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Abstract

In this paper, we present our work in the field of compu-
tational intelligence and discrete event systems. Knowledge
representation and the inclusion of imperfect knowledge is
a key step in an effort to optimally incorporate artificial in-
telligence methods in a modeling and simulation framework.
Fuzzy Inference Systems (FIS) are one of the most used ap-
plications of Fuzzy Logic and Fuzzy Sets Theory. They have
the advantage of relying on the properties of Fuzzy Logic to
represent imperfect information so gradually, and manipulate
them from a linguistic description. This flexibility of repre-
sentation is more significant for the study of complex sys-
tems. We wish to extend the Discrete EVent system Specifi-
cation (DEVS) formalism to represent FIS and we propose a
modular and generic approach (DEVFIS) to integrate in this
new extension various optimization methods.

1. INTRODUCTION

Works on discrete event systems theory (DES) has allowed
making major advances in the fields of modeling and simula-
tion. In the 70s Zeigler [24] was introduced DEVS (Discrete
EVent system Specification) as an abstract formalism for dis-
crete event modeling. DEVS is a universal formalism for dis-
crete event system, which can be used to specify complex sys-
tems described from behavioral functions, states and inputs /
outputs. The original implementation of the DEVS formal-
ism considers systems as perfectly known, but in the case of
complex systems, such as natural systems, knowledge is often
imperfect. To consider this issue, we looked at several com-
putational intelligence methods, as fuzzy logic [23]], genetic
algorithms and neural networks . Moreover, these methods
are proven to be useful to take into account imperfect knowl-
edge. For example, fuzzy logic control [[13} [18] provides a
human-like decision making methodology, which has been
used widely in the field of control process.

Knowledge representation and the inclusion of imperfect
knowledge is, in our view, a key step in an effort to opti-
mally incorporate computational intelligence methods in a
modeling and simulation framework [3]]. We define imperfect

knowledge as : uncertain, there is a doubt about their validity ;
imprecise (inaccurate), it is difficult to quantify, inconsistent :
there is inconsistencies in the data.
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FIGURE 1. Our approach

In recent years our team is interested in computational
intelligence methods [3]], which take into account impreci-
sion and uncertainty : Theory of evidence [15], Possibility
Theory [22], Fuzzy Logic [23]], etc. (c.f. figure [T). Figure [I]
presents our approach, based on theories that allow the study
of imperfect knowledge, we have defined two new data types
to represent such knowledge then, we have proposed a new
methodology to integrate our data types in the DEVS for-
malism. The first step of this approach was the definition of
a modeling method for representing and simulating impreci-
sions. This method called iDEVS (for inaccurate DEVS [4]])
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associates the DEVS formalism [24] and Fuzzy Set The-
ory [21]]. On this basis, we then introduced a new DEVS
extension for describing Fuzzy Inference Systems as DEVS
models [2]. Fuzzy Inference Systems (FIS) are one of the
most used applications of Fuzzy Logic and Fuzzy Sets The-
ory. They can be helpful to achieve classification tasks, data
mining, process simulation, diagnosis, decision support, and
process control. They have the advantage of relying on the
properties of Fuzzy Logic to represent imperfect information
so gradually, and manipulate them from a linguistic descrip-
tion, as would a human expert. This flexibility of representa-
tion is more significant for the study of complex systems.

Globally there are many research works proposing an im-
plementation of FIS [1} 9} [12]. Despite the wealth and quality
of literature in the field, none of these works fully meet our
expectations and goals. In the specific context of the DEVS
formalism, the literature is much less abundant [16]], and the
proposed approach seems to us incomplete, and limited to
one field of application : process control. We wish to pro-
pose a modular and generic modeling approach based on as-
sociation of DEVS formalism and the Fuzzy Sets Theory to
represent the FIS and make the event driven simulation. Ev-
erything must be grouped in a multi-modeling framework,
open source, and features a graphical user interface (GUI)
that allows to link experts and computer scientists. Indeed, we
propose to integrate different optimization methods in DEVS
models, they can be coupled to the structure of the FIS to
optimize its parameters. The standard structure of a FIS : in-
put; inference engine ; output ; can be completed, for its opti-
mization, by other methods such as : the stochastic gradient,
genetic algorithms, neural networks, etc.

In the first part, we will offer a brief overview of the basic
tools of our work : DEVS formalism, DEVSimPy : multi-
modeling framework developed in our laboratory, and the
FIS.

In the second section, we describe : the iDEVS method ;
the DEVFIS approach, then we will present the addition of
optimization methods before concluding with a pedagogical
example.

Finally, before concluding our research perspectives in the
fields of modeling and simulation and computational intelli-
gence, we will discuss the goals and limitations of our meth-
ods.

2. OVERVIEW

In the fields of decision support, or the study of natural
phenomenon, the amount of knowledge to be considered and
their qualities are very important. This information comes
from field observation or measurement instrument (sensors)
which are unreliable, or subject to human interpretation. In
these fields the methods of computational intelligence, as
fuzzy modeling, are adapted. They can represent and manip-

ulate imperfect knowledge. For this we are working to com-
bine these two modeling approaches, approximate methods
(fuzzy) and systemic methods (DEVS). In this section, we
present the founding concepts of our new method of fuzzy
modeling.

2.1. Discrete Event Modeling

Modeling can be defined as an operation by which the
model of a phenomenon is established and put into equation
in order to obtain a simplified, interpretable and that can sim-
ulate representation of it.

Among the different methods developed and inspired by
the System and Control Theory, we have chosen to work on
the Discrete Event system Specification formalism [24]]. The
word discrete does not mean that time is discrete, or that state
is discrete because state variables may assume continuous
values. This word refers to the fact that the system evolution
is based on events ; these events may possibly have a contin-
uous evolution but most importantly, an end event can cause
new beginnings.

2.1.1. DEVS formalism

The DEVS formalism introduced by Zeigler [24] has been
developed and upheld for over thirty years by an International
community of researchers [20, |19} |16} 3]. The work under-
taken is part of the effort to develop an approach which will
facilitate the modeling, simulation and validation phases of
the study of complex systems. This approach is based on the
development of a software architecture enabling us, on the
one hand to use the same multi-modeling environment to an-
alyze different systems and fields and on the other hand to
implement generic simulation techniques in order to simulate
the corresponding models.

The DEVS formalism can be defined as a universal and
general methodology which provides tools to model and sim-
ulate systems. It is based on the discrete event systems the-
ory, the notion of components and enables the specification
of complex discrete event systems in modular and hierarchi-
cal form. The DEVS formalism is based on the definition of
two types of components : atomic models and coupled mod-
els. The atomic model provides an autonomous description
of the behavior of the system, defined by states, input/output
functions and transition functions. The coupled model is a
composition of atomic models and / or coupled models. It is
modular and presents a hierarchical structure which enables
the creation of complex models from basic models.

Atomic Model :< X,Y,S,t,,0¢x, N, Oiny > (1)

With :
— X : is the set of input events, event is characterized by
a couple (port, time, value), where the port means the



input on which the event occurs, the time is the date of
occurrence of the event, it is blank for internal events,
and the value symbolizes the data from the event ;

— Y :is the set of output events ;

— S : is the set of partial or sequential states, which in-
cludes the state variables ;

— t, . S — T : is the time advance function which is used
to determine the lifespan of a state ;

— Ouy : O XX — § : is the external transition function
which defines how an input event X changes a state of
the system, where Q = {(s,%.)|s € S, t, € (TN[0,2,(s)])}
is the set of total states, and ¢, is the elapsed time since
the last event;;

— A:S —Y':is the output function where Y' =Y U {1}
and 1 ¢ Y is a silent event or an unobserved event. This
function defines how a state of the system generates an
output event, when the elapsed time reaches to the life-
time of the state ;

— 8jy: : S — S:is the internal transition function which de-
fines how a state of the system changes internally, when
the elapsed time reaches to the lifetime of the state.

In a framework based on DEVS formalism, the user only has
to worry about design of its model, the simulation algorithms
are automatically generated. This property coupled with mod-
ular and hierarchical aspects of formalism are a very power-
ful tool for studying complex system of any type. However,
depending on the studied system it is necessary to define spe-
cific models. One of the main advantages of DEVS formal-
ism is its capacity for openness, so it can be easily extended
to many fields of application. This led him to be described as
multi-formalism : it brings together in a consistent manner,
several methods or modeling formalisms. Our aim is to build
on these properties to define a new modeling approach to take
into account the imperfect knowledge. To do this, we want to
integrate into the DEVS formalism various tools related to the
computational intelligence.

2.1.2. DEVSimPy framework

The framework DEVSimPy allows a simple graphical in-
terface to create and use DEVS models. It is a WxPython
based environment for the simulation of complex systems. Its
development is supported by the CNRS (National Center for
Scientific Research) and the SPE research laboratory team.

The main goal of this framework is to facilitate the model-
ing of DEVS systems using the GUI library and the drag and
drop approach. The interface is designed to help the imple-
mentation of DEVS model in form of blocks. The modeling
approach of DEVSimPy is based on UML Software, and there
is a separating between the GUI part and the implementation
part of DEVS formalism.

With DEVSimPy we can : (1) describe a DEVS model and
save or export it into a library ; (2) edit the code of DEVS

model to modify behavior’s also during the simulation; (3)
import existing library of models which allows the specific
domain modeling (Power System, Fuzzy, etc.) ; (4) automati-
cally simulate the system and perform its analysis during the
simulation ; etc.

2.2. Fuzzy Logic

The fuzzy theories include : the Fuzzy Sets Theory [21]],
which extends the sets theory and allow manipulating impre-
cise knowledge ; the possibility theory [22} 6], which extends
the probabilities theory for unclear and imprecise systems,
and can handle uncertainty and fuzzy logic [23]], which ex-
tends the binary logic and allows exploiting incomplete data.
These different theories all aim to provide concepts, tech-
niques, and formally rigorous methods to collect, represent
and process fuzzy knowledge and data.

2.2.1.

A linguistic variable is defined by its domain of variation
(the universe of discourse), and all its fuzzy characterizations.
The domain of variation will often be an interval in R, that is
to say, the numerical values. For example : for a linguistic
variable x, which defined the “water temperature”, its fuzzy
characterizations are “cold”, “warm”, “hot”. This concept al-
lows reasoning on linguistic information, like an expert.

Linguistic variables

2.2.2. Fuzzy Sets Theory (FST)

Introduced by Zadeh [21]], the concept of fuzzy set allows
the representation of vague classes with imprecise boundaries
such as “great”, “hot”, etc.
To model a system with fuzzy parameter, we chose to rep-
resent these parameters in the form of fuzzy set or fuzzy in-
terval. A fuzzy interval is a generalization of the concept of
fuzzy set. It is a simplified representation, to describe denu-
merable quantities. The handling of interval is made possi-
ble using several methods gathered under the name of fuzzy
arithmetic.
In a reference set X, a fuzzy set of this reference is charac-
terized by a membership function of X in the interval of the
crisp number [0,1]. This function is the extension of the mem-
bership function of a traditional set. The purpose of the con-
cept of fuzzy set is to authorize an element to, belong more or
less strongly, to a class. A fuzzy set A on the field of variation
X of x is defined by the triplet : {A,a,ua()}, where:
— Ais a subset of X;
— a is a linguistic label, characterizing qualitatively part
of the values of X;

— ua is the function x of X x € X — pa(x) € [0;1], which
gives the membership degree of an observation of X, that
is to say x, to fuzzy set A.



2.2.3. Fuzzy partitions

A fuzzy partition allows a rough categorization of the do-
main of variation of a linguistic variable, with fuzzy sets. It is
the combination of several fuzzy sets.

A strong fuzzy partition is a normalized fuzzy partition,
where all its fuzzy sets have a value v such that u(v) = 1. A
strong fuzzy partition is done with triangles, trapezoids, or
sigmoid.

2.2.4. Fuzzy Inference Systems and fuzzy rules

Fuzzy inference systems (FIS [13|[18]]) is one of the meth-
ods of fuzzy logic, based on the representation of imprecise
data (FST) they can describe systems with partially known
parameters, and provide a digital framework for represent-
ing and manipulating gradual information express by a hu-
man expert. The FIS is composed of three parts (c.f. 2)): (1-
fuzzification part) inputs represent a fuzzy partitions (several
fuzzy sets), they describe the set of values that the system can
take; (2-inference part) the inference engine consists of rules
describing the behavior of the system and an operator (AND,
OR, MAX, MIN); (3-defuzzification part) outputs can be de-
scribed by a set of discrete values or fuzzy partitions.
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Figure 2. General structure of Fuzzy Inference System
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The design of fuzzy inferences systems is based on expert
knowledge for the definition of linguistic terms for each input
and output fuzzy sets (fuzzy partition), and on expert knowl-
edge, learning algorithms and optimization methods to define
or generate rules. The collection of rules that have the general
form: “If such a situation then such a conclusion”. A situa-
tion is characterized by a number of expressions like “x is A”
where x is a variable and A is a linguistic label, for example:
“the temperature is cold”. A variable measure gives a precise
or fuzzy measure; it is an objective quantity, as opposed to the
label which gives a subjective assessment.

For the operational phase, it is necessary to interpret this
subjectivity, that is to say moving from the qualitative to
quantitative. This is achieved by the choice of membership
functions; they are allowed to say exactly with what degree x
is in A. The truth value of a rule gives the membership degree
between a given observation and the premise of the rule.

The construction of a FIS consists of several steps: (1) de-
fine the fuzzy partitions of inputs and outputs, that is to say,
to match an interval value and a linguistic variable for each
input-outputs fuzzy set. This is the definition of membership
functions; (2) determine the rules that describe and reproduce
the system behavior; (3) to choose the conjunction operators
and defuzzification methods.

The figure [2| shows these three stages, after the receipt of
two crisp inputs (a, b), fuzzification step is to search in the in-
put partition the ordinates (u(a), u(b)) and linguistic variables
(11, Ib) corresponding to input values. These elements (fuzzy
inputs on the figure) are sent to the inference engine. From to
the linguistic variables it chooses the conclusion of the rule.
The rule conclusion and the membership degree (fuzzy out-
put) are sent to the output partition. Defuzzification function
(integral) is then used to return a crisp output.

The number of rules to inquire depends on input / output
partitions, for smaller systems, it is possible to inform them
by ’hand’, but whenever there are a lot of entries, so many
rules, you must use a learning method. It may also be inter-
esting to add another component to the FIS: an optimization
method, it alters the other three components by automatically
adjusting their structure or their parameters. Figure [3] shows
the structure of an FIS with the addition of an optimization
method. This method will receive an evaluation criterion and
will run to optimize the structure or parameters of the FIS.
The different optimization methods can be grouped into three
categories. (1) Analytical methods: they are based on gradi-
ent descent or stochastic gradient for learning. The typical
use is the optimization of the conclusions of the rules [8].
(2) Evolutionary methods: these methods include the genetic
algorithms and evolutionary strategies [14]. They allow the
optimization of the structure and parameters of the FIS. Evo-
lutionary methods have therefore a wider scope than analyt-
ical methods, and are particularly interesting for structural
optimization. However, they may be slower and less accu-
rate. (3) Classification methods can be used for structural
optimization. Two methods are widely used for the classifi-
cation, method of Kohonen [11] and that of Fuzzy C-Mean,
FCM [17].

For optimization, we will use the stochastic gradient meth-
ods, and for learning or optimization we will use the genetic
algorithms or neural networks. Stochastic gradient is an opti-
mization method for minimizing an objective function that is
written as a sum of differentiable functions.

The genetic algorithms are used to solve different type of
problems. The resolution is based on theory of evolution: nat-
ural selection, reproduction, mutations.

In the next section, we presented our work on the definition
of fuzzy inference systems from the DEVS formalism, then
we detail our optimization approach centered models.
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Figure 3. Structure of optimize Fuzzy Inference System

3. DEVFIS METHODOLOGY

As we show: DEVS formalism because of its flexibility and
scalability is a very interesting tool for studying complex sys-
tems and even fuzzy systems, the FIS is one of the methods of
fuzzy logic most used and robust, it helps to describe systems
like a human expert. The combination these two approaches
seem highly relevant in order to offer an approach to model-
ing flexible and generic to take account of imperfect knowl-
edge.

3.1. iDEVS method

Initially, we developed a method to associate the DEVS
formalism and the fuzzy sets theory, this method is called
iDEVS for inaccuracy DEVS [4]. The iDEVS method meets
all constraints of formalism, and is applicable in many fields.
iDEVS is based on the same properties of modeling and sim-
ulation that the DEVS formalism. It extends its application
fields to take into account imprecise data. The iDEVS method
is based on the fuzzy sets theory for the representation and the
manipulation of fuzzy quantities.

A A A
1 1 1
0 - » 0 - > 0 - >
3 points 4 points n points
A A
1 1 Class Fuzzyint
listPoints[ ]
a,b, 0B

»

3 points 3 points

Figure 4. Data types represented by the FuzzylInt class

To make the link between the DEVS formalism and the
fuzzy sets theory, we created a class, called FuzzylInt to build
objects representing imprecise variables, figure @] This class

is based on the definition of a fuzzy set (c.f. part[2.2.2), and
was subsequently incorporated into the DEVS formalism to
give birth to iDEVS.

It is possible to instantiate the class from a list of points,
or characteristic points of the interval a, b the kernel u(a) =
u(b) = 1, y the left boundary, o the radius o0 = a — y and ®
the right boundary, B the radius f = ® — b. We also added the
possibility to describe the interval from a linguistic variable.
A fuzzy interval is a simplified representation of fuzzy set,
to describe denumerable quantities. In this class we have im-
plemented several mathematical operators from the fuzzy sets
theory and interval arithmetic. These operators allow manip-
ulating FuzzyInt objects as classic object of Integer or Float
type.

The next step is the creation of a new method to allow
classification tasks, data mining, process simulation, diagno-
sis, decision support, and process control, by fuzzy inference.
It must associate the DEVS formalism and a part of fuzzy
logic called Fuzzy Inference System (FIS). This new method,
called DEVFIS for Discrete EVent Fuzzy Inference system
Specification, must take into account the incomplete knowl-
edge.

3.2. DEVFIS method

DEVFIS method is an extension of DEVS to represent
FIS. The interest of this approach are multiple: to extend
the DEVS formalism to other application fields, e.g. control,
learning, decision support; continue our work on the associ-
ation of DEVS formalism and fuzzy logic; coupled DEVS
with computational intelligence methods; develop and pro-
pose new DEVS models, and thus enhance the quantity and
diversity in our framework (DEVSimPy); provide users (ex-
perts or specialists) method of modeling simple and intuitive,
and which their expectations.

The theoretical approach and a first application to define
real-time coefficient of fires spreading was proposed in [3].
The first part of its implementation was presented in [2]]. In
this paper, we present the addition of optimization methods.
The parameters optimization of FIS is an important step in
view of their use. FIS are generally based on human expertise,
often qualitative, expressed in natural language and therefore
subject to widely varying interpretations. The optimization
methods allow a passage from the qualitative to quantitative,
so it is possible to refine the knowledge and fully exploit
the system. There are many optimization methods, we will
present, through an approach based models, the most used.

3.2.1. Methodology

DEVFIS method is based on the integration of fuzzy in-
ference techniques in the DEVS formalism. The DEVFIS
method is independent of iDEVS method; it is based on
the same mechanism, the integration of a class: FuzzySets



(Fuzzylnt list) with DEVS framework. This new method is
intended to extend the application fields of the DEVS formal-
ism in order to make learning, optimization and control. The
FIS are one of the most used applications of Fuzzy Logic, and
are used for reasoning and control, especially for the simu-
lation of physical or biological systems. They operate from
fuzzy reasoning rules, which have the advantage of manag-
ing the progressive phenomena. As for iDEVS method, a new
class was defined, FuzzySets class; it contains a list of objects
of Fuzzylnt type and different methods for fuzzy sets han-
dling. For example, it is possible to describe fuzzy partitions,
and several defuzzification methods are implemented (c.f.[3).

Figure [5] presents an input and output fuzzy partition. In
the class, there are several functions, e.g. search a linguistic
variable associated with an input, or execute a defuzzification
method.

1“ 3 fuzzy sets
H(b) .
Class FuzzySets
H@) ) listFuzzyInt] |
0 a b >
e defuzzification
A defuzzification ek (e @
(;') 2 inputs a and b

Figure 5. Data described by the FuzzySets class, fuzzy par-
titions

Starting of this class we can represent the inputs and out-
puts of the system (fuzzy partition), and the results obtained
following the application of fuzzy operators or inferences
methods (c.f. [5). We propose accordance with the structure
of a fuzzy inference system (c.f. [2), to define a model DEV-
FIS for each stage of the process of inference (c.f.[6)), namely:

— one or more atomic models based on a fuzzification
method to represent the input of the system;

— a coupled model describing the inference engine, which
includes an atomic model that represents all the rules
describing the system, an atomic model describing the
fuzzy operators employees, and an atomic model that
represents the inference method;

— one or more atomic models based on a defuzzification
method to represent the output of the system;

The models are described using the following properties, fig-
ure [0l

—
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Figure 6. DEVFIS models
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Example: the atomic model for input is given M; =<
X,Y,S,50,22, 001, Oins, A > such that:

— X = receive(crisp_value) ;
Y = send(membership_degree, linguistic_label) ;
S ={(fp,md,ll,0) with fp : fuzzy_partition, md :
membership_degree, 11 : linguistic_label, 6 € T*} and
so = {Fuzzylnt(list),0," jeo} ;
ta(s)=0cVseS;
— Oext (((fp,md,ll,0G),t,),receive(crisp_value))

find if crisp_value isin fp

S=(fp,fp-ulcrisp_value), fp.label(crisp_value),0)

— O (fp,md,ll,c) = (fp,md,ll ) ;

- Mfp,md,ll,6) = send(md,ll) ;
The general problem is to consider the best way to put an
inference system in DEVS models, to choose the best infer-
ence algorithms to use, and to represent the sets of inputs and
outputs. For this it is possible to add to the structure of FIS
optimization methods. The optimization methods can occur
at several levels, their goal is to optimize the FIS parameters,
so they can be fully parametrized. In the case of simple FIS,
it is possible to parametrize and optimization by successive
trials (by hand), but in the case of complex FIS, this solution
is too costly in time, you need to use methods of optimization
and learning.

3.2.2. Optimization methods

FIS are based on human expertise, often qualitative, ex-
pressed in natural language, it is their strong point. In the first
part of our work [3| 2], we relied on that knowledge to define
the FIS parameters. But this knowledge is subject to many
interpretations as there are respondents. We therefore wish to
add optimization methods to supplement and improve the set-
ting of FIS used. This action will help to refine knowledge and
is learning. There are several types of learning: supervised,
weakly supervised, unsupervised, and learning with criteria.
We will work on learning with the criteria in this case the
qualities of the FIS are evaluated by a criterion that rewards
or punishes according to the achieved objectives.

In general, it is possible to apply optimization methods that
if there are data to optimize. A first step is to choose the
FIS part to optimize: structure, rules, or partitions. We must
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then define the optimization constraints to ensure consistent
results. For example, for optimization of fuzzy partitions of
inputs and outputs, we have defined as constraints: (1) opti-
mized partitions must be strong fuzzy partition, (2) the order
of fuzzy sets should be stored; (3) and the degree of over-
lapping of the membership functions (overlap between func-
tions) should be neither too large nor too small.

Once part of the FIS to optimize and the chosen constraints,
we can apply an optimization method. They are grouped into
3 categories: analytical methods (stochastic gradient), evolu-
tionist methods (genetic algorithms) and classification meth-
ods. In our case, each of these methods has been integrated in
a DEVS coupled model. Usually it involves running an algo-
rithm. Figure [7] shows the general structure of our optimiza-
tion model. There is a coupled model by method; it specifies
the execution of the optimization algorithm. It is coupled to
two models, the model to optimize (fuzzification, rules, de-
fuzzification) and an atomic model that is used as a switch.
The manager or switch model must be connected to the model
that computes the evaluation criteria in order to retrieve it. Its
purpose is making the system break during the optimization
phase. During the optimization phase, this model manages
and directs the messages; it sends the evaluation criterion to
the optimization model. During the classical phase, it cuts the
communication with the optimization model and forwards the
messages to the following model.

Both models can be grouped in a coupled model of the
highest level. We must think about adding an input port to the
part of the FIS to be optimized, its aim is to replace the initial
parameters for the optimized parameters. All these models
come complete our library [3]].

The stochastic gradient method is very interesting to opti-
mize the conclusion of the rules, but is not very suitable for
optimizing fuzzy partitions.

Algorithm 1 Evolutionary methods algorithm

1: Choose an initial individual F'S;

2: Initialize the population by mutation of FS;

3: Calculate the performance of each individual

4: Stop = false, iteration =i

5: Do {

6: Select the new generation (choose the n best and delete the
n worst)

7: Apply the cross function

8: Apply the mutation function

9: Calculate the performance of the new population

10: If the performance==evaluation criterion or iteration==0
11: { Stop = true}

12: iteration—

13: } while stop == false

Classification methods must be adapted to reflect the spe-
cific aspect of FIS. They are generally used in a supervised or
unsupervised context. Among the classification methods, we
used a hybrid model: neuro-fuzzy. The interest of these sys-
tems is that the Neural natworks (NN) and the FIS are com-
plementary. NN are used for their learning abilities and FIS
for their readability and flexibility. There are several methods
of combinations: the merger of FIS and NN, that is to say, the
FIS is set as an NN; NN are used to replace a FIS compo-
nents; in series variables entry of FIS to determine the output
of the NN; and in parallel is the case the most effective be-
cause it will provide a knowledge representation as large as
possible and a rule base effectively.

The evolutionary methods manipulate data, which are the
encoded representation of an object. This object will be one of
the parameters to optimize FIS: partition or rule. For example,
a fuzzy partition representing an individual in a population
and a part of this partition (fuzzy set or membership function)
a gene. The goal of evolutionary methods is, over generations,
to find the best individual for a given criterion. Evolutionary
methods are implemented: (1) a population of N individuals;
(2) an evaluation function of individuals (perf(i,test)); (3) op-
erators of mutation and crossover to create new individuals;
(4) a policy of population replacement; (5) a stopping crite-
rion. We will use the following algorithm:

Example for an output partition:

The system we will study is a controller for heating. Fig-
ure [§] shows the classic schema of FIS use for such an appli-
cation. The System is heating, a sensor is used to return the
room temperature; the Data module is the set point tempera-
ture.

FIS takes as input an error: the set point temperature sent
by the Data module, minus the room temperature sent by the
System. Input partition is defined as follows: negative, zero,
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Figure 8. Classic schema of FIS use

positive. On output, it returns the thermostat (0,1, ... 8).
The rules are:
If negative then we lower the temperature (C)
If zero then we leave unchanged (B)
If positive then we increase the temperature (A)

Application of genetic algorithms:

1. The definition of the genetic is equivalent to select the
FIS part to optimize, us an output partition FS: { A=[], B=[],
C=I[1}.

— The discourses universe (all abscissa values) = [0; 8]

— Linguistic variables A = "Heat’, B = ’None’, C = "Low-

er’
2. From this information, we can create an initial individual
who is a suitable solution F'S;: { A=[0, 2, 4], B=[2, 4, 6], C=[4,
6, 81}. Step 1 of the algorithm 1}

3. We will then automatically generate the population (N
= 60 individuals) by applying a function of mutation (mu-
tation(min_disturbance, max_disruption)), this function was
added in the FuzzySets class. As shown in figure 9] from the
initial individual, we will modify the bounds of fuzzy sets
(Y, a,b,®) from a coefficient or a radius randomly determined
(us between 0.0 and 2.0).

Disturbance example: FS'='={A=[0.1, 1.0, 5.4], B=[0.4,
3.0,6.8], C=[3.1,7.1,9.4]}. The constraints that we presented
here are applied to select the new population. A new individ-
ual must meet the following constraints:

(1) A, B and C must be a strong fuzzy partitions and stan-
dardized a < a < b < B;

(2) A<B <C;

(3) A, B and C must overlap;

4 ForA,BandC,a>0and B < 8.

All partitions that do not meet these constraints are re-
jected. Step 2 of the algorithm.

4. The rest of the population, in our example 29 of the 60
individuals generated, are then evaluated based on a perfor-
mance criterion defined in the optimization coupled model. In
our case we wanted to get the fastest possible set point tem-
perature. The evaluation function sets a score between 0.0 and
1 to each individual. After evaluation, we keep the two best.
Step 3 of the algorithm. The two individuals are crossed to
give birth to a son. To implement this crossing, we use in-
tersection operator between fuzzy sets, c.f. figure[T0|then, we
apply a smoothing function to find a standardized form. From
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Figure 9. Example of individuals random generation
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Figure 10. Crossover example between two fuzzy partitions

this son, a perturbation is applied to obtain two children must
respect the constraints set. Steps 7 and 8 of the algorithm [T}

6. Finally, we evaluate the new population and if the stop
condition is not satisfied the algorithm continues until the de-
sired result.

7. After obtaining a good result or i iteration, i set by the
user (we tested 20 iterations), the parameter is considered
optimized. Finally, we obtain the following partition F'Sy =
{A=[0.1, 0.7, 3.6, 4.1], B=[3.7, 3.9, 4.5], C=[4.1, 4.7, 7.2,
8]}. We can note that the two fuzzy sets A and C were en-
larged, while B is reduced. This phenomenon is due to our
evaluation criterion. As we wanted to quickly reduce the er-
ror, the partition parts that have a direct impact on the error
have increased. The fuzzy set B, which involves no change in
reading rules, was reduced in favor of A and C.

In the next section, we discuss our results and limitations
of this approach.



4. DISCUSSION AND REMARKS

The stochastic gradient method was used to approximate
an equation y = x> on the interval [—1,1]. For this example,
the results are quite good, but their presentation has limited
interest in discrete event simulation. In [2]] we presented the
implementation of a temperature controller and pressure for
a boiler. Without going into details, the application is already
well detailed in the article, we found that the addition of opti-
mization models based on genetic algorithms do not allow to
accelerate the control process. Despite the use of optimization
methods, obtaining good results is always subjected to empir-
ical testing, we must test the various methods, choosing the
right parameters to optimize, etc. Thus, our efforts, to make
our approach fully generic, are in party remained unsuccess-
ful. To properly optimize a FIS we must take into account. the
specificity of the system and the FIS. However, we think it is
very useful to have such models, to complement the DEVFIS
approach, and to complement our fuzzy toolbox integrated
into DEVSimPy.

Despite, there are many frameworks that provide tools to
model FIS. Some tools do not allow for simulation FisPro,
other do not make discrete simulation MatLab. We believe
that our approach has its place, besides there are a lot of
research which have applications coupling FIS and discrete
event systems (DES) theory [7, [1, [10, 25]]. An article also
presents an extension of DEVS to represent and use FIS to
make control design [16]]. Despite the wealth and quality of
literature in the field, none of the works presented will fully
meet our expectations. Most of them provide very good tools
dedicated to one type of application. We wish to develop a
modular, intuitive and generic approach, based on the DEVS
formalism to make the event driven simulation, and computa-
tional intelligence methods to provide an adaptive framework
close to the mode of human reasoning. Our approach should
be integrated in a multi-modeling framework, open source,
and features a graphical user interfaces (GUI) to create a di-
rect link between expert and computer scientist. In our view
none of these tools has all these qualities.

5. CONCLUSION AND PERSPECTIVES

This work should be seen in a more general context, which
aims to combine the DEVS formalism and computational in-
telligence methods: DEVS for approximate reasoning. Our
objectives are to extend the DEVS formalism: proposing
adaptive extensions; taking into account the complexity of
systems; providing intelligent methods, flexible, and intuitive.
We want to replace the expert at the center of the modeling
process, and provide the necessary tools to describe their sys-
tems so natural.

In this paper, we presented part of our work, and espe-
cially a method to represent fuzzy inference systems (FIS)
as DEVS models. This is the third part of our work on the

DEVFIS extension. We presented a modular approach to add
optimization methods to the standard structure of the FIS. On
the one hand, the FIS can represent systems, a flexible and
robust way, their uses within the DEVS formalism has there-
fore many interests. On the other hand, optimization methods
can facilitate the calibration or setting phases, moreover they
are used to improve the structure of the FIS: inputs, outputs
and rules.

Our approach is simple to use, after selecting the parame-
ters to optimize, it is sufficient to couple, or add optimization
models to the structure of a FIS. Several models are available;
they are based on different optimization methods, stochas-
tic gradient, genetic algorithms and neural network. Subse-
quently, other methods will add to enrich the optimization
library. This work enables us to complete our idea of fuzzy
toolbox for the DEVS formalism [3]]. Subsequently, we will
continue our research in the fields of computational intelli-
gence, for example, we work to define an extension of the
DEVS formalism for representing Bayesian networks.
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