
A NEW FAMILY OF XDEVS SIMULATORS FOR ENHANCED PERFORMANCE

Román Cárdenas
Patricia Arroba

Laboratorio de Sistemas Integrados (LSI)
CCS–Center for Computational Simulation

Universidad Politécnica de Madrid
ETSI Telecomunicación, Avenida Complutense, 30

Madrid 28040, SPAIN
{r.cardenas,p.arroba}@upm.es

José L. Risco-Martín

Dpt. of Computer Architecture and Automation
Universidad Complutense de Madrid

C/ Profesor José García Santesmases, 9
Madrid 28040, SPAIN

jlrisco@ucm.es

ANNSIM’23, May 23-26, 2023, Mohawk College, ON, CANADA; ©2023 Society for Modeling & Simulation International (SCS)

ABSTRACT

Modeling and Simulation (M&S) techniques are extensively used for analyzing complex systems. Among
different approaches, the Discrete EVent System specification (DEVS) mathematical formalism presents
a robust methodology for defining complex models. The xDEVS framework is a cross-platform tool that
provides a uniform Application Programming Interface (API) to simulate DEVS-based models using dif-
ferent programming languages like C++, Java, or Python. However, executing DEVS models on embedded
devices equipped with small processors usually requires lower-level programming languages. This paper
introduces xDEVS/Rust and xDEVS/C, two new xDEVS interfaces written in Rust and C, respectively.
These new implementations bring xDEVS closer to supporting the execution of DEVS models in embedded
systems. Also, they feature remarkably high performance, making them a valuable option for simulating
complex systems in traditional platforms. We illustrate how competitive these new implementations are by
comparing them with some of the fastest state-of-the-art simulators.

Keywords: C, DEVS, M&S Tools, Performance, Rust.

1 INTRODUCTION

Modeling and Simulation (M&S) has been extensively utilized to design and analyze complex systems. Dif-
ferent M&S theoretical methods have been defined for this purpose, such as Petri Nets, Timed Automata,
and the Discrete EVent System specification (DEVS) formalism (Zeigler, Muzy, and Kofman 2018). The
DEVS formalism is a comprehensive method for modeling complex systems’ structural, behavioral, and in-
formation aspects using mathematical set theory. DEVS also gives some benefits for analyzing and creating
complex models: completeness, verifiability, extensibility, and maintainability. Systems described using the
DEVS theory can be easily implemented in a computational environment across different platforms.

There are numerous libraries and tools within the M&S community that facilitate the implementation
of DEVS models. Some examples are aDEVS (Nutaro 2023), Cadmium (Cárdenas and Wainer 2022),
MS4Me (Seo et al. 2013), PyPDEVS (Bolduc and Vangheluwe 2002), or VLE (Quesnel, Duboz, and Ra-
mat 2009). Among them, xDEVS is a cross-platform, object-oriented, M&S framework designed to bring
some unification to the existing DEVS M&S libraries through the use of wrappers and provide optimal
performance and deployment of models in parallel and distributed computing architectures (Risco-Martín

Cárdenas, Arroba, and Risco-Martín

et al. 2022a, Risco-Martín et al. 2022b). xDEVS incorporates different DEVS Application Programming
Interfaces (APIs) with equivalent interfaces: the original Java implementation (xDEVS/Java), a C++ im-
plementation (xDEVS/C++), a C# implementation (DEVS/C#), a Go implementation (DEVS/Go), and a
Python implementation (xDEVS/Python). However, xDEVS and DEVS APIs, in general, still need facil-
ities for the deployment of models inside embedded systems, which highly facilitates the development of
modern Cyber-Physical Systems (CPSs) or the implementation of the Digital Twin (DT) paradigm.

There exist some approaches that facilitate the deployment of Hardware-In-The-Loop (HIL)-driven DEVS
M&S methods (Moallemi and Wainer 2010, Risco-Martín et al. 2016). However, incorporating program-
ming tools that facilitate the development, like compilers, linkers, debuggers, etc., is challenging, since
embedded systems are usually based on small processors with limited programming support. Here, the
C programming language remains undisputed, with a plethora of Integrated Development Environments
(IDEs) for embedded systems. Additionally, the Rust programming language is gaining momentum. Both
languages also offer high-performance scores. Consequently, we have incorporated two new variants to
the xDEVS API: xDEVS/C and xDEVS/Rust. This paper introduces xDEVS/Rust and xDEVS/C, the two
new xDEVS APIs written in Rust and C, respectively. A performance analysis is also designed to show the
benefits of using these two programming languages. Both APIs are available at GitHub (Risco-Martín et al.
2014). The paper is organized as follows. Section 2 provides a detailed explanation of the xDEVS/Rust
architecture. Section 3 summarizes the same architecture for the xDEVS/C API. In Section 4, a set of ex-
periments are conducted to demonstrate the good performance of these two APIs. Finally, we present some
conclusions and future work in Section 5.

2 XDEVS RUST

Rust is a modern high-level programming language that provides powerful abstraction mechanisms to ease
the development process without giving up performance. In addition, it provides a modern ecosystem that
simplifies code sharing, dependency management, and code compilation processes. The Rust compiler en-
forces a data ownership mechanism to detect potential logic errors in compile time. This particularity guides
developers to create safer, higher-quality code. However, Rust also introduces new challenges that make it
difficult to adapt the approach used in other xDEVS tools. For instance, it does not support Object-Oriented
Programming (OOP). While there are mechanisms to emulate OOP patterns, composition is preferred over
inheritance. Furthermore, the data ownership scheme implies a significant change to the code structure com-
pared to other programming languages. Figure 1 shows a simplified Unified Modeling Language (UML)
diagram of xDEVS Rust crate. In Rust, software packages or libraries are referred to as crates.

Event propagation follows the message-passing over ports approach. The private structure Bag<T> is a
container of messages of type T. In this way, bags can only contain messages of a given data type defined
at compile time. The Bag<T> structure implements the Port trait. Rust traits are similar to interfaces.
They define a set of methods and associated functions that any trait implementer must include. The Port
trait defines the expected behavior for any port (e.g., checking if the bag is empty or clearing the bag). The
InPort<T> and OutPort<T> public structures are wrappers of a Bag<T> that represent input and output
ports, respectively. The prior only allows reading messages in the bag, while the latter allows modelers to
add new messages to the underlying bag.

The xDEVS crate follows a composition approach: any DEVS model must contain a Component structure.
This structure contains all the input and output ports of the model. Ports are sorted in a vector to provide
a fast iteration during simulation. When adding a new port, we must provide a name. The Component
structure ensures that port names are unique. The ownership policy of Rust makes it difficult to implement a
classic model-to-simulator transformation. Instead, the Component structure contains private simulation-
related fields necessary to simulate the model (e.g., simulation times of the previous and next state transi-

Cárdenas, Arroba, and Risco-Martín

<<Interface>>
Atomic

+ start(&mut self)
+ stop(&mut self)
+ get_time(&self): f64
+ delta_conf(&mut self)

+ get_component(&self): &Component
+ get_component_mut(&mut self): &mut Component
+ ta(&self): f64
+ lambda(&self)
+ delta_int(&mut self)
+ delta_ext(&mut self, e: f64)

Bag<T>

+ 0: RefCell<Vec<T>>

RootCoordinator

 + simulate_time(&mut self, t_end: f64)
InPort<T>

+ get_values(&self): &Vec<T>

OutPort<T>

+ add_value(&self, value: T)
+ add_values(&self, values: &[T])

«interface»
Simulator

Coupled

+ add_component<T>(&mut self, comp: Box<T: Simulator>)
+ add_eic(&mut self, port_from: &str, comp_to: &str, port_to: &str)
+ add_ic(&mut self, comp_from: &str, port_from: &str,
 comp_to: &str, port_to: &str)
+ add_eoc(&mut self, comp_from: &str, port_from: &str, port_to: &str)

«interface»
Port

Component

+ add_in_port<T>(&mut self, name: &str): InPort<T>
 + add_out_port<T>(&mut self, name: &str): OutPort<T>

Figure 1: UML diagram of the xDEVS Rust crate.

tions). To enforce a separation of concerns between modeling and simulation, this additional logic is private,
and modelers cannot access it.

The xDEVS crate includes the Atomic public trait. This trait includes the functions associated to any
atomic model (i.e., output function, transition functions, and time advance functions). Additionally, it must
implement getter methods to allow other parts of the xDEVS crate to access the component contained by
the atomic model. Next, we illustrate how to implement the Generator atomic model for the Generator
Processor Transducer (GPT) model (Zeigler, Muzy, and Kofman 2018):

1 use xdevs::modeling::*;
2 struct Generator {
3 component: Component,
4 input: InPort<bool>, output: OutPort<usize>,
5 period: f64, count: usize, sigma: f64,
6 }
7 impl Generator {
8 fn new(name: &str, period: f64) -> Self {
9 let mut component = Component::new(name);

10 let input = component.add_in_port::<bool>("input");
11 let output = component.add_out_port::<usize>("output");
12 Self { component, input, output, period, count: 0, sigma: 0. }
13 }
14 }
15 impl Atomic for Generator {
16 fn get_component(&self) -> &Component { &self.component }

Cárdenas, Arroba, and Risco-Martín

17 fn get_component_mut(&mut self) -> &mut Component { &mut self.component }
18 fn lambda(&self) { self.output.add_value(self.count); }
19 fn delta_int(&mut self) {
20 self.count += 1;
21 self.sigma = self.period;
22 }
23 fn delta_ext(&mut self, e: f64) {
24 self.sigma -= e;
25 if self.input.get_values().at(0).unwrap_or(false) {
26 self.sigma = f64::INFINITY;
27 }
28 }
29 fn ta(&self) -> f64 { self.sigma }
30 }

The Generator atomic model is a structure containing a Component and all the necessary input and
output ports (lines 3 and 4). Then, we add any additional state parameter required by the model (line 5). In
this model, period corresponds to the time to wait before creating a new job. The model keeps track of
the number of jobs created so far in count. Finally, sigma is a helper field to simplify the definition of the
time advance function. In Rust, complex structures usually implement a new associated function to create
new elements (lines 8 to 13). When creating a new port, we must provide the desired message type and
a unique identifier. For instance, the input port is an input port of messages of type bool which unique
identifier is "input" (line 10). The Generator model implements the Atomic trait in lines 15 to 30.
First, we define the getter methods that return a reference to the inner Component structure. Then, we
must implement all the methods associated with atomic models. Note that we do not have to implement the
confluent transition function. By default, it is set to δcon f (s) = δext(δint(s),0).

The xDEVS crate includes the Coupled structure for developing coupled models. This structure already
contains a Component structure. Thus, we can create new ports to the coupled model in the same way as
in atomic models. Coupled models allow modelers to add subcomponents and couplings between ports. The
Coupled structure ensures that its submodels have a unique identifier. Additionally, it forbids duplicate
couplings and couplings between ports of different message types. To achieve this behavior, couplings are
defined using the name of the components and ports involved. With this methodology, coupled models make
sure that i) the submodels with the specified name exist, ii) that the ports exist, iii) that the coupling between
these ports has not been defined before, and iv) that the message type of the ports matches. Thus, the Rust
version of xDEVS is the first simulator of the xDEVS family able to do all these checks. Next, we illustrate
how the GPT coupled model is defined in the xDEVS crate:

1 use xdevs::modeling::*;
2 struct GPT(Coupled);
3 impl GPT {
4 fn new(name: &str, period: f64, proc_time: f64, observation: f64) -> Self {
5 let mut gpt = Coupled::new(name);
6

7 let generator = Generator::new("generator", period);
8 let processor = Processor::new("processor", proc_time);
9 let transducer = Transducer::new("transducer", observation);

10 gpt.add_component(Box::new(generator));
11 gpt.add_component(Box::new(processor));
12 gpt.add_component(Box::new(transducer));
13

14 gpt.add_ic("generator", "output", "processor", "input");
15 gpt.add_ic("generator", "output", "transducer", "input_g");

Cárdenas, Arroba, and Risco-Martín

16 gpt.add_ic("processor", "output", "transducer", "input_p");
17 gpt.add_ic("transducer", "output", "generator", "input");
18

19 Self(gpt)
20 }
21 }

As the GPT model does not have any input nor output port, GPT is just a tuple encapsulating a Coupled
structure (line 2). When creating a new GPT model (lines 4 to 20), we first create a new Coupled structure.
Then, we create all the submodels (lines 7 to 9) and add them to the coupled model using the add_-
component method (lines 10 to 12). Note that models must be first encapsulated into a Box. In Rust,
Box structures are smart pointers that own the value they point to. Finally, we define all the couplings in
the model. In this case, we only have internal couplings. Thus, we use the add_ic method, specifying
the source and output port and the destination and input port. If we want to add external input couplings or
external output couplings, we must use the add_eic and add_eoc methods.

In contrast with other approaches, xDEVS Rust does not include supplementary structures to control the
simulation workflow of each component. Instead, DEVS components already include all the necessary
elements to run a simulation. Coupled structures and any structure implementing the Atomic trait au-
tomatically implement the Simulator trait. This trait is equivalent to the abstract simulator concept, as
it defines all the methods and associated functions required to run a simulation. To run a simulation over a
model, we must create a RootCoordinator structure. RootCoordinator<M> wraps a structure of
type M. M must implement the Simulator trait. Next, we illustrate how to simulate the GPT model:

1 use xdevs::simulation::RootCoordinator;
2 fn main() {
3 let gpt = GPT::new("gpt", period, proc_time, observation);
4 let mut simulator = RootCoordinator::new(coupled.0);
5 simulator.simulate_time(f64::INFINITY);
6 }

First, we create a RootCoordinator in charge of simulating the GPT model. Finally, we start the simu-
lation by executing the simulate_time method. We must specify for how long we want the simulation
to run. In this example, we want to simulate the model until all its elements passivate.

3 XDEVS C

The C version of xDEVS uses the Portable Operating System Interface (POSIX) and follows the general
xDEVS specification published by Risco-Martín et al. (2022b). Figure 2 shows a simplified UML diagram
of the xDEVS/C architecture. This architecture is a structured programming version of the OOP xDEVS
original design. In xDEVS/C, the top abstract classes such as Component or AbstractSimulator do
not exist because of the absence of polymorphism in C. In the xDEVS/C modeling layer, we find three main
structures: atomic, coupled, and coupling, equivalent to the Atomic, Coupled, and Coupling
xDEVS general OOP interfaces, respectively. In xDEVS/C, ports are directly mapped to integers, and
messages are encapsulated as a list per port of values through the input and output attributes. The atomic
structure has a state, which includes the DEVS sigma and phase elements plus other data introduced
by the modeler for each specific atomic model. To allow us to define atomic models, the atomic C
structure stores pointers to the DEVS standard atomic functions that must be implemented for each new
atomic model. Other functionalities, like adding components or coupling relations to a coupled model, are
implemented as general functions like list_push_back (the list interface is not included in the diagram) and
add_coupling, respectively. Similarly, the simulation layer is composed of two structures: simulator

Cárdenas, Arroba, and Risco-Martín

and coordinator, with equivalent attributes to the Coordinator and Simulator classes of the
xDEVS general simulation layer defined by Risco-Martín et al. (2022b). The function members of both
the simulator and coordinator instances are driven by general functions with simulator_ and
coordinator_ prefixes, respectively. As in the modeling layer, the set of simulators inside a coordinator
is managed by general lists.

atomic

+ component_type: int
+ input: devs_message [*]
+ output: devs_message [*]
+ devs_state: state

+ deltint(): void
+ deltext(double): void
+ deltcon(double): void
+ lambda(): void
+ ta(): double
+ hold_in(const char*, double): void
+ passivate(): void
+ activate(): void
+ phase_is(const char*): bool

coupled

+ component_type: int
+ input: devs_message [*]
+ output: devs_message [*]
+ components: void* [*]
+ eic: coupling [*]
+ eoc: coupling [*]
+ ic: coupling [*]

+ add_coupling(void*, int, void*, int): void

simulator

+ simulator_type: int
+ m: atomic*
+ tL: double
+ tN: double

+ simulator_initialize(): void
+ simulator_exit(): void
+ simulator_ta(): double
+ simulator_lambda(double): void
+ simulator_deltfcn(double): void
+ simulator_clear(): void

coordinator

+ simulator_type: int
+ m: coupled*
+ simulators: void* [*]
+ tL: double
+ tN: double

+ coordinator_initialize(): void
+ coordinator_ta(double): double
+ coordinator_simulate(unsigned long): void
+ coordinator_exit (): void
+ coordinator_propagate_input(): void
+ coordinator_propagate_output(): void
+ coordinator_clear(): void

coupling

+ component_from: void*
+ port_from: int
+ component_to: void*
+ port_to: int

devs_state

+ sigma: double
+ phase: const char*
+ user_data: void*

devs_message

+ port_id: int
+ value: void*
+ next: devs_message*

+ devs_message_is_empty(): bool
+ devs_message_size(): int
+ devs_message_push_back(int, void): void
+ devs_message_clear() : void
+ devs_port_is_empty(int): bool
+ devs_port_get_values(int): void* [*]
+ devs_port_get_value(int): void*

Figure 2: UML diagram of the xDEVS/C implementation.

The following code snippet shows how to implement the Generator atomic model for the GPT example.
The initialization function is called at the beginning of the simulation. After that, the DEVS standard output
and transition functions are defined. As can be seen, the output function sends messages through a specific
output port, and the transition functions straightforwardly operate over the current state.

1 #include "generator.h"
2 void generator_init(atomic *self) {
3 generator_state *s = (generator_state *)self->state.user_data;
4 s->job_next_id = 1;
5 hold_in(self, "active", s->period);
6 }
7 void generator_lambda(atomic *self) {
8 job *j = (job *)malloc(sizeof(job));
9 generator_state *s = self->state.user_data;

10 j->id = s->job_next_id;
11 devs_message_push_back(&(self->output), GENERATOR_OUT, j);
12 }
13 void generator_deltint(atomic *self) {
14 generator_state *s = self->state.user_data;
15 s->job_next_id++;
16 hold_in(self, "active", s->period);
17 }
18 void generator_deltext(atomic *self, const double e) {

Cárdenas, Arroba, and Risco-Martín

19 resume(self, e);
20 passivate(self);
21 }

Next, we show how to build the coupled GPT model and run the simulation:

1 #include "../../core/devs.h"
2 int main(int argc, char *argv[]) {
3 coupled* gpt = coupled_new();
4

5 atomic *g = generator_new(1.0);
6 atomic *p = processor_new(3.0);
7 atomic *t = transducer_new(100.0);
8 list_push_back(&(gpt->components), g);
9 list_push_back(&(gpt->components), p);

10 list_push_back(&(gpt->components), t);
11

12 add_coupling(gpt, g, GENERATOR_OUT, p, PROCESSOR_IN);
13 add_coupling(gpt, g, GENERATOR_OUT, t, TRANSDUCER_ARRIVED);
14 add_coupling(gpt, p, PROCESSOR_OUT, t, TRANSDUCER_SOLVED);
15 add_coupling(gpt, t, TRANSDUCER_OUT, g, GENERATOR_IN);
16

17 coordinator *c = coordinator_new(gpt);
18 coordinator_initialize(c);
19 coordinator_simulate(c, 1000);
20 coordinator_exit(c);
21 coordinator_delete(c);
22

23 return 0;
24 }

As can be seen, the procedure is quite similar to the xDEVS OOP APIs. The coupled model does not need
particular functionality; thus, atomic models are just created and interconnected. After that, the coordinator
is defined with the root-coupled model, and the simulation is launched for 1000 DEVS cycles. xDEVS/C
takes exceptional care of deleting all the dynamic memory allocated in the simulation process. The user is
also in charge of releasing events from memory when they are no longer needed.

4 PERFORMANCE EVALUATION

Here we compare the performance of the new versions of xDEVS with other state-of-the-art simulators.
We compared the simulation speed of the C and Rust implementations of xDEVS with the Java and C++
implementations of xDEVS. These engines are the fastest state-of-the-art implementations of the xDEVS
family. Additionally, we included in the comparison the aDEVS simulation tool (Nutaro 2023). The aDEVS
engine, written in C++, has been proven to be one of the fastest DEVS-compliant simulators currently avail-
able (Cárdenas et al. 2022). To measure the performance of the simulation engines under study, we use
the DEVStone benchmarking technique (Glinsky and Wainer 2005). DEVStone presents multiple synthetic
models with configurable degrees of complexity. Essentially, it defines a set of coupled models nested recur-
sively. DEVStone presents five complexity configuration parameters: i) type, which determines the topology
of each layer, ii) width, which specifies the atomic models in each layer, iii) depth, which corresponds to the
number of layers, iv) internal transition delay, and v) external transition delay. The internal and external
transition delays specify the Central Processing Unit (CPU) time that atomic models must spend running
computation-intensive operations when their internal and external transition functions are triggered, respec-

Cárdenas, Arroba, and Risco-Martín

tively. LI models present the simplest topology. HI models add internal couplings to the topology. In HO
models, the number of ports and input and output couplings increases. Finally, HOmod models present
a two-dimensional topology in which the number of atomic models and couplings escalates exponentially
with the width and depth of the model.

The internal and external transition delays were set to 0. This way, we constrain execution time to create
the model and simulate the benchmark. For the LI, HI, ad HO model types, we ran experiments whose
width and depth ranged from 20 to 400 at steps of 20. On the other hand, we included HOmod structures
with widths and depths ranging from 5 to 50 at step 5. In total, we explored 1,164 different scenarios. We
ran each scenario 30 times to assume that the sample mean is normally distributed. The obtained results
are shown with a confidence interval of 95%. We simulated the experiments on a MacBook Pro (Retina,
15-inch, Mid 2015) with MacOS 1.6.2, a 2.5 GHz Quad-Core Intel Core i7 CPU, and a 16 GB 1600 MHz
DDR3 memory. The DEVStone models were compiled using the Apple clang version 14.0.0 toolchain for
C and C++ engines, rustc 1.66.0 for Rust xDEVS, and OpenJDK 19.0.1 for Java. C, C++, and Rust binaries
were compiled in release mode.

Table 1 shows a sample of corner cases of the experiments. For each target and model type, we show the
deepest, widest, and most complex models. Additionally, we outline the first and second fastest simulation
engines for every DEVStone model in dark and light blue, respectively. The aDEVS simulator showed
the best results for simpler models. However, as the complexity of the DEVStone models under study
increases, other engines manage to outperform aDEVS. In contrast, xDEVS Java presented a high simulation
setup overhead. Thus, it obtained the worst performance results for the simplest models. Nevertheless,
this overhead becomes increasingly negligible as the model complexity increases. For the most complex
configurations, xDEVS C++ is considerably slower than the other engines.

Table 1: Mean simulation time of the engines under study.

DEVStone Model Simulation time (s)
Type Width Depth aDEVS xDEVS C xDEVS C++ xDEVS Java xDEVS Rust

20 400 0.005±0.000 0.005±0.000 0.013±0.000 0.075±0.002 0.017±0.000
LI 400 20 0.005±0.000 0.005±0.000 0.012±0.000 0.071±0.001 0.014±0.000

400 400 0.116±0.002 0.109±0.001 0.294±0.005 0.439±0.006 0.298±0.001
20 400 0.018±0.000 0.021±0.000 0.088±0.001 0.143±0.003 0.032±0.000

HI 400 20 0.263±0.001 0.327±0.002 1.494±0.007 0.542±0.010 0.194±0.001
400 400 19.305±0.127 8.408±0.036 40.086±0.605 12.745±0.140 6.349±0.013
20 400 0.020±0.000 0.028±0.000 0.112±0.001 0.157±0.007 0.039±0.000

HO 400 20 0.345±0.006 0.463±0.003 1.857±0.010 0.594±0.006 0.229±0.004
400 400 20.884±0.148 10.831±0.031 48.327±0.204 13.502±0.084 6.798±0.030

5 50 0.010±0.000 0.031±0.000 0.102±0.000 0.118±0.004 0.013±0.000
HOmod 50 5 0.129±0.000 0.241±0.001 0.706±0.002 0.342±0.004 0.078±0.000

50 50 60.630±0.350 50.126±0.121 134.316±1.027 33.372±0.171 15.340±0.069

Figure 3 shows the obtained results for all the LI models in the engines under study. The abscissae arrange
the simulated models in increasing mean execution time for the aDEVS simulator. As shown in Figure 3a,
the aDEVS and the C version of xDEVS present the best performance, followed by the C++ and Rust
versions of xDEVS. Figure 3b represents the speedup of the xDEVS engines over aDEVS. Speedups over 1
imply that the engine is faster than aDEVS. The C version of xDEVS showed a speedup near 1. On the other
hand, the speedup of the C++ and Rust versions of xDEVS is close to 0.4. Note that even though the Java
simulator shows the worst results, its speedup curve shows a constant improvement as the model complexity
increases. Furthermore, the time scale is in the order of milliseconds for LI models. For example, the time

Cárdenas, Arroba, and Risco-Martín

20-20
40-140

260-40
120-140

240-100
280-120

220-200
320-180

380-200
340-300

structure [width-depth]

0.0

0.1

0.2

0.3

0.4

tim
e

[s
]

adevs
xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(a) Execution time.

20-20
40-140

260-40
120-140

240-100
280-120

220-200
320-180

380-200
340-300

structure [width-depth]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sp
ee

du
p

xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(b) Speedup over aDEVS.

Figure 3: Simulation results for LI models.

difference between xDEVS Java and xDEVS C for the LI model with a width and depth of 400 is 330 ms.
While xDEVS C is 4 times faster, this difference may be considered negligible.

As the model topology increases, we experience a significant change in the performance of the engines
under study. Figure 4 displays the obtained results for HI models. Now, for the most complex HI model,
the difference between the fastest engine (i.e., xDEVS Rust) and the slowest engine (i.e., xDEVS C++) is
33.737 s. This difference is significant enough to be considered when choosing one or another engine. As
shown in Figure 4b, aDEVS is still the fastest engine for the simplest configurations. However, the new C
and Rust versions of xDEVS outperform it soon. Furthermore, xDEVS Java can outperform aDEVS for the
most complex models. The best speedups obtained by the C, Java, and Rust versions of xDEVS are 2.30,
1.51, and 3.04, respectively.

20-20
100-40

180-40
180-80

160-160
140-300

160-360
340-140

360-180
300-360

structure [width-depth]

0

5

10

15

20

25

30

35

40

tim
e

[s
]

adevs
xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(a) Execution time.

20-20
100-40

180-40
180-80

160-160
140-300

160-360
340-140

360-180
300-360

structure [width-depth]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(b) Speedup over aDEVS.

Figure 4: Simulation results for HI models.

This trend repeats for HO models. Figure 5 displays the execution time of the simulation engines under
study for DEVStone models of the HO type. Again, the Rust and C versions of xDEVS outperform aDEVS
as soon as the model complexity increases. However, the speedup obtained by the C implementation shows

Cárdenas, Arroba, and Risco-Martín

20-20
80-60

260-20
180-80

160-160
160-240

240-180
220-300

320-220
300-360

structure [width-depth]

0

10

20

30

40

50
tim

e
[s

]
adevs
xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(a) Execution time.

20-20
80-60

260-20
180-80

160-160
160-240

240-180
220-300

320-220
300-360

structure [width-depth]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(b) Speedup over aDEVS.

Figure 5: Simulation results for HO models.

a small degradation compared to HI models. The speedup of the other versions of xDEVS is similar to the
one obtained in HI models. Note that the performance of xDEVS Java is now very close to xDEVS C. The
results obtained by xDEVS Java and Rust are very similar to the ones obtained for HI models. However,
xDEVS C presents a slight downgrade compared to HI models, with speedups ranging from 0.63 to 2.33.

Figure 6 shows the execution results for HOmod models. The topology of the HOmod model differs sig-
nificantly from the rest of the DEVStone model types. Thus, the execution time required by the engines
is significantly higher compared to the other topologies. For instance, xDEVS C++ took an average time
of 134.316 s to execute HOmod models with a width and depth of 50, while the same engine only required
48.327 s to simulate an HO model with width and depth of 400. The xDEVS Rust simulation engine showed
its best performance upgrade for this model, achieving a maximum speedup of 3.95. On the other hand,
xDEVS C struggled to follow aDEVS, and only achieved a speedup greater than 1 for the most complex
models. xDEVS Java presents good results, with a maximum speedup of 1.82 for the most complex model.

5-5 5-40
15-15

10-45
35-10

35-15
30-25

30-35
40-30

50-30

structure [width-depth]

0

20

40

60

80

100

120

140

tim
e

[s
]

adevs
xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(a) Execution time.

5-5 5-40
15-15

10-45
35-10

35-15
30-25

30-35
40-30

50-30

structure [width-depth]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

du
p

xdevs-c
xdevs-cpp
xdevs-java
xdevs-rs

(b) Speedup over aDEVS.

Figure 6: Simulation results for HOmod models.

Cárdenas, Arroba, and Risco-Martín

We illustrate the percentage of execution time spent on every DEVStone type for the engines under study
in Figure 7. In general, aDEVS, xDEVS C, and xDEVS C++ seem to be the simulation engines that are
more sensitive to the model complexity, as they spend more than 60% of the overall time simulation the HO
and HOmod models. This is especially notable for xDEVS C, which spent 24% of the total time executing
the HOmod models. In contrast, xDEVS Java and xDEVS Rust required less than 60% to execute the same
model set. On the other hand, these two engines are the only ones that present a significant percentage
of execution time for LI models. This information, together with the speedup trends shown in Figure 3b,
suggest that these simulators present a higher simulation setup overhead compared to the other engines. This
overhead becomes negligible as the simulation time increases.

0 20 40 60 80 100
execution time [%]

xdevs-rs

xdevs-java

xdevs-cpp

xdevs-c

adevs LI
HI
HO
HOmod

Figure 7: Execution time percentage per DEVStone model type.

5 CONCLUSIONS AND FUTURE WORK

Applying M&S techniques can significantly help during the design and study of complex systems. Further-
more, approaches such as HIL modeling or DTs development integrate M&S tools for the implementation,
operation, and automation of modern CPSs. Here we presented xDEVS/C and xDEVS/Rust, two new im-
plementations of the xDEVS framework written in programming languages that are suitable for developing
embedded devices. These tools show a significant performance upgrade compared to other xDEVS ver-
sions. To illustrate their benefits, we compared the execution time of 1,164 different DEVStone synthetic
models for these new implementations and other simulators including aDEVS, one of the fastest simulators
up to date. Results show that xDEVS/Rust and xDEVS/C outperform state-of-the-art alternatives for com-
plex models. Moreover, their performance speedup increases linearly with the model complexity in most
cases. As future work, we plan to develop Real-Time (RT) applications for embedded devices using the pre-
sented frameworks. Additionally, we are currently working on a lightweight communication interface for
interconnecting xDEVS RT applications regardless of their underlying programming language or platform.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Ministry of Science and Innovation, under grants
PID2019-110866RB-I00/AEI/10.13039/501100011033 (managed by the Spanish State Research Agency),
and TED2021-130123B-I00 (under the Ecological and Digital Transition Program).

REFERENCES

Bolduc, J.-S., and H. Vangheluwe. 2002. “A modeling and simulation package for classic hierarchical
DEVS”. MSDL, School of Computer McGill University, Tech. Rep.

Cárdenas, Arroba, and Risco-Martín

Cárdenas, R., K. Henares, P. Arroba, J. L. Risco-Martín, and G. A. Wainer. 2022. “The DEVStone Metric:
Performance Analysis of DEVS Simulation Engines”. ACM Trans. Model. Comput. Simul. vol. 32 (3),
pp. 21:1–21:20.

Cárdenas, R., and G. Wainer. 2022, December. “Asymmetric Cell-DEVS models with the Cadmium simu-
lator”. Sim. Modelling Practice and Theory vol. 121, pp. 102649.

Glinsky, E., and G. Wainer. 2005. “DEVStone: a benchmarking technique for studying performance of
DEVS modeling and simulation environments”. In Ninth IEEE International Symposium on Distributed
Simulation and Real-Time Applications, pp. 265–272. Montreal, Quebec, Canada, IEEE, IEEE.

Moallemi, M., and G. Wainer. 2010. “Designing an Interface for Real-Time and Embedded DEVS”. In
Proceedings of the 2010 Spring Simulation Multiconference, SpringSim ’10. San Diego, CA, USA,
Society for Computer Simulation International.

Nutaro, J. 2023. “aDEVS (a Discrete EVent System Simulator)”. https://web.ornl.gov/~nutarojj/adevs/.

Quesnel, G., R. Duboz, and E. Ramat. 2009, April. “The Virtual Laboratory Environment – An operational
framework for multi-modelling, simulation and analysis of complex dynamical systems”. Sim. Mod-
elling Practice and Theory vol. 17, pp. 641–653.

Risco-Martín, J. L., K. Henares, S. Mittal, L. F. Almendras, and K. Olcoz. 2022a. “A Unified Cloud-Enabled
Discrete Event Parallel and Distributed Simulation Architecture”. Sim. Modelling Practice and Theory.

Risco-Martín, J. L., S. Mittal, J. C. Fabero, P. Malagón, and J. L. Ayala. 2016. “Real-time Hard-
ware/Software Co-Design Using DEVS-based Transparent M&S Framework”. In Proceedings of the
2016 Summer Simulation Multiconference (SummerSim 2016).

Risco-Martín, J. L., S. Mittal, K. Henares, R. Cardenas, and P. Arroba. 2022b. “xDEVS: A toolkit for
interoperable modeling and simulation of formal discrete event systems”. Softw: Pract and Exper.

Risco-Martín, J. L., S. Mittal, K. Henares, and R. Cárdenas. 2014. “xDEVS: A cross-platform discrete event
system simulator”. https://github.com/iscar-ucm/xdevs.

Seo, C., B. P. Zeigler, R. Coop, and D. Kim. 2013. “DEVS modeling and simulation methodology with MS4
Me software tool.”. In SpringSim (TMS-DEVS), pp. 33. SpringSim (TMS-DEVS).

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of modeling and simulation: discrete event & iterative
system computational foundations. Academic press.

AUTHOR BIOGRAPHIES

ROMÁN CÁRDENAS received the M.Sc. Degree in Telecommunication Engineering in 2019 from Uni-
versidad Politécnica de Madrid (UPM), Spain, where he pursues a Ph.D. in Electronic Systems Engineering
in Cotutelle with Carleton University (CU). His research interests include modeling and simulation with
applications in the IoT domain. His email address is r.cardenas@upm.es.

PATRICIA ARROBA is an Assistant Professor at Universidad Politécnica de Madrid (UPM), Spain. She
received her Ph.D. Degree in Telecommunication Engineering from UPM in 2017. Her research inter-
ests include energy and thermal-aware modeling and optimization of data centers. She can be reached at
p.arroba@upm.es.

JOSÉ L. RISCO-MARTÍN received his Ph.D. from Universidad Complutense de Madrid (UCM), Spain,
where he currently is a Full Professor in the Department of Computer Architecture and Automation. His
research interests include computer-aided design and modeling, simulation, and optimization of complex
systems. His email address is jlrisco@ucm.es.

https://web.ornl.gov/~nutarojj/adevs/
https://github.com/iscar-ucm/xdevs
mailto://r.cardenas@upm.es
mailto://p.arroba@upm.es
mailto://jlrisco@ucm.es

