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Abstract 

 Inspired by existing works, in this paper, we propose 

software architecture for coupling the MAS and DEVS 

formalism. This architecture is designed to enable the 

modeling of large quantities of agents. Previous works often 

associated with an agent to a DEVS model. The complexity 

of the system increases proportionately with the number of 

agents. We describe an approach to group a set of agents in 

the same DEVS model, and allow representing many more 

agents. 

  

1. INTRODUCTION 

 In the field of Discrete Event Systems (DES [1]), 

recently, many efforts have been devoted to develop 

appropriate tools to study, and model in a formal way the 

dynamics and the mechanisms of interaction of the natural 

systems [2]–[10]. Discrete Event Systems are a special type 

of dynamic system. The ‘state’ of these systems changes at 

discrete instants in time and the term ‘event’ represents the 

occurrence of discontinuous change. For several years the 

community is changing the DEVS formalism [11] so that it 

can become a powerful tool for modeling complex systems 

and thus living systems. In this paper, an agent oriented 

approach based on the discrete event system specification 

(DEVS) formalism is proposed. This study aims to develop 

a multi-agent-based simulation system to evaluate the 

evolution of group of individuals. Agent-based Modelling is 

a very efficacious conceptualization paradigm that easily 

allows the representation of very complex systems 

composed of autonomous, possibly intelligent, interacting 

entities. For this reason, Agent-based systems have been 

incorporated into simulation framework as a mean of 

effectively increasing the realism through adaptation and 

learning abilities. The integration between agent and 

simulation, namely Agent-based simulation, however, can 

be further exploited by modeling the simulation system as a 

Multi Agent System (MAS). Simulation of agent-based 

systems is an inherent requirement of the development 

process which provides developers with a powerful means 

to validate both agents' dynamic behavior and the agent 

system as a whole and investigate the implications of 

alternative architectures and coordination strategies. 

 MAS are more suited to living organism’s modeling 

where communication between system’s members is 

complex. The multi agents’ paradigm is issued from the 

distributed artificial intelligence in the early 80’s [12], [13]. 

Multi-agent systems consist of agents and their 

environment. According to Michael Wooldridge we 

consider that "An agent is a computer system that is situated 

in some environment, and that is capable of autonomous 

action in this environment in order to meet its design 

objectives" [13]. The global behavior of MAS emerges from 

the sum of individual actions of agents, from the 

interactions between agents and between agents and their 

environment.  

 Our problem is to provide a consistent and efficient 

software structure to combine the discrete event systems 

modeling and multi-agent systems. This structure should 

allow modeling a large number of agents and their evolution 

over time. In these fields other work has been done [5], [6], 

[14] but the proposed approaches, we do not seem able to 

describe the evolution of several hundred individuals. The 

platform GALATEA [5] offered as a family of languages to 

model MAS to be simulated in a DEVS, multi-agent 

platform. GALATEA is the product of two lines of research: 

simulation languages based on Zeigler's theory of 

simulation and logic-based agents. This platform would 

allow to model different formalisms, in different languages 

in a same interface. But this implementation seems tedious 

and difficult. The second approach [6] matches a lot with 

our works. An agent is represented by an atomic model and 

stimuli by exterior messages [9], [14]. But using of VLE 

framework [15] to simulate and using of Cell-DEVS 

formalism [16] to describe environment can make the 

simulation slower to generate. Indeed, each cell is 

represented by an atomic model and for a big environment 

number of atomic model is very high. Because of its 

number, simulation use lot of resources and memory, 

especially in our case with a big agent’s concentration and a 

large environment (all of both are atomics models if we’ll 

use Cell-DEVS). 

 We present architecture for managing agents based on 

the cellular network model (Figure 1) for managing and 

location the subscribers [17], [18]. We give you all the 

details of our architecture in the following parts, it is built 
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like a cellular network, the network is an environment and 

the agents are the users. The problems are as follows: 

Figure 1. Mobile network (GSM) architecture 

 1) The network must be able to identify the subscriber. 2) 

The network must know the location of subscribers, 

subscribers who are numerous and move. Cutting the 

network into multiple cells must be invisible to the 

subscriber. 3) The network must ensure the continuity of the 

communication even when the subscriber moves. 

1) Location databases called HLR (Home Location 

Register), contains profiles for each user (subscribed 

services and data authentication). HLR equipments are 

limited in capacity. There are several HLR in a network but 

a given subscriber is still drive by the same HLR, regardless 

of where it is located. 2) In order to reduce data exchange, 

we associate a local database VLR (Visitor Location 

Register) each MSC (Mobile services Switching Centre). 

The MSC is the heart of the GSM network. It handles call 

routing, call setup, and basic switching functions. An MSC 

handles multiple BSCs and also interfaces with other MSC's 

and registers. It also handles inter-BSC handoffs as well as 

coordinates with other MSC's for inter-MSC handoffs. The 

VLR contains the profiles of all subscribers who are in the 

area managed by the MSC at any given moment. A 

customer who moves is taken into account by the various 

successive MSC and VLR. MSC are composed of several 

BSC (Base Station Controller). 3) The BSC controls a set of 

BTS (Base Transceiver Station), and it manages radio 

resource. According to the quality of the radio link, of the 

current communication, the BSC ensure the continuity of 

communication and jumps BTS to BTS. BTS are 

transceivers (antennas). They can locate several subscribers 

(MS: Mobile Station), the area it covers is called a cell. 

Terminals running on networks (subscribers) are called MS. 

 In the first part, we present the DEVS formalism. This 

formalism may be defined as a universal, general 

methodology which provides tools to model and simulate 

systems, the behavior of which is based on the notion of 

events. This formalism is based on the theory of systems 

and the notion of the model and permits the specification of 

complex discrete event systems in modular and hierarchical 

form. In the second part, we will detail our architecture. 

Finally, before concluding, we present a pedagogical 

example, application of our approach. 

 

2. DEVS FORMALISM  

 Since the 1970s, formal tasks have been performed to 

develop the theoretical foundations of modeling and 

simulating discrete event dynamic systems. Major efforts 

have been made to adapt this formalism to various domains 

and situations [16], [19]–[24]. Our interest focuses on the 

DEVS formalism (Discrete Event System Specification 

[11], [19]). Discrete event simulation has a quickly 

execution because of its way to treat event, avoiding 

continuous treatment. Moreover, coupling and separation 

between modeling and simulation on DEVS formalism 

allow reusing existing models in new models. DEVS is a 

powerful formalism allowing reusing models through 

library already developed and also interconnecting of these 

models to compose heterogeneous models based on a 

different formalism.  

 

2.1. DEVS models 

 DEVS is a modular formalism which permits the 

modelling of causal and deterministic systems. A DEVS 

atomic model is based on continuous time, inputs, outputs, 

states and functions. More complex models are constructed 

by connecting several atomic models in a hierarchical way.  

The atomic model may be considered as a time-based state 

machine. It makes it possible to describe the system's 

functional or behavioural aspects. The atomic model 

provides an independent description of the system's 

behaviour, defined by the states and functions of the 

inputs/outputs and by the model's internal transitions. The 

model develops by changing its state according to external 

stimuli (via an input) or internal stimuli (via a transition 

function). The purpose of these changes in state is to 

determine the system's behavioural response to these 

stimuli. An atomic model is described by the following 

formula: MA : < X; Y; S; ta; δext ; δint ; λ>, with: 

 X = {(pin, v) | pin ⋲ Input ports, v ⋲ X pin }: the list of 

the model inputs, each input being characterised by a 

coupling (port/value number); 

 Y = {(pout, v) | pout ⋲ Output ports, v ⋲ Y pout }: the list 

of the model outputs, each output being characterised 

by a coupling (port/value number); 

 S: all the system's states or state variables; 

 ta: S⟶R+: the time advancement function or the S 

state's lifetime; 

 δext: QxX⟶S : the external transition function, where: 

– Q = {(Si, e) | Si ⋲ S, 0 ≤ e ≤ ta(Si)}; 

 



– e: is the time which has elapsed since the last 

transition. The external transition function specifies 

how the atomic model changes state (passing from 

state S1 to state S2 when an input takes place 

(external event before ta(S1) has elapsed; 

 δint:S⟶S: the internal transition function. It permits 

passing from an S1 state to the t1 instance, or from an S2 

state to the t2 instance, when no external event occurs 

during the lifetime of the ta(S1) state; 

 λ:S⟶Y: the output function. 

 

 The DEVS formalism uses the notion of a description 

hierarchy, which permits the construction of models called 

"couplings", based on a collection of atomic models and/or 

couplings, and on three coupling relations. A DEVS coupled 

model is modular and displays a hierarchical structure, 

which permits the creation of complex models based on 

atomic and/or coupled models. It is described by the 

following formula: MC : < XM; YM; CM; EIC; EOC; IC; L 

>, with: XM: total of input ports; YM: total of output ports; 

CM: the list of models making up the CM coupled model; 

EIC: the total of the input couplings, which links the 

coupled model to its components; EOC: the total of the 

output couplings, which links the components to the 

coupled model; IC: the total of the internal couplings, which 

links the components to one another; L: a list of priorities 

among components. 

A coupled model makes it possible to describe how several 

other models are interconnected in order to form a new one. 

 

2.2. Discrete event simulation  

 In order to define the simulation semantics of the 

DEVS models, Zeigler put forward the abstract simulator 

notion. The main advantage of this concept is the difference 

between the models and the simulator. At the level of this 

simulator (abstract), each simulation component 

corresponds to a modelling component. In fact, DEVS is 

one of the rare "formal" formalisms which propose an 

implementation algorithm. According to [11], a coupled 

model is composed of atomic and/or coupled models. The 

abstract simulator is composed of a root coordinator, 

coordinators and simulators. The corresponding algorithm is 

described in [2] and [19].  

 

2.3. DEVS extensions  

In this section, we present the works on which our 

approach is based.   

DEVS BUS is an extension of the DEVS formalism based 

on HLA [26], [27]. It proposes a layered architecture for 

easy distribution simulations. 

Dynamic DEVS is an extension of the DEVS formalism that 

allows taking into account the evolution of the structure of 

the system during the simulation. Several approaches have 

been proposed [9], [28]–[31]. 

Cell DEVS is also an extension of DEVS formalism that 

allows to represent a geographical area in a grid cell, each 

cell is described as an atomic model [32], [33]. This 

representation is quite heavy because there are so many 

models and exchanged messages. Improved versions have 

been proposed on the basis of a flattening simulators or 

parallelization and/or distribution of simulations [21], [34]–

[36]. 
 

2.4. DEVS frameworks 

 There are many environments based on the DEVS 

formalism, we can cite [37]–[39]. Our team works on 

DEVSimPy. DEVSimPy framework [22] allows a simple 

graphical interface to create and use DEVS models. It is a 

WxPython based environment for the simulation of complex 

systems. Its development is supported by the CNRS 

(National Center for Scientific Research) and the SPE 

research laboratory team. The main goal of this framework 

is to facilitate the modeling of DEVS systems using the GUI 

library and the drag and drop approach. The modeling 

approach of DEVSimPy is based on UML Software, and 

there is a separating between the GUI part and the 

implementation part of DEVS formalism. It is based on the 

simulation engine Python DEVS  [40], which implements 

the algorithms of classical DEVS [11]. With DEVSimPy we 

can: (1) describe a DEVS model and save or export it into a 

library; (2) edit the code of DEVS model to modify 

behaviors also during the simulation; (3) import existing 

library of models which allows the specific domain 

modeling (Power Systems, Fuzzy, Continuous ...); (4) 

automatically simulate the system and perform its analysis 

during the simulation. 

 

3. ARCHITECTURE BASED ON CELLULAR 

NETWORKS 

 

 This section presents a paradigm to describe cellular 

model in DEVS formalism. In [33] formal descriptions of 

Cell DEVS allow describing a cellular model as DEVS. A 

space is composed of individual cells define as atomic 

models that can be lately afterward coupled in a coupled 

model. Each cell as an interface composed with a fixed 

number of ports, connected with a neighbor. An analogy 

between Multi Agent Systems and the Modeling and 

Simulation theory using dynamic structure was described in 

[6], [14]. Performing a direct simulation using the DEVS 

formalism can be inefficient for models comprised of 

various numbers of sub-models such as those based on Cell 

spaces or/and MAS. In order to tackle increasing complexity 

and to improve performance of DEVS simulation, some 

studies suggest the use of a non-hierarchical DEVS 

simulator [29], [33], [34] and some other solutions proposed 

to exploit the parallelism existing in the system by 

associating more than one processor to the simulation [7], 



[10], [21], [33]. In a non-hierarchical (or flat simulation) 

there is only one coordinator in charge of all the simulation 

tasks of model’s atomic components. By eliminating the 

intermediate coordinators in the hierarchy, the flat 

simulation reduces the number of exchanged messages 

between processors. However, when the number of agents 

increases, communications among agents and environment 

produces a high degree of overhead. In order to accelerate 

simulation time computations, parallel and distributed 

techniques [7], [15], [33], [41] have been developed. The 

general approach taken by parallel or distributed simulation 

is often based on the logical process [42] executing on 

multiprocessor systems. A Logical Process (LPs) is a 

subparts of the system coded as a coupled model and linked 

to other LPs by timestamped messages. 

 

CM - LP Strucutre (Processor n)
CM - AgentManager (i)

AM - 

ZoneManagerAM-Group AM-Step

CM - AgentManager (j)

AM-Group AM-Step

CM - LP Strucutre (Processor m)

AM - Local 

Manager 

CM - AgentManager (i)

CM - AgentManager (j)

AM - 

ZoneManager

AM - Local 

Manager 

AM - Global 

Manager 

 
Figure 2. Global Architecture based on DEVS models  
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Figure 3. MAS class diagram



We propose a new technique for fast execution of MAS 

models based on existing approach. There are two main 

differences when comparing our approach with the previous 

simulation presented here, namely that agents and cells are 

not considered as a DEVS model. Indeed, when the number 

of agents is growing it is then necessary to introduce an 

intermediate level of simulation. We focused on 

homogeneous groups in which all individuals agent have the 

same social role (set of agents satisfying distinguished 

properties, description or behavior) and on an environment 

divided into zones, where a zone is defined as a geographic 

area represented by a grid cells. In the architecture A logical 

process is use to handle one zone as shown in figure 2. So 

each zone represents a sub-part of the global system and 

they can be connected to one or more other zone. The 

DEVS/HLA simulation [43], [44] provides communications 

between LPs, as well as the whole simulation time 

management method between distributed simulations. 

 To improve performance, the proposed solution is 

implemented in a distributed fashion, where on non-

hierarchical coordinator will be associated to a logical 

processor and will interconnect and synchronize through 

HLA architecture. A “logical process” is a coupled model 

that manages the groups of agents localized in the specified 

area controlled by the atomic model “zone manager”. Each 

“zone manager” as also a set of border cells will have 

different behavior than those of the rest of the area. Each 

cell contains information about agents and dynamics or 

“persistent” objects currently located in that cell. As an 

agent moves through the grid it will be insert or remove 

from the cell’s list as appropriate in the same zone manager. 

When an agent moves through the border, it will be 

removed in the current model and transferred by the “local 

manager” to the corresponding area. A “local manager” is 

coded as an atomic model including input and output event 

list to communicate with another “local manager” using a 

neighborhood relationship. Agents are grouped according to 

their roles and stored in the atomic model “agent manager”, 

making it easier to manage larger units of entities that 

belong together. Agents can perform various roles within 

one system. Finally, the “step atomic model” is used to 

perform the steps. 

 Based on the discrete-event simulation framework 

given in this article the architecture of the simulation engine 

is composed of three basics layers.  Network layer built atop 

the simulation framework DEVS, provides a distributed 

HLA infrastructure formed by a network of interconnected 

logical processes (Figure 3). The logical process layer 

provides abstractions representing users’ behaviors. The 

agents’ layer provides the basic class to simulate the 

appropriate system. 

 Our architecture is based on cellular networks (GSM). 

We have simplified some aspects because we do not 

encounter exactly the same problems, such as secure 

communications. The GSM architecture is hierarchical, the 

lowest level there are the mobile stations, our entities, then 

base stations (BTS), our zone managers. At superior level 

we find the controller (BSC), group managers and finally 

the MSC, is our local managers. 

 

4. APPLICATION EXAMPLE 

 

 We present a simple ant colonies model with only one 

logical process and two groups of ants (soldier and worker). 

For clarity and simplicity reasons, we do not give her a 

global formalization of the system. The behavior of ants and 

a version of the algorithm of DEVS transition functions are 

given in [45]. Workers gather food for the colony; soldiers 

defend the colony and fight off enemy ants or insects. Ant’s 

actions are limited to search for food or enemies by working 

randomly, follow a pheromone trace, bring food to the nest, 

and fight. When foraging or find enemies, ants leave a 

pheromone trail so that they know where they’ve been. 

Soldiers do not look for food and survive only by eating 

food carried by workers. If density of available food is too 

low, foraging efforts is growing, inter-relation between 

atomics models groups permit to transit some agents from 

the soldier group to the worker group. If the danger 

increases workers are switch to the soldier group. Figure 4 

shows an agent diagram that reflects the way in which ants 

evolve. The structure shows two agents class, which has can 

sense food. 
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Figure 4. Worker’s behavior  

 We suppose that ants can sense several pheromone 

signals over a distance. A worker moves to the source if it 

smelt food, and return directly to the nest if it smelt enemy, 

depositing a pheromone trail to mark out dangers as it goes 

(Figure 4). A soldier seeks only enemies and fight to the 

death to protect his colony (Figure 5). A defeated ant emits 

an alarm pheromone that attracts more soldiers from farther 

away and leads others to give warning. The role of ants may 

change with the circumstances. Different types of 



pheromones are represented as objects placed in a cell of the 

zone (Figure 3). 

The birth rate is a base rate, which has been recalculated at 

each step depending the food was dropped off at the nest by 

the workers. Soldiers return to the nest for food, and reduce 

quantity of food. In addition, ants can die due the base death 

rate initialized with the program and due the fight.  
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Figure 5. Soldier’s behavior 

For simplicity reasons, in the example show her, the 

simulation period has been divided in three distinct parts 

(Figure 6). The first part covers the period when the workers 

are seeking food, figure 6: simulation time 0 to 31. During 

this period as the food resource decreases due to 

consumption, the number of workers increases. Part two 

occurred when food begins to arrive to the nest, the numbers 

of soldier’s increases, figure 6: simulation time 31 to 50. At 

the end of this part, ants are born according to the base rate, 

figure 6: time 58. Part three covers the fighting period 

between clones and individuals, as Molly's son Mark grows 

up as the only 'single' in the group, figure 6 from the 

simulation time 70. 

 

 
Figure 6. Simulation results (the horizontal axis represents 

simulation time, and the y-axis the number of ants) 

 

In figure 6, the first section covers the period when the 

cloning facilities are being set up against a background of a 

world society in the throes of collapse. Part two is a look 

after several clone generations have occurred and an 

expedition is made to one of ruined cities to salvage needed 

high-tech supplies for the continuing cloning operation. The 

expedition exposes both the strength and the weakness of 

the clone groups, as they find it almost impossible to remain 

sane when separated from their clone 'brothers' and 'sisters'. 

One expedition member, Molly, grows so far away from her 

sisters under the stress that she really becomes an 

individual. Part three covers the fighting period between 

soldiers and enemies.  

This pedagogical example was used to illustrate the 

proposed architecture. 

 

5. CONCLUSION AND PERSPECTIVES  

 

 The starting point for this work begins with a simple 

observation: although there are DEVS extensions to allow 

agent-based simulation (reactive agents), none of these 

extensions can represent very large amounts of agents. In 

fact, these extensions are based on a representation of agents 

from DEVS atomic models. One agent is described by one 

model. This representation, although relevant, causes a very 

active communication between agents and between agents 

and environment. The management of this large quantity of 

messages reduces the number of agents modeled. 

 To solve this problem, we propose new software 

architecture. Its objective is to model a large number of 

agents. Our approach is inspired by the architecture of the 

GSM networks. It is based on the notion of an individuals' 

group. It uses and is also inspired other concepts introduced 

in extensions Cell DEVS, for the representation of cellular 

environment, dynamic DEVS, for creation or destruction of 

groups, and DEVS Bus for parallelization or distribution of 

the logical process. From our point of view, most of our 

approach is the representation as a group. A group is a set of 

agents with the same behavior or aim. An agent is not 

modeled by an atomic model; it is defined as a simplified 

atomic model without ports, and can autonomously run its 

behavior. It is a specific object that is different of a DEVS 

component.  

We propose to manage agents from a coupled model called 

Manager and composed of two atomic models. In our 

approach one hundred agents with a same goal are modeled 

by two atomic models. The dynamic aspects are thus 

simplified because the manager can create or destroy agents 

without having to manage couplings. Our approach has been 

illustrated from MAS representing an ants society 

modelized with only one logical process. The ants are 

divided into two groups: Workers looking for food, then 

they return to the nest. The food allows the creation of new 

ants; Soldiers defend the nest and workers. This application 

allows showing the possible interactions between two 

groups.  

Our perspectives are quite numerous, at first we want to 

represent intelligent agents. This improvement passes 
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through the addition of cognitive modules at the level of 

individual and collective. We will update the agent class and 

strategy. We wish to develop a configurable visualization 

interface. It will make the interface between GIS and our 

software. It will add groups of agents by drag and drop. In 

the longer term, we couple our software with a currents 

model, to test our approach on a large scale and thus 

simulate the evolution and spread of post larvae. 
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