
A Contextualized Web-Based DEVS Tutorial System 

Zhibo Wang, Xiaolin Hu, Inthira Srivrunyoo 

Department of Computer Science 

Georgia State University 

Atlanta, GA, USA 30303 

 

 

Abstract 

DEVS-based modeling and simulation have been 

applied to many different fields and used by 

researchers from all over the world. Much 

progress has been made in developing 

DEVS-based modeling and simulation 

environments. However, less work exists in 

developing systems that help beginners to learn 

DEVS models and DEVS-based simulation. This 

paper presents an interactive web-based tutorial 

system for learning DEVS models. The tutorial 

system uses a traffic light application as a 

learning context to help users engage in the 

learning process. In this paper, we present the 

models and the user interface of this tutorial 

system, and a stepwise learning process based on 

the developed system for supporting incremental 

learning of the DEVS concepts.  

 

Keyword Contextualized, Web-based, DEVS 

education, Tutorial  

 

1. INTRODUCTION 

The Discrete Event Systems Specification 

(DEVS) is a timed, modular and hierarchical 

formalism which provides a means of specifying 

a mathematical object called a system [1]. It has 

been applied to many different fields and used 

by researchers from all over the world. Much 

progress has been made in developing 

DEVS-based modeling and simulation 

environments. However, less work exists in 

developing systems that help users to learn 

DEVS models and DEVS-based simulation. It is 

known that DEVS has a steep learning curve for 

beginners, especially in the initial stages of the 

learning. Traditional learning methods of DEVS 

include lectures and conference tutorials. While 

these methods are effective in an enforced 

learning environment such as a lecture, their 

usage and influence are limited by the presence 

of an instructor and the limitation of a physical 

environment. Web-based learning has the 

potential to influence a wider range of learners 

through the Internet. Current approaches of 

web-based learning of DEVS models mainly 

include online papers, online PPT slides, and 

online introduction of different types of DEVS 

applications (See e.g, ACIMS’ website: 

www.acims.arizona.edu). Without an instructor 

to guide through the learning process, these 

approaches are ineffective for beginners. 

In this paper, we present an effort to develop 

an interactive web-based tutorial system for 

learning DEVS models. The tutorial system uses 

a traffic light application as a learning context to 

help engaging users in the learning process. This 

approach of contextualized learning is useful for 

users, especially new beginners, to become 

interested in the learning subject and to better 

understand unfamiliar concepts. The developed 

tutorial system is web-based and interactive. 

This provides a convenient and interactive 

environment so a wider range of users can 

access the system and play with the system 

online in learning the DEVS models. Based on 

this system, we also developed a stepwise 

learning process that guides users to learn the 

various elements of DEVS modeling in an 

incremental manner. We note that the 

contribution of this work is not on developing 

new theory, methods, or applications of DEVS. 

Instead, it is on engineering and developing a 

contextualized web-based system that can be 

useful for beginners to learn DEVS modeling 

concepts.  

 Contextualized learning is becoming a 

popular learning paradigm in recent years. Many 

systems have been developed that put a learning 

process within an application context. For 

example, the Alice software programming 

tutorial [2] is a popular and representative 

contextualized tutorial system that allows 

students to learn traditional programming 

concepts such as “object”, “method” and 

“functions”. It addresses both the mechanical 

and sociological barriers that prevent many 

students from successfully learning to develop 

computer programs. An important type of 

contextualized learning is game-based learning, 

which uses computer games to engage learners 

in a learning activity through a storyline. For 

example, SimSE [3] is a computer-based 

simulation environment for teaching the 

software engineering concepts using a “virtual” 

software engineering process in a fully graphical, 

interactive, and fun game-type of setting. Based 

on the contextualized learning paradigm, our 

system allows users to learn DEVS models using 

a traffic light application context. 

Developing materials and systems for 

learning DEVS models have been addressed by 

several lines of work in the M&S community. 

The ACIMS lab did tremendous work in 

http://www.acims.arizona.edu/


developing and popularizing the DEVS 

modeling and simulation framework. It 

published many materials to introduce the DEVS 

component-based modeling and simulation (see 

[3] for an example). More recently, a web-enable 

DEVSJAVA simulation environment called 

DEVS-Suite [4] is developed. DEVS-Suite is a 

new generation of DEVS simulator which 

combines the capabilities of DEVSJAVA and 

DEVS Tracking Environment. It supports the 

capabilities for monitoring simulation dynamics 

as time-based trajectories and automated data 

collection, and thus makes it easier for users to 

develop and to learn the DEVS models. Many 

other researchers also made efforts in helping 

learning DEVS-based modeling and simulation. 

These include, for example, the many 

conference tutorials given by various researchers, 

and the materials shown on the DEVS 

Standardization Group website 

(http://www.sce.carleton.ca/faculty/wainer/stand

ard/)) [5]. The DEVS tutorial system presented 

in this paper differs from previous works by 

developing an online interactive system to 

support DEVS learning in a contextualized 

environment.  

The remainder of this paper is organized as 

follows. Section 2 reviews the background of 

DEVS. Section 3 introduces the traffic light 

systems based on Atomic model and coupled 

model. Section 4 indicates the implementation of 

the DEVS tutorial system; Section 5 provides an 

example to guide users to build a coupled DEVS 

model. Section 6 concludes this work.  

 

2.  DEVS BACKGROUND  

Since our system is about learning DEVS 

models, it is necessary to review the basic DEVS 

concepts and the DEVS formalism in this section. 

At the end of this section we also describe some 

of the major developments in DEVS-based 

modeling and simulation. We note that the first 

part of this section follows closely from an 

earlier paper that introduces DEVS modeling 

and simulation [6].  

The DEVS (Discrete Event System 

Specification) formalism [1] is derived from 

mathematical generic dynamic systems theory 

and has been applied to both continuous and 

discrete phenomena. It provides a formal 

modeling and simulation (M&S) framework 

with well-defined concepts of coupling of 

components, hierarchical, modular model 

construction, support for discrete event 

approximation of continuous systems and an 

object-oriented substrate supporting repository 

reuse. There are two types of DEVS models: 

Atomic model and Coupled model. An Atomic 

model is a basic component which has input 

ports, output ports, states, internal, external and 

confluent transition functions, and output 

function. A coupled model is composed from 

multiple atomic models or coupled models. By 

coupling one model’s output port to another 

model’s input port, a message can flow from one 

model to another model. The “closed under 

coupling” property [1] of DEVS makes it 

possible to treat a coupled model as an atomic 

model, and thus gives rise to hierarchical 

construction of DEVS models.  

A DEVS atomic model includes a time base, 

inputs, states, and outputs, and state transition 

functions for determining next states and an 

output function based on current state. An 

atomic model of a standard DEVS is a structure: 

M = <X, S, Y, int, ext, con, , ta> 

where, 

X :  set of external input events;  

S :  set of sequential states;  

Y :  set of outputs;  

int: SS : internal transition function  

ext : Q  Xb  S : external transition function  

con: Q  Xb  S : confluent transition 

function  

Xb is a set of bags over elements in X, 

 : S  Yb : output function generating 

external events at the output; 

ta : S


,0R : time advance function; 

Q = { (s,e) | s  S, 0  e  ta(s) } is the set of 

total states where e is the   elapsed time 

since last state transition. 

An atomic model template captures the 

following information:  

 the set of input ports through which external 

events are received                                                                  

 the set of output ports through which 

external events are sent 

 the set of state variables and parameters  

 the time advance function which controls 

the timing of internal transitions 

 the internal transition function which 

specifies to which next state the system will 

transit after the time given by the time 

advance function has elapsed 

 the external transition function which 

specifies how the system changes state 

when an input is received. The next state is 

computed on the basis of the present state, 

the input port and value of the external 

event, and the time that has elapsed in the 

current state. 

 the confluent transition function which 

decides the next state in cases of collision 

between internal and external events. 

 the output function which generates an 

external output just before an internal 

transition takes place. 

 



Atomic models may be coupled in the 

DEVS formalism to form a coupled model. A 

coupled model specifies how to couple (connect) 

several component models together to form a 

new model. Two major activities involved in 

coupled models are specifying its component 

models and defining the couplings which create 

the desired communication networks. A coupled 

model is defined as follows: 

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>  

where,  

 X : set of external input events;  

 Y : a set of outputs;  

 D : a set of components names;  

for each i in D,  

  Mi is a component model 

  Ii is the set of influences for i  

for each j in Ii,  

  Zi,j is the i-to-j output translation function 

A coupled model template captures the following 

information: 

 the set of components  

 for each component, its influences  

 the set of input ports through which external 

events are received  

 the set of output ports through which 

external events are sent  

 the coupling specification consisting of:  

o the external input coupling (EIC) 

connects the input ports of the coupled to 

one or more of the input ports of the 

components 

o the external output coupling (EOC) 

connects the output ports of the 

components to one or more of the output 

ports of the coupled model 

o internal coupling (IC) connects output 

ports of components to input ports of 

other components 

 

The classic DEVS formalism presented 

above has been extended in different ways to 

support modeling various types of systems. 

Among them the RTDEVS [7] formalism was 

developed for supporting real-time system 

specification. The Cell-DEVS formalism [8,9] 

was developed to support discrete event cell 

space modeling (see [10] for an application of 

Cell-DEVS to the forest fire spread simulation). 

To model systems with dynamics structure 

capabilities, the dynamic structure DEVS 

formalism was developed and studied (see, e.g., 

[11,12,13]). The DEVS formalism was also 

extended to support continuous system modeling 

based on the quantization concepts [14,15]. 

More recently, the Finite & Deterministic DEVS 

(FD-DEVS) was proposed for supporting formal 

verification using DEVS models [16]. The 

tutorial system presented in this paper deals with 

the classic DEVS and focuses on the modeling 

aspect of DEVS atomic and coupled models.  

 

3 The Traffic Light System as a Learning 

Context 

In the developed tutorial system (available 

online at: http://www.cs.gsu.edu/DEVSTutorial/), 

we exemplify the DEVS atomic and coupled 

model formalism using a simple traffic light 

controller system. The traffic system we 

consider here is a simplified version of 

real-world traffic. For example, we do not allow 

cars to turn, and all cars on the same street move 

at the same speed. Figure 1 shows a screen shot 

of the traffic system window of the tutorial 

(detailed descriptions of this figure will be given 

in section 3.1). In this traffic system, there are 

two one-way streets that intersect with each 

other: a main street (the horizontal street) and a 

small street (the vertical street). Cars on the main 

street run from east to west; and cars on the 

small street run from north to south.  

 
Figure 1: The Traffic System as a Learning 

Context 

 

The DEVS model that users can define and 

interact with is for controlling the traffic light of 

the intersection. We limit the traffic light to have 

three signal states: red, green, and flashing red. 

Red means “stop” for the main street and “go” 

for the small street; green means “go” for the 

main street and “stop” for the small street; 

flashing red means cars on both streets should 

stop first before moving ahead. The tutorial 

system provides an interface for users to define 

the behavior of the traffic light (following the 

DEVS formalism), and then see how it works 

right away through the traffic system window as 

shown in Figure 1. Note that as a tutorial system, 

it is our intention to focus only on the traffic 

http://www.cs.gsu.edu/DEVSTutorial/


light (with relative simple behaviors) through 

which users can learn the basic elements of 

DEVS modeling. 

In DEVS modeling, one must specify 1) 

atomic models from which larger ones are built, 

and 2) how these models are coupled together to 

form coupled models. Corresponding to these 

two types of models, two main tutorial pages are 

developed: one for atomic model tutorial, the 

other for coupled model tutorial. The atomic 

model tutorial page allows users to learn and 

experiment with the dynamical behaviors of an 

atomic model. These include specifying the 

initialize function, external transition function, 

internal transition function, confluent transition 

function, and output function of the atomic 

model. The coupled model tutorial page allows 

users to learn and experiment with adding 

components and coupling components together 

to form a system. For example, users can define 

an intelligent traffic light control system by 

coupling traffic lights together so they can send 

signal to each other. Furthermore, we developed 

a stepwise learning process that guides users to 

learn DEVS modeling in an incremental manner. 

Each step of this process focuses on a single 

modeling element, such as internal transition 

function or external transition function of DEVS 

atomic model, and provides discussions and 

exercises related to that element.  

Below we describe the atomic model 

tutorial page, and coupled model tutorial page, 

and the stepwise learning process in detail.  

 

3.1 Atomic Model Tutorial Page 

The atomic model tutorial paper allows users to 

learn the DEVS atomic model based on the 

traffic system context. It allows users to define 

the behavior of the traffic light, watch how it 

works according to the defined behavior, interact 

with the model (e.g., injecting an external input 

to the model), and check out the DEVSJAVA 

code of the defined model.  

Figure 2 shows the traffic light model that a 

user can specify and interact. As can be seen, the 

traffic light model has two input ports: 

CrosswalkButton and TrafficSignal and one 

output port: SignalOut. The traffic light has three 

states: red, green and flashing red. These 

different states of the traffic light indicate 

different control signals for the cars on the 

streets. When the model transitions from one 

state to another, the cars on the street will 

respond to the change of signal accordingly. A 

display of this model (named as the Atomic 

model Box in Figure 1) is also shown in the 

traffic system window. The atomic model box 

always displays the current state of the model 

and the remaining sigma of that state. The 

remaining sigma is continuously updated every 

second, that is, it decreases by 1 in every second. 

This allows users to easily see how the time 

elapses, and thus help them understand the 

concept of elapse time, which is critical in 

DEVS atomic model. At any time, a user can 

inject an external input to the atomic model by 

clicking one of the input ports in the Atomic 

model box. Also, whenever the model generates 

an output, the output port of the Atomic model 

box will change its color and flashes several 

times to visualize the output.  

 
Figure 2: The Traffic Light Atomic Model and 

State 

The dynamic behavior of the traffic light is 

defined by the user following the DEVS 

specification. This is accomplished through a 

popup window when the user clicks the “define 

behavior” button in the atomic model tutorial 

page. Figure 3 shows the interface for specifying 

the traffic light model’s behavior. Through this 

interface, a user can define the initialization 

function, the external transition function, internal 

transition function, confluent transition function, 

and the output function. For example, in the 

external transition function form, a user can 

select an input (e.g., CrosswalkButton, meaning 

an input from the CrosswalkButton input port), a 

current state (e.g., red), a next state (e.g., green), 

and type a sigma value (e.g., 10), and then click 

“Add” to add that behavior as part of the 

external transition function of the traffic light 

model. Then based on that specification, if the 

traffic light is in the red state and a user clicks 

the CrosswalkButton, the traffic light will 

transition to the green state with sigma of 10 

seconds. Other behaviors of the traffic light 

model can be defined in a similar way.  

 

 
Figure 3: The traffic light specification page 

 

After the user finishes defining the behavior, 

the traffic system window (Figure 1) will carries 

out the defined behavior and visualizes its effect. 



This includes displays the traffic light with the 

right color (red, green, or flashing red), and 

move or stop the cars on the two streets 

according the traffic light signal. Furthermore, 

the traffic system window has two more boxes as 

shown in Figure 1: a State Transition Function 

Box and a Specification Box, to help users to 

understand how the traffic light atomic model 

works. The State Transition Function Box shows 

the more recent state transition of the model And 

the Specification Box lists all the specifications 

defined by the user. They help users to 

understand what was happened and what will be 

happening next, and observe the changes of light 

states in real time. Finally, the atomic model 

tutorial page also provides a function for users to 

see the DEVSJAVA code of the defined model. 

 

3.2 Coupled Model Tutorial Page  

 
Figure 4 Traffic light coupled model 

 

The coupled model tutorial page allows users to 

define a DEVS coupled model consisting of up 

to three traffic light atomic models 

(corresponding to the three intersections) as 

shown in Figure 4. It allows users to add traffic 

light models to the coupled model system, define 

model behaviors, and add couplings between the 

traffic light models. To visualizing the effect of 

adding components into the coupled model, 

initially the system has no traffic light and all 

cars moves ahead without stopping. A user can 

select which traffic lights (up to three) to add. 

Once a traffic light is added, it will be displayed 

on the applet window as shown in Figure 4, and 

begins to controls the traffic on the streets. A 

user can also remove already added traffic lights. 

Each traffic light is an atomic model and is the 

same as described in the previous section. For a 

particular traffic light, a user can define its 

behavior and interact with it just as described 

before. Meanwhile, a user can add couplings 

among the added traffic lights and thus allow 

them to influence each other. When a coupling is 

added, a link will be dynamically added by 

connecting the source model’s output port with 

the destination models’ input port as shown in 

Figure 5. We note that a user can also remove 

existing added couplings. Figure 5 shows an 

example where two traffic lights are added into 

the system and two couplings are added between 

the two lights. To visualize the effect of message 

passing between traffic lights, whenever a traffic 

light generates an output through its output port, 

all the coupling lines and the input ports coupled 

to that output port will flash several times. This 

makes it very easy for users to see the effect of 

message passing between models. Similar as in 

the atomic model tutorial page, the coupled 

model tutorial page also has the State Transition 

Function Boxes and the Specification Boxes to 

show the specifications of the defined models.  

 

 
Figure 5 A Coupled model Example 

 

3.3 The stepwise learning process 

 

Based on the functionalities of the atomic mode 

tutorial and the coupled model tutorial, we 

developed a stepwise learning process that 

guides users to learn the various elements of 

DEVS modeling in an incremental manner. The 

basic idea is that each step of this process 

focuses only on one element of DEVS modeling, 

and a user can stop, move backward, and move 

forward, or jump to a specific step during the 

learning process. We think this is useful 

especially for beginners to learn the various 

elements of DEVS modeling. The major steps of 

this learning process for the atomic model and 

the coupled model are given below.  

 

 Step 1: Set the model’s initial state – learn the 

initialize function. In this step, a user defines 

an initial state and its sigma through the 

initialize function, and then sees how the 

sigma elapses over time. Note that whenever 

the sigma expires and the model has no 

associated internal transition defined by the 

user, the model will atomically come to an 

“undefined” state and will be displayed in gray 

color. This leads naturally to the next step for 

specifying the internal transition function so 

the model can transition to a new state. Two 

special cases in this step that users can 

exercise are setting the sigma to be 0 or to be 

infinity.  

 Step 2: Define state transition when time 

expires – learn the internal transition function. 

In this step, a user can define the internal 

transition of the model (need to set an initial 

state first) and see how the model will 

transition to a new state when time expires.  

 Step 3: respond to external input – learn the 

external transition function. In this step, a user 



can specify external transition functions of the 

model, and then click the input port to see how 

the model responds. This step also introduces 

concepts such as input ports, external events.  

 Step 4: Generate an output – learn the output 

function. In this step, a user can specify an 

output for the model, and then watch how an 

output will be generated (the output port will 

flash several times when there is an output) 

when the sigma expires.  

 Step 5: Handle the confluent situation – learn 

the confluent transition function. This step will 

instruct users to specify the confluent 

transition function, and then click the input 

ports when sigma expires. This will trigger the 

confluent transition function and allow users 

to see the effect.  

 Step 6: All together – learn how the atomic 

mode works. In this step, a user can define a 

full-scale atomic model and interact with it. 

Some pre-defined sample models will also be 

provided for users to load and play with.  

 The stepwise process for learning the 

coupled model is straightforward. It includes the 

following step:  

 Step 1: Add components. In this step, a user 

can add selected lights (up to three) to the 

coupled model system, and once a traffic light 

controller is added, it displays on the applet 

window and starts to control the traffic of the 

street. Existing traffic light can be removed by 

the “Remove” button.  

 Step 2: Define model behavior. In this step, 

user can define the selected traffic light 

controllers as described in section 3.1. Each 

traffic light has individual behaviors based on 

a user’s specification.  

 Step 3: Add couplings between models. In this 

step, users can couple the selected lights by 

connection one’s output port with others’ input 

port. Thus, models can not only own their 

individual behaviors, but also have the ability 

to influent others in the coupled model system. 

 Step 4: Closed under coupling – support 

hierarchical model construction. In this step, 

we explain one of the most important features 

of DEVS model, the closed under coupling 

feature that make it possible for hierarchical 

model construction. We note that currently our 

tutorial system does not support user to 

interact with the system to learn this concept.     

 

4 Implementation of the Tutorial System 

 

 

Figure 6 Structure diagram of the tutorial 

system 

 

This contextualized web-based tutorial system is 

based on the B/S (Browser / Server) model as 

shown in figure 6. For such a design way, any 

user with only a local computer with Browsers 

(IE, Firefox .etc.) supported by Java 

environment and Internet access can study 

DEVS knowledge through our system anywhere. 

Tomcat as a web-server software is engaged and 

served for the simulation applications. In the 

Client side, applet is used for the simulation 

display and to support it, Java Virtual Machine 

(JVM) needs to be installed in the local machine. 

When connection is established between 

users’ local machine and the server, users send 

requests and the server responses users’ requests 

and return a HTML file. Once users submit the 

form (e.g. light specification page) to the server, 

JSP will load it and also return HTML file but 

the applet codes involved. The browser in the 

local machine reads the returned HTML file and 

finds the applet codes. Then it loads the applet 

plug-in and starts the JVM in the local machine. 

The applet concurrently checks the path in the 

returned HTML file and according the path (told 

in the HTML file) request the requisite class files 

stored in the simulation engine. Then the server 

makes a copy to the local machine. When clients 

complete the downloading work, the simulation 

starts running locally. If the users submit another 

form to the server, server will return it in a new 

HTML file to the client and the browser will 

read the loaded content in the applet. The action 

that local machine copies the class files from 

Server only for the first time.   

 

5 An Illustrative Example 

This section provides an illustrate example to 

demonstrate how to set up a coupled model in a 

step-wise fashion.  

Step1: Add components 

In this example, two lights are employed in our 

coupled model. Only select Light1 and Light2 

and then click the add to add them into the 

system. And now, two traffic light controllers 

should displays in the display window. 



Step 2: Define the selected light controller 

In this step user specified the traffic lights’ 

specifications follow section 3.1. Below is the 

DEVS formalism generated by users’ definitions.  

 

LIGHT1: 

- Initialization Function 

 Initial state is in green for 5 seconds. 

- External Transition Function 

 Current state is in red, and next state 

is in green. Sigma time is 6 seconds. 

External message is 

“CrosswalkButton”. 

- Internal Transition Function 

 Current state is in red, and next state 

is in green for 7 seconds. 

 Current state is in green, and next 

state is in flashing red for 5 seconds. 

 Current state is in flashing red, and 

next state is in red for 6 seconds. 

- Output Function 

 When the phase is in red, a message is 

sent. 

- Confluent Function 

 System will schedule the executed 

sequence as First External Then Internal 

Below is the DEVS formalism for LIGHT1.  

initial state = (“green”, 5)  

 δint (“red”, σ) = (“green”, 7) 

δint (“ green”, σ) = (“flashing red”, 5) 

δint (“ flashing red”, σ) = (“red”, 6) 

δext (“red”, σ, e, “CrosswalkButton”) = 

(“green”, 6) 

δcon (s,ta(s),x) = δext(δint(s),0,x) 

 ,λ (“red”, σ) = “message1” 

 ta (phase, σ) = σ 

 

LIGHT2: 

Under same setting methods with LIGHT1, 

formalisms generated for LIGHT2 is as follows. 

 

initial state = (“red”, 5)  

 δint (“red”, σ) = (“green”, 8) 

δint (“ green”, σ) = (“red”, 3) 

δext (“red”, σ, e, “CrosswalkButton”) = 

(“green”, 4) 

δcon (s,ta(s),x) = δext(δint(s),0,x) 

 ,λ (“red”, σ) = “message2” 

 ta (phase, σ) = σ 

Step 3: Establish the couplings  

Below are two coupling formalisms between 

Light1 and Light 2. 

- addCoulping(LIGHT1, SignalOut, LIGHT2, 

CrosswalkButton) 

- addCoupling(LIGHT2, SignalOut, LIGHT1, 

TrafficSignal)  

 

Based on three steps above, we visualize 

the result as follows:  

 

 
Figure 7 Display of two light controllers 

coupled model  

 

6 Conclusion 

This paper presents an interactive web-based 

tutorial system for learning DEVS models. The 

tutorial system uses a traffic light application as 

a learning context to help users engage in the 

learning process. We present the models and the 

user interface of this tutorial system, and the 

steps of the learning process. Further extensions 

of this work include getting feedback from users 

for improving the user interface, and integrating 

with other systems such as the DEVS Suite 

system for adding more functionality into the 

system.  

 

Reference: 

[1] B. P. Zeigler, T. G. Kim, H. Praehofer, 

“Theory of Modeling and Simulation”, 2nd ed. 

New York: Academic, 2000. 

[2] The Alice software programming Tutorial, 

Pittsburgh, Pennsylvania: Carnegie Mellon 

University, 2007. [Online]. Available: 

www.alice.org 

[3] SimSE, Irvine, California: University of 

California Irvine, 2007. [Online]. Available: 

www.ics.uci.edu/~emilyo/SimSE  

[4] Arizona Center of Integrative Modeling and 

Simulation, DEVS-Suite Simulator. Tucson, 

Arizona: Univ. Arizona, 2009 [Online]. 

Available: devs-suitesim.sourceforge.net 

[5] DEVS Standardization Group, [Online]. 

Available: 

cell-devs.sce.carleton.ca/devsgroup  

[6] B. P. Zeigler, H. S. Sarjoughian, “DEVS 

Component-based M&S Framework: An 

Introduction”, AIS 2002. 

 

[7] J.S. Hong, and T.G. Kim, "Real-time 



Discrete Event System Specification 

Formalism for Seamless Real-time Software 

Development," Discrete Event Dynamic 

Systems: Theory and Applications, vol. 7, 

pp.355-375, 1997. 

[8] Wainer, G. and N. Giambiasi. 2002. 

N-Dimensional Cell-DEVS. Discrete Events 

Systems: Theory and Applications 12(1), 

135–157. 

[9] Wainer, G. A. Modeling and simulation of 

complex systems with Cell-DEVS. 2004. 

Proceedings of the 36th conference on winter 

simulation 1, 45-56. 

[10 ] Muzy, A., and Innocenti E. and Aiello, A., 

and Santucci, J.F., and Wainer, G. 

Specification of Discrete Event Models for 

Fire Spreading, SIMULATION, Vol. 81, No. 

2, 103-117 (2005) 

[11] Barros, F.J. 1997. Modeling Formalisms for 

Dynamic Structure Systems. ACM 

Transactions on Modeling and Computer 

Simulation 7(4), 501-515. 

[12] Uhrmacher, A.M. 2001. Dynamic 

Structures in Modeling and Simulation – A 

Reflective Approach. ACM Transactions on 

Modeling and Simulation 11(2), 206-232. 

[13] X. Hu, B. P. Zeigler, and S. Mittal, Variable 

Structure in DEVS Component-Based 

Modeling and Simulation, SIMULATION, 

Vol. 81, No. 2, pp. 91-102, 2005 

[14] Kofman, E. and Junco, S. 

(2001)."Quantized State Systems. A DEVS 

Approach for Continuous Systems 

Simulation".  Transactions of SCS. 18(3). 

pp.123-132 

[15] Nutaro, J., Zeigler, B.P., "On the Stability 

and Performance of Discrete Event Methods 

for Simulating Continuous Systems ", 

Journal of Computational Physics, Vol 227, 

Issue 1, 10 November, 2007 

[16] Hwang, M. H.; Zeigler, B. P., Reachability 

Graph of Finite and Deterministic DEVS 

Networks, IEEE Transactions on Automation 

Science and Engineering, Page(s): 468-478, 

Volume 6, Issue 3, 2009 

[17] I. Srivrunyoo, “A Contextualized 

Web-based Learning Environment for DEVS 

Models”, Thesis of Master Degree, 2007. 

 

 

 


