 cache with 12MB. The operation system is Microsoft
Windows 2008 server R2. All algorithms are programmed
in C++ language and compiled with Microsoft Visual Studio
2008.

4.2. Parameter Optimization. Parameter 𝑘 of communication
topology 𝑇(𝑁, 𝑘) is a key factor that influences the time span
and the number of GVT messages of a round of GVT com-
putation in our algorithm. We try to explore an optimized
value of parameter 𝑘 for different values of parameter 𝑁 in



Mathematical Problems in Engineering 9

0 2 4 6 8 10 12 14 16 18 20Ti
m

e s
pa

n 
of

 o
ne

 ro
un

d 
of

 G
V

T 
co

m
pu

ta
tio

n 
(s

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

k

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 9

N = 12

N = 14

N = 18

N = 20

Figure 4: Time span of one round of GVT computation (𝑀 =

396900, 𝜆 = 1, 𝛾 = 25%, and 𝑆 = 512).

experiments. In addition, the number of LPs 𝑀, mean delay
time 𝜆, and the remote event ratio 𝛾 in PHOLD model are
set as 396900 (the largest simulation), 1 second, and 25%,
respectively.

We firstly study the relationship between 𝑘 and the time
span 𝑇𝑆 of one round of GVT computation. 𝑇𝑆 is the wall-
clock time interval beginning at the time point when the first
leaf scheduler reports the EBR message and ending at the
time point when the last scheduler receives the GN message.
Results shown in Figure 4 depict the evolution of 𝑇𝑆 with
𝑘 and 𝑁. It indicates that 𝑇𝑆 gradually drops down in the
value interval [1, 3] of parameter 𝑘 but rises up from 4 to
𝑁−1. The plots reach the bottom in case that 𝑘 equals two or
three. The bottom of plots demotes the minimum overhead
of algorithms. Overall, it is shown in Figure 4 that 𝑇𝑆 rises up
when 𝑘 increases.

The relationship between the number of GVT messages
(including EBR messages, 𝐺𝑁 messages, and control mes-
sages) and 𝑘 is illustrated in Figure 5. When 𝑘 is larger than
4, the number of GVT messages increases quickly. Because
the number of 𝐸𝐵𝑅 messages and 𝐺𝑁 messages remains the
same for different 𝑘 in one round of GVT computation, we
infer that the control message contributes to the increase of
the number of GVT messages.

The relationship between the time span of one round of
GVT computation and the size of EB is described in Figure 6.

It is shown in Figure 6 that the time span of one round
of GVT computation increases along with the increase of
the size of EB. The curves denote that TS rises up slowly
when the number of schedulers is small but goes up quickly
when the number of worker-threads is larger than nine. This
phenomenon can be explained in twofold. On the one hand,
the increase of the number of worker-threads results in more

0 2 4 6 8 10 12 14 16 18 20

0

100

200

300

400

N
um

be
r o

f G
V

T 
m

es
sa

ge
s o

f o
ne

 ro
un

d 
of

G
V

T 
co

m
pu

ta
tio

n

k

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 9

N = 12

N = 14

N = 18

N = 20

Figure 5: GVT messages of one round of GVT computation with 𝑘

(𝑀 = 396900, 𝜆 = 1, 𝛾 = 25%, and 𝑆 = 512).

Size of EB
8 16 32 64 128 256 512Ti

m
e s

pa
n 

of
 o

ne
 ro

un
d 

of
 G

V
T 

co
m

pu
ta

tio
n 

(s
)

0.00

0.02

0.04

0.06

0.08

0.10

N = 3

N = 5

N = 7

N = 9

N = 12

N = 14

N = 18

N = 20

Figure 6: Time span of one round of GVT computation with size of
EB (𝑀 = 396900, 𝜆 = 1, 𝛾 = 25%, and 𝑘 = 2).

GVTmessages to be processed. On the other hand, when the
size of EB becomes larger, the construction of an EB requests
more basic messages being processed. However, the size of
EB is not linear to the time span. For example, when the sizes
of EB are 128 and 256, the corresponding time spans of one
round of GVT computation for 20 worker-threads are 0.0499
seconds and 0.0600 seconds in wall-clock time, respectively.
The time span only increases by 20.4%. It is concluded that
more GVT calculation of worker-threads is overlapped when
the size of EB increases.



10 Mathematical Problems in Engineering

Size of EB
8 16 32 64 128 256 512

0

50

100

150

200

250

N
um

be
r o

f G
V

T 
m

es
sa

ge
s o

f o
ne

 ro
un

d 
of

G
V

T 
co

m
pu

ta
tio

n

N = 3

N = 5

N = 7

N = 9

N = 12

N = 14

N = 18

N = 20

Figure 7: Number of GVT messages with size of EB (𝑀 = 396900,
𝜆 = 1, 𝛾 = 25%, and 𝑘 = 2).

The relationship between the number of GVT message
and the size of EB is shown in Figure 7. We find that the
number of GVTmessages slightly fluctuates with the increase
of the size of EB. This indicates that the number of basic
messages is the main impact factor on the increase of time
span of one round of GVT computation rather than the
number of GVT messages.

Beyond the number of GVT messages, the size of EBR
messages can also introduce overhead to our algorithm. The
size of EBR messages is not constant and increases in case
a processor receives basic messages with different indices
during an EB.The reason is that the number of basicmessages
received by a processor is recorded with an index-number
pair in 𝑇𝑀𝑀𝐴𝑃 of EBR message. The evolution of the size
of 𝑇𝑀𝑀𝐴𝑃 in EBR messages with different sizes of EB is
described in Figure 8. The size of 𝑇𝑀𝑀𝐴𝑃 is the maximum
value obtained by ten tests. We observe that the size of
𝑇𝑀𝑀𝐴𝑃 is directly proportional to the size of EB but is
inversely proportional to the number of worker-threads. In
addition, the maximum size of 𝑇𝑀𝑀𝐴𝑃 is smaller than
four in all cases, which means that the overhead introduced
by 𝑇𝑀𝑀𝐴𝑃 is small enough and can be considered as a
constant.

Overall, we discover in this experiment that the overhead
of LB-EBT GVT algorithm is minimum when 𝑘 is equal to
two.We will use this value for the following experiments.The
size of 𝑇𝑀𝑀𝐴𝑃 of EBRmessage is less than four in all cases
(different number of LPs and different number of worker-
threads), which can be considered as a constant.

4.3. Speedup and Scalability. Speedup and scalability are two
significant metrics to evaluate the performance of GVT algo-
rithms, which can be measured in terms of the committed
event rate.

Size of EB
8 16 32 64 128 256 512

Si
ze

 o
f T

M
M

A
P 

in
 E

BR
 m

es
sa

ge

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N = 3

N = 5

N = 7

N = 9

N = 12

N = 14

N = 18

N = 20

Figure 8: Size of TMMAP in EBR message (𝑀 = 396900, 𝜆 = 1,
𝛾 = 25%, and 𝑘 = 2).

Number of worker-threads
0 2 4 6 8 10 12 14 16 18 20 22

Ev
en

t r
at

e (
ev

en
ts/

s)

0.0

FA-GVT 
LB-EBT GVT

5.0e + 6

1.0e + 7

1.5e + 7

2.0e + 7

2.5e + 7

Figure 9: Results of the committed event rate (𝑀 = 396900, 𝑆 =

256, 𝜆 = 1, Δ𝑡 = 0.1, and 𝑘 = 2 for 𝑁 > 2).

In this experiment, we compare the scalability of our
algorithm with FA-GVT. The results are shown in Figure 9,
where all samples have been obtained as the average over
five runs. Different pseudorandom seeds are used in each
run. However, the same seed is used for the corresponding
runs with two different GVT algorithms. Given that the large
amount of event can be processed per wall-clock time unit,
the check point period Δ𝑡 of FA-GVT is set to 0.1 seconds in
wall-clock time.

In Figure 9, we find that committed event rate is slightly
lower in our algorithm than in FA-GVT algorithm in case
that the number of worker-threads is smaller than ten. This
phenomenon is explained as the cost of GVT messages
and the cost of roll-back in our algorithm are larger than



Mathematical Problems in Engineering 11

Number of worker-threads
2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f r
ol

lb
ac

ks

0

10000

20000

30000

40000

50000

60000

70000

FA-GVT
LB-EBT GVT

Figure 10: Results of rollbacks (𝑀 = 396900, 𝑆 = 256, 𝜆 = 1, Δ𝑡 = 0.1, and 𝑘 = 2 for 𝑁 > 2).

those of FA-GVT algorithm. The critical section in FA-GVT
algorithm does not become the performance bottleneck yet.
Moreover, with the increase of the number of worker-threads,
the committed event rate in our algorithm slightly decreases
but significantly decreases in FA-GVT algorithm.

The number of rollbacks of our algorithm and FA-GVT is
shown in Figure 10. When the number of worker-threads is
smaller than ten, the number of rollbacks of our algorithm
is larger than that of FA-GVT. The reason causing this
phenomenon is that the overhead in our algorithm is greater
than that of FA-GVT. With the increase of the number of
worker-threads, the number of rollbacks slightly increases in
our algorithm but sharply increases in FA-GVT. FA-GVT is
not await-free algorithm. Soworker-threads in FA-GVThave
to wait for each other to access the critical section to compute
the GVT value. This leads to stranger events that result in
rollbacks. However, worker-threads in our algorithm are not
blocked for computingGVTvalue.Theprobability of stranger
events caused by GVT computation our algorithm is lower
than that of FA-GVT.

Figure 11 illustrates the committed event rates of our
algorithm for the largest simulation with 396900 LPs. About
2.571 × 108 messages are committed in the experiment that
spends 1200 units of simulation time. In case that the number
of worker-threads is greater than three, 𝑘 is set as two. For
other cases, 𝑘 is set as one. As shown in Figure 11, when the
remote messages ratio of PHOLD model is 25%, committed
event rate increases nearly linearly with the number of
worker-threads.The algorithm is scalable with the number of
worker-threads. The speedup reaches up to about 16 in case
that the number of running worker-threads is 20. When the
remotemessages ratio reaches up to 50% and 75%, committed
event rate drops by 21% and 30%, respectively. It is evident
in Figure 11 that although there is a performance drop in
terms of committed event rate, the performance of algorithm
still grows almost linearly with number of worker-threads.
We also find in Figure 11 that committed event rate changes
slightly with the different size of EB.

Compared with a sequential algorithm, our algorithm
has a performance drop in case of a single worker-thread.
The committed event rate with one worker-thread in our
algorithm decreases 40% compared with the sequential algo-
rithm.We think there are three factors for this phenomenon.
Firstly, it takes time to send GVT messages and calculate the
GVT value. Secondly, there is an overhead of memory for
storing and releasing the processed events in parallel algo-
rithm when rollbacks occur [17]. Thirdly, parallel algorithm
takes more time to tackle remote events between processors,
while the sequential simulator does not have such kind of
messages. However, the overhead introduced by all above
factors is constant, so the performance of our algorithm
grows linearly with the number of worker-threads.

Figure 12 shows the change of the committed event rate
caused by different number of worker-threads (shown in
axis 𝑥) and different number of LPs (shown in various line
style). We observe that the performance degrades when the
number of LPs decreases. As shown in Figure 12(a), when the
number of LPs reduced from396900 to 40000, the committed
event rate decreased 23%. From Figures 12(a), 12(b), and
12(c), we find that there is a slight drop in the committed
event rate when the number of remote messages increases.
This phenomenon is caused by the increase of remote basic
messages and GVT messages.

4.4. Accuracy of GVT Algorithm. We define the accuracy of a
GVT algorithm as the mean ratio of estimated GVT value to
actual GVT value.The actual GVT value can be only obtained
by the most efficient optimistic GVT algorithm, which can
speculatively process events and restrain the occurrence of
rollbacks. The estimated GVT value is an approximation of
the actual GVT value. A higher accurate GVT value is helpful
for the algorithm to commit more events processed and
releasemorememory allocated for the events. It is impossible
to continually measure the actual GVT at all time points
during the simulation execution. However, we can obtain
an approximate actual GVT (pseudoactual GVT) by setting



12 Mathematical Problems in Engineering

Number of worker-threads

Seq. 1 2 4 8 16 20

25% remote messages
50% remote messages
75% remote messages

Ev
en

t r
at

e (
ev

en
ts/

s)

1e + 6

1e + 7

1e + 8

(a) Size of EB 𝑆 = 64

Number of worker-threads

Seq. 1 2 4 8 16 20

25% remote messages
50% remote messages
75% remote messages

Ev
en

t r
at

e (
ev

en
ts/

s)

1e + 6

1e + 7

1e + 8

(b) Size of EB 𝑆 = 128

Number of worker-threads

Seq. 1 2 4 8 16 20

25% remote messages
50% remote messages
75% remote messages

Ev
en

t r
at

e (
ev

en
ts/

s)

1e + 6

1e + 7

1e + 8

(c) Size of EB 𝑆 = 256

Number of worker-threads

Seq. 1 2 4 8 16 20

25% remote messages
50% remote messages
75% remote messages

Ev
en

t r
at

e (
ev

en
ts/

s)

1e + 6

1e + 7

1e + 8

(d) Size of EB 𝑆 = 512

Figure 11: Result of the committed event rate (𝑀 = 396900, 𝜆 = 1, and 𝑘 = 2 for 𝑁 > 2).

the remote event rate as zero to ensure that there is no rollback
in the simulation execution.

The pseudoactual GVT value in our experiment is sam-
pled per 0.1 seconds in wall-clock time. We compare the
accuracy of our algorithm with that of FA-GVT. The results
are shown in Figure 13. The accuracy of our algorithm is
95.9% in case of 𝑆 = 512. In other words, the mean
approximate value estimated by our algorithm possesses
95.9% precisionwith respect to pseudoactual GVT.When the
size of EB 𝑆 is equal to 1024, the accuracy of our algorithm
drops to 93.6%. For FA-GVT, the accuracy is 65.8% in case of
Δ𝑡 = 0.5. However, when Δ𝑡 increases to 1.0, the accuracy of
FA-GVT increases to 66.3%. In Figure 13, we see that theGVT
computation period of LB-EBT GVT algorithm (𝑆 = 512) is
approximately equal to that of FA-GVT (Δ𝑡 = 1.0). However,
the accuracy of our algorithm is higher than that of FA-GVT,

which also reflects that the overhead of our algorithms is
lower than that of FA-GVT.

The relationship between the accuracy of our algorithm
and the size of EB is shown in Figure 14. The accuracy
of our algorithm decreases sharply when the size of EB
exponentially increases. In case of the size of EB 𝑆 = 32,
the accuracy reaches a limitation. We then discover that
the accuracy could not be improved any more even if the
size of EB further decreases. The accuracy of LB-EBT GVT
algorithm can be increased by decreasing the size of EB.
However, when the accuracy reaches a threshold, it is difficult
to improve it, even if the size of EB is small enough. This is
explained as the accuracy is limited by the delay of messages
and the overhead of our algorithm. As shown in Figure 14,
the ratio of GVT messages to basic messages decreases
exponentially with the exponential increase of the size of EB.



Mathematical Problems in Engineering 13

Number of worker-threads
Seq. 1 2 4 8 16 20

Ev
en

t r
at

e (
ev

en
ts/

s)

LPs = 396900

LPs = 40000

LPs = 4000

LPs = 400

1e + 6

1e + 7

1e + 8

(a) 𝛾 = 25%

Ev
en

t r
at

e (
ev

en
ts/

s)

Number of worker-threads

Seq. 1 2 4 8 16 20

LPs = 396900

LPs = 40000

LPs = 4000

LPs = 400

1e + 6

1e + 7

1e + 8

(b) 𝛾 = 50%

Number of worker-threads

Seq. 1 2 4 8 16 20

Ev
en

t r
at

e (
ev

en
ts/

s)

1e + 6

1e + 7

1e + 8

LPs = 396900

LPs = 40000

LPs = 4000

LPs = 400

(c) 𝛾 = 75%

Figure 12: Result of the committed event rate (𝑆 = 512, 𝜆 = 1, and 𝑘 = 2 for 𝑁 > 2).

5. Conclusions and Future Works

We propose a LB-EBT GVT algorithm for PDES in this
study. GVT computation is partitioned into rounds by Event-
Bulks. Event-Bulk is defined to track transient messages
by recording the number of messages sent and received
by LPs. In this way, the overhead introduced by message
acknowledgement for solving transient message problem can
be eliminated. High accurate GVT value can be obtained
through decreasing the size of EB. In addition, through
distributing the workload of GVT computation to all worker-
threads according to a 𝑘-ary tree communication topology,
we adopt an overlapping GVT computation approach in our
algorithm to accelerate the computation of the GVT value.

Experiments and comparisons are performed to evaluate
the overhead, scalability, and accuracy of our algorithm.
An optimized value of parameter 𝑘 in communication

topology is obtained by the experiments. Experimental
results indicate that our algorithm introduces slight overhead
and outperforms the FA-GVT algorithm in terms of speedup
and accuracy. Moreover, through adjusting the size of EB,
our algorithm can obtain higher accurate GVT value than
that of FA-GVT while the overhead of algorithm is still small
enough.

Although our algorithm shows high performance and is
scalable on the test-bed, there are still some issues that should
be studied in the future. Firstly, the size of EB should be self-
regulated according to the memory usage of a simulation,
the event granularity, and the accuracy requirement of the
GVT value. Secondly, the PDES platformof our algorithm is a
prototypal test-bed, which is quite distant from real advanced
PDES optimistic simulation platforms in terms of capabilities
and actual support for model development. In the future,
we will carry out our algorithm within the famous PDES



14 Mathematical Problems in Engineering

Wall-clock time (s)
0 2 4 6 8 10

Lo
gi

ca
l t

im
e (

s)

0

50

100

150

200

250

Pseudoactual GVT
LB-EBT (S = 256)
LB-EBT (S = 512)

FA-GVT (Δt = 0.5)
FA-GVT (Δt = 1)

Figure 13: Comparison of exact GVT with estimated GVT (𝑀 =

396900, 𝜆 = 1, 𝛾 = 25%, 𝑁 = 20, and 𝑘 = 2).

Size of EB
32 128 512 2048 8192 32768

Es
tim

at
ed

 G
V

T/
ac

tu
al

 G
V

T

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f G

V
T 

m
es

sa
ge

s t
o 

ba
sic

 m
es

sa
ge

s

0.0

0.2

0.4

0.6

0.8

1.0

Estimated GVT/actual GVT
Ratio of GVT messages with normal messages

Figure 14: Accuracy of estimated GVT value and ratio of GVT
messages to basic messages (𝑀 = 396900, 𝜆 = 1, 𝛾 = 25%, 𝑁 = 20,
and 𝑘 = 2).

platform, such as ROOT-Sim [13, 14] and ROSS [10], and
confirm its performance and scalability on a really distributed
architecture, for example, Tianhe super parallel computation
system [44].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors gratefully acknowledge the financial support of
the National Science Foundation of China (nos. 61473300,
61374185, and 61403402). A lot of thanks should be given

to referees and editors; their valuable comments greatly
improved the quality of the paper.

References

[1] J. C. Li, J. Y. Li, D. X. Niu, and Y. N. Wu, “A paral-
lel adaptive particle swarm optimization algorithm for eco-
nomic/environmental power dispatch,”Mathematical Problems
in Engineering, vol. 2012, Article ID 271831, 14 pages, 2012.

[2] K. S. Perumalla and S. K. Seal, “Discrete event modeling and
massively parallel execution of epidemic outbreak phenomena,”
Simulation, vol. 88, no. 7, pp. 768–783, 2012.

[3] X. Wang, J. H. Zhang, and M. Scalia, “Parallel motion simu-
lation of large-scale real-time crowd in a hierarchical environ-
mentalmodel,”Mathematical Problems in Engineering, vol. 2012,
Article ID 918497, 15 pages, 2012.

[4] F. Cicirelli, A. Furfaro, and L. Nigro, “An agent infrastructure
over HLA for distributed simulation of reconfigurable systems
and its application to UAV coordination,” Simulation, vol. 85,
no. 1, pp. 17–32, 2009.

[5] S. Jafer, Q. Liu, and G. Wainer, “Synchronization methods in
parallel and distributed discrete-event simulation,” Simulation
Modelling Practice andTheory, vol. 30, pp. 54–73, 2013.

[6] D. R. Jefferson, “Virtual time,” ACM Transactions on Program-
ming Languages and Systems, vol. 7, no. 3, pp. 404–425, 1985.

[7] K. Perumalla, “Usik-a micro-kernel for parallel/distributed
simulation,” in Proceedings of the 19th Workshop on Principles
of Advanced and Distributed Simulation, pp. 59–68, 2005.

[8] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: a high-
performance, low-memory, modular time warp system,” Jour-
nal of Parallel and Distributed Computing, vol. 62, no. 11, pp.
1648–1669, 2002.

[9] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette,
“GTW: a time warp system for shared memory multiproces-
sors,” in Proceedings of the Winter Simulation Conference, pp.
1332–1339, Lake Buena Vista, Fla, USA, December 1994.

[10] D. Bauer, G. Yaun, C. D. Carothers, M. Yuksel, and S. Kalya-
naraman, “ROSS.Net: optimistic parallel simulation framework
for large-scale Internet models,” in Proceedings of the Winter
Simulation Conference: Driving Innovation, vol. 1, pp. 703–711,
IEEE, New Orleans, La, USA, December 2003.

[11] D. Martin, P. Wilsey, R. Hoekstra et al., “Redesigning the
WARPED simulation kernel for analysis and application devel-
opment,” in Proceedings of the 36th Annual Simulation Sympo-
sium, pp. 216–223, IEEE, Orlando, Fla, USA, March-April 2003.

[12] E.Mascarenhas, F. Knop, andV.Rego, “ParaSol: amultithreaded
system for parallel simulation based on mobile threads,” in
Proceedings of the Winter Simulation Conference (WSC ’95), pp.
690–697, Arlington, Va, USA, December 1995.

[13] A. Pellegrini and F. Quaglia, “The ROmeOpTimistic simulator:
a tutorial,” in Euro-Par 2013: Parallel Processing Workshops, vol.
8374 of Lecture Notes in Computer Science, pp. 501–512, Springer,
Berlin, Germany, 2014.

[14] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme OpTimistic
Simulator: core internals and programmingmodel,” in Proceed-
ings of the 4th International ICSTConference on SimulationTools
and Techniques (SimuTools ’11), pp. 96–98, March 2011.

[15] A. Pellegrini and F. Quaglia, “Wait-free global virtual time
computation in shared memory timewarp systems,” in Proceed-
ings of the 26th IEEE International Symposium on Computer
Architecture andHigh Performance Computing (SBAC-PAD ’14),
pp. 9–16, IEEE, Jussieu, France, October 2014.



Mathematical Problems in Engineering 15

[16] P. M. Dickens, D. M. Nicol, P. F. Reynolds Jr., and J. M. Duva,
“Analysis of bounded timewarp and comparisonwith YAWNS,”
ACM Transactions on Modeling and Computer Simulation, vol.
6, no. 4, pp. 297–320, 1996.

[17] G. Chen and B. Szymanski, “Time quantum GVT: a scalable
computation of the global virtual time in parallel discrete event
simulations,” International Journal for Parallel and Distributed
Computing, vol. 8, pp. 423–436, 2007.

[18] R. M. Fujimoto and M. Hybinette, “Computing global virtual
time in shared-memorymultiprocessors,”ACMTransactions on
Modeling and Computer Simulation, vol. 7, no. 4, pp. 425–446,
1997.

[19] Z. Xiao, F. Gomes, B. Unger, and J. Cleary, “A fast asynchronous
GVT algorithm for shared memory multiprocessor architec-
tures,” in Proceedings of the 9th Workshop on Parallel and
Distributed Simulation (PADS ’95), pp. 203–208, IEEE, Lake
Placid, NY, USA, June 1995.

[20] S. Leye, A. M. Uhrmacher, and C. Priami, “A bounded-
optimistic, parallel beta-binders simulator,” in Proceedings of
the 12th IEEE/ACM International Symposium on Distributed
Simulation and Real TimeApplications (DS-RT ’08), pp. 139–148,
October 2008.

[21] S. S. Rizvi, A. Riasat, and K. M. Elleithy, “An efficient optimistic
time management algorithm for discrete event simulation
system,” International Journal of Simulation Model, vol. 9, no.
3, pp. 117–130, 2010.

[22] R. M. Fujimoto, “Performance of time warp under synthetic
workloads,” in Proceedings of the Multiconference on Distributed
Simulation, pp. 23–28, Society for Computer Simulation, Jan-
uary 1990.

[23] R.M. Fujimoto, “Parallel simulation: distributed simulation sys-
tems,” in Proceedings of the 35th Winter Simulation Conference,
pp. 124–134, December 2003.

[24] R. Baldwin, M. J. Chung, and Y. Chung, “Overlapping window
algorithm for computing GVT in time warp,” in Proceedings
of the 11th International Conference Distributed Computing
Systems, pp. 534–541, 1991.

[25] S. Bellenot, “Global virtual time algorithms,” in Proceedings of
the SCSMulti-conference on Distributed Simulation, pp. 122–127,
San Diego, Calif, USA, January 1990.

[26] S. K. Das and F. Sarkar, “A hypercube algorithm for GVT com-
putation and its application in optimistic parallel simulation,”
in Proceedings of the Simulation Symposium, pp. 51–60, Phoenix,
Ariz, USA, 1995.

[27] B. Samadi,Distributed Simulation, Algorithms and Performance
Analysis, Computer Science Department, University of Califor-
nia, Los Angeles, Calif, USA, 1985.

[28] H. Bauer and C. Sporrer, “Distributed logic simulation and an
approach to asynchronous GVT-calculation,” in Proceedings of
the 6th Workshop Parallel and Distributed Simulation, pp. 205–
208, Newport Beach, Calif, USA, 1992.

[29] Y. C. Zhang and G. Li, “SafeBTW: a scalable optimistic yet
non-risky synchronization algorithm,” in Proceedings of the
ACM/IEEE/SCS 26th Workshop on Principles of Advanced
and Distributed Simulation (PADS ’12), pp. 75–77, Zhangjiajie,
China, July 2012.

[30] Y. B. Lin and E. D. Lazowska, “Determining the global virtual
time in a distributed simulation,” in Proceedings of the Interna-
tional Conference Parallel Processing, pp. 201–209, Boston,Mass,
USA, 1990.

[31] F. Mattern, “Efficient algorithms for distributed snapshots and
global virtual time approximation,” Journal of Parallel and
Distributed Computing, vol. 18, no. 4, pp. 423–434, 1993.

[32] M. Choe and C. Tropper, “An efficient GVT computation
using snapshots,” in Proceedings of the Conference on Computer
Simulation Methods and Applications, pp. 33–43, Orlando, Fla,
USA, 1998.

[33] A. I. Tomlinson and V. K. Garg, “Algorithm for minimally
latent global virtual time,” in Proceedings of the 7thWorkshop on
Parallel and Distributed Simulation, pp. 35–41, San Diego, Calif,
USA, May 1993.

[34] K. Perumalla and R. M. Fujimoto, “Virtual time synchroniza-
tion over unreliable network transport,” in Proceedings of the
15th Workshop Parallel and Distributed Simulation, pp. 129–136,
Lake Arrowehead, Calif, USA, 2001.

[35] S. Srinivasan and P. F. Reynolds Jr., “Non-interfering GVT com-
putation via asynchronous global reductions,” in Proceedings of
the Winter Simulation Conference, pp. 760–769, Los Angeles,
Calif, USA, 1993.

[36] J. S. Steinman, C. A. Lee, L. F. Wilson, and D. M. Nicol, “Global
virtual time and distributed synchronization,” in Proceedings of
the 9th Workshop on Parallel and Distributed Simulation (PADS
’95), pp. 139–148, Lake Placid, NY, USA, June 1995.

[37] L.M.D’Souza, X. Fan, andP.A.Wilsey, “pGVT: an algorithm for
accurate GVT estimation,” in Proceedings of the 8th Workshop
Parallel and Distributed Simulation, pp. 102–109, Edinburgh,
UK, July 1994.

[38] D. Bauer, G. Yaun, C. D. Carothers,M. Yuksel, and S. Kalyanara-
man, “Seven-o’Clock: a new distributed GVT algorithm using
network atomic operations,” in Proceedings of the Workshop on
Principles of Advanced and Distributed Simulation (PADS ’05),
pp. 39–48, Monterey, Calif, USA, June 2005.

[39] E. Deelman and B. K. Szymanski, “Continuously monitored
global virtual time,” in Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and
Applications (PDPTA ’97), pp. 1–10, Las Vegas, Nev, USA, June-
July 1997.

[40] J. L. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory,
CRC Press, Boca Raton, Fla, USA, 2nd edition, 2014.

[41] R. Vitali, A. Pellegrini, and F. Quaglia, “Towards symmetric
multi-threaded optimistic simulation kernels,” in Proceedings of
the 26th Workshop on Principles of Advanced and Distributed
Simulation (PADS ’12), pp. 211–220, IEEE, Zhangjiajie, China,
July 2012.

[42] R. Vitali, A. Pellegrini, and F. Quaglia, “Load sharing for
optimistic parallel simulations on multi core machines,” SIG-
METRICS Performance Evaluation Review, vol. 40, no. 3, pp. 2–
11, 2012.

[43] Y. B. Lin and E. D. Lazowska, “Processor scheduling for time
warp parallel simulation,” in Proceedings of the 23rd SCS Multi
Conference on Advances in Parallel and Distributed Simulation,
pp. 11–14, IEEE Computer Society, 1991.

[44] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S.
Su, “TheTianHe-1A supercomputer: its hardware and software,”
Journal of Computer Science and Technology, vol. 26, no. 3, pp.
344–351, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


