
Discrete event simulation based on decentralised schedule and direct coupling

Paul-Antoine Bisgambiglia and Paul Antoine Bisgambiglia and Romain Franceschini

University of Corsica, UMR SPE 6134 CNRS, UMS Stella Mare 3460

TIC team

Campus Grimaldi, 20250 Corti

bisgambiglia@univ-corse.fr and bisgambi@univ-corse.fr

Keywords: Discrete event simulation, DEVS, Accelerated

Simulation, Direct Coupling, Decentralised Schedule

Abstract

 In this paper, we present an approach, based on DEVS

formalism, aiming to optimize simulations time.

To do this, we propose to reduce the number of messages

exchanged between components. If there are fewer

messages to take into account, we believe saves processing

time and thus accelerate simulations. We propose three

changes from the classic DEVS: direct coupling, flat

structure and local schedule. The goal is the decentralization

of a number of tasks in order to make the simulators more

autonomous, and relieve coordinators. All these changes

were added by inheritance. Although, we proposed

modifications of simulation algorithms, compatibility is still

possible between classic DEVS models and decentralized

DEVS models. The universal properties of DEVS are fully

preserved.

1. INTRODUCTION

 The study of problems linked to the behaviour of

complex systems, ecosystems in particular, necessitates the

development of specific tools. Complex systems are

characterized, not only by a large number of components,

but also by the diversity of these components. For the

analysis and design of such complex systems, it is not

sufficient to study the diverse components in isolation, using

the specific formalisms these components were modelled in.

Rather, it is necessary to answer questions about properties

(most notably behaviour) of the overall multi-formalism

system [1]. Most natural systems may be called complex.

They may serve as a support for modelling and simulation

studies. In a case of this type, simulation tools have become

imperative for studying those phenomena.

 At a theoretical level, two types of M&S approach

oppose or complement one another. The first type of

systems are discrete-time systems whose state is updated at

each step, whereas the second type of systems are discrete-

event systems that use a contiguous time base (state change

only occurs at discrete points in time over this contiguous

time base). The crucial benefit of simulation with discrete

events is speed of execution owing to development dictated

by events, avoiding processing in time stages. The

formalism DEVS for Discrete EVent system Specification

[2] is a formalism based on the development of time

according to events. Simulation based on this formalism is

therefore, generally speaking, faster than continuous

simulation. DEVS formalism also allows the composition of

models from components stored in libraries, thus avoiding

the redevelopment of existing models. It is an open, flexible

formalism with a great capacity for extension. Recent

studies [3]–[6] have shown that DEVS formalism may be

called multi-formalism because, due to its open nature, it

allows the encapsulation of other modelling formalisms. For

example, for the same heterogeneous system it is possible to

use sub-systems modelled on different formalisms,

differential equations, neural networks, continuous systems

and loose systems. This capacity for opening and extension

is very interesting, as the representation of the various

entities which constitute a complex system can be

accomplished by using the most appropriate formalism.

 Although faster than a continuous interval simulation

method, the DEVS approach is no less costly in terms of

time when the number of models increases; many projects

also deal with accelerating it from simulations. At the

physical level, it is possible to exploit the power or the

number of processors or computers, although the cost may

be very high [7]–[9]. At software level, it is possible to

improve the simulation algorithms by reducing their

complexity. The third way, which we shall classify as a

hybrid one because it links the first two methods, is aimed at

developing the simulation algorithms to develop in order to

parallelize the calculations [10].

 In the DEVS formalism, the hierarchy between models

suggests that all modifications of the states of a model

involve sending a message, which goes as far as the highest

level model. The number of messages is therefore

proportional to the modifications of the system, to the

number of models, to the changes in state and to the level of

the hierarchy. In certain cases, such as models with highly

advanced communication, this causes an explosion in the

number of messages and a slowing of the simulation

process.

 Many studies have proposed approaches to accelerate

simulations. We can cite: parallelization approach [7]–[12];

mailto:bisgambiglia@univ-corse.fr
mailto:bisgambi@univ-corse.fr

distribution [11]–[13]; and software approaches. These last

approach allows to accelerate the algorithms by

"destroying" the hierarchical structure, which corresponds to

flattening the DEVS simulator [10], [12], [14], [15].

 In this article, we propose software development which

makes it possible to significantly improve simulation times

by linking, to a flat simulation technique, a technique for

managing the couplings between models (direct coupling), a

new mode of managing messages and events and a major

simplification of all the simulation algorithms. Currently,

our approach is neither parallel nor distributed. We propose

modifications of classical DEVS formalism.

 In the first part, we present the general context of

DEVS formalism. This description will allow us to gain a

general impression of the modelling and simulation process

with discrete events, as proposed by Zeigler, but especially

better to understand the parts which we wish to modify.

More especially, we stress the notion of message exchange,

which is the most sensitive parameter in the calculation of

simulation times. In the second part, we detail the structural

modifications introduced to the "classic" DEVS

environment, to accelerate simulation algorithms. In

particular, we demonstrate that choosing to process

messages as close as possible to the models allows us to

limit their exchanges but especially to simplify the main

algorithms. We provide a description of these algorithms for

all the objects linked to the simulation. In particular, the last

part allows us to use this "decentralised" simulation

approach to study two systems and to present results

obtained in a number of exchanged messages. We

demonstrate that the major benefits make it possible to

accelerate the simulations a great deal.

2. DEVS FORMALISM

 In 1970’s, Professor Zeigler introduced DEVS

formalism [2]. It represents: (1) a complex system from an

interconnected collection with more simple subsystems; (2)

a separation between modeling and simulation part,

simulation algorithm are automatically generated according

to defined models. This formalism is open, flexible and

offers a large extension capacity.

According to recent works [1], [3], it has been proved that

DEVS formalism might be qualified as a multi-formalism

thanks to its opening capacity, to its capacity to encapsulate

others modeling formalisms. In one heterogeneous system,

it is possible to use modeled subsystems from different

formalisms, differentials equations, neuron networks,

continuous systems.

DEVS formalism is based on the definition of two types of

components: atomic models and coupled models.

Atomic model provides an autonomous description of the

system behavior, defined by states, input/output functions

and transition functions. The coupled model is a

composition of atomic models and/or coupled models. It is

modular and presents a hierarchical structure which enables

the creation of complex models from basic models.

Let AM an atomic model, AM is defined by < X; Y; S; ta;

δext; λ; δint > where X: is the set of input events, is

characterized by a couple (port, time, value), where the port

means the input on which the event occurs, the time is the

date of occurrence of the event, it is blank for internal

events, and the value symbolizes the data from the event;

Y: is the set of output events; S: is the set of partial or

sequential states, which includes the state variables; ta: S →

T
∞
: is the time advance function which is used to determine

the lifespan of a state; δext: QxX → S: is the external

transition function which defines how an input event X

changes a state of the system, where Q = {(s, te) | s ∈ S, te ∈

(T ∩ [0, ta(s)]} is the set of total states, and te is the elapsed

time since the last event, T is the total time of the

simulation; λ: S → Yι : is the output function where Yι = Y

∪ {ι} and ι ∉ Y is a silent event or an unobserved event.

This function defines how a state of the system generates an

output event, when the elapsed time reaches to the lifetime

of the state; δint: S → S: is the internal transition function

which defines how a state of the system changes internally,

when the elapsed time reaches to the lifetime of the state.

Every state S is associated with a lifetime ta, which is

defined by the time advance function. When a model

receives an input event X, the external transition function

δext is triggered. This function uses the input event, the

current state and the time elapsed since the last event in

order to determine what the next model state is. If no events

occur before the time specified by the time advance function

for that state, the model activates the output function λ

(providing outputs Y), and changes to a new state

determined by the internal transition function δint.

 The DEVS models are executed by abstract simulators

[2], [9], [16] that are independent from the models

themselves. Consequently, separated concerns between

models and implementations of simulation can be achieved

and enhance the verification of each layer independently.

DEVS is a popular method to simulate a variety of systems.

However, since its introduction by Zeigler, significant

efforts were taken to adapt this formalism to different fields

and situations. The many proposed extensions proved its

ability to extend and openness.

 We use the DEVS formalism for modeling all types of

systems. In some cases, depending on the system, the

simulation can be very time consuming. There are many

works that aim to accelerate the simulation. We can cite

[17], [11], [12], [18]–[21]. Generally, these works propose

modifications simulation algorithms to parallelize and / or

distribute computations (outsource). We also present an

approach to accelerate simulations without outsourcing the

computations.

3. DECENTRALISED DEVS

 In this paper, we propose an approach to reduce the

number of messages exchanged between DEVS

components. If there are fewer exchanged messages, we

believe saves processing time and thus accelerate

simulations. Our approach is based on the classic version of

the DEVS formalism. Actually, it does not intend to be

parallelized. We propose three changes from the classic

DEVS: direct coupling, flat structure and local schedule.

The aim of these modifications is to simplify the DEVS

formalism, in order to make it more effective and faster.

These changes were added by inheritance. Although we

proposed modifications of simulation algorithms,

compatibility is still possible between classical DEVS

models and decentralized DEVS models. In addition, the

universal properties of DEVS are fully met, such as closer

under coupling. The three proposed changes are detailed in

this section.

3.1. Modeling part: direct coupling

 One cause of the amount of messages to manage in the

DEVS formalism is the routing of messages. Routing

generated by the hierarchical structure of the formalism. For

example, a component C1 of level H2 cannot communicate

directly with a component C2 of the same level (H2). This is

the case for all components. Messages must always go back

to father component, H1 or H0 level. This hierarchy is a

source of communication too, but we will return in the

following points. The fact of not being able to communicate

directly with a component of the same level is a problem.

We propose to add a list of coupling in atomic models. This

list is declared as a state variable model. The models will

thus knowledge of the components to which it is connected,

and with which it must communicate. Without a higher-

level component, it can directly send messages. This list of

decentralized coupling has been added through inheritance.

The first modification also allows us to remove the

coordinators and propose flattening simulation architecture.

3.2. Simulation part: flattening architecture

 In the hierarchical structure proposed in the DEVS

formalism, we place the root at the top, and then come a

coordinator (H0 level). To flatten the simulation

architecture, we propose to delete all the coordinators below

the H0 level. Other works already offer this mechanism

[10], [12], usually in order to parallelize and distribute the

simulation. Our goal is to make the standalone simulator by

removing redundant communications. We still retain a

coordinator called flat coordinator; it is positioned just

below the root. It was him who gave the simulators

execution order. It has a small schedule with an events

number equal to the number of active simulators. For each

simulator, the event with the smallest time trigger (tn) is

inserted into the flat coordinator's schedule. This is the first

event of each local schedule. The third modification is the

addition of a local schedule in the simulators.

3.3. Simulation part: local schedule

We created through the mechanisms of inheritance, a

new simulator which has its own schedule. This is a local or

decentralized schedule. The purpose of this addition is to

make the simulator more autonomous and to simplify the

task of flat coordinator. The simulator retains the events it

has to perform, and does only go up the first event of its

schedule. This is the time at which it will reactivate.

All these changes are encapsulated in four new classes

that inherit from classes’ coordinator, simulator, atomic

model and coupled model.

3.4. New classes

Figure 1. Correspondence between modelling and

simulation in our approach

In the Simulator’ class (see Fig. 1) modifications consisted

of overloading the tn() function, in order to manage the

messages directly without going through the coordinators,

and in adding a local schedule. We propose using the time-

of-last-event (tl) and especially time-of-next-event (tn)

attributes to manage those messages in the coordinators. To

conduct this decentralised message management, it is

essential for the atomic model output ports and the input

ports of the main coordinator to be able to identify the

addressees without having to search for them in the coupling

lists. A link notion is added to all those ports, thus making it

possible directly to identify the "recipient" (model and port).

It will then be possible to file the messages directly in the

model schedules. This modification is applied in the atomic

model class by overloading the Output (Y) objects and in

the couplings model class by overloading Input (X) objects.

We are now going to present the behaviour of the various

simulation functions which make up the core of the

proposed abstract simulator [2], as well as the message send

functions. All the simulation algorithms are based on the

result of the tn() function, which returns the time of the next

event. In the case of a decentralised simulation, tn() returns

the following:

 timeOfNextEvent for the Root processor

 Min({tn()c | cin ⋲ CM}) for the root coupled model.

 Min(ta()+ct , time of the first ECH event) for the

atomic models.

In the case of a distributed simulation, the number of

schedules is equal to the number of atomic models. On the

other hand, the number of messages managed is reduced and

generally numbers about the same as the input ports. The

management of those schedules is thus made much easier.

3.5. Algorithms

The general simulation algorithm is identical for the

three types of simulation although, in the case of a

decentralised simulation, the schedules for the root model

are empty and the tn() function is only the minimum of the

tn() of the sub-models. This modification has no effect on

the simulation time and, for reasons of compatibility,

searches in ECH (complete schedule) and EV (extraction of

ECH at current time ct) are maintained in the

"decentralised" simulation.

3.5.1. Root processor

The Root processor simulation algorithm defines the

new current time of the simulation according to the data

from the inputData (input data from the global model) and

from the Root tn(). All the messages to be handled in ct time

are extracted from the input schedule (or input file) and sent

to the addressee via the send() function. This function will

be detailed later, but for decentralised simulation, the

messages arrive directly in the destination atomic model,

since the input ports of the Root model recognise the

addressee thanks to the recipient attribute. The simulation

function (Algorithm 1.) makes it possible to perform the

simulation in ct time, from the highest-level processor in the

simulation tree.

1. function Simulate()
2. { while (ct = Min(inputData.firstEventTime(),tn()))
3. { root.send(inputData.extractEventAtTime()) ;
4. root.simulate() ;
5. }
6. }

Algorithm 1: Algorithm of the Root processor's simulate

function

3.5.2. Coordinator processor

In the case of a "decentralised" simulation, the

messages only go up to the root if the message is a model

output message. The couplings between the models are also

no longer managed at coupled model level, but are handled

by the atomic models. Each output port of an atomic model

has the "recipient" attribute which gives it access to the

model and to the message destination port. We are therefore

able to place the output messages from the schedule directly

in the addressee's schedule without having to search for it in

the coupling functions of the coupled models.

The simulation function of the coupled model is in the

following form:

1. function Simulate()

2. { While (tn() == ct)

3. ModelWithCurrentTime().processor.simuler() ;

 // You run the first model with tn=ct

4. }

Algorithm 2: Algorithm of the simulate function of the

decentralised coordinator

3.5.3. Simulator processors

Decentralised simulation makes it possible to handle

all the messages in ct time within the simulators without

having to return control to the parent coordinator. The while

(tn()==ct) loop (Algorithm 3. line 2.) is moved from the

coordinators to the simulators.

1. function Simulate()

2. { While (tn() == ct)
3. if (ECH.firstEvent() != zero)
4. model.deltaExt() ; // handling external function
5. else
6. { model.lambda() ; // handling output function
7. model.deltaInt() ; // handling transition function
8. }
9. }

Algorithm 3: Algorithm of decentralised simulators'

simulate function

3.5.4. Handling messages

In the classic DEVS, messages are handled by two

functions: send and insert. Send function making it possible

to handle the messages on their arrival in a coordinator and

to redirect them according to the couplings and to the

priority list. Insert function uses message type and couplings

to search for the destination model, to change the message

into a result and to insert it in the corresponding schedule.

In the case of decentralised approach, message handling

is simplified, since each port to which messages are sent

recognises the "recipient" without having to go to the

coupled model. It is also sufficient to modify the port

attribute and possibly its type before inserting it into the

destination model schedule (Algorithm 4.).

1. function Send(msg)

2. { recipient = model.outputPort[msg.port].recipient;

3. msg.port = recipient.port ;

4. if (recipient is not coupledModel) msg.type = x ;

5. recipient.model.insert(msg) ;

6. }

Algorithm 4: Algorithm of decentralised processors'

send function

The insert() function deletes the old message (Algorithm 5.

line 4.) if it exists and inserts the new one (line 5.). As

previously indicated, this schedule is greatly reduced in size,

as it is limited to the ex-messages of a model in ct time.

1. function Insert(msg)

2. { positionMessage = this.Find(msg);

3. if (positionMessage!= zero)

4. this.removeAt(positionMessage) ;

5. this.add(msg); }

6. }

Algorithm 5: Algorithm of the schedules' insert function

in the case of decentralised models

To prove in concrete terms the value of these modifications

and our algorithms, we have chosen to compare the three

types of simulations: (1) the classic DEVS simulation in

which the coupled models can be inserted inside other

coupled models and create a hierarchical simulation tree,

within which the messages are distributed. (2) A flat

simulation in which the intermediary coupled models are

deleted, which has the effect of placing all the atomic

models at the same level under a root coupled model. (3) A

decentralised simulation in which the structure is ‘flat’ and

the messages are handled directly inside the atomic models.

4. EXAMPLE

The suggested approach makes it possible considerably

to reduce the complexity of the simulation algorithms. It

remains for us to demonstrate through some examples that

this is expressed by a major reduction in the number of

messages exchanged and in the execution time. We propose

to present the results of GR system. GR corresponds to a

more complex model developed by Cemagref, which makes

it possible to represent a hydrological process and, in

particular, to establish the link between the large volume of

water hurled into a catchment reservoir and its flow at the

outlet [22]–[24].

4.1. GR4J model

We now propose to compare the three types of

simulation approach (classic, flat and decentralised) to

provide more significant results.

The rural engineering models (GR [22]–[24]) are

reliable, robust empirical models designed for annual,

monthly and daily intervals, making it possible to achieve

continuous simulations. They have numerous engineering

and water resource management applications such as the

proportioning and management of works, forecasting of

water-level rises and low water levels, impact detection, etc.

In order to function, those models only need continuous rain

and potential evapotranspiration data, being capable of

forming an average interannual curve. We are going to use

the daily GR4J model with 4 parameters (Figure 2).

Figure 2. Architecture of GR4J model

The GR4J comprises four parameters to correspond to

the catchment reservoir:

 X1: capacity of the production tank (in mm) in the

percolation model;

 X2: coefficient of underground exchanges (mm) in

the exchange model;

 X3: daily capacity of the routing tank (mm) in the

routing model;

 X4: basic time of the unitary hydrograph in the

SH1 and SH2 models.

We have studied the models:

 One model based on the classic DEVS formalism;

its structure is identical to the figure showing the

GR4J model. It is composed of 11 atomic models

and three coupled models.

 A "flat" model composed of 11 atomic models and

only one coupled model.

 A "decentralised" model, itself identical to the

preceding model but composed of atomic models

capable of managing the messages internally and

links to the successors in the ports.

4.2. Framework used

 The GR model has been implemented under the

platform DEVSimPy. DEVSimPy framework allows a

simple graphical interface to create and use DEVS models.

It is designed from the PyDEVS architecture [25] but offers

the possibility of using different simulation algorithms

(classical, parallel, flat, decentralised) through strategy

pattern (UML). It is a WxPython based environment for the

simulation of complex systems. Its development is

supported by the CNRS (National Center for Scientific

Research) and the SPE research laboratory team.

The main goal of this framework is to facilitate the

modeling of DEVS systems using the GUI library and the

drag and drop approach. The interface is designed to help

the implementation of DEVS model in form of blocks. The

modeling approach of DEVSimPy is based on UML

Software, and there is a separating between the GUI part

and the implementation part of DEVS formalism.

With DEVSimPy we can: (1) describe a DEVS model and

save or export it into a library; (2) edit the code of DEVS

model to modify behaviors also during the simulation; (3)

import existing library of models which allows the specific

domain modeling (Power Systems, Fuzzy, Continuous ...);

(4) automatically simulate the system and perform its

analysis during the simulation.

Simulations results have been obtained from DEVSimPy.

4.3. Simulation results

Over a period of a year, we obtain the following for the

three types of simulation (Figure 6):

 "classic": 17545 messages (series 1).

 "flat": 15543 messages (series 2).

 "decentralised": 7116 messages (series 3).

Figure 3. Message counting according to the simulation

approaches

The difference in messages exchanged between flat

simulation and classic simulation is approximately 2000

messages. This increase was predictable. In reality, it

corresponds to a message cascade in the coupled sub-

models which have been deleted. In the first case, we have

two models coupled inside the GR4J model - there is,

therefore, an extra level of communication (an extra send).

In the coupled Production and Run-off model, we have three

input ports and four output ports, making a maximum total

of 7 messages on each loop, which is a maximum of 400x7

= 2800 messages.

It is easy to predict that, in the case of flattening, the

increase in the number of messages is restricted by: Total

Ports IN and OUT of the Coupled Model multiplied by the

number of loops.

In the case of a decentralised simulation, the increase is

initially obtained by deleting *-messages from the

architecture. As an initial approximation, it may be said that

each time an *-message is sent, a y-message is produced,

which produces an upper limit of around 50%. What's more,

an atomic model which retrieves control can handle all the

messages in ct time, i.e. all the x-messages without

returning control to the parent coordinator. We are also able

to imagine increases above 50% in most cases of figures on

a flat model.

Although those results are less significant, since they

depend on the machine on which we have carried out the

tests in the chosen language and the implementation of the

simulation algorithms, we provide the results obtained on a

personal computer with an application developed in C#.

We obtain simulation times (measured in ticks)

proportional to the number of messages exchanged in the

various approaches (Figure):

 "classic": 4970322 ticks.

 "flat": 4540248 ticks.

 "decentralised": 1910157 ticks.

Figure 4: Simulation times (measured in ticks)

5. CONCLUSION AND PERSPECTIVES

 In this article, we presented an approach that aims to

reduce the number of exchanged messages in the DEVS

formalism. For us, to reduce this exchange leads of

execution time gain. In our approach reducing the number

of messages goes through an overhaul of the role of

simulators. Indeed, we propose three major changes

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 51 101 151 201 251 301 351

Série1 Série2 Série3

classic

flat

decentralised

4970322

4540248

1910157

ticks

compared to classical DEVS formalism: direct coupling, flat

structure and local schedule.

Direct coupling allows atomic models to send messages

without to pass by their father (the high level component).

We gain in reactivity, since it is no longer necessary to

browse the couplings list of coupled model.

The flat structure eliminates Coordinators and reduces the

traffic message between father and sons.

Local schedule allows simulators to self manage without a

coordinator.

The goal is the decentralization of a number of tasks in

order to make the simulators more autonomous, and relieve

coordinators. All these modifications are taken into account

using the mechanisms of object-oriented programming and

overloading of some classic DEVS functions. Through this

mechanism the universal property of DEVS are preserved,

and it is possible to couple a classic model and a

decentralized model.

The results obtained from the DEVSimPy framework are

successful; the number of messages exchanged is divided by

two.

Now we want to test our approach on other models, can be

proposed a parallel version and compare our execution time

with another DEVS framework [7], [26], [27] based on this

approach [28], [29].

Biography

 Use Style Un-numbered Heading 1 for this heading.

If space permits, include a brief biography of no more than

300 words for each author at the end of the article to give it

greater impact and validity for the audience.

6. REFERENCES

[1] H. L. Vangheluwe, « DEVS as a Common

Denominator for Multi-Formalism Hybrid Systems

Modelling », in Proceedings of ISCACS 2000, 2000.

[2] B. P. Zeigler, H. Praehofer, et T. G. Kim, Theory of

Modeling and Simulation, Second Edition. 2000.

[3] B. P. Zeigler, « DEVS Today - Recent Advances in

Discrete Event-Based Information Technology », in

proc. of the 11th IEEE/ACM International Symposium

on, 2003.

[4] F. J. Barros, « Dynamic structure multiparadigm

modeling and simulation », ACM Transactions on

Modeling and Computer Simulation, vol. 13, n
o
 3, p.

259‑275, juill. 2003.

[5] G. Quesnel, R. Duboz, et É. Ramat, « The Virtual

Laboratory Environment – An operational framework

for multi-modelling, simulation and analysis of

complex dynamical systems », Simulation Modelling

Practice and Theory, vol. 17, n
o
 4, p. 641‑653, avr.

2009.

[6] P.-A. Bisgambiglia, E. de Gentili, P. A.

Bisgambiglia, et J.-F. Santucci, « Fuzz-iDEVS:

Towards a fuzzy toolbox for discrete event systems »,

in Proceedings of the SIMUTools’09, Rome (Italie),

2009.

[7] E. Glinsky et G. Wainer, « New Parallel Simulation

Techniques of DEVS and Cell-DEVS in CD++ », in

proc. in Annual Simulation Symposium, 2006, p.

244‑251.

[8] V. Balakrishnan, P. Frey, N. B. Abu-Ghazaleh, et P.

A. Wilsey, « A framework for performance analysis

of parallel discrete event simulators », in Proceedings

of the 1997 Winter Simulation Conference, 1997.

[9] A. C. Chow et B. P. Zeigler, « Abstract Simulator for

the Parallel DEVS Formalism », in Proceedings of the

Fifth Annual Conference on (AIS94), 1994.

[10] S. Jafer et G. Wainer, « Flattened Conservative

Parallel Simulator for DEVS and CELL-DEVS », in

Proceedings of the 2009 International Conference on

Computational Science and Engineering - Volume 01,

2009, p. 443‑448.

[11] Kihyung Kim, Wonseok Kang, Bong Sagong, et

Hyungon Seo, « Efficient distributed simulation of

hierarchical DEVS models: transforming model

structure into a non-hierarchical one », 2000, p.

227‑233.

[12] G. Zacharewicz et M. E.-A. Hamri, « Flattening G-

DEVS / HLA structure for Distributed Simulation of

Workflows », in Proceedings of AIS-CMS

International modeling and simulation

multiconference, Buenos Aires, Argentine, 2007, p.

11‑16.

[13] Qi Liu, « Distributed Optimistic Simulation Of Devs

And Cell-Devs Models With Pcd++ », 2006.

[14] S. Jafer et G. Wainer, Global Lookahead

Management (GLM) Protocol for Conservative DEVS

Simulation. .

[15] M. C. Lowry, P. J. Ashenden, et K. A. Hawick,

« Distributed High-Performance Simulation using

Time Warp and Java », DHPC-084, 2000.

[16] F. Barros, « Abstract simulators for the dsde

formalism », in Proceedings of WSC 1998, 1998, p.

407‑412.

[17] G. Wainer, Q. Liu, et S. Jafer, « Parallel Simulation

of DEVS and Cell-DEVS Models in PCD++ », in

Discrete-Event Modeling and Simulation, vol.

20115630, G. Wainer et P. Mosterman, Éd. CRC

Press, 2011, p. 223‑270.

[18] A. C. Chow et B. P. Zeigler, « Revised DEVS : A

Parallel Hierarchical Modular Modeling Formalism »,

2003.

[19] S. Jafer, Q. Liu, et G. A. Wainer, « Synchronization

methods in parallel and distributed discrete-event

simulation », Simulation Modelling Practice and

Theory, vol. 30, p. 54‑73, 2013.

[20] A. Muzy et J. J. Nutaro, « Algorithms for efficient

implementations of the DEVS & DSDEVS abstract

simulators », in Proceedings of the 1st Open

International Conference on Modeling & Simulation,

France, 2005, p. 401‑4.

[21] F. Cicirelli, A. Furfaro, et L. Nigro, « Conflict

management in PDEVS: an experience in modelling

and simulation of time petri nets », in Proceedings of

the 2007 summer computer simulation conference,

San Diego, CA, USA, 2007, p. 349–356.

[22] Edijatno, N. De Oliveira Nascimento, X. Yang, Z.

Makhlouf, et C. Michel, « GR3J: a daily watershed

model with three free parameters », Hydrological

Sciences Journal, vol. 44, n
o
 2, p. 263‑277, avr. 1999.

[23] C. Perrin, C. Michel, et V. Andréassian,

« Improvement of a parsimonious model for

streamflow simulation », Journal of Hydrology, vol.

279, n
o
 1‑4, p. 275‑289, août 2003.

[24] V. Andréassian, C. Perrin, et C. Michel, « Impact of

imperfect potential evapotranspiration knowledge on

the efficiency and parameters of watershed models »,

Journal of Hydrology, vol. 286, n
o
 1‑4, p. 19‑35,

janv. 2004.

[25] H. L. Vangheluwe et J. S. Bolduc, « Pydevs ».

McGill’s, 2002.

[26] E. Kofman, M. Lapadula, et E. Pagliero,

« PowerDEVS: A DEVS-Based Environment for

Hybrid System Modeling and Simulation », 2003.

[27] E. Ramat et P. Preux, « Virtual laboratory

environment (VLE): a software environment oriented

agent and object for modeling and simulation of

complex systems », Simulation Modelling Practice

and Theory, vol. 11, n
o
 1, p. 45‑55, mars 2003.

[28] E. Glinsky, G. Wainer, P. B. P. I, et C. Universitaria,

« Performance Analysis Of Devs Environments », in

In Proceedings of AI Simulation and Planning, 2002.

[29] G. Wainer, E. Glinsky, et M. Gutierrez-Alcaraz,

« Studying performance of DEVS modeling and

simulation environments using the DEVStone

benchmark », SIMULATION, vol. 87, n
o
 7, p.

555‑580, janv. 2011.

