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ABSTRACT

We introduce a novel quantized state integration method that is analogous to the explicit, second order
Runge-Kutta technique. A feature of this method is that, for a single differential equation over an interval
where the solution is monotonic, it exhibits an error proportional to the square of the integration quantum.
We offer a theoretical proof of this behavior and demonstrate it with a numerical example. At the same
time, an extension of the method to a system with input causes the errors to become proportional to the
integration quantum. The latter observation fits established theory; the former appears to be a new result
that might offer new insights into the construction of quantized state integration methods.

Keywords: quantized state systems, numerical integration, discrete event simulation

1 INTRODUCTION

Quantized state integration methods constitute a family of numerical techniques for solving differential
equations. The distinguishing feature of these methods is that the state is made discrete and time continuous,
whereas discrete time methods (like the familiar Euler or Runge-Kutta methods) make time discrete and
the state is continuous. The quantized state methods are particularly attractive for simulation problems
that exhibit heterogeneous rates of activity in time and space. For these types of systems, the methods
naturally and efficiently focus computation in areas of high activity (Muzy, Jammalamadaka, Zeigler, and
Nutaro 2011). Illustrations of this advantage have appeared in numerous domains of application; see, e.g.,
Nutaro (2007), Muzy, Innocenti, Aiello, Santucci, and Wainer (2002), Nutaro, Zeigler, Jammalamadaka,
and Akerkar (2003), Bergero, Casella, Kofman, and Fernández (2018).

In a well know result by Kofman (Kofman 2005, Cellier and Kofman 2006) it was shown that the errors ex-
hibited by a quantized state numerical method are proportional to the spacing D of discrete points in the state
space; D is the integration quantum. Nonetheless, it has been observed that in some special circumstances
this error bound may be improved upon to obtain errors proportional to the square of the integration quantum
(Nutaro 2003, Nutaro 2005). Though the linear proportionality result of Kofman holds in the general case,
these special circumstances are worth examining for the insight they may offer regarding the construction
of new schemes.

Towards this end, we introduce a novel quantized state integration method that is analogous to the explicit,
second order Runge-Kutta (RK2) technique. For the special case of a single equation describing a monotonic



Mahawattege and Nutaro

segment, we offer a proof that this quantized RK2 method (QRK2) exhibits a global error proportional to
the square of the integration quantum and a truncation error proportional to its cube. The result is illustrated
with numerical examples. We also offer an empirical demonstration that the linear error bound holds under
other circumstances for the same method.

We call this a special case because the method, as formulated here, has errors proportional to D2 only under
the circumstances considered. However, this special result illuminates two fundamental and challenging
sources of error for quantized integration methods: the type of information communicated at solution points
and the overshooting of inflection points. The former can likely be addressed by communicating higher
order derivatives. The latter poses an interesting question for future research.

After introducing the new method, proof, and demonstrations, we conclude with a series of conjectures that
extrapolate from our results and may offer fertile ground for future work. Moreover, the proposed method is
simple to implement and appears to offer some practical improvement over the numerical errors of the QSS1
method (Kofman and Junco 2001, Cellier and Kofman 2006, Nutaro 2007). This combination of simplicity
and the potential for reduced errors may make the QRK2 method attractive for some applications.

2 SIMULATING A SINGLE ORDINARY DIFFERENTIAL EQUATION

Consider an initial value problem
ẋ(t) = f (x(t)); x(t0) = x0 (1)

over an interval in which | f (x(t))| is not zero and the sign of f (x(t)) is constant. Several quantized state
integration methods for (1) can be obtained from the Taylor series

x(t +h) = x(t)+hẋ(t)+
h2ẍ(t)

2
+

∞

∑
n=3

hnx(n)(t)
n!

. (2)

The QSS1 method is obtained by discarding all terms in (2) after the first derivative which gives

x(t +h) = x(t)+hẋ(t) .

By choosing the integration quantum D the sequence of points in the state space that we calculate will be
such that D = |x(t +h)− x(t)|. Hence, the interval h between these solution points is approximated by

h =
D

|ẋ(t)|
.

If ẋ(t) =−x(t)< 0 over the interval of interest, then we calculate a solution x(0), x(0)−D, x(0)−2D, etc.
at time points D/|x(0)|, D/|x(0)−D|, D/|x(0)−2D|, and so forth.

The QRK2 method is obtained by discarding the summation terms in (2) after the second derivative. We
replace ẍ(t) with the finite difference approximation

ẍ(t) =
ẋ(t +h)− ẋ(t)

h

and obtain from the Taylor series

x(t +h) = x(t)+
h
2
(ẋ(t)+ ẋ(t +h)) . (3)
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Using D = |x(t +h)− x(t)| we rearrange (3) to obtain

h =
2D

|ẋ(t)+ ẋ(t +h)|
. (4)

Without loss of generality, assume f (x(t))< 0. The calculated solution at t +h has the value of x decreased
by D. From this we have

ẋ(t +h) = f (x(t +h)) = f (x(t)−D) . (5)

Now h can be calculated using (4) and (5) to be

h =
2D

| f (x(t))+ f (x(t)−D)|
. (6)

A simulation of x(t) is accomplished with an iterative procedure

x(tn+1) = x(tn)−D; tn+1 =
n+1

∑
i=1

hi ; hi =
2D

| f (x(ti−1))+ f (x(ti−1)−D)|
. (7)

Before proceeding to an analysis of the error introduced by this simulation procedure, it is illuminating to
examine the truncation error for the equation ẋ =−ax. The first four terms of the Taylor series are

x(t +h) = x(t)−ahx(t)+
1
2

h2a2x(t)− 1
6

h3a3x(t)+ · · · (8)

When x(t)> D the absolute value in the denominator of (6) can be removed to simplify the expression and
the step in time is

h =
2D

2ax(t)−aD
. (9)

Substituting (9) into the Taylor series (8) gives us

x(t +h) = x(t)−a
2D

2ax(t)−aD
x(t)+

1
2

4D2

(2ax(t)−aD)2 a2x(t)− 1
6

8D3

(2ax(t)−aD)3 a3x(t)+ · · ·

The error ε committed in a single step is the difference between the true solution x(t +h) at time t +h and
the computed solution x(t)−D so ε = x(t +h)− (x(t)−D)) and in terms of the Taylor series,

ε = D−a
2D

2ax(t)−aD
x(t)+

1
2

4D2

(2ax(t)−aD)2 a2x(t)− 1
6

8D3

(2ax(t)−aD)3 a3x(t)+ · · · (10)

The a terms throughout (10) cancel and may be dropped. Then multiplying as needed by (2x(t)−D), we
may transform the first, second, and third terms containing D and D2 into the ratio of polynomials

D(2x(t)−D)2 −2Dx(t)(2x(t)−D)+2D2x(t)
(2x(t)−D)2 . (11)

Examining the terms in the numerator of (11) we find that

D(2x(t)−D)2 = 4Dx(t)2 +D3 −4D2x(t)

−2Dx(t)(2x(t)−D)+2D2x(t) =−4Dx(t)2 +4D2x(t)

and so the the error in (10) reduces to

ε =
D3

(2x(t)−D)2 −
1
6

8D3

(2ax(t)−aD)3 a3x(t)+ · · ·

Hence, the largest term in the truncation error depends on D3 and we may expect the error over any mono-
tonic segment to depend on D2. This intuition can be confirmed with an essentially geometric argument.
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Theorem 1. Consider an Initial Value Problem in the form

ẋ(t) = f (x(t)); x(t0) = x0

over a finite interval of time and its approximate solution values x0, x1, ..., xk calculated with the iterative
procedure (7). We assume the following:

1. f (x) is continuous and has the same sign for all x in the interval [x0,xk] and
2. there exists m > 0 such that m < | f (x)| for all x ∈ [x0,xk].

There exits constant C > 0 such that the error ε in the approximate solution is bounded by CD2.

Proof. The proof is by analogy to the second order Runge-Kutta (RK2) numerical method. The RK2
method starts at the point (x0, t0) and then uses steps of size ∆t in time to construct a numerical solution as
subsequent points (xn, tn) using the iteration

xn+1 = xn +
∆t
2
( f (xn)+ f (xn +∆t f (xn))) ; tn = t0 +n∆t . (12)

For this procedure choose ∆t such that

∆t =
D
m

.

Over the segment of interest m < | f (x)| and f (x) has the same sign everywhere. Hence, the largest hi in the
iteration (7) is bounded from above by

hi <
2D
2m

= ∆t .

The RK2 method (12) simulates the system by averaging the slopes at points xn and xn +∆t f (xn) and then
stepping a distance in time ∆t along the line defined by that slope to move from xn to xn+1. Without loss of
generality we may assume f (x)< 0. In this case, the quantized state method simulates the system by using
the averaged slopes at points xn and xn −D. This second point is identical to the second point used by RK2
if D/| f (xn)| is chosen for its step in time as

D
| f (xn)|

f (xn) =−D .

Consequently, over this monotonic segment the quantized state method acts identically to RK2, but always
with a step in time that is less than ∆t as D/| f (xn)|< D/m = ∆t. It is well known that there exits a constant
K such that the error incurred by the RK2 method is bounded by K∆t2. Therefore the error ε is such that

ε < K∆t2 = K
(

D
m

)2

=
K
m2 D2

and picking C = K/m2 completes the proof.

3 SYSTEMS OF EQUATIONS

For a system of equations we cannot expect errors proportional to D2 everywhere. Nonetheless, we expect
that a bound on the error in proportion to D will hold for the proposed method numerical method (Cellier
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and Kofman 2006, Kofman 2005). From this perspective, the proposed QRK2 technique may offer a simple,
practical improvement over the QSS1 method that calculates its advance in time as D/| f (xn)|.

QRK2 is identical to QSS1 except as follows; the discussion here is limited to a two state variable system,
with states x and y, but can be generalized in a natural way. Our realization of QRK2 in software builds
upon the tutorial by Nutaro (2007). We describe the scheme for x; it is formulated for y in the same way. At
internal and confluent events (see Nutaro (2007) for definitions), the time advance h for x is calculated using
its present value and the most recently received update ỹ of state variable y as

k1 = f (xn, ỹ)

∆ = D
k1

|k1|
k2 = f (xn +∆, ỹ)

h =



∞ if k1 = 0
2D

|k1 + k2|
if k1k2 ≥ 0

2k1D
(k2 − k1)|k1 + k2|

if k1k2 < 0

The third case for h accounts for the step spanning an inflection point. In this case, the approximate point of
the zero crossing lies at the solution for d in a linear model of f . This zero crossing occurs when

k1

(
1− d

D

)
+ k2

d
D

= 0 .

At an external event, the solution is advanced as with the RK2 scheme using the elapsed time e for the step
size. If ỹ is the prior communicated value of y and ȳ is the newly communicated value, then the new value
xn+1 of the state variable x is calculated as

k1 = f (xn, ỹ)

k2 = f (xn + ek1, ȳ)

xn+1 = xn +
e
2
(k1 + k2)

The time advance h is calculated as before but with D replaced by the distance remaining to the next quantum
level and ȳ is assigned to ỹ. However, should the external event cause xn+1 to move past the next quantum
boundary, then the time advance is zero.

We make a preliminary exploration of this idea with the system of equations

ẋ =−2x+ y

ẏ =−y

which has the solution

x(t) = x(0)e−2t + y(0)(e−2t − e−t)/3

y(t) = y(0)e−t

The initial conditions are x(0) = 0 and y(0) =
√

2.
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Figure 1: Plots of the exact solution to the system of test equations and the errors incurred by the QSS1 and
QRK2 methods at each calculation point.

Figure 1 shows plots of the solution to this system and the errors at each calculation point using the QSS1
and QRK2 methods with D = 0.01. The solution for y(t) satisfies the conditions of our theorem when the
numerical solution is sufficiently far from zero. This is apparent in the very small errors (show on a log
scale) of the QRK2 trajectory. The solution to x(t) is not monotonic everywhere and the input from y is
quantized. Nonetheless, it exhibits errors that are generally improved over the QSS1 method.

Figure 2 shows the error of the first calculated points past t = 15 for x and y. It is clear from the plot that the
error in y follows a curve proportional to D2, as anticipated by the theorem. The error for x is proportional
to D, in agreement with the more general result.

4 CONCLUSIONS

For a single system over a monotonic segment the QRK2 method exhibits error proportional to D2. For
a system of equations, the QRK2 method communicates the value of the state variable at each threshold
crossing. The error in the receiver’s approximation is proportional to D between updates, with the constant
of proportionality depending on the partial derivative of f with respect to the arriving variable. This error
contributes to the overall integration error being proportional to D, which we see for x in the test problem.

It is conceivable that this contribution to the overall error could be eliminated by transmitting other infor-
mation. For example, the QSS2 method (Kofman 2002) communicates the state variable value and its first
derivative at each quantum crossing. In principle, this could permit second order accurate extrapolations of
the communicated value in time and thereby reduce this contributor to the overall error.

Let us suppose that this can be accomplished, and that by doing so we are able to obtain errors proportional
to D2 for systems of equations over monotonic segments. Then the remaining difficulty appears to be at
inflection points where the sign of the derivative changes. Suppose that the derivative at this point switches
from positive to negative. At such a point, we increase the state variable by a positive quantity bounded by
D and may overshoot the inflection point by the same amount. Hence, we induce an error bounded by D
rather than D2.
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Figure 2: Numerical error as a function of D for the system of test equations.

The linear implicit QSS method (Migoni, Bortolotto, Kofman, and Cellier 2013, Pietro, Migoni, and Kofman
2019) offers an example of detecting an inflection point as part of a quantized state numerical integation.
However, the purpose in this case is to more quickly simulate stiff systems by avoiding a rapid passing back
and forth across the inflection point. The error induced by this method remains proportional to D. A similar
effort to account for inflection points is included in the QRK2 method by approximating f (x,y) with a line
in x but still using the single communicated value of y. Therefore, it is unlikely to offer a solution to the
problem of inflection points.

Another avenue for investigation is the link between time stepped and quantized state methods for numerical
integration. The proof in this paper relies explicitly on translating properties of the RK2 method into bounds
on the error of the QRK2 method. In prior work, a similar but more thoroughly investigated link was found
between the explicit Euler method and the QSS1 method (Nutaro and Zeigler 2007). There it was found that
the resultant of the discrete event system that defines QSS1 satisfies the stability criteria of explicit Euler.
Continued investigation of these relationships could yield important new insights.

Future work to obtain quantized state methods with errors proportional to D2 everywhere might begin with
an investigation of the above questions. Moreover, it appears that such a method, if one exists, would neces-
sarily be found outside the framework of perturbed linear systems that gives us well established theoretical
error bounds for the known QSS variants; again, see (Kofman 2005, Cellier and Kofman 2006). On the one
hand, this may indicate that such methods don’t exist. At the same time, the demonstration of D2 errors
in a special case, one not anticipated by existing theory, suggests that something interesting remains to be
discovered.
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