
 1

Simulation-Driven Architecture in the
Engineering of Real-Time Embedded Systems

Trevor W. Pearce (pearce@sce.carleton.ca)

Abstract

The Simulation-Driven Engineering (SDE)
research project aims to improve real-time
embedded system development by integrating the
use of modeling and simulation as a fundamental
cornerstone in all development stages. Short-
term goals are to simplify the reuse of
engineering work products, and to develop a
discrete-event based simulation architecture
suitable for target products. The long-term goals
include supporting ambitious simulation
applications such as simulation- based
acquisition. SDE is a new initiative, and this
paper introduces the motivation for the research,
the initial decisions that have shaped the current
directions, and progress.

1. Introduction
Systems engineering methods approach product
development in terms of a set of interacting
components. This often involves modeling at
multiple levels of abstraction, and consistency
among work products is essential. Simulation in
this context requires a component-oriented
architecture that can be applied at various levels
of abstraction. The architecture must allow
simulations to interoperate as components of a
larger system, allow simulation artifacts to be
easily associated with target system components,
encourage reuse of work products, and permit
the inclusion of COTS components.

The Simulation-Driven Engineering (SDE)
research project is a new collaborative initiative
being carried out with Dr. Gabriel Wainer [GW].
SDE aims to integrate the use of modeling and
simulation as a fundamental cornerstone in all
aspects of real-time embedded system
engineering. Although modeling and simulation
is already a major component of many
approaches, SDE goes further by proposing that
a discrete-event simulation architecture also be
used as the final target architecture for products.
The research goals include incremental
development, the reuse of work products, and the
support of long-range applications.

2. Engineering Context
SDE is motivated by engineering concerns:

Systems: Systems engineering spans the “cradle
to grave” lifecycle of a system. The breadth and
timelines of system lifecycles require well-
defined and integrated management processes
that address system development, deployment,
evolution, and retirement. The complexity of
these lifecycles and processes has given rise to a
need for research that strives to improve the way
classes of problems and solutions can be
engineered in a systems context.

Models: Models are abstract representations of
concepts of interest. Models are abstract because
they intentionally ignore some details in favour
of emphasizing others. Modeling is a key aspect
of all engineering methods. Engineers use
models to focus communication, to analyze
concepts, to record decisions, and to act as
crucial work products that delineate progress in
processes. Often, concepts must be modeled at
various levels of abstraction that are appropriate
to different stages in processes, and may be
modeled using different views that are intended
to draw out different subsets of related
properties.

Simulation: A simulation is a dynamic activity
in which a model is exercised for a specific
purpose. A computer simulation involves the use
of computers to execute programs that encode a
model. Simulations are often used in engineering
processes to validate concepts, verify models,
and to reveal new insights into concepts through
experimentation. In some applications, for
example a pilot training simulator, a simulation
may be the target product.

M & S: In this paper, the term “modeling and
simulation” (M & S) is applied to the practice of
constructing models in a way that simplifies the
execution of the models as computer
simulations.

Simulation Architecture: Discrete-event M & S
is grounded in a perspective which views time as
a partially ordered sequence of events. The
events trigger changes to state variables that are

 2

used to quantify both static and dynamic
properties. Discrete-event models are employed
in a broad spectrum of engineering domains,
such as digital electronics, control systems,
human/machine interfacing, training systems,
software systems, and information systems. The
architecture of a discrete-event simulation often
encodes state variables as data, and encodes
responses to events as programmed changes to
state variable values. Some key factors in these
simulations involve the management of time in
ways that are relevant to the models, the
generation and scheduling of events to be
performed within the modeled time frames, and
the handling of modeled input and output events
as computer-related events.

Real-Time Systems: The engineering of real-
time and embedded products presents significant
challenges. Real-time performance requires
timely response, often utilizing priority-driven
control flow. The embedded nature of the
systems often results in application-specific
hardware components, and may entail the
codesign of both hardware and software. The
deployment and support of the systems must
often account for unique aspects of the larger
structure in which the system is embedded.
Testing under actual operating conditions may be
impractical, and in some cases impossible (e.g. a
satellite control system). M & S is often used in
the early development stages of these products.
However, when development reaches a point
where the target platform and target environment
dominate the development focus, the early
models and simulation artifacts are often
abandoned.

Long-Range Applications: Significant efforts
are underway to increase the use of M & S in a
variety of ambitious applications [DoD]. For
example, training exercises that require real-time
embedded systems, such as geographically
dispersed vehicle simulators, to be integrated as
components in a distributed simulation. The
exercises include hardware-in-the-loop and/or
human-in-the-loop capabilities. The goals of the
simulation-based acquisition process [Kon00]
include the ability to simulate the end use of
different products (as subsystems) before making
a decision about which product to procure. These
applications may yield significant gains; yet
there are substantial development hurdles that
must first be cleared.

These applications require consistent versions of
both the product plus one or more simulations of
the product. Developing and maintaining

multiple consistent artifacts is likely to increase
the cost and difficulty of the development
process significantly. Furthermore, as versions
evolve, consistent versions of all of the artifacts
must also evolve.

SDE research addresses real-time embedded
system engineering concerns in which product
simulations, possibly at multiple levels of
abstraction and with multiple views, must be
developed and maintained in addition to the
product. Highlights of the proposed approach
include targeting products to a discrete-event
simulation architecture, embracing the use of M
& S as a fundamental strategic approach in all
stages in development, and reusing work
products when possible. The results of the
research will help to integrate and complement,
not complicate, common development strategies
such as rapid prototyping, incremental
development, product architectures, reuse,
traceability, standards, COTS, and formal
methods.

3. Research Decisions
The following initial decisions have helped to
guide the expanding the role of M & S.

State Machines: A key decision is selecting a
modeling paradigm that lends itself to the work
products involved at the various stages in the
development of real-time embedded systems.
State machines have been chosen, since they are
simple, widely understood, and have been shown
to be applicable from abstract system
requirements through to the detailed levels of
hardware and software components.

DEVS: State machine models must be described
in a way that allows easy simulation. The
Discrete Event System Specification (DEVS)
method [DEVS00] has been chosen based on its
intuitive modeling of state machines and proven
applicability. DEVS has a sound mathematical
foundation, practical simulation semantics,
supports the hierarchical composition of models,
and includes time as an explicit attribute in
models. DEVS has been used to model
continuous-valued, discrete-time and hybrid
systems. DEVS extensions have modeled
cellular automata, stochastic systems, and fuzzy
systems. A variety of simulation tools allow the
execution of DEVS models, for example CD++
[CD++02], and an international effort is seeking
interoperability standards [STD]. Parallel and
real-time simulators have also been constructed
for DEVS models [e.g. CD++03, RTD01].

 3

Furthermore, DEVS is gaining a foothold in
industrial practice [Gli03].

HLA: SDE research requires an underlying
architecture that is flexible and component-
oriented. The High Level Architecture (HLA)
standard [HLA00], has been chosen as the
enabling architecture across development stages.
The HLA supports interoperability by allowing
simulations to share data, events, and the
management of a common notion of time. The
HLA also specifies the API for the supporting
Runtime Infrastructure (RTI). The goals of this
research are not constrained by the HLA, and the
use of the HLA is being hidden whenever
possible. This avoids forcing developers to be
knowledgeable of the HLA, and simplifies the
transfer of the results to other environments.

4. Recent Work
Preliminary research has explored aspects of: the
reuse of simulation work products across
incremental development stages, the application
of DEVS to real-time embedded systems, CD++
as a DEVS simulation engine, and the HLA.

An early effort created an HLA-compatible
framework for an RTOS [Mao02]. An RTOS
kernel was developed, and process deputies
enabled each process to participate and
collaborate as an individual component. The
deputies presented a POSIX-compliant process
API, and hid the HLA interactions with the
kernel. The goal of the work was to allow
processes to take advantage of the distributed
virtual environment created by the HLA,
regardless of the target environment.

Several efforts have focused on modeling at the
hardware/software interface, and the system-
level coupling of hardware components:

Computer system components and their
interactions have been modeled, and then
simulated using the HLA. Initial work modeled
components by assuming that bus-level
interactions were atomic [Sag02]. This allowed
component functionality to be the central focus,
without the distraction of bus protocols. CD++
notation was used, and simplifying properties of
the models allowed a simplified simulation
engine. An extension to this work developed a
method for generating bus-level interaction
modules automatically from a description of the
bus protocol [Kha03]. The extension allows the
reuse of the original models by wrapping the
models with bus-level behaviour. The resulting
simulations account for bus-level transactions

that cannot be simulated using the original
atomic transactions. An attractive feature of the
extension is that the wrapper algorithms can be
automated to eliminate the need for application
engineers to have knowledge of the HLA.

Research has also explored the incremental
introduction of hardware into the simulation loop
and the reuse of work products [Li03]. An HLA-
based architecture was used to simulate three
iterations of a spectrum analyzer, which
consisted of an input component, a DSP
component and a display component. In the first
iteration, each component was simulated using
software modules. The DSP component included
C source code for a Fast Fourier Transform
(FFT). In the second iteration, a software harness
interfaced a DSP hardware module to the HLA,
and thereby allowed the new hardware module to
directly replace the original software DSP
component. The second iteration reused (as
originally written) the input and display
components, and the FFT C code. A third
iteration used a software harness to integrate an
audio hardware module, and thereby replace the
original software input component. Testing with
audio sampling frequencies up to 22 KHz
revealed that the HLA was easily capable of
supporting real-time behaviour in all iterations.

An ongoing effort is applying DEVS and CD++
to model a DSP-based Voice over IP telephone
at three levels of abstraction [XPS]. At the
highest level, the system is modeled as a single
black box. An intermediate level models the
system as three major components, based on the
architecture of the existing telephone. The lowest
level refines the intermediate components in
terms of the programmer’s models associated
with the actual internal hardware devices. In
addition to providing an interesting case study in
the consistency of multiple-levels of work
products, the work is exploring the reuse of work
products across levels, and the use of abstract
models to verify the correctness of lower-level
models. The models will also provide a
performance analysis test bed for CD++
simulations.

Work in progress is developing a generic HLA-
compatible wrapper for CD++ simulations. A
major concern has been establishing the
cooperative control of time management between
the CD++ simulation engine and the HLA RTI.
This cooperation is essential to allow the CD++
simulation to participate with other components
that may also regulate and constrain time
advancement.

 4

An important aspect of SDE research is the
integration of results into practical tools. The
ongoing CD++ Builder project [CD++B] is
integrating existing CD++ tools into an Eclipse-
based platform [Eclipse] to create an integrated
and extensible development environment. A key
practical component in the SDE approach is the
HLA RTI. The ongoing Java RTI project [XPS]
is porting the design of the Georgia Tech FDK
[FDK] to Java, and extending the functionality to
a more complete RTI feature set. Current work is
integrating the Java RTI into CD++ Builder. This
will simplify the development and runtime
support of HLA-compatible CD++ simulations.

Research is just beginning on hardware support
for simulation. The plan is to use system-on-chip
technology to extend a processor’s architecture
to include support for time management and the
scheduling of simulation transitions. DEVS
models are targeted as the applications to be
supported by the extensions.

Another effort just getting under way is the real-
time analysis of simulations. This work is
extending the analysis of known scheduling
techniques (such as EDF) to DEVS models and
their implementations.

5. Conclusions
SDE research is addressing the use of
simulation-driven architecture in the engineering
of real-time embedded systems. The proposed
approach maintains a consistent focus on
modeling and simulation across the entire
development process, and eliminates the need to
abandon modeling and simulation artifacts when
focusing on the target platform. Furthermore, by
basing the final product on a simulation
architecture, development can be organized as a
sequence of refinements that evolve abstract
simulations at the level of requirements through
to precise implementation “simulations”. The
refinement-oriented simulation process enjoys
rapid prototyping, encourages reuse, and lends
itself to the development and maintenance of
multiple consistent artifacts.

The value of reusing simulation work products
cannot be over-stressed. The advantages include:
shortened development time (the components do
not require implementation), increased reliability
(components have already undergone a degree of
verification and validation), and reduced
development risk (fewer unknown components).

REFERENCES
[CD++02] "CD++: a toolkit to define discrete-event
models". G. Wainer. In Software, Practice and
Experience. Wiley. Vol. 32, No.3.. November 2002.
pp. 1261-1306

[CD++03] A. Troccoli, G. Wainer, "Implementing
Parallel Cell-DEVS". In Proceedings of 36th
IEEE/SCS Annual Simulation Symposium. Orlando,
FL. USA. 2003

[CD++B] www.sce.carleton.ca/esg/CDppBuilder/

[DEVS00] Bernard P. Zeigler, Herbert Praehofer, Tag
Gon Kim, “ Theory of Modeling and Simulation”, 2nd
Edition, Academic Press, 2000

[DoD] DoD 5000.59-P, "Modeling and Simulation
Master Plan", October, 1995

[Eclipse] www.eclipse.org

[FDK] www.cc.gatech.edu/computing/pads/fdk.html

[Gli03] E. Glinsky, G. Wainer, "Studying the
Performance of DEVS Environments", Technical
Report SCE-03-011, Department of Systems and
Computer Engineering, Carleton University, Ottawa,
Canada, 2003.

[GW] www.sce.carleton.ca/faculty/wainer.html

[HLA00] “ IEEE Standard for Modeling and
Simulation High Level Architecture (HLA)”, IEEE Std
1516-2000

[Kha03] Hossam Khalil, “ Integrating Timing
Diagram Protocols with HLA Simulations”, M.Sc.
Thesis, Carleton University, 2003

[Kon00] K. Konwin, Dave Thomen, “Simulation
Based Acquisition: An Overarching View”, In
Proceedings of the Fall 2000 Simulation
Interoperability Workshop, Orlando, September, 2000

[Li03] Lidan Li, “ DSP Hardware Surrogate for the
HLA” , M.A.Sc. Thesis, Carleton University, 2003

[Mao02] Rui Mao, “ HLA Compliant Real-Time
System Operating Simulation”, M.Sc. Thesis, Carleton
University, 2002

[RTD01] Seong Myun Cho , Tag Gon Kim, “Real
time simulation framework for RT-DEVS models”,
Transactions of the Society for Computer
Simulation International, v.18 n.4, p.203-215,
December 2001

[Sag02] Amir Saghir, “ Computer System Modeling
At The Hardware Platform Level”, M.A.Sc. Thesis,
Carleton University, 2002

[STD] www.sce.carleton.ca/faculty/wainer/standard/

[XPS] www.sce.carleton.ca/esg/XPERTS/index.htm

