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{lixiaobo, yllei, wangwp}@nudt.edu.cn, {hv, hsong9}@cs.mcgill.ca

Keywords: DEVS implementation testing framework,
DEVS tools, DEVS standardization, DEVS standardized
trace representation

Abstract
The Discrete-Event system Specification (DEVS) is a widely
used formalism for discrete-event modelling and simulation.
A variety of DEVS modelling and simulation tools have
been implemented. Diverse implementations with platform-
specific characteristics and often tailored to specific problem
domains need to be tested to ensure their compliance with the
precise and formal DEVS formalism specification. Such com-
pliance allows for meaningful exchange and re-use of mod-
els. It also allows for the correct comparison of simulator im-
plementation performance and hence of specific implemen-
tation optimizations. In this paper, we focus on testing “cor-
rectness” and “preciseness” of DEVS implementations and
propose a testing framework. Our testing framework com-
bines black-box and white-box testing approaches. We start
with the proposal of a standard XML representation for event-
and state-traces (also known as segments). We then systemati-
cally derive a suite of concrete test cases covering all possible
DEVS constructs and their combinations. We apply our test-
ing framework to PythonDEVS and DEVS++, two concrete
implementations of the Classic DEVS formalism. Analysis of
the test results reveals candidate items for improvement of the
two tools. Finally, insights gained into DEVS standardization
are discussed.

1. INTRODUCTION
The Discrete EVent System specification (DEVS) [1] is a

widely accepted formalism for discrete-event modelling and
simulation. DEVS has been used extensively, both in funda-
mental modelling and simulation research and in a plethora of
application domains. Various modelling and simulation tools
implement either the basic DEVS formalism or its variants.
The sharing and re-use of DEVS models is hampered by the
often subtle differences in the DEVS modelling and simula-
tion tools. To address this problem, the DEVS standardization
group [2] was founded to develop a DEVS standard.

The modelling and simulation process heavily relies on

the supporting tools. A variety of tools implement DEVS (or
were adapted to incorporate DEVS) with platform-specific
and problem-relevant features. Currently there are three main
types of DEVS implementations: 1. DEVS tools such as
DEVSJAVA [3], DEVS++ [4], and PythonDEVS [5] were
built from scratch. 2. DEVS has been embedded in exist-
ing modelling and simulation languages and environments
such as Modelica/DEVS [6], Matlab(Simulink)/DEVS [7],
and DEVS/UML [8]. 3. DEVS is combined with other sim-
ulation model specifications and protocols with a focus on
simulation interoperability, model reuse and composability
as is the case with DEVS/HLA [9], DEVS/SOA [10], and
DEVS/SMP2 [11].

These tools need to be tested to ensure their compliance
with the DEVS formalism specification. Firstly, different im-
plementations are often based on a developer’s interpreta-
tion of DEVS. Secondly, DEVS implementations based on
different platforms/tools or different protocols/specifications
may introduce implementation-specific artefacts. Testing is
needed to find and correct these. Thirdly, even if ad hoc addi-
tions do not conflict with the DEVS formalism, they also need
to be tested to ensure that meaningful DEVS tool interoper-
ation and model reuse are not affected. Apart from different
implementation methods for DEVS, there are many DEVS
variants such as classic DEVS, parallel DEVS, cell-DEVS
etc. In this paper, we focus on the classic DEVS formalism
and propose a framework to guide compliance testing. The
framework is applied to two classic DEVS simulation tools.

The rest of the paper is organized as follows. Section 2
presents an overview of related work. Fundamentals of our
testing framework are discussed in section 3. We test clas-
sic DEVS implementations in the tools PythonDEVS and
DEVS++ in section 4. Conclusions are given in Section 5.

2. RELATED WORK
In [12], a benchmarking technique called DEVStone is

used to generate DEVS models of different size and struc-
ture to study the efficiency of five simulation engines pro-
vided by a DEVS M&S tool–CD++. The main purpose of
this paper is to test the simulator performance of tool, not the
compliance of DEVS formalism implementations. In [13],



the authors analyze the feasibility and advantages of using
software testing techniques for DEVS model V&V, and clar-
ify some fundamental issues of a testing-based model V&V
approach. “Trustworthiness of a DEVS simulator” is also
mentioned in this paper as one necessary condition for ap-
plying the approach. The authors also state that given that
the simulation engines are built using DEVS abstract simu-
lation concepts in [1], only three errors have been reported.
In work, we propose a framework to test the “trustworthi-
ness of a DEVS simulator” as well as model specification.
In [14], the authors present a theoretical foundation and a
test development framework for service testing at the I/O be-
haviour level in a service-oriented computing environment.
The system theoretic foundation for I/O behaviour testing
is based on hierarchical system specifications of DEVS sys-
tems theory [1] and the model implementations are DEVS-
compliant. This approach has inspired our behaviour testing.
The DEVS Standardization group [2] is an international team
trying to develop standards for a computer processable rep-
resentation of the DEVS formalism. There are three Task
Groups, on DEVS tools interoperation, DEVS Kernel defini-
tion, and DEVS Atomic models specification language. Our
research is closely related to the mission of the DEVS tool
interoperation Task Group.

3. FRAMEWORK FUNDAMENTALS
3.1. What to Test?

The first and foremost issue of testing is to specify what to
test. The test object in our work is the implementation of the
DEVS modelling specifications and their abstract simulator
algorithms from [1].

3.2. Test Requirements
There are two kinds of test requirements: structural com-

pliance and behavioural preciseness. The former forms the
foundation for the latter.

3.2.1. Structural Compliance
Structural compliance refers to the implementation of three

aspects of the DEVS formalism: model specification (abstract
syntax), constraints (static semantics), and simulation algo-
rithm (operational semantics). A DEVS implemenation (pos-
sibly source code) with platform is analyzed to check whether
all elements are implemented . This is a static check without
strict proofs. Further steps (such as building reference mod-
els) could be taken to check whether the tool works properly.
Investigating the tutorial examples with enough behavioural
aspects can produce insights, especially when they are elabo-
rate. Another effective way is to use the debugging mode of
the platform to trace the simulation process.

Structural compliance is the foundation for behavioural
preciseness. According to the principle of universality and

uniqueness of DEVS, “Every DEVS-like system is a homo-
morphic image of a DEVS I/O system” [1]. So when testing
DEVS formalism implementation, the structural compliance
should be checked first to make sure that the behaviour is
produced by a DEVS-compliant systems, not by a DEVS-like
systems. We need to bear in mind that different structures may
produce almost the same behaviours. For example, a simula-
tion model and its response surface model (also called surro-
gate model).

3.2.2. Behavioural Preciseness
Dynamic behavioural preciseness needs to be tested, build-

ing on static structural compliance. The essence of simula-
tion is to produce the temporal behaviours of a System un-
der Study correctly and efficiently. Whether we have built the
correct model depends on whether the model could produce
exactly the correct state and I/O behaviour. We use the term
“preciseness” instead of “correctness” because different im-
plementation of DEVS introduces intrinsic platform-specific
deviations even when the DEVS implementation is 100% cor-
rect. Pragmatically, if the deviation is smaller than a set toler-
ance, the tool will be said to “pass” the test.

Behavioural preciseness should be tested using determinis-
tic models, in which no random factors are considered. Only
in this way can strict statements about behavioural precise-
ness be made. Although stochastic models are widely used
in DEVS applications, the difference among random number
generators of different platforms and the difficulty of produc-
ing a test oracle make it impractical to test the behavioural
preciseness based on stochastic models. Most importantly
however, the DEVS formalism is deterministic and stochas-
ticity is only introducted through sampling from distribu-
tions using pseudo-random number generators (deterministic
in their own right).

3.3. Test Case Derivation
We adopt a white-box approach for test case derivation

from the requirements. In this approach, the knowledge of
DEVS formalism and the implementation details of the tool
are used to derive a systematic suite of abstract cases to test
each aspect of the DEVS formalism implementation. The ab-
stract test cases should be sufficient and exhaustive to test all
requiriments. If there are some ad hoc characteristics of the
implementation which may influence the compliance with the
DEVS formalism, this information should be used to derive
corresponding test cases.

3.4. Test Case Concretization
The test cases derived from the requirements are abstract

and need to be concretized. A black-box approach is adopted
in our research to specify I/O behaviours of the specified



DEVS models for test case concretization. We need to con-
struct corresponding abstract DEVS models and implement
them in the testing tool to test the requirements of the ab-
stract test case. This approach can provide a test oracle which
is based on the comparison between I/O behaviours produced
by simulating the executable models using the tool and ex-
pected behaviours specified by deduction from the abstract
DEVS models.

The DEVS models to concretize the abstract test cases
play a fundamental role in testing the behavioural precise-
ness. They should satisfy the following requirements to sup-
port the black-box approach. Firstly, they should be as simple
as possible to avoid faults introduced by model implementa-
tion in the tool and accidental complexity caused by complex
model structure or algorithm. Secondly, they should be rep-
resentative and sufficient for the abstract test case, namely,
the test requirements can be tested by specifying a set of I/O
behaviour of the models.

3.5. Test Oracle
To test the behavioural preciseness of a DEVS formalism

implementation, a test oracle checks whether the model pro-
duces the same I/O behaviour as expected. One method is
to compare the output trace produced by the model with the
expected trace derived from reasoning about the behaviour
of DEVS models. Sometimes robustness testing is needed to
check how the system under test reacts to wrong inputs. In
this case, trace comparison is not sufficient, and the test must
check whether the tool produces appropriate exceptions.

For the test cases which should produce precise be-
haviours, we adopt a “standardized trace representation” ap-
proach proposed by Song [15], which is based on XML to
record all event trace of the simulated model. It offers a stan-
dardized way to record DEVS simulation output and a DTD
to validate the XML trace files. The trace is composed of a
set of events (and states) produced by the simulated DEVS
models. In each event, the following elements are recorded:
the fully qualified model name in which the event occurs, the
time of the event, the event kind and port, the state informa-
tion of the model when the event occurs.

There are several benefits to this approach. Firstly, it offers
an event-based way to completely record the behaviours. Sec-
ondly, the XML format of the trace file provides a standard-
ized trace, which can be used to compare traces produced by
different DEVS models implemented on different platforms.
Thirdly, it is feasible and easy to implement. The test oracle
can be implemented by a simple “compare” of the produced
trace file and the “expected” trace file.

Song [15] implements an output trace generation method in
PythonDEVS, which is used in a case study on PythonDEVS.
However, if the same method is implemented in other tools
and traces are produced by different tools, we should pay at-

tention to the computation precisions of different platforms
and set a reasonable tolerance to eliminate their influence.

3.6. A Behavioural Testing Framework
Based on the discussion above, we propose a behavioural

testing framework as shown in Figure 1. The framework con-
sists of the following steps: 1. Specify testing requirements
from the DEVS formalism. 2. Extract relevant information
of the DEVS implementation from the candidate tool to be
tested (test the stuctural compliance). 3. Derive a systematic
suite of test cases from the test requirements and implementa-
tion information. 4. Construct abstract DEVS models to con-
cretize the test cases. 5.Build Executable DEVS models to
implement abstract DEVS models using the tool. 6. Import
the inputs and oracles (I/O behaviour) into the executable
model from the test cases. 7. Simulate the DEVS models us-
ing the tool and collect simulation output traces. 8. Compare
output traces with test oracles and produce test results.

Testing 
Requirements

Candidate Tool 

Test Cases

Executable DEVS 
Models

7 Simulate

2 DEVS 
implementation Info

6 Input and Oracle

Test Results8 Produce

4 construct

5 Build

3 Generate

DEVS 
Formalism

1 Specify

Abstract DEVS 
Models

5 Implement

Control flow

Information flow

Figure 1. DEVS Implementation Testing Framework

4. CASE STUDY
In this paper we choose implementations of the classic

DEVS variant as the test object for the following reasons.
Firstly, classic DEVS is the core of the family of DEVS for-
malisms. Research results of classic DEVS are a useful foun-
dation for other DEVS formalisms. Secondly, its conciseness
makes it easy to test the implementation.

4.1. The Classic DEVS Formalism
4.1.1. Classic DEVS Introduction
The atomic DEVS formalism is a structure describing the

different aspects of the discrete-event behaviour of a system
[1]. Ports and Portvalues were introduced in [1] to make mod-
elling easier and should also be considered in testing. The
Coupled DEVS and Abstract Simulator algorithms we will
test are as described in [1].



4.1.2. Test Requirements
We specify a set of requirements from three aspects of

the classic DEVS formalism: model specification (abstract
syntax), constraints (static semantics) and simulator algo-
rithm (operational semantics). For structural compliance, we
should check whether all the elements of the model spec-
ification and abstract simulator algorithm are appropriately
implemented. This is done statically and no model execu-
tions are required. The implementation details are collected
and used for test case derivation. For behavioural preciseness,
we identify the following nine testing requirements. 1. Non-
negativeness of the time advance function(ta): ta should
return a non-negative value. 2. Correct output function: the
output function should occur before and only before the inter-
nal transition. 3. Event passing instantaneity: Event passing
between ports should cost no simulation time. 4. Precise time
granularity: the simulation should be run at a given time
granularity. 5. Event time synchronization: the time of oc-
currence of one event should be the same in all relevant (con-
nected) models. 6. Correct event sequence: all events should
be processed in to the right temporal sequence. 7. Correct tie-
breaking: simultaneous internal event occurrences should be
handled correctly using the select function. 8. Correct event
dispatching: events should be correctly dispatched from out-
put port(s) to input port(s). 9. Event independence: All event
instances should be unique (no references to each other nor
to model states). Requirements 1-3 pertain to static semantics
and 4-9 are simulator considerations. These requirements are
not completely independent as some are based on other, more
basic ones. Model executions are needed to test the above re-
quirements.

4.1.3. Abstract DEVS Model for Test Cases
In our framework, DEVS models are needed to concretize

the abstract test cases. In Figure 2 we build a very sim-
ple DEVS system called “pipeline EventGPCSystem” (also
called model 1), which contains three parts: an event gener-
ator (“Generator”), an event processor (“CoupledProcessor”)
and an event collector (“Collector”). Adapted from the gener-
ator, processor and pipeline examples in [1], it is illustrative,
understandable and easy to implement.

Generator

CoupledProcessor

Processor1 Processor2 Collector

event2

EventGPCSystem
event1

Figure 2. Model 1: Pipeline “EventGPCSystem”

The event generator is an atomic DEVS model and gen-
erates two events, “event1” and “event2”, respectively before
an internal transition from “gen event1” to “gen event2” and

another internal transition from “gen event2” to “gen over”,
and outputs two events via port “send event1 gen” and
“send event2 gen”. Its initial state is “gen event1”. The state
duration time for the states “gen event1”, “gen event 2”
and “gen over”, are “t gen event1”, “t gen event2” and +∞.
“t gen event1” and “t gen event2” are two initialization pa-
rameters.

The event processor is a coupled DEVS model with
two input ports (“rec event1 P” and “rev event2 P”) and
two output ports (“send event1 P” and “send event2 P”), via
which “CoupledProcessor” receives the two events from the
generator and sends them to the collector. There are two
atomic DEVS models in “CoupledProcessor”: “Processor1”
and “Processor2”, which have the same structure. The atomic
processor model has the same I/O ports as the “Coupled-
Processor”. The atomic processor’s initial state is “idle”, and
when it receives an event, an external transition is triggered
to set the state to a processing status (“proc event1” when
receiving “event1” and “proc event2” for “event2”). The pro-
cessing time for “event1” and “event2” are correspondingly
“t event1 P1” and “t event2 P1”, which are two initialization
parameters. After the processing time, the processed event
is output via the corresponding output port and the state be-
comes “idle” again. A “pipeline” style is adopted for the “Pro-
cessor” in model 1. The events are processed first by “Pro-
cessor1”, then by “Processor2”, and are finally collected by
“Collector”.

The event collector has two input ports, “rec event1 col”
and “rec event2 col”, to collect the two events respectively.
Its initial state is “idle”. When an event arrives, the state
transits to “event1 received” in the case of only having
collected “event1”, “event2 received” (only “event2”) and
“event1and2 received” (both events are collected). For sim-
plicity, the two events have very simple data structure con-
taining one float parameter (“eventSize”). By changing the
generation time and processing time in “Generator”, “Proces-
sor1” and “Processor2”, we can derive different behaviours
of “EventGPCSystem”. So we use the six initialization
parameters (“t gen event1”, “t gen event2”, “t event1 P1”,
“t event2 P1”, “t event1 P2” and “t event2 P2”) as the input
of the abstract model and show how we adjust them to build
different test cases in section 4.2.1.. Our base abstract model
needs to be adapted for some test cases, but only the port cou-
pling relationships are changed and the atomic models remain
the same (model 4 in Figure 4 and model 5 in Figure 5). In the
two coupled models, namely “EventGPCSystem” and “Cou-
pledProcessor”, we set the select function to choose the first
one in the event list.



4.2. Case Study: PythonDEVS
4.2.1. Testing Procedures
PythonDEVS [5] is a classic DEVS M&S tool built by the

MSDL in 2002. We test the classic DEVS implementation in
PythonDEVS under the framework proposed in section 3.6..

Step 1: specify the test requirements based on the clas-
sic DEVS formalism. This has been done in section 3.2..

Step 2: check the DEVS implementation in Python-
DEVS and extract relevant information. PythonDEVS is
an implementation of the classic DEVS formalism. All the
elements in the classic DEVS formalism are implemented
except the PortValue. We can find in the model exam-
ples(tutorials) that the PortValue is implemented as a class.
The tool sets a value of 1E-10 as the tolerance for time syn-
chronization. These are useful tips for the test derivation and
model building.

Step 3 and 4: derive test cases and concretize them
based on the abstract models. These two steps are closely
related(iterative) and we put them together. For most of the
requirements we can build a test case (or a series of cases)
based on the base abstract model(“Pipeline processor”, we
call it model 1). For some requirements we need to revise the
select function (requirement 7) or change the coupling rela-
tionships (requirements no. 8 and 9).

As we can see from Table 1 we list the test cases derived
from each requirement and concretize them on an appropri-
ate DEVS model. The number “RxTy” means it is the y test
case for requirement x. The “Model” number specifies which
DEVS model the test case concretizes. “Input” sets the in-
put parameters for each test case. We give the results for both
PythonDEVS (T1 in the table) and DEVS++ (T2 in the table),
which we will discuss in the following sections. For require-

No. Model Input T1 T2
R1T1 1 (1.0, +∞, -0.5, +∞, 1.0, +∞) FAIL PASS
R1T2 1 (0.0, 2.0, -1E-11, 2.0, 0.0, 4.0) FAIL PASS
R2T1 1 (1.0,+∞, +∞, +∞, +∞, +∞) PASS N/A
R3T1 1 (0.0, +∞, 0.0, +∞, 0.0, +∞) PASS PASS
R4T1 1 (1.0, 2E-10, 1E-10, 2.0, 1.0, 4.0) PASS PASS
R4T2 1 (1.0, 2E-11, 1E-11, 2.0, 1.0, 4.0) FAIL PASS
R5T1 1 (1.0, 2.0, 1.0, 2.0, 1.0, 2.0) PASS PASS
R6T1 1 (1.0, 4.0, 1.0, 4.0, 1.0, 4.0) PASS PASS
R7T1 1 (1.0, 1.0, 1.0, 2.0, 1.0, 4.0) PASS N/A
R7T2 2 (1.0, 1.0, 1.0, 2.0, 1.0, 4.0) PASS N/A
R7T3 1 (1.0, 2.0, 1.0, 2.0, 3.0, 4.0) PASS N/A
R7T4 3 (1.0, 2.0, 1.0, 2.0, 3.0, 4.0) PASS N/A
R8T1 4 (1.0, +∞, 1.0, +∞, 2.0, +∞) PASS PASS
R8T2 5 (1.0, +∞, 1.0, +∞, 2.0, +∞) PASS PASS
R8T3 6 (1.0, +∞, 1.0, +∞, 2.0, +∞) PASS PASS
R9T1 4 (1.0, +∞, 5.0, +∞, 2.0, +∞) FAIL FAIL
R9T2 5 (1.0, +∞, 5.0, +∞, 2.0, +∞) PASS FAIL
R9T3 6 (1.0, +∞, 5.0, +∞, 2.0, +∞) PASS FAIL

Table 1. Test Cases and Results

ment 1, though ta is implemented by users, we still demand

that the M&S tool deals with the situation when users make a
mistake and calculates a negative value. So we assign a nega-
tive value to ta and expext the tool to throw an exception say-
ing that the value of ta is negative. This case is concretized
to R1T1 based on model 1. In this case, a “-0.5” is assigned
to “t event1 P1”. Considering that the tolerance for time syn-
chronization is 1E-10, we design an extreme case R1T2 which
sets “t event1 P1” to -1E-11.

For requirement 2, constraints of the output function we
design a simple case R2T1 also based on model 1. The test
oracle is that “Generator” should produce an output first and
then only make a transition. Both should occur at the same
simulation time.

For requirement 3 we build case R3T1 which sets the gen-
erating and processing times of “event1” to 0. We then check
whether “collector” can collect “event1” at time 0. From the
input and model 1 we can derive that only “event1” is gener-
ated, processed and collected. All the events are at time 0.0.
So we build a event trace file conforming to the “standardized
trace representation” shown in Figure 3 and use it as the test
oracle.

Figure 3. Standardized event trace file

From requirement 4 we derive 2 cases (based on model
1) that two internal transitions in two atomic models happen
closely enough to each other and test whether the simulator
can differentiate between them. We set the time interval equal
to the time synchronization tolerance in R4T1 and smaller
than the time synchronization tolerance in R4T2. The test ora-
cle is that the tool should differentiate the temporal sequence
of these two events and not treat them as collisions.

Requirement 5 is very fundamental since it guarantees
that coupled DEVS models maintain the event lists correctly
and triggers events at the correct time in their imminent chil-
dren. We build a test case R5T1 where in each DEVS model



there are events to test whether time synchronization excep-
tions are thrown and the simulation produces the right trace
file.

Requirement 6 is a basic requirement and lays the foun-
dation for requirements 7-9. Based on model 1, we set the
parameters in case R6T1 to generate “event2” after collect-
ing “event1”. The test oracle is that the produced trace should
have the same event sequence as expected.

Requirement 7 on events collision is a tough but impor-
tant issue in DEVS. In the classic DEVS formalism if an in-
ternal transition and an external transition of the same atomic
model occur at the same time, the external transition over-
rides the internal transition unconditionally. Additionally, in
classic DEVS, there is a “select” function in coupled DEVS
models to determine the sequence of events in case of col-
lision between internal events. We need to test the usage of
the “select” function to check whether collisions are handled
correctly. We build the following 4 cases for requirement 7.
Case R7T1 and R7T2 set the input (1.0, 1.0, 1.0, 2.0, 1.0,
4.0) to cause an external event on input port “rec event2 P1”
and an internal transition from “proc event1” to “idle” at time
2.0 in “Processor1”. R7T1 is based on model 1, in which the
“select” function of DEVS coupled model “EventGPCSys-
tem” chooses the first event in the set of imminent models
–implemented as an ordered list in most tools– (“Generator”
generates “event2” which causes an external event on input
port “rec event2 P1”). R7T2 is based on model 2 and chooses
the second event in the list. Case R7T3 and R7T4 use the in-
put (1.0,2.0,1.0,2.0,3.0,4.0) to test the event collisions inside
the coupled model “CoupledProcessor” and its “select” func-
tion. As we can deduce from the abstract model, at time unit
5.0, “Processor1” sends “event2” to “Processor2” while “Pro-
cessor2” has an internal transition from “proc event1 P2” to
“idle”. Case R7T3 is based on model 1 which selects “Proces-
sor1” and case R7T4 is based on model 3 in which the “select”
in “CoupledProcessor” chooses “Processor2”. The test oracle
is that in these test cases, external transitions override the in-
ternal transitions (which means the internal transition doesn’t
occur) when it is chosen to occur first and events which don’t
influence each other occur in the sequence as chosen.

For requirement 8 we mainly test the event dispatching
from one output port to two input ports. Model 1 needed to
be revised to get this one-to-two port coupling relationship.
As shown in Figure 4, model 4 adopts a parallel style which
processes events in parallel to have an one-to-two External
Input Coupling(EIC). Then model 5 (in Figure 5) and model
6 (in Figure 6) are built to test event dispatching in Internal
Coupling (IC) and External Output Coupling. Test case R8T1,
R8T2 and R8T3 are based on model 4, 5 and 6 respectively.
The test oracle is that generated events should be dispatched
to the two processors at the same time and with identical event
attribute.

Generator

CoupledProcessor

Processor1

Processor2

Collector

event2

EventGPCSystem
event1

Figure 4. Model 4: Parallel “EventGPCSystem”

Generator

Processor1

Processor2

Collector

event2

EventGPCSystem event1

Figure 5. Model 5: Parallel “EventGPCSystem” without
CoupledProcessor

For Requirement 9 we need to test if we revise event at-
tributes of two instances of the same event, whether they in-
fluence each other or not. We build three cases R9T1 based on
model 4, R9T2 based on model 5 and R9T3 based on model
6. We don’t change the event attribute (“eventSize”) in “Pro-
cessor1” but revise it in “Processor2”, and set the processing
time of “Processor2” smaller than that in “Processor1”. So
the test oracle is that “eventSize” should remain unchanged
when “Processor1” sends “event1” to “Collector”. If “event-
Size” is the same value as revised in “Processor2”, then they
are not independent.

Step 5: Executable DEVS models implementing ab-
stract DEVS models are built in the tool. It is simple to
implement models 1-6 in PythonDEVS. We implement the
events as Python classes, which we learn from the examples
provided by the tool.

Step 6: Import the I/O behaviour into the executable
model from the test cases. We set the input parameters (in
Table 1) of each case to configure corresponding the DEVS
model. For each test case a trace file including the “correct”
output trace is built confroming to the standardized trace rep-
resentation format.

Step 7: Simulate the DEVS models using PythonDEVS
and collect outputs. The simulation will produce a simula-
tion trace file if no exceptions are thrown. If the simulation
terminates abnormally, PyUnit catches this.

Step 8: Compare simulation output with the test oracle
and produce test results. All the results are listed in Table 1.

We use the PyUnit [16] Python testing framework in step
6-8 to partly automate the testing process for our test cases.
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Figure 6. Model 6: Parallel “EventGPCSystem” with Cou-
pledGenerator

After building the executable DEVS models, we build a test
file for our test cases using PyUnit. We build a test unit
for each test case and use the input parameters to instan-
tiate a simulatable model. Then we simulate the model in
each test unit and get a simulation trace file. We compare
the trace file with the expected trace by means of Python’s
filecmp.cmp. We execute the (unit) test cases one by one
and test result for each case is produced based on the value
return by filecmp.cmp. We can do all the test cases at one
time, which is very conveniently especially when there are a
large number of test cases.

4.2.2. Test Results and Analysis
The test results are listed in Table 1. We discuss why

PythonDEVS fails certain tests and propose some ways in
which to improve conformance. In case R1T1, PythonDEVS
throws an exception of “bad synchronization in processor2
on external transition”, which is not the expected exception.
In case R1T2 we notice that no exceptions are thrown. So it is
obvious that PythonDEVS does not have a proper mechanism
to deal with negative ta values. Negative values can easily oc-
cur due to a user mistake. To fix this problem we only need
to add an assertion for the value of ta which throws an ex-
ception when it negative. In case R4T2, PythonDEVS treats
the two events as collision when the occurring time interval
is smaller than the time event synchronization value. The fact
that PythonDEVS passes case R4T1 tells us the time granular-
ity should be no larger than 1E-10. Upon closer examination
of the PythonDEVS simulator we notice that the tool sets the
time synchronization tolerance 1E-10 the same as the time
granularity, which could be confusing to users. An improve-
ment would be to use a distinct value for time granularity. In
case R9T1, “event1” instance in “Processor1” is influenced
by “event1” instance in “Processor2” and its attribute is the
same as the attribute revised by “Processor2”. PythonDEVS
passes case R9T2 and R9T3 for IC and EOC. We dive into the
PythonDEVS simulator and find that it uses a “deep copy” of
event objects when dispatching events from one output port
directly to multiple input ports (namely Internal Coupling) to
ensure independence among these events. But for EIC in case

R9T1, it dispatches duplicated events which have references
to each other. So our suggestion to fix this problem is to also
use “deep copy” for EICs.

4.3. Case Study: DEVS++
DEVS++ [4] is a DEVS tool based on C++. We test the

classic DEVS implementation in DEVS++ by means of our
framework. For space reasons we do not describe the testing
procedures in detail, as it is almost the same as that described
in 4.2.1.. In Table 1 we list the test results and discuss the
failed and non-applicable cases. Testing requirement 2 is not
applicable as the DEVS++ manual [4] specifies that the out-
put function resides inside the internal transition function. So
whether the output function is evaluated before the internal
transition depends on the tool user’s implementation. Testing
requirement 7 is not applicable as there is no “select” func-
tion implemented in DEVS++. In case of collision, DEVS++
always chooses the first model in imminent list. To fully con-
form to the classic DEVS formalism, DEVS++ needs to pro-
vide a select function for tie-breaking. DEVS++ fails test
R9T1, R9T2 and R9T3 because it uses the same pointer to
deliver multiple event instances. This makes events depen-
dent of each other. To avoid this problem different pointers
can be assigned for different event instances to ensure mutual
independence.

4.4. Discussion
One might argue that certain requirements can be satisfied

in non-compliant tools by careful modelling by experienced
users. For example, users can ensure requirement 2 is satisfied
by putting the output function before the internal transition
in the implementation of the internal transition function in
DEVS++ or ensure event instance independence by perform-
ing a “deep copy” in their DEVS model implementations in
PythonDEVS. A tool-builder should make maximum efforts
to minimize the possibility for users to make mistakes. The
flaws detected in the two tools originate partly from negli-
gence (e.g., R1T1 in PythonDEVS), partly from the platform-
specific characteristics (e.g., R9T1 and R9T2 in DEVS++),
and partly from variations of the basic DEVS formalism (e.g.,
no “select” function in DEVS++). All the flaws are hard to
detect but easy to fix (in hours or days). DEVS implementa-
tion testing is a complicated task for an individual and needs
collaboration of tool builders, users and M&S experts.

DEVS implementation testing and standardization.
DEVS standardization will certainly ease the DEVS imple-
mentation testing. Firstly, if a standard model library is built
and the I/O behaviours are specified, we can easily use these
models as the testing model, and no errors would be intro-
duced by model building. Secondly, if a core DEVS formal-
ism with minimum elements is established, we can focus on
testing the core formalism and the work would be consid-



erably reduced. Testing of DEVS M&S tool requires us to
think about the essence of the DEVS formalism and its im-
plementation. By testing different tools and comparing the
implementation details we obtain insights for standardization
(like what differences are essential and need to be standard-
ized and how to standardize), which will help us build the
standard library, the core DEVS formalism and the interoper-
ation mechanism between DEVS tools.

5. CONCLUSION
In this paper, we proposed a framework to test behavioural

correctness of DEVS tools w.r.t. the DEVS formalism speci-
fication. In this framework, a series of abstract DEVS models
are constructed to derive a systematic suite of concrete test
cases. A “standard trace representation” is introduced to al-
low test oracle specification. We test the classic DEVS im-
plementation in the PythonDEVS and DEVS++ tools to illus-
trate our methodology. Some flaws of these two tools were
detected by testing. Based on analysis of the testing results
we provide some advice to improve these two tools. From the
case study we notice that one formalism can have very di-
verse implementations. So the testing-based approach seems
a necessary and important enabler for tool interoperation and
DEVS standardization.

Though extensive, we cannot claim completeness of our
proposed set of test requirements for the classic DEVS for-
malism. One item of future work is to find and test more
requirements emerging from DEVS standardization consid-
erations and from specific application domain needs. In this
paper we have tested the classic DEVS implementation cate-
gory 1 (namely building DEVS tools from scratch) mentioned
in Section 1.. Another item of future work is to test classic
DEVS implementations in category 2 (e.g., Modelica/DEVS)
and 3 (e.g., DEVS/SMP2). We will also extend and apply our
framework to other DEVS variants such as parallel DEVS and
cell-DEVS.
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