
Agent-Oriented Approach Based on Discrete Event Systems

Paul-Antoine Bisgambiglia and Paul Antoine Bisgambiglia and Romain Franceschini

University of Corsica, UMR SPE 6134 CNRS, UMS Stella Mare 3460

TIC team

Campus Grimaldi, 20250 Corti

bisgambiglia@univ-corse.fr and bisgambi@univ-corse.fr

Keywords: Discrete event simulation, DEVS, Multi Agent

System, MAS, cellular network, Agent-based simulation,

group behavior

Abstract

 Inspired by existing works, in this paper, we propose

software architecture for coupling the MAS and DEVS

formalism. This architecture is designed to enable the

modeling of large quantities of agents. Previous works often

associated with an agent to a DEVS model. The complexity

of the system increases proportionately with the number of

agents. We describe an approach to group a set of agents in

the same DEVS model, and allow representing many more

agents.

1. INTRODUCTION

 In the field of Discrete Event Systems (DES [1]),

recently, many efforts have been devoted to develop

appropriate tools to study, and model in a formal way the

dynamics and the mechanisms of interaction of the natural

systems [2]–[10]. Discrete Event Systems are a special type

of dynamic system. The ‘state’ of these systems changes at

discrete instants in time and the term ‘event’ represents the

occurrence of discontinuous change. For several years the

community is changing the DEVS formalism [11] so that it

can become a powerful tool for modeling complex systems

and thus living systems. In this paper, an agent oriented

approach based on the discrete event system specification

(DEVS) formalism is proposed. This study aims to develop

a multi-agent-based simulation system to evaluate the

evolution of group of individuals. Agent-based Modelling is

a very efficacious conceptualization paradigm that easily

allows the representation of very complex systems

composed of autonomous, possibly intelligent, interacting

entities. For this reason, Agent-based systems have been

incorporated into simulation framework as a mean of

effectively increasing the realism through adaptation and

learning abilities. The integration between agent and

simulation, namely Agent-based simulation, however, can

be further exploited by modeling the simulation system as a

Multi Agent System (MAS). Simulation of agent-based

systems is an inherent requirement of the development

process which provides developers with a powerful means

to validate both agents' dynamic behavior and the agent

system as a whole and investigate the implications of

alternative architectures and coordination strategies.

 MAS are more suited to living organism’s modeling

where communication between system’s members is

complex. The multi agents’ paradigm is issued from the

distributed artificial intelligence in the early 80’s [12], [13].

Multi-agent systems consist of agents and their

environment. According to Michael Wooldridge we

consider that "An agent is a computer system that is situated

in some environment, and that is capable of autonomous

action in this environment in order to meet its design

objectives" [13]. The global behavior of MAS emerges from

the sum of individual actions of agents, from the

interactions between agents and between agents and their

environment.

 Our problem is to provide a consistent and efficient

software structure to combine the discrete event systems

modeling and multi-agent systems. This structure should

allow modeling a large number of agents and their evolution

over time. In these fields other work has been done [5], [6],

[14] but the proposed approaches, we do not seem able to

describe the evolution of several hundred individuals. The

platform GALATEA [5] offered as a family of languages to

model MAS to be simulated in a DEVS, multi-agent

platform. GALATEA is the product of two lines of research:

simulation languages based on Zeigler's theory of

simulation and logic-based agents. This platform would

allow to model different formalisms, in different languages

in a same interface. But this implementation seems tedious

and difficult. The second approach [6] matches a lot with

our works. An agent is represented by an atomic model and

stimuli by exterior messages [9], [14]. But using of VLE

framework [15] to simulate and using of Cell-DEVS

formalism [16] to describe environment can make the

simulation slower to generate. Indeed, each cell is

represented by an atomic model and for a big environment

number of atomic model is very high. Because of its

number, simulation use lot of resources and memory,

especially in our case with a big agent’s concentration and a

large environment (all of both are atomics models if we’ll

use Cell-DEVS).

 We present architecture for managing agents based on

the cellular network model (Figure 1) for managing and

location the subscribers [17], [18]. We give you all the

details of our architecture in the following parts, it is built

mailto:bisgambiglia@univ-corse.fr
mailto:bisgambi@univ-corse.fr

like a cellular network, the network is an environment and

the agents are the users. The problems are as follows:

Figure 1. Mobile network (GSM) architecture

 1) The network must be able to identify the subscriber. 2)

The network must know the location of subscribers,

subscribers who are numerous and move. Cutting the

network into multiple cells must be invisible to the

subscriber. 3) The network must ensure the continuity of the

communication even when the subscriber moves.

1) Location databases called HLR (Home Location

Register), contains profiles for each user (subscribed

services and data authentication). HLR equipments are

limited in capacity. There are several HLR in a network but

a given subscriber is still drive by the same HLR, regardless

of where it is located. 2) In order to reduce data exchange,

we associate a local database VLR (Visitor Location

Register) each MSC (Mobile services Switching Centre).

The MSC is the heart of the GSM network. It handles call

routing, call setup, and basic switching functions. An MSC

handles multiple BSCs and also interfaces with other MSC's

and registers. It also handles inter-BSC handoffs as well as

coordinates with other MSC's for inter-MSC handoffs. The

VLR contains the profiles of all subscribers who are in the

area managed by the MSC at any given moment. A

customer who moves is taken into account by the various

successive MSC and VLR. MSC are composed of several

BSC (Base Station Controller). 3) The BSC controls a set of

BTS (Base Transceiver Station), and it manages radio

resource. According to the quality of the radio link, of the

current communication, the BSC ensure the continuity of

communication and jumps BTS to BTS. BTS are

transceivers (antennas). They can locate several subscribers

(MS: Mobile Station), the area it covers is called a cell.

Terminals running on networks (subscribers) are called MS.

 In the first part, we present the DEVS formalism. This

formalism may be defined as a universal, general

methodology which provides tools to model and simulate

systems, the behavior of which is based on the notion of

events. This formalism is based on the theory of systems

and the notion of the model and permits the specification of

complex discrete event systems in modular and hierarchical

form. In the second part, we will detail our architecture.

Finally, before concluding, we present a pedagogical

example, application of our approach.

2. DEVS FORMALISM

 Since the 1970s, formal tasks have been performed to

develop the theoretical foundations of modeling and

simulating discrete event dynamic systems. Major efforts

have been made to adapt this formalism to various domains

and situations [16], [19]–[24]. Our interest focuses on the

DEVS formalism (Discrete Event System Specification

[11], [19]). Discrete event simulation has a quickly

execution because of its way to treat event, avoiding

continuous treatment. Moreover, coupling and separation

between modeling and simulation on DEVS formalism

allow reusing existing models in new models. DEVS is a

powerful formalism allowing reusing models through

library already developed and also interconnecting of these

models to compose heterogeneous models based on a

different formalism.

2.1. DEVS models

 DEVS is a modular formalism which permits the

modelling of causal and deterministic systems. A DEVS

atomic model is based on continuous time, inputs, outputs,

states and functions. More complex models are constructed

by connecting several atomic models in a hierarchical way.

The atomic model may be considered as a time-based state

machine. It makes it possible to describe the system's

functional or behavioural aspects. The atomic model

provides an independent description of the system's

behaviour, defined by the states and functions of the

inputs/outputs and by the model's internal transitions. The

model develops by changing its state according to external

stimuli (via an input) or internal stimuli (via a transition

function). The purpose of these changes in state is to

determine the system's behavioural response to these

stimuli. An atomic model is described by the following

formula: MA : < X; Y; S; ta; δext ; δint ; λ>, with:

 X = {(pin, v) | pin ⋲ Input ports, v ⋲ X pin }: the list of

the model inputs, each input being characterised by a

coupling (port/value number);

 Y = {(pout, v) | pout ⋲ Output ports, v ⋲ Y pout }: the list

of the model outputs, each output being characterised

by a coupling (port/value number);

 S: all the system's states or state variables;

 ta: S⟶R+: the time advancement function or the S

state's lifetime;

 δext: QxX⟶S : the external transition function, where:

– Q = {(Si, e) | Si ⋲ S, 0 ≤ e ≤ ta(Si)};

– e: is the time which has elapsed since the last

transition. The external transition function specifies

how the atomic model changes state (passing from

state S1 to state S2 when an input takes place

(external event before ta(S1) has elapsed;

 δint:S⟶S: the internal transition function. It permits

passing from an S1 state to the t1 instance, or from an S2

state to the t2 instance, when no external event occurs

during the lifetime of the ta(S1) state;

 λ:S⟶Y: the output function.

 The DEVS formalism uses the notion of a description

hierarchy, which permits the construction of models called

"couplings", based on a collection of atomic models and/or

couplings, and on three coupling relations. A DEVS coupled

model is modular and displays a hierarchical structure,

which permits the creation of complex models based on

atomic and/or coupled models. It is described by the

following formula: MC : < XM; YM; CM; EIC; EOC; IC; L

>, with: XM: total of input ports; YM: total of output ports;

CM: the list of models making up the CM coupled model;

EIC: the total of the input couplings, which links the

coupled model to its components; EOC: the total of the

output couplings, which links the components to the

coupled model; IC: the total of the internal couplings, which

links the components to one another; L: a list of priorities

among components.

A coupled model makes it possible to describe how several

other models are interconnected in order to form a new one.

2.2. Discrete event simulation

 In order to define the simulation semantics of the

DEVS models, Zeigler put forward the abstract simulator

notion. The main advantage of this concept is the difference

between the models and the simulator. At the level of this

simulator (abstract), each simulation component

corresponds to a modelling component. In fact, DEVS is

one of the rare "formal" formalisms which propose an

implementation algorithm. According to [11], a coupled

model is composed of atomic and/or coupled models. The

abstract simulator is composed of a root coordinator,

coordinators and simulators. The corresponding algorithm is

described in [2] and [19].

2.3. DEVS extensions

In this section, we present the works on which our

approach is based.

DEVS BUS is an extension of the DEVS formalism based

on HLA [26], [27]. It proposes a layered architecture for

easy distribution simulations.

Dynamic DEVS is an extension of the DEVS formalism that

allows taking into account the evolution of the structure of

the system during the simulation. Several approaches have

been proposed [9], [28]–[31].

Cell DEVS is also an extension of DEVS formalism that

allows to represent a geographical area in a grid cell, each

cell is described as an atomic model [32], [33]. This

representation is quite heavy because there are so many

models and exchanged messages. Improved versions have

been proposed on the basis of a flattening simulators or

parallelization and/or distribution of simulations [21], [34]–

[36].

2.4. DEVS frameworks

 There are many environments based on the DEVS

formalism, we can cite [37]–[39]. Our team works on

DEVSimPy. DEVSimPy framework [22] allows a simple

graphical interface to create and use DEVS models. It is a

WxPython based environment for the simulation of complex

systems. Its development is supported by the CNRS

(National Center for Scientific Research) and the SPE

research laboratory team. The main goal of this framework

is to facilitate the modeling of DEVS systems using the GUI

library and the drag and drop approach. The modeling

approach of DEVSimPy is based on UML Software, and

there is a separating between the GUI part and the

implementation part of DEVS formalism. It is based on the

simulation engine Python DEVS [40], which implements

the algorithms of classical DEVS [11]. With DEVSimPy we

can: (1) describe a DEVS model and save or export it into a

library; (2) edit the code of DEVS model to modify

behaviors also during the simulation; (3) import existing

library of models which allows the specific domain

modeling (Power Systems, Fuzzy, Continuous ...); (4)

automatically simulate the system and perform its analysis

during the simulation.

3. ARCHITECTURE BASED ON CELLULAR

NETWORKS

 This section presents a paradigm to describe cellular

model in DEVS formalism. In [33] formal descriptions of

Cell DEVS allow describing a cellular model as DEVS. A

space is composed of individual cells define as atomic

models that can be lately afterward coupled in a coupled

model. Each cell as an interface composed with a fixed

number of ports, connected with a neighbor. An analogy

between Multi Agent Systems and the Modeling and

Simulation theory using dynamic structure was described in

[6], [14]. Performing a direct simulation using the DEVS

formalism can be inefficient for models comprised of

various numbers of sub-models such as those based on Cell

spaces or/and MAS. In order to tackle increasing complexity

and to improve performance of DEVS simulation, some

studies suggest the use of a non-hierarchical DEVS

simulator [29], [33], [34] and some other solutions proposed

to exploit the parallelism existing in the system by

associating more than one processor to the simulation [7],

[10], [21], [33]. In a non-hierarchical (or flat simulation)

there is only one coordinator in charge of all the simulation

tasks of model’s atomic components. By eliminating the

intermediate coordinators in the hierarchy, the flat

simulation reduces the number of exchanged messages

between processors. However, when the number of agents

increases, communications among agents and environment

produces a high degree of overhead. In order to accelerate

simulation time computations, parallel and distributed

techniques [7], [15], [33], [41] have been developed. The

general approach taken by parallel or distributed simulation

is often based on the logical process [42] executing on

multiprocessor systems. A Logical Process (LPs) is a

subparts of the system coded as a coupled model and linked

to other LPs by timestamped messages.

CM - LP Strucutre (Processor n)
CM - AgentManager (i)

AM -

ZoneManagerAM-Group AM-Step

CM - AgentManager (j)

AM-Group AM-Step

CM - LP Strucutre (Processor m)

AM - Local

Manager

CM - AgentManager (i)

CM - AgentManager (j)

AM -

ZoneManager

AM - Local

Manager

AM - Global

Manager

Figure 2. Global Architecture based on DEVS models

-IManager

GlobalManager -aManagers
-zone

LocalManager

-Cells

ZoneManager

AgentManager

+Simul()

Root1

1 1
1..*

1

1..*

1

1..*

-Agents

Group

1

1..*

-

Step

1 1..*

1

-Move

1 1 1

Network

Logical Process

Agent

Role

+simulate()

-Cell
-State

Entity

-Position
-Entities

Cell

1

1..*

0..*

-Localize

1

+simulate()

-tn

Agent Object

Position

1

1..*

1

1

1

1

1

1

Figure 3. MAS class diagram

We propose a new technique for fast execution of MAS

models based on existing approach. There are two main

differences when comparing our approach with the previous

simulation presented here, namely that agents and cells are

not considered as a DEVS model. Indeed, when the number

of agents is growing it is then necessary to introduce an

intermediate level of simulation. We focused on

homogeneous groups in which all individuals agent have the

same social role (set of agents satisfying distinguished

properties, description or behavior) and on an environment

divided into zones, where a zone is defined as a geographic

area represented by a grid cells. In the architecture A logical

process is use to handle one zone as shown in figure 2. So

each zone represents a sub-part of the global system and

they can be connected to one or more other zone. The

DEVS/HLA simulation [43], [44] provides communications

between LPs, as well as the whole simulation time

management method between distributed simulations.

 To improve performance, the proposed solution is

implemented in a distributed fashion, where on non-

hierarchical coordinator will be associated to a logical

processor and will interconnect and synchronize through

HLA architecture. A “logical process” is a coupled model

that manages the groups of agents localized in the specified

area controlled by the atomic model “zone manager”. Each

“zone manager” as also a set of border cells will have

different behavior than those of the rest of the area. Each

cell contains information about agents and dynamics or

“persistent” objects currently located in that cell. As an

agent moves through the grid it will be insert or remove

from the cell’s list as appropriate in the same zone manager.

When an agent moves through the border, it will be

removed in the current model and transferred by the “local

manager” to the corresponding area. A “local manager” is

coded as an atomic model including input and output event

list to communicate with another “local manager” using a

neighborhood relationship. Agents are grouped according to

their roles and stored in the atomic model “agent manager”,

making it easier to manage larger units of entities that

belong together. Agents can perform various roles within

one system. Finally, the “step atomic model” is used to

perform the steps.

 Based on the discrete-event simulation framework

given in this article the architecture of the simulation engine

is composed of three basics layers. Network layer built atop

the simulation framework DEVS, provides a distributed

HLA infrastructure formed by a network of interconnected

logical processes (Figure 3). The logical process layer

provides abstractions representing users’ behaviors. The

agents’ layer provides the basic class to simulate the

appropriate system.

 Our architecture is based on cellular networks (GSM).

We have simplified some aspects because we do not

encounter exactly the same problems, such as secure

communications. The GSM architecture is hierarchical, the

lowest level there are the mobile stations, our entities, then

base stations (BTS), our zone managers. At superior level

we find the controller (BSC), group managers and finally

the MSC, is our local managers.

4. APPLICATION EXAMPLE

 We present a simple ant colonies model with only one

logical process and two groups of ants (soldier and worker).

For clarity and simplicity reasons, we do not give her a

global formalization of the system. The behavior of ants and

a version of the algorithm of DEVS transition functions are

given in [45]. Workers gather food for the colony; soldiers

defend the colony and fight off enemy ants or insects. Ant’s

actions are limited to search for food or enemies by working

randomly, follow a pheromone trace, bring food to the nest,

and fight. When foraging or find enemies, ants leave a

pheromone trail so that they know where they’ve been.

Soldiers do not look for food and survive only by eating

food carried by workers. If density of available food is too

low, foraging efforts is growing, inter-relation between

atomics models groups permit to transit some agents from

the soldier group to the worker group. If the danger

increases workers are switch to the soldier group. Figure 4

shows an agent diagram that reflects the way in which ants

evolve. The structure shows two agents class, which has can

sense food.

Workers

[After(duration)]

Larval

Search

[Pheromone detection]

Eating

[Found food]

[Lost pheromone]
Randomly

Carried
[PickedUp]

Ready

[Nest/drop off]

[not enough food]

[after(duration)]

Folllow Sense

[Sense food]

Return

[Enemy]

[Enemy]

[Enemy]

[Enemy]

[Enemy]

Figure 4. Worker’s behavior

 We suppose that ants can sense several pheromone

signals over a distance. A worker moves to the source if it

smelt food, and return directly to the nest if it smelt enemy,

depositing a pheromone trail to mark out dangers as it goes

(Figure 4). A soldier seeks only enemies and fight to the

death to protect his colony (Figure 5). A defeated ant emits

an alarm pheromone that attracts more soldiers from farther

away and leads others to give warning. The role of ants may

change with the circumstances. Different types of

pheromones are represented as objects placed in a cell of the

zone (Figure 3).

The birth rate is a base rate, which has been recalculated at

each step depending the food was dropped off at the nest by

the workers. Soldiers return to the nest for food, and reduce

quantity of food. In addition, ants can die due the base death

rate initialized with the program and due the fight.

Soldiers

[After(duration)]

Larval
Search

[Pheromone detection]

Fighting

[Found enemy]

[Lost pheromone]
Randomly

[Tired] Eating

[Winner]

[after(duration)]

Folllow Sense

[Sense enemy]

Return

[Dead/Alarm]

Figure 5. Soldier’s behavior

For simplicity reasons, in the example show her, the

simulation period has been divided in three distinct parts

(Figure 6). The first part covers the period when the workers

are seeking food, figure 6: simulation time 0 to 31. During

this period as the food resource decreases due to

consumption, the number of workers increases. Part two

occurred when food begins to arrive to the nest, the numbers

of soldier’s increases, figure 6: simulation time 31 to 50. At

the end of this part, ants are born according to the base rate,

figure 6: time 58. Part three covers the fighting period

between clones and individuals, as Molly's son Mark grows

up as the only 'single' in the group, figure 6 from the

simulation time 70.

Figure 6. Simulation results (the horizontal axis represents

simulation time, and the y-axis the number of ants)

In figure 6, the first section covers the period when the

cloning facilities are being set up against a background of a

world society in the throes of collapse. Part two is a look

after several clone generations have occurred and an

expedition is made to one of ruined cities to salvage needed

high-tech supplies for the continuing cloning operation. The

expedition exposes both the strength and the weakness of

the clone groups, as they find it almost impossible to remain

sane when separated from their clone 'brothers' and 'sisters'.

One expedition member, Molly, grows so far away from her

sisters under the stress that she really becomes an

individual. Part three covers the fighting period between

soldiers and enemies.

This pedagogical example was used to illustrate the

proposed architecture.

5. CONCLUSION AND PERSPECTIVES

 The starting point for this work begins with a simple

observation: although there are DEVS extensions to allow

agent-based simulation (reactive agents), none of these

extensions can represent very large amounts of agents. In

fact, these extensions are based on a representation of agents

from DEVS atomic models. One agent is described by one

model. This representation, although relevant, causes a very

active communication between agents and between agents

and environment. The management of this large quantity of

messages reduces the number of agents modeled.

 To solve this problem, we propose new software

architecture. Its objective is to model a large number of

agents. Our approach is inspired by the architecture of the

GSM networks. It is based on the notion of an individuals'

group. It uses and is also inspired other concepts introduced

in extensions Cell DEVS, for the representation of cellular

environment, dynamic DEVS, for creation or destruction of

groups, and DEVS Bus for parallelization or distribution of

the logical process. From our point of view, most of our

approach is the representation as a group. A group is a set of

agents with the same behavior or aim. An agent is not

modeled by an atomic model; it is defined as a simplified

atomic model without ports, and can autonomously run its

behavior. It is a specific object that is different of a DEVS

component.

We propose to manage agents from a coupled model called

Manager and composed of two atomic models. In our

approach one hundred agents with a same goal are modeled

by two atomic models. The dynamic aspects are thus

simplified because the manager can create or destroy agents

without having to manage couplings. Our approach has been

illustrated from MAS representing an ants society

modelized with only one logical process. The ants are

divided into two groups: Workers looking for food, then

they return to the nest. The food allows the creation of new

ants; Soldiers defend the nest and workers. This application

allows showing the possible interactions between two

groups.

Our perspectives are quite numerous, at first we want to

represent intelligent agents. This improvement passes

0

50

100

150

200

1 16 31 46 61 76 91

Workers Soldiers Food

through the addition of cognitive modules at the level of

individual and collective. We will update the agent class and

strategy. We wish to develop a configurable visualization

interface. It will make the interface between GIS and our

software. It will add groups of agents by drag and drop. In

the longer term, we couple our software with a currents

model, to test our approach on a large scale and thus

simulate the evolution and spread of post larvae.

6. BIBLIOGRAPHY

[1] C. G. Cassandrass et S. Lafortune, Introduction to

Discrete Event Systems. 1999.

[2] D. Gianni, « Bringing Discrete Event Simulation

Concepts into Multi-agent Systems », 2008, p.

186‑191.

[3] J. Košeckà et R. Bajcsy, « Discrete Event Systems

for autonomous mobile agents », Robotics and

Autonomous Systems, vol. 12, n
o
 3‑4, p. 187‑198,

avr. 1994.

[4] F. Capkovic, « Cooperation of autonomous agents

based on supervisory control of DES », 2010, p.

178‑183.

[5] J. Davila, E. Gomez, K. Laffaille, K. Tucci, et M.

Uzcategui, « MultiAgent Distributed Simulation with

GALATEA », 2005, p. 165‑170.

[6] R. Duboz, D. Versmisse, G. Quesnel, A. Muzzy, et

E. Ramat, « Specification of Dynamic Structure

Discret event Multiagent Systems », in Agent-

Directed Simulation (ADS 2006), Huntsville, AL,

USA,, 2005.

[7] K. Kim et K. J. Kim, « Multi-agent-based simulation

system for construction operations with congested

flows », Automation in Construction, vol. 19, n
o
 7, p.

867‑874, nov. 2010.

[8] D. Degenring, M. Röhl, et A. M. Uhrmacher,

« Discrete event, multi-level simulation of metabolite

channeling », Biosystems, vol. 75, n
o
 1‑3, p. 29‑41,

juill. 2004.

[9] A. Uhrmacher, J. Himmelspach, M. Rohl, et R.

Ewald, « Introducing Variable Ports and Multi-

Couplings for Cell Biological Modeling in DEVS »,

2006, p. 832‑840.

[10] G. Fortino, A. Garro, et W. Russo, « A Discrete-

Event Simulation Framework for the Validation of

Agent-based and Multi-Agent Systems », presented at

the WOA, 2005, p. 75‑84.

[11] B. P. Zeigler, H. Praehofer, et T. G. Kim, Theory of

Modeling and Simulation, Second Edition. 2000.

[12] Jacques Ferber, Multi-Agent System: An Introduction

to Distributed Artificial Intelligence, Addison Wesley

Longman. Addison Wesley Longman, 1999.

[13] Michael Wooldridge, An Introduction to MultiAgent

Systems, Wiley and Sons. Chichester, West Sussex,

Angleterre: Wiley and Sons, 2002.

[14] A. M. Uhrmacher et B. Schattenberg, « Agents in

Discrete Event Simulation », in Proceedings of

ESS98, 1998.

[15] G. Quesnel, R. Duboz, et É. Ramat, « The Virtual

Laboratory Environment – An operational framework

for multi-modelling, simulation and analysis of

complex dynamical systems », Simulation Modelling

Practice and Theory, vol. 17, n
o
 4, p. 641‑653, avr.

2009.

[16] J. Ameghino, A. Troccoli, et G. Wainer, « Models of

complex physical systems using Cell-DEVS », p.

266‑273.

[17] S. Makki, « Tracking highly mobile users using

replicated databases », Computer Communications,

vol. 23, n
o
 10, p. 975‑979, mai 2000.

[18] V. Garg, « Mobility Management in Wireless

Networks », in Wireless Communications &

Networking, Elsevier, 2007, p. 369‑395.

[19] B. P. Zeigler, « DEVS Today - Recent Advances in

Discrete Event-Based Information Technology », in

proc. of the 11th IEEE/ACM International Symposium

on, 2003.

[20] P.-A. Bisgambiglia, E. de Gentili, P. A.

Bisgambiglia, et J.-F. Santucci, « Fuzz-iDEVS:

Towards a fuzzy toolbox for discrete event systems »,

in Proceedings of the SIMUTools’09, Rome (Italie),

2009.

[21] S. Jafer et G. Wainer, « Flattened Conservative

Parallel Simulator for DEVS and CELL-DEVS », in

Proceedings of the 2009 International Conference on

Computational Science and Engineering - Volume 01,

2009, p. 443‑448.

[22] L. Capocchi, J. F. Santucci, B. Poggi, et C. Nicolai,

« DEVSimPy: A Collaborative Python Software for

Modeling and Simulation of DEVS Systems », in

Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), 2011 20th

IEEE International Workshops on, Paris, 2011, p.

170‑175.

[23] F. J. Barros, « Modeling formalisms for dynamic

structure systems », ACM Transactions on Modeling

and Computer Simulation, vol. 7, n
o
 4, p. 501‑515,

oct. 1997.

[24] J. deLara et H. Vangheluwe, « Computer Aided

Multi-paradigm Modelling to Process Petri-Nets and

Statecharts », in Proceedings of the First

International Conference of Graph Transformation

(ICGT), 2002, vol. 2505, p. 239–253.

[25] B. P. Zeigler, Theory of Modeling and Simulation.

USA: Academic Press, 1976.

[26] T. G. Kim et Y. J. Kim, « A Heterogeneous

Simulation Framework Based on The DEVS Bus and

The High Level Architecture », in Proceedings of the

1998 Winter Simulation Conference, 1998.

[27] G. Zacharewicz et M. E.-A. Hamri, « Flattening G-

DEVS / HLA structure for Distributed Simulation of

Workflows », in Proceedings of AIS-CMS

International modeling and simulation

multiconference, Buenos Aires, Argentine, 2007, p.

11‑16.

[28] F. Barros, « Abstract simulators for the dsde

formalism », in Proceedings of WSC 1998, 1998, p.

407‑412.

[29] F. J. Barros, « Dynamic structure multiparadigm

modeling and simulation », ACM Transactions on

Modeling and Computer Simulation, vol. 13, n
o
 3, p.

259‑275, juill. 2003.

[30] A. M. Uhrmacher, « Dynamic structures in modeling

and simulation: a reflective approach », ACM

Transactions on Modeling and Computer Simulation,

vol. 11, n
o
 2, p. 206‑232, avr. 2001.

[31] J. F. Santucci et L. Capocchi, « Visualization of

Folktales on a Map by Coupling Dynamic DEVS

Simulation within Google Earth », in

SIMULTECH’11, 2011, p. 128‑133.

[32] G. A. Wainer, « Modeling and Simulation of

Complex Systems with Cell-DEVS », vol. 1, p.

45‑56.

[33] G. A. Wainer et N. Giambiasi, « Application of the

Cell-DEVS Paradigm for Cell Spaces Modelling and

Simulation », SIMULATION, vol. 76, n
o
 1, p. 22‑39,

janv. 2001.

[34] E. Glinsky et G. Wainer, « New Parallel Simulation

Techniques of DEVS and Cell-DEVS in CD++ », in

proc. in Annual Simulation Symposium, 2006, p.

244‑251.

[35] Qi Liu, « Distributed Optimistic Simulation Of Devs

And Cell-Devs Models With Pcd++ », 2006.

[36] G. Wainer, Q. Liu, et S. Jafer, « Parallel Simulation

of DEVS and Cell-DEVS Models in PCD++ », in

Discrete-Event Modeling and Simulation, vol.

20115630, G. Wainer et P. Mosterman, Éd. CRC

Press, 2011, p. 223‑270.

[37] E. Ramat et P. Preux, « Virtual laboratory

environment (VLE): a software environment oriented

agent and object for modeling and simulation of

complex systems », Simulation Modelling Practice

and Theory, vol. 11, n
o
 1, p. 45‑55, mars 2003.

[38] C. Jacques et G. A. Wainer, « Using the cd++ DEVS

tookit to develop petrinets », in Proceedings of the

SCS Conference, 2002.

[39] E. Kofman, M. Lapadula, et E. Pagliero,

« PowerDEVS: A DEVS-Based Environment for

Hybrid System Modeling and Simulation », 2003.

[40] H. L. Vangheluwe et J. S. Bolduc, « Pydevs ».

McGill’s, 2002.

[41] R. M. Fujimoto, « Distributed simulation systems »,

p. 124‑134.

[42] J. Nutaro et H. Sarjoughian, « Design of distributed

simulation environments: A unified system-theoretic

and logical processes approach », Simulation, vol. 80,

n
o
 11, p. 577–589, 2004.

[43] B. P. Zeigler, S. B. Hall, et H. S. Sarjoughian,

« Exploiting HLA and DEVS To Promote

Interoperability and Reuse in Lockheed’s Corporate

Environment », SIMULATION, vol. 73, n
o
 5, p.

288‑295, nov. 1999.

[44] F. Kuhl, J. Dahmann, et R. Weatherly, Creating

computer simulation systems : an introduction to the

high level architecture. Upper Saddle River, NJ:

Prentice Hall PTR, 2000.

[45] S. Mattei, P.-A. Bisgambiglia, M. Delhom, et E.

Vittori, « Towards Discrete Event Multi Agent

Platform Specification », presented at the

COMPUTATION TOOLS 2012, The Third

International Conference on Computational Logics,

Algebras, Programming, Tools, and Benchmarking,

2012, p. 14‑21.

