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Abstract

The activity-oriented strategy is one possible world-
view. Other usual strategies (process-oriented and
event-oriented) can be used. One of these strategies is
expected to be more easy to implement and more e�-
cient according to the problem considered. Integrat-
ing usual world-views for system speci�cation should
provide a coherent framework. Activity is used as a
shared aspect for the abstraction of other strategies.
As a new domain, a shared understanding of activity
should be proposed. A description of activity details
for modeling and simulation is proposed here.

Keywords: Activity, theory of modeling and simu-
lation.

1 Introduction

The three usual world views (process-oriented,
activity-oriented, and event-oriented) syntethized by
Balci in 1988 [3] constitute a major contribution in
trying to integrate and describe usual approaches
emerging in the modeling and simulation �eld. These
views can also be considered as �conceptual frame-
works�, �simulation strategies�, and �formalisms� to
guide scientists for the development of their simu-
lation model. We contribute here to the analysis

and the integration of these usual views. The whole
framework is uni�ed in an activity-based modeling
and simulation life cycle.

The whole approach �rst considers the basic ele-
ments of discrete-event system speci�cations intro-
duced initially by Bernard P. Zeigler as a theory of
modelling and simuation [7]. The discrete-event sys-
tem speci�cation of general system structure (cf. the
mathematical structure presented in [1]) consists of
basic elements: Discrete-events and models as com-
ponents composing networks. Models are piloted by
abstract simulators. The e�ciency of abstract sim-
ulators received signi�cant attention [6, 4][5] The ef-
�ciency of simulators executions depends on their
structure (and the basic advantages/disadvantages
which can be obtained in distributed and sequential
implementation structures) as well as on the struc-
ture of the models they are connected to. A choice
has to be made between the level of speci�cation
of models and the deepening of the corresponding
simulator hierarchy. We believe that activity can
be used as a measure of the computational cost of
both model and simulator structures. Then, using
this measure, a trade-o� can be done between the
advantages (reduced execution times and antinomic
increased reusability) and the opposite disadvantages
(increased execution times and antinomic reduced
reusability.)

Let's consider �rst the basic de�nitions of words ac-
tivity, event, and process. An activity �is what trans-
forms the state of a system over time.� It begins
with an event and ends with another. An event is
what causes a change in the state of a component.
A process �is a sequence of activities or events or-
dered in time.� We simply consider activity here as a
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measure of the event occurrences. If no event occur,
the system is considered as qualitatively inactive. If
event occur in the system, the system is considered as
qualitatively active. Conversely, a quantitative mea-
sure of the number of event occurrences in the system
provides information on resource usages and their lo-
calization.
Activity is expected to be worth for: (i) optimiz-

ing the performances of during simulation phase, (ii)
optimizing the modeling phase, (iii) �nd an optimal
trade-o� for the choice of both model and simulator
structure, (iv) guiding the modeler through the mod-
eling and simulation life cycle.
Section 2 of this paper reconsiders usual model and

simulator structures through usual world views. Sec-
tion 3 presents the basic operations on model and
simulators and how they can be combined and cho-
sen through activity. All operations are considered
at high level in an activity-based modeling and sim-
ulation life cycle. Section 4 �rst presents an abstract
framework for decisions, engineering and modeling
choices, then a didactical application of the activity-
based modeling and simulation life cycle is provided.
Finally, perspectives to this work are provided.

2 Integrative Activity-based

Modeling and Simulation

Usual models and simulators structures can be re-
considered and abstracted. This de�nes the main
tools, which can be combined then through an ac-
tivity based modeling and simulation methodology.

2.1 Model

Figure 1 presents usual world views through packages
and accesses between the packages. Both process and
Activity are represented as central views, both using
event scheduling. In the introduction, a broader view
of activity has been presented. The whole conception
constitutes an integration of the concepts of activity,
events, and processes.
Figure 2 depicts this integrative view at a com-

ponent level. Components can be �active� or �inac-
tive.� However, the activity of a system can also be

Figure 1: Integration of usual world views

determined by the number of discrete-events occur-
ing in the system. Only describing active compo-
nents does not fully specify a model. Components
can be selected according to the quality of the of their
achievement. Achievement can be computed as the
score of the simulation model (how well the model
satis�es objectives) divided by the e�ort invested (or
resource consumption): activity. Components can
compose networks. They interact then with other
networks and components through external events.
Finally, components autonomously shedule internal
events.

2.2 Simulator

Figure 3 presents a �at simulator corresponding to
the activity concepts previously introduced. At a
simulation level, all the previous concepts can also be
integrated1. First, an active set is used to compute
only active components. Second, a routing function
is used to update the active set with the in�uenced
components. Third, structural changes are achieved.
More information about the structure of this kind of
simulator can be found in [2].

1Vocabulary related to traditionnal world views is under-
lined.
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Figure 2: Active component

Figure 3: Simulation process

3 Operational Modeling and

simulation

Operations on both model and simulator structures
can be piloted through activity. Activity can also
be used for guiding modeling and simulation choices
achieved for manipulating model and simulator struc-
tures.

3.1 Operations on models and simula-

tors

Decoupling models and simulators is currently a
well accepted conceptual technique in the modeling
and simulation community. This allows enhancing
reusability and separates modeling and simulation
concerns thus improving clarity.
The degree of autonomy of models corresponds to

the degree of structure speci�cation of a system and
its parts:

• First, a fully integrated single model of a system
can be considered (this corresponds to a single
atomic component.) The system is not described
by sub-models but just by one model, which con-
sists of a transition function operating on a set
of states.

• Second, partially autonomous, interdependent,
sub-models of the system can be described (this
corresponds to a multicomponent model.) Tran-
sitions of components can be directly in�uenced
by other in�uencing components.
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• Third, fully autonomous modular sub-models of
the system can be considered (this correponds
to a coupled model of atomic models.) Atomic
models are modular. They interact through in-
put/output ports. Their state is fully encap-
sulated through port access. Their interface is
designed to re-act to input events and to act
through output events. Events are sent by in-
�uencing components.

Simulators correspond to the computing layer of
models. Simulators are in charge of activating tran-
sition functions of atomic models, as well as sending
events to other models. Coordinators are in charge of
exchanging messages according through components
couplings. In a network of computers, coordinator
nodes can be compared to hubs, containing the ref-
erences (addresses) of the machines to be connected
through message exchanges. Couplings between sim-
ulators can be metaphorically compared to Ethernet
cables. Both bandwith and distance of these cables
determine the communication cost between simula-
tors. These costs have to be minimized, minimiz-
ing communications, increasing autonomy of mod-
els (machines), as well as the state encapsulation of
these models. On a single computer, using no hier-
archy will be the more e�cient simulation solution.
In a distributed simulation environment, the degree
of hierarchy will depend on the physical character-
istics of the network (bandwiths and computational
resources.)
Figure 4 depicts the possible structural operations

on model and simulator structures. On the top left
is represented a hierarchy of models (with coupled
models CM and atomic models AM.) On the right is
represented the corresponding fully distributed sim-
ulator hierarchy (with coordinators Coo and simula-
tors S.) As we will see the degree of model decompo-
sition and simulator hierarchy deepening2 relates to
the degree of speci�cation and autonomy of models
and simulators. This distributed hierarchical simu-
lation tree corresponds to the de�nition presented in
[Bernie 2000]. Here the degree of parallelization is
maximum.

2The �deepening� concept has been presented and intro-
duced in KIM

Figure 4: Model and simulator structure operations

The possible simetric operations are:

• At the modeling level: 1. Decomposition: to
describe a model with more details, using cou-
pled models; and 2. Composition: to reduce the
level of speci�cation of a model, composing its
submodels into single models.

• At the simulation level: 1. Deepening: To add
hierarchical levels, and 2. Flattening: To �at
hierarchies.

Choosing an operation has both advantages and
disadvantages. The more the models and simula-
tors are integrated, the faster and the more e�cient
they are. However, if one tries to isolate parts of the
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simulation model, both interface speci�cation (sub-
part models) and computational layer (the simula-
tor) will not be interoperable. Conversely, the more
the models decomposed and the simulators are deep,
the slower and the less e�cient they are. However,
they are highly interoperable and reusable. To sum
up, composition and �attening increase e�ciency and
decreases interoperability while decomposition and
deepening decrease e�ciency and increase interoper-
ability.

Activity corresponds to resource usage. When a
lot of computational resources are disponible, judi-
ciously increasing resource usage (and activity) can
improve performances. Everything depends on �how
well� the resources are used (i.e., to the degree of
achievement of the components chosen for increasing
their resource capabilities) and �how much� resources
are disponible.

3.2 Optimization of modeling and

simulation

Activity can be used as a measure balance be-
tween reusability and autonomy/encapsulation to
drive model and simulator operations (i.e., dynamic
structure changes.) Dynamic structure changes can
be used at two levels: 1. At the performance opti-
mization level: For one simulation model, an opti-
mal satisfying level of modeling and simulation hier-
archy exists, for the same precision. The satisfaction
amount depends on a balance between resource us-
age and resource disponibility.32. At the modeling
optimization level: During the building phase of the
simulation model, an optimal satisfying level of de-
tail (obtained by aggregation and elaboration opera-
tions) exists. This level depends on: the satisfaction
of modeling objectives, and (ii) on the resource avail-
ability optimized at level 1.

The modeling process consists of a balance between

3If a lot of resource is disponible, the modeler would not
care about resource usage optimization. For example, if the
resource is the execution time, if the �nal maximum execution
time (the resource used) is very small compared to the maxi-
mum execution time tolerated by the modeler (the disponible
resource), the modeler would not care about resource usage
optimization

Operation Reuse Autonomy Activity

Model Aggregation no impact - -

Model Elaboration no impact + +

Model Composition - - -

Model Decomposition + + +

Simulator Flattening no impact no impact -

Simulator Deepening no impact no impact +

Table 1: Activity-based Operation Balance for engi-
neering M&S. Sign '+' means increase, and sign '-'
means decreases.

modeling and performance optimization levels. Table
1 describes all the possible dynamic structure oper-
ations through an activity. Activity can be used to
pilot dynamic structure changes (on models and sim-
ulators) to select and operate (on) models. Then,
at a lower simulation level, activity tracking auto-
matically selects active models. Table 1 can thus be
used to drive the modeling and simulation process
through an optimal trajectory. Notice that simulator
�attening increases with composition while simulator
deepening increases with decomposition.

3.3 Activity-based modeling and sim-

ulation life cycle

We discussed before the possibility for activity to be
used as a parameter to guide and drive both mod-
eling and simulation processes. Figure 5 represents
the activity awareness to be used within a model-
ing and simulation life cycle. This cycle is iterative
and incremental. First, according to the activity level
within the simulation model, an activity decision is
taken. The feedback of data activity analysis neces-
sary to compute achievement can be computed: (i)
Ad-hoc: Activity is analyzed from data directly ob-
tained within the simulation loop, or (ii) A-priori:
Activity has been determined from previous analy-
sis and experiments. An activatability level is then
determined before the simulation [e.g., a probability
function of activability of a process (of decision, of
biological behavior, etc.)] Activity analysis [Akerkar]
of timed data streams consists of determining spatial
and temporal activity patterns. The detection of ac-
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tivity in data can be based on the causality of events
in time and space (if a particular position in space is
active, there is a higher probability that the neigh-
boring positions will turn active; if that position is
active at some time, there is a higher probability for
the cell to be active at the next time step.)
Activity selection uses achievement levels to select

sub-models composing the whole modeling and sim-
ulation structure.
The usual activity world view consists of: (i) A

condition to be ful�lled for the activity to take place,
and then (ii) An action related to the activity. Activ-
ity condition consists here too to the condition for the
activity to take place. Action is called here re-action
to pinpoint re-activatability aspect of processes, ob-
jects, or components, as well as to be a metaphor of
both physical and biological reactions. Notice that
activity awareness modeling and simulation life cycle
consists of two parts: 1. The Model: Beyond mod-
els, in the reality this part corresponds to a mind
layer (and can be re�ned to decision and modeling
processes), and 2. Simulator: Beyond simulators, in
the reality this part corresponds to a physical, physi-
ological, biological, chemical... layer. Both parts are
consistant with the model/simulator decoupling at a
lower level.

4 Decision-based and Activity-

based Modeling and simula-

tion life cycles

Simulation can be used as a decision guide for mod-
elers and decision makers. At di�erent detail lev-
els, both modelers and decision makers deal with the
same objects: Decisions, parameters, and resources.
Again activity can be used to explicitly describes the
di�erent steps of modeling and simulation for both
decision makers and modelers.

4.1 Decisions in the Think-Build-Act

framework

The think-build-act framework is described in Figure
. This framework consists of three interdependent

Figure 6: Simulation-support cycle

levels:

1. The Modeling level: Following the usual
analysis-design-veri�cation-validation cycle,
modelers test, evaluate and compare the
parameters of the model.

2. Engineering level: The output results obtained
at the modelling level are compared to resources.

3. Decision-based level: According to the compar-
ison result between usage and availability of re-
sources, resources can be reallocated. Scenarios
(conditions to restricte the initial conditions of
the model) are used. These initial conditions
have a direct impact on resources.

To detail framework application, we will consider a
simple example. Let's consider the development of
a land-use simulator. This simulator consists of two
kinds of stakeholders: The government and landown-
ers. Both can be represented by agent models. The
following simpli�ed simulation sequence can be used.
First, the government takes constructability deci-
sions for non built parcels. Second, landowners can
choose to protest against this decision or not. Third,
the government can be more concerned by ecology,
the welfare of landowners or by the �scal revenue
they will obtain if the parcels are built. Conversely,
landowners can be for the constructability of their
parcels constructible or not.
The land-use simulator is composed of the three

usual simulators of our framework:

1. The modeling simulator dealing with parame-
ters: The decision making process of landowners
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Figure 5: Activity awareness modeling and simulation life cycle

and of the government can be studied through
various parameter values. One parameter can
be attributed to each propensity of agents: Ecol-
ogy, welfare and �scal revenue (for the govern-
ment), and constructability desire (for landown-
ers.) The impact of every parameter level on out-
puts can be observed to experiment the model.

2. The engineering simulator dealing with re-
sources: Resource in this example is the land
availability for construction;

3. The decision simulator dealing with scenarios:
The combination of the parameters of the model
constitutes scenarios. A building rate is obtained
for every scenario. If all agents are of the same
kind, there are 5 propensity parameters and 6
possible combinations of the parameters. If the
parameter values are continuous, and if there are
many agents, the number of scenarios is expo-
nential.

Notice on Figure 6 that there exists two kinds of con-
�gurations: One is bottom-up (from parameters to
scenarios), the other one is top-down (from scenar-
ios to parameters.) Both con�gurations usually need
to be iteratively combined. The bottom-up approach
allows improving knowledge. Changing the param-
eters, the modeler better understand the behavior

of the simulator, delimitating the possible scenarios.
Outputs of the agent-based simulation of the model-
ing simulator can be analyzed to calculate a building
rate.The reverse top-down con�guration allows cali-
brating the model. Through the top-down con�gura-
tion, an a-priori building rate is provided as an input
of the simulation. Comparing both emergent and in-
put building rates allows calibrating the model.
All the think-build-act cycle can now be explic-

ity re�ned and generalized through the activity-based
modeling and simulation life cycle. Each step of the
modeling and simulation life cycle (cf. Figure 5) is
applied through its use by: A modeler, a programmer
and a policy maker.

4.2 Modeler activity-based cycle

• Objective: Understand and validate the behav-
ior of the model.

• Decision: Activity = Number of decisions of
a particular kind (protestation, sales, etc.),
Score = No scenario is better than another, No
achievement.

• Activity selection: Consists only of automatic
activity tracking adding and removing non built
parcels (active) close to built ones (active),
through dynamic structure.
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• Conditions/reactions: At the mayors level, If a
parcel is already constructed, then re-act : There
is a probability for the neighboring parcels to be
proposed for construction. At the citizens level,
if a parcel is proposed for construction, then re-
act : protest or not.

• Activity analysis: Ad-hoc: Decisions of agents
(propositions to constructability, protestations,
sales, etc.), A-priori: activatability corresponds
to all the probabilities used in the decision mak-
ing process: Protestation threshold, propensity
of agent types (e.g., ecological) against other
propensities.

4.3 Programmer activity-based cycle

• Objective: Minimize execution times and maxi-
mize reusability;

• Activity decision: Activity = Number of ac-
tive components during the simulation, Score
= Maximum possible decomposition level of the
simulation model and faster detection algorithm
of active components, Achievement: Minimize
activity and maximize score.

• Activity selection: Automatically select ac-
tive components, automatically unselect inactive
components, through activity tracking and dy-
namic structure.

• Activity conditions and re-actions: At the cel-
lular level, if a cell is constructed, then re-act :
scan the neighoring cells and possibly add them
to the set of active components. If a cell is pro-
posed for constructability, then re-act : scan the
agents concerned by this new activity. At the
agent level, for residents: If a cell is proposed
for constructability, then re-act : scan the agents
concerned by this new activity; for the mayor: If
a cell proposed for constructability recfeives to
many protestations, then re-act : do not make it
constructable.

• Activity analysis: Ad-hoc: Number of active
components during the simulation, A-priori: ac-

tivatability corresponds to all the cells close to
already constructed areas.

4.4 Policy maker activity-based cycle

• Objective : Maximize welfare or/and �scal rev-
enues in scenarios.

• Activity decision : Activity = Protestations
of a scenario, Score = Increase with adhesions
and �scal revenues; Decrease with protesta-
tions; Achievement = Minimize protestations
and maximize adhesions and �scal revenues.

• Activity selection: Choose scenarios with maxi-
mum achievement;

• Activity conditions and re-actions: At the sce-
nario level: If a scenario provokes too many
protestations or/and too few �scal revenues,
then re-act : remove it. If a scenario provokes few
protestations or/and high �scal revenues, then
re-act : keep it. Use activity tracking and dy-
namic structure.

• Activity analysis: Ad-hoc: Number of protesta-
tions during the simulation. A-priori: activata-
bility corresponds to all the cells susceptible to
do not decrease welfare and increase �scal rev-
enue.

5 Conclusions

The usual elements of discrete-event speci�cation and
usual world views have been investigated through ac-
tivity. From a low level of speci�cation to a high
level, activity allows modeling concisely, and simu-
lating e�ciently systems. Besides, activity can be
used to drive the whole modeling and simulation cy-
cle. However, a lot of work needs now to be achieved
to ground more the approach. Once, many applica-
tions will have lead to a knowledge increase of activ-
ity mechanisms and elements, an automatization of
an activity-based modeling and simulation too should
be possible to be designed.
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