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Abstract
The Composable Cellular Automata (CCA) specification, in-
troduced in a previous article, formally defines a system for
building cellular automata models that can be composed with
other models. The purpose is to build hybrid simulation mod-
els with uniquely modeled subsystems. It is feasible that two
or more subsystems of a large, complex system are modeled
using CCA. For the purposes of refining domain abstraction,
reducing composition complexity, or improving model exe-
cution, the need to compose two or more CCA to create a
single CCA may exist. It is then important for a modeler to
understand the implications that specific disparities between
the CCA have in their composition. To that end, this paper
builds upon the original publication to describe closure prop-
erties of formal composition of multiple CCA with respect to
their dimensional attributes—cell indices and time.

1. INTRODUCTION
A hybrid simulation model is one in which the subsys-

tem models are disparate yet interact to represent a complex
system. The disparities can include differences in formalism,
structure, timing, and behavior. The usefulness in maintaining
the disparities is that the subsystem simulation models can
best represent their respective subsystems. However, the sub-
system model differences must be managed to ensure a cor-
rect simulatable system model and simulation results. Manag-
ing software simulation systems entails dealing with various
complexities and the interactions between subsystem compo-
nents is one of those complexities. [1, 2] There are a num-
ber of ways in which these disparate models can be made
to interact through formal means and they have trade-offs in
terms of complexity management and robustness of model
representation within a domain. One approach, interoperabil-
ity, focuses on data communication between disparate simu-
lation systems. High-level Architecture (HLA) is an example
of this. [3] The other approach, composition, address inter-
actions between heterogeneous model types whose execution

approach is the same. [4, 5] These two approaches may also
be combined.

In [6], the Composable Cellular Automata (CCA) formal-
ism was introduced. Generally, cellular automata (CA) are
useful as simulation model representatives for many systems
that can be uniformly tessellated and treated as an interacting
set of smaller systems. One of the key limitations of typical
CA that the CCA specification overcomes is the provision of
a formal mechanism for the cellular automata system to be
composed with other formal models. The specification paper
also discusses mapping one CCA to another. This approach
retains the two CCA as individual entities. However, there
may be times in which a modeler seeks to merge two or more
CCA together in order to reduce the overall complexity of the
simulation system. Toward this end, this paper defines clo-
sure properties of the dimensional attributes of Composable
Cellular Automata (CCA), ensuring that the mechanisms em-
ployed by the CCA formalism and exhibited by the resulting
CCA remain valid.

The section that immediately follows provides a summary
introduction of the composable cellular automata specifica-
tion. Section 1.1.3. introduces properties that apply to all
CCA and lays the foundation for the subsequent discussions.
Next, in Section 2., CCA composition is discussed from the
perspective of cell indices and time. A discussion of the util-
ity of CCA composition is provided next. Finally, Section 4.
provides a summary of what is presented in the paper.

1.1. Composable Cellular Automata
CCA are formally specified cellular automata. They are de-

fined in [6] and summarized here. There are two major com-
ponents of CCA, a network and the cells contained within the
network. The network encapsulates the cells such that all ex-
ternal input and output (I/O) must be handled by the network
itself. The cells represent the individual automaton that main-
tain state, produce output based upon state, and undergo state
transition based upon current state and input.

Ref. [6] discusses an approach to mapping input and out-
put (I/O) between two CCA networks. This is feasible and
remains a viable solution, especially if the two CCA are dis-



tributed or extremely disparate across their elements. How-
ever, it does not address a direct composition approach to
managing CCA that are alike. In other words, how CCA can
be composed with other CCA and treated as a single CCA
if they differ in specific ways. The utility of this is that it
may simplify the composition of the CCA models with an
additional, non-CCA model; thus, making the hybrid model
more simplistic (see [1] and [7] as examples). Another pur-
pose to composing two or more CCA is to reduce execution
overhead; removing the need for multiple simulators, as an
example. This paper discusses how CCA may be composed
with respect to their dimensional properties—cell representa-
tion and time. The overall goal is to describe approaches to
formally compose CCA, and provide an understanding of the
implications of doing such when faced with specific dispari-
ties between the CCA systems.

1.1.1. Overview of the CCA Specification
A Composable Cellular Automata network, N, is defined

as

N = 〈XN ,YN ,D,{Mi jk},T,F〉, (1)

and each cell component, Mi jk, within the network is specified
by

Mi jk = 〈Xi jk,Yi jk,Qi jk, Ii jk,δi jk,λi jk,T 〉. (2)

As discussed in [6], the first two elements of N, XN and
YN , are the input from an external system to the network and
output from the network to an external system, respectively.
D is a set of indices that uniquely identify each cell within
the set of homogeneous cells, {Mi jk}, that belongs to the net-
work (subscript i jk is the index for a unique element of a
three-dimensional network). T is a finite set of time-ordered,
time intervals that structures the discrete-time dynamics of
the network. The last set, F , contains the mapping functions
between the CCA cells and the network as a whole.

The cells, Mi jk, are defined by, Xi jk and Yi jk, which are the
input to and output from each cell. Each is a union of data
internal and external to the network. Xi jk = Ẋi jk∪X i jk, which
represents input from the cell’s influencers and external input
mapped to this cell, respectively. Yi jk = Ẏi jk∪Y i jk, which rep-
resents output to the cells that this cell influences and output
that acts as part of the external output from this network, re-
spectively. Qi jk is the set of possible states for the component.
Ii jk is the set of indices that identify this cell’s influencers (i.e.,
its neighborhood). The component’s state transition function
is δi jk, and the output function is λi jk. δi jk : Qi jk×Xi jk→Qi jk
and λi jk : Qi jk→ Yi jk. T is the same set of time-ordered, time
intervals that exists in the network tuple in (1). The signifi-
cance of this is that it ensures that every cell in the network is

using the same set of time-ordered, time intervals and, there-
fore, every cell undergoes state transition at the same discrete
time. It should also be noted that a specific cell has no a pri-
ori knowledge of the network, including characteristics such
as total number of cells in the network and connectivity (e.g.,
Moore versus von Neumann networks).

All external input and output from the cells are managed
through the network’s mapping functions within F . The net-
work encapsulates the cells and, as such, external entities
must rely upon the interfaces offered by the mapping func-
tions. These mapping functions are defined by the modeler
and handle both input to the cells from external systems and
output from the cells to those systems. The mapping func-
tions may aggregate or disaggregate input and output. These
mapping functions may also be specified such that some cells
have no direct mapping to or from external systems. External
entities may not directly provide data to or receive data from
specific cells. Cells and the network itself are not required to
produce output or make use of input. As such, values may be
/0. Imagine a watershed model where an external environment
model inserts rain at the top of a mountain, the CCA mod-
els the watershed down the mountain, and the output is the
rainfall that drains into a riverbed. Mappings would be cre-
ated such that all input go to the cells representing the top of
the mountain and only output from those cells representing
the bottom of the mountain would be provided to an external
system model.

1.1.2. Mapping of Two CCA
Two CCA mapped to one another may be the same or

different in terms of structure, possible states, and transi-
tion functions—any of the network and component elements.
Fig. 1 and Fig. 2 provide general examples of mapping from
a two-dimensional to a three-dimensional CCA system and
back, respectively. These mappings require that the output
mapping function from one CCA be coordinated with the
input mapping function to the other. For example, the two-
dimensional CCA output mapping function would output all
cell values and retain them as nine distinct values. The three-
dimensional CCA input mapping function would input nine
values and map them to each quadrant in two of that CCA
model’s three layers.

The use of the mapping functions can always be used to
ensure correct composition of the two model subsystems. For
instances where the interaction between the subsystems is not
easily defined by a homogeneous cellular automata neighbor-
hood, like the examples in Fig. 1 and Fig. 2, it may be the only
option. However, if the example were to be changed such that
the two-dimensional CCA had the same tessellation as a layer
of the three-dimensional CCA, and the two-dimensional CCA
only interacted with the top layer of the three-dimensional
CCA, then it may be advantageous to treat the two CCA as



Figure 1. CCA Mapping: 2D external output to 3D exter-
nal input. Cells without letters indicate no external input is
received.

Figure 2. CCA Mapping: 3D external output to 2D exter-
nal input. Cells without letters indicate no external output is
generated. (Top layer outlined for clarity.)

one in order to simplify the model development and simula-
tion.

1.1.3. Basic Properties of CCA
Let Φ and Ψ represent two distinct composable cel-

lular automaton. The network specifications for Φ and
Ψ are NΦ = 〈XΦ

N ,Y Φ
N ,DΦ,{MΦ

i jk},T Φ,FΦ〉 and NΨ =

〈XΨ
N ,Y Ψ

N ,DΨ,{MΨ
i jk},T Ψ,FΨ〉, respectively. Similarly, the

specifications for the cell components of Φ and Ψ

are MΦ
i jk = 〈XΦ

i jk,Y
Φ
i jk,Q

Φ
i jk, I

Φ
i jk,δ

Φ
i jk,λ

Φ
i jk,T

Φ〉 and MΨ
i jk =

〈XΨ
i jk,Y

Ψ
i jk,Q

Ψ
i jk, I

Ψ
i jk,δ

Ψ
i jk,λ

Ψ
i jk,T

Ψ〉, respectively.

Definition 1. Φ = Ψ is defined as all subset elements of tu-
ples Φ and Ψ being equal. Formally,

Φ = Ψ⇔ (XΦ
N = XΨ

N )∧ (Y Φ
N = Y Ψ

N )∧ (DΦ = DΨ)∧
({MΦ

i jk}= {MΨ
i jk})∧ (T Φ = T Ψ)∧ (FΦ = FΨ),

(3)

where {MΦ
i jk}= {MΨ

i jk}⇔∀i jk : (XΦ
i jk = XΨ

i jk)∧(Y Φ
i jk =Y Ψ

i jk)∧
(QΦ

i jk = QΨ
i jk)∧ (IΦ

i jk = IΨ
i jk)∧ (δ Φ

i jk = δ Ψ
i jk)∧ (λ Φ

i jk = λ Ψ
i jk)∧

(T Φ = T Ψ).

Definition 2. Let Mabc and Mxyz be two components of the
same CCA network, N. Then, Mabc u Mxyz is defined as the
two cell components being homogeneous. Formally,

∀(a,b,c) ∈ D,∀(x,y,z) ∈ D,(a,b,c) 6= (x,y,z) : Mabc u Mxyz �

Xabc = Xxyz,Yabc = Yxyz,Qabc = Qxyz, fabc(D) = fxyz(D),

δabc = δxyz,λabc = λxyz,Tabc = Txyz,

(4)

where fabc(D) 7→ Iabc and fxyz(D) 7→ Ixyz are the functions
relating the network set of indices to a cell’s set of influencers.

Note that the relationship between the cell and its influencers
is what is being stated as equal, not the set of influencers
themselves.

Definition 3. Φ u Ψ is defined as Φ and Ψ being
homogeneous—having {MΦ

i jk}u {MΨ
i jk}. Formally,

NΦ u NΨ⇔{MΦ
i jk}u {MΨ

i jk} (5)

where {MΦ
i jk}u {MΨ

i jk} is as defined in Definition 2.

By observation, it should be understood that if Φ = Ψ, then
Φ u Ψ.

Definition 4. Φ ∼ Ψ is defined as Φ and Ψ being similar,
differing only in the time intervals subset, T . Formally,

Φ∼Ψ≡ {Φ−{T Φ}}= {Ψ−{T Ψ}}, (6)

where T Φ 6= T Ψ. Note that Φ ∼ Ψ |= T ∈ {MΦ
i jk} 6= T ∈

{MΨ
i jk} ∵ T ∈ N = T ∈ {Mi jk}.

Given that the discrete-time sets, T , are different between the
cell components of the two network systems, Φ and Ψ are not
homogeneous as defined in Definition 3.

Definition 5. Composition of two CCA is a disjoint union
of the CCA plus a composition tuple containing any new
external I/O mappings to the resultant set of cells and any



new influencers to specific cells. In other words, it is the
union of each of the subset elements of the CCA tuples and
each subset element is pairwise disjoint, the union of the net-
work mapping function set with an mapping composition set,
and the union of the influencer set of each cell with an in-
fluencer composition set. Formally, let Ξ = {F ′,{I′i jk}} be
the composition tuple, where F ′ is the mapping composi-
tion set and {I′i jk} is the influencer composition set. Then,
composition ≡ Φ�Ξ Ψ = 〈{XΦ

N ∪ XΨ
N },{Y Φ

N ∪Y Ψ
N },{DΦ ∪

DΨ},{{MΦ
i jk} ] {MΨ

i jk}},{T Φ ∪ T Ψ},{FΦ ∪ FΨ ∪ F ′}〉, and
{{MΦ

i jk} ] {MΨ
i jk}} = {{MΦ

i jk} t {MΨ
i jk}} = ∀i jk : 〈{XΦ

i jk ∪
XΨ

i jk},{Y Φ
i jk ∪ Y Ψ

i jk},{QΦ
i jk ∪ QΨ

i jk},{IΦ
i jk ∪ IΨ

i jk ∪ I′i jk},{δ Φ
i jk ∪

δ Ψ
i jk},{λ Φ

i jk∪λ Ψ
i jk},{T Φ∪T Ψ}〉. Note that Ξ= /0⇒Φ�Ξ Ψ=

Φ� /0 Ψ = ΦtΨ.

Theorem 1. If Φ = Ψ, then Φ� /0 Ψ = Φ.

Proof. Let {I′i jk} = /0. Using Definition 1, substitute Ψ

for Φ into the equation for Φ �I′i jk
Ψ given in Defini-

tion 5. Then, Φ � /0 Ψ = 〈{XΦ
N ∪ XΦ

N },{Y Φ
N ∪ Y Φ

N },{DΦ ∪
DΦ},{{MΦ

i jk} ] {MΦ
i jk}},{T Φ ∪ T Φ},{FΦ ∪ FΦ}〉,

and {{MΦ
i jk} ] {MΦ

i jk}} = ∀i jk : 〈{XΦ
i jk ∪ XΦ

i jk},{Y Φ
i jk ∪

Y Φ
i jk},{QΦ

i jk ∪ QΦ
i jk},{IΦ

i jk ∪ IΦ
i jk},{δ Φ

i jk ∪ δ Φ
i jk},{λ Φ

i jk ∪
λ Φ

i jk},{T Φ ∪ T Φ}〉. By definition of a union of sets,
{{MΦ

i jk}]{MΦ
i jk}} = {MΦ

i jk}, and the first tuple simplifies to
〈{XΦ

N },{Y Φ
N },{DΦ},{{MΦ

i jk}},{T Φ},{FΦ}〉, which is the
specification for Φ. ∴ if Φ = Ψ, then Φ� /0 Ψ = Φ.

2. PROPERTIES OF DIMENSIONAL
ATTRIBUTES

2.1. Representation
Definition 6. If two CCA are homogeneous and have the
same set of cell identifiers, D, and the same set of cell in-
fluencers, {Ii jk}, then the two CCA possess the same domain
representation, D. Formally,

(DΦ = DΨ)∧ (∀i jk : IΦ
i jk = IΨ

i jk)⇔DΦ =DΨ. (7)

D models the tessellation of the domain space while {Ii jk}
captures the abstraction of domain element interactions (spec-
ified by the network). Arbitrary values can be assigned to i,
j, and k as labels in D. However, for the purposes of eval-
uation of a CCA there are two approaches. First, from a
domain-neutral perspective, all indices must be assumed to
use the same coordinate system, start at (0,0,0), and then
be numbered sequentially based upon movement in a re-
spective dimension. Alternatively, the semantics of the values
with respect to the domain must be considered. Thus, stat-
ing DΦ = DΨ entails that all of the same discrete-elements
of the domain are being represented by D. As examples of
differences in D, consider a grid-shaped tessellation versus

a hexagonal one. For differences in {Ii jk} consider a Moore
network versus a von Neumann network.

Definition 7. Regions, R, of CCA network, N, are a set
of references to distinct sets of cells in the network, to
which a specific external input value in XN is mapped. For-
mally, f : (r,xN) 7→ {xi jk}, where f ∈ F, r ∈ R, xN ∈ XN ,
xi jk ∈ X i jk, i jk ∈ D, and 0 ≤ |{X i jk}| ≤ |D|. Regions are a
domain-dependent implementation concept (similar to ports
in a Discrete-Event System (DEVS) specification implemen-
tation).

2.2. Composition with Disparate Indices
Confining a discussion of CCA differences to the cells

themselves, {Φ−{DΦ,FΦ}} = {Ψ−{DΨ,FΨ}}. Note that
F is dependent on the indices in D, and so must be consid-
ered.

Theorem 2. Two homogeneous single-celled CCA, Φ and
Ψ, differing by set D (and, potentially, F and {Ii jk} as well)
can be composed into a third CCA, Ω.

Proof. Let Φ u Ψ, let DΦ = {(a,b,c)} and DΨ = {(e, f ,g)};
let FΦ = { f Φ} and FΨ = { f Ψ}, where f Φ : (rΦ,xΦ

N ) 7→ xabc
and f Ψ : (rΨ,xΨ

N ) 7→ xe f g; let IΦ
abc = {(a,b,c)} and IΨ

e f g =
{(e, f ,g)}, where c 6= g and the remaining indice variables
may be arbitrary values; and let F ′ = /0 and {I′i jk}= /0.

Using Definition 5: Ω = Φ�Ξ Ψ ⇒ DΩ = DΦ ∪DΨ =
{(a,b,c),(e, f ,g)}, FΩ = FΦ ∪ FΨ ∪ F ′ = { f Φ, f Ψ}; and
∀i jk : IΩ

i jk = IΦ
i jk∪ IΨ

i jk∪ I′i jk = {{IΩ
abc},{IΩ

e f g}}, where {IΩ
abc}=

{IΦ
abc} and {IΩ

e f g} = {IΨ
e f g}. The unions of the remain-

ing, non-disparate tuple elements sets are elementary where
{}Φ = {}Ψ = {}Ω. ∴ NΩ = 〈XΩ

N ,Y Ω
N ,DΩ,{MΩ

i jk},T Ω,FΩ〉
and {MΩ

i jk} = 〈XΩ
i jk,Y

Ω
i jk,Q

Ω
i jk, I

Ω
i jk,δ

Ω
i jk,λ

Ω
i jk,T

Ω〉 define Ω.
Note that F now contains two mapping functions, one that
maps to each cell.

Corollary 1. Two homogeneous single-celled CCA, Φ and
Ψ, differing by set D (and, potentially, F and {Ii jk}) can be
composed into a third CCA, Ω, if F ′ contains a mapping from
the network to the collection of all cells within the network
after composition (i.e., F ′ = { f}, where ∀i jk, f : (r,xN) 7→
{xi jk}), and I′i jk = /0.

Proof. Let Φ u Ψ, let FΦ = { fφ}, where ∀i jk ∈ DΦ, fφ :
(r,xN) 7→ {xi jk}; FΨ = { fψ}, where ∀i jk∈DΨ, fψ : (r,xN) 7→
{xi jk}; and F ′= { fω}, where ∀i jk∈DΩ, fω : (r,xN) 7→ {xi jk},
and let I′i jk = /0.

Then, Ω = Φ �Ξ Ψ ⇒ FΩ = {FΦ ∪ FΨ ∪ F ′} =
{ fφ , fψ , fω}. As before, the unions of the remaining tuple ele-
ment sets are elementary and Ω is properly defined. Note that
three external I/O mappings now exist—one to each cell and
a third to both cells.



Corollary 2. Two homogeneous single-celled CCA, Φ and
Ψ, differing by set D (and, potentially, F and {Ii jk}) can be
composed into a third CCA, Ω, if I′i jk contains the index of the
cell with which i jk is composed (i.e., I′abc = {(e, f ,g)} and
I′e f g = {(a,b,c)}), and F ′ = /0.

Proof. Let Φ u Ψ, let ∀i jk : {I′i jk}= {{IΦ
abc},{IΨ

e f g}}, where
{IΦ

abc}= {(e, f ,g)} and {IΨ
e f g}= {(a,b,c)}, and let F ′ = /0.

Then, Ω = Φ�Ξ Ψ⇒∀i jk : IΩ
i jk = {IΦ

i jk}∪{IΨ
i jk}∪{I′i jk}=

{{IΩ
abc},{IΩ

e f g}}, where {IΩ
abc} = {(a,b,c), (e, f ,g)} and

{IΩ
e f g} = {(e, f ,g),(a,b,c)}. As before, the unions of the re-

maining tuple element sets are elementary and Ω is properly
defined. Note that the two cells now influence each other as
well as themselves.

Corollary 3. Given the associative property of a binary
union, multiple homogeneous CCA; differing only by sets D,
F, and {Ii jk}; can be composed in any order. (Φ�Ξ Ψ)�Ξ

ϒ = Φ�Ξ (Ψ�Ξ ϒ). Furthermore, as the unions are disjoint,
each mapping composition set, F ′, and influencer composi-
tion set, I′i jk, may be given with respect to each composition
or all at once with the last composition as a union of all re-
spective composition sets.

Note that when it stated that the composition set is “with re-
spect to” each composition, this means that the mappings and
influencer indices are valid for the two CCA being composed
(i.e., i jk ∈ {DΦ∪DΨ}).

Whether or not the composed CCA have additional map-
pings and/or influence over a subset of the other to which it
is composed, a network mapping to a set of dimensionally-
disparate cells is a viable system. Thus, multiple CCA, dif-
fering only by sets D, F , and {Ii jk} can be said to be closed
under composition. This implies that a CCA may be built
from a composition of one (dimensionally-unique) cell at a
time or from a composition of cell sets containing at least one
dimensionally-unique cell member between them.

Note that if two composed, homogeneous CCA con-
tain a common “edge” cell then, even if the influencer
composition set is /0, the composed CCA will integrate
the two CCA based upon the union of the influencers of
the edge cell. For example, let Φ and Ψ be two two-
celled CCA where DΦ = {(a,b,c),(e, f ,g)} and DΨ =
{(e, f ,g),(p,q,r)}; and let IΦ

i jk = {{IΦ
abc},{IΦ

e f g}}, where
{IΦ

abc}= {(a,b,c),(e, f ,g)} and {IΦ
e f g}= {(e, f ,g),(a,b,c)}.

Similarly, let IΨ
i jk = {{IΨ

e f g},{IΨ
pqr}}, where {IΨ

e f g} =

{(e, f ,g),(p,q,r)} and {IΨ
pqr} = {(p,q,r),(e, f ,g)}; and let

F ′ = /0 and I′i jk = /0. Then, Ω = Φ� /0 Ψ⇒ IΦ
e f g ∪ IΨ

e f g ∪ /0 =

IΩ
e f g = {(e, f ,g),(a,b,c),(p,q,r)}.

Note also that directional influence and automata networks
such as torus can be implemented by excluding or includ-
ing specific indices in I′i jk. Furthermore, if in the preced-

ing example the restriction for F ′ = /0 is removed and in-
stead F ′ = { fω}, where ∀i jk ∈ DΩ, fω : (r,xN) 7→ {xi jk};
and FΦ = { fφ}, where ∀i jk ∈ DΦ, fφ : (r,xN) 7→ {xi jk}; and
FΨ = { fψ}, where ∀i jk ∈ DΨ, fψ : (r,xN) 7→ {xi jk}; then all
three external I/O mapping functions, { fφ , fψ ,and fω}, will
have at least one common cell to which they map.

2.3. Composition of Disparate Discrete-Time
Segments

Attention is now turned to the composition of two CCA
that differ with respect to their discrete-time segments, T . In
this regard, Φ∼Ψ. It may not make much sense to compose
two CCA with the same dimensional representation if they
only vary in time. However, there is no dependency of D, Ii jk,
or F on T ; therefore, whether they are equal or not does not
matter to what follows.

Theorem 3. If two similar single-celled CCA are composed,
the resultant CCA is a system with the network and all cells
possessing discrete-time segments from both.

Proof. Let Φ ∼ Ψ; and T Φ = {tΦ
1 , tΦ

2 , . . . , tΦ
m} and T Ψ =

{tΨ
1 , tΨ

2 , . . . , tΨ
n }, where T Φ 6= T Ψ and 0 < m ≤ n ≤ N∗ and

N∗ ≡ N−{0,∞}.
Ω = Φ�Ξ Ψ⇒ T Ω = T Φ ∪ T Ψ at the network-level and

∀i jk : T Ω = T Φ ∪ T Ψ at the cellular level. T Ω = T Φ ∪
T Ψ = {tΩ

1 , tΩ
2 , . . . , tΩ

m+n}. Given that T is independent of in-
dex i jk, even at the cell-level, T Ω at the cellular level is also
{tΩ

1 , tΩ
2 , . . . , tΩ

m+n}, retaining equality of discrete-time seg-
ments at the network and cellular levels.

Once composed, all of the discrete-time segments are ap-
plied to all of the cells, Mi jk. Through the understanding of
similar from Definition 4 and applying Definition 3, the re-
sultant network is now a homogenenous set of cell compo-
nents.

3. APPLICATION
In [1], an agent-environment hybrid model was created to

exemplify a poly-formalism modeling approach. Fig. 3 repre-
sents the simulation models as they were developed. Agents
were modeled using DEVS-Suite, a Java implementation of
DEVS [8], to represent sugar farmers. The environment was
modeled as two separate CCAs in the Geographic Resources
Analysis Support System (GRASS)–a Geographical Informa-
tion System (GIS). [9] One CCA modeled the landscape that
was impacted by weather and agent activity. The other mod-
eled the sugar that grew on the landscape and was harvested
by the agents. The agent and the environment models are
disparate in many ways including formalism, timing, a do-
main representation. Between the two models is an interac-
tion model (IM). The IM composes the two models by ex-
plicitly modeling the interaction between them, accounting



for the disparities to ensure a correct model and simulation
results. Thus, agent models hand requests for environment
information or orders for environmental change to the IM.
The IM then handles data transformation and timing control
mechanisms to interact with the environment model CCAs.
Response data from the CCAs to the agent model are handled
similarly in a reverse fashion.

As can be seen in Fig. 3, a set of mapping functions is
used between the agent model and the environment subsys-
tem models. Also, there exists mapping functions between
the two CCA. These mapping functions, Fsugr and Fland , are
the same mapping functions from the CCA network that were
discussed in Section 1.1.. As GRASS does not have an innate
sense of timing, a DEVS timer model had to be created to
drive each of the CCAs. This timing model is a state ma-
chine that cycles through the CCA state transition and out-
put functions. A separate set of GRASS-to-DEVS compo-
nents, such as the façade, were also required for interaction
with the IM and agent model. Interactions between the CCA
did not require the IM as there was no disparity between the
two CCA models’ structure or timing. Behavioral differences
were managed using the network mapping functions of the
two CCA to transport and manipulate data to and from the as-
sociated cell components. Overall, the purpose of this figure
is to illustrate the application of the CCA within a research
project and highlight some of the complexities that may arise
in implementation due to the need for mapping functions.

Figure 3. Hybrid Agent-Environment Model Showing
Mapped CCAs.

The utility of the information in Section 2. lies in expand-
ing the flexibility of the Composable Cellular Automata spec-
ification. The introduction of the CCA specification was ne-
cessitated by the need for a cellular automata formalism that
could be composed with other, non-CA models to create a ro-
bust hybrid model. Continued use of the CCA specification
has demonstrated the benefit of using multiple CCA in a hy-
brid model or making reuse of existing CCA. Building upon

the CCA specification, composition of multiple CCA must be
rigorously defined to ensure that the formalism is adhered to
and that the implemented models and simulation results re-
main valid.

Fig. 4 illustrates three CCA that may be used in a hybrid
model. The basic specification requires that the three CCA
interact through their network mapping functions. If a non-
CCA subsystem model were added, then additional mapping
functions would be required between it and each of the CCA
with which it interacts. Consider an example where compo-
nents of a system are modeled and simulated independently at
first. Then, it is desired to reuse the existing models to model
more complete picture of the system. In this case, the con-
tinued use of mapping functions becomes burdensome and
requires extra overhead; especially in cases demonstrated in
Fig. 3 where extra components are required to implement
CCA with environments such as GRASS.

Figure 4. Exemplar Model Showing Separate CCAs That
May Be Mapped.

The closure properties discussed here provide similar ben-
efit as those received from DEVS models. Closure under cou-
pling in DEVS allows a hierarchy of coupled and atomic
models to be built, wherein the modeler may treat the top-
most coupled model as a single atomic model and therefore,
the hierarchy as a single system. Fig. 5 illustrates the three
CCA from Fig. 4 arbitrarily composed. How they are orga-
nized to interact is defined by the mapping composition set
and influencer composition set. For the purposes of this ex-
ample, how exactly these subsystem models interact with one
another is unimportant. What is important is that these cell
components can now be imagined to be surrounded by a sin-
gle network layer. That one network will now contain all of
the mapping functions to and from the composed set of CCA
cell components. Thus, all external systems can now interact



with a single network component that encapsulates the CCA
cell components. In implementation environments like those
shown in Fig. 3, this can significantly reduce the complexity
of the simulation model system.

Figure 5. Exemplar Model Showing Composed CCAs That
May Be Treated As One.

4. CONCLUSION
With adherence to specification and an understanding of

the dependencies between tuple elements, composable cel-
lular automata (CCA) can be directly composed with each
other. CCA are defined as a network sextuple, which contain
cellular automata (cells) defined by a septuple of elements.
Composition of CCA is defined as a disjoint union of the tu-
ple elements, with the addition of a mapping composition set
and a influencer composition set that can redefine the external
input/output and stitch two CCA together, respectively. The
properties of set unions are therefore used as a foundation for
composition approaches.

The paper discusses CCA composition from the perspec-
tive of dimensional properties—cell indices and time—for
homogeneous CCA. It discusses how two CCA that differ
in their index sets can be composed to create a new CCA.
This is valid for compositions containing mapping composi-
tion sets, influencer compositions sets, or containing or lack-
ing both. The paper also described why the composition ex-
hibits an associate property such that multiple CCA can be
composed in any order. Thus, the CCA specification exhibits
a closure under composition. Lastly, two CCA that differ only
in their discrete-time segments may also be composed, yield-
ing a CCA containing all discrete-time segments from both
original CCA.

The reader is cautioned that proper composition ensures
that the system results can be verified to conform to specifi-
cation. It does not assure validation with respect to the do-
main. Even if the original subsystems are valid, the com-
posed system cannot be assumed to be valid. For example,
changing the tessellation that represents the domain space or
adding additional cell influencers may impact the overall sim-

ulation results. Similarly, while valid results may be obtained
with CCA using two different sets of discrete-time segments,
merging the two may not yield valid results. Just as a software
developer should test the integration of two correct software
components, a software modeler should validate the resultant
composed model.

4.1. Future Work
The Composable Cellular Automata specification provides

encapsulation mechanisms and strict adherence to loose cou-
pling between CCA components. It emphasizes information
hiding in that cells are not cognizant of the network structure
and external entities must use the netowrk mapping functions
to interact with the contained cell components. As such, it
should be possible to extend the specification to include inho-
mogeneous cellular automata. For example, how would het-
erogeneous CCA that with different definitions of a neighbor-
hood interact? What does it mean for CCA that are disparate
in their state transition functions to be coupled? Developing
answers to these questions require a relaxation of the basic
specifications assumption of homogeneous cell components,
Mi jk. All structural and behavioral inconsistencies will have
to be formally examined to ensure model and simulation re-
sult correctness.
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