
Towards an SDL-DEVS simulator

Pau Fonseca i Casas

Universitat Politècnica de Catalunya

Department of Statistics and Operations Research

C/ Jordi Girona, 31. 08034 Barcelona, Catalonia, Spain

pau@fib.upc.edu

 Abstract

Specification and Description Language is a graphical

language, standardized under the ITU Z.100

recommendation, widely used to represent

telecommunication systems, process control and real-time

applications in general. In this paper we present the first

prototype that allows executing a XML DEVS

representation of a simulation model on a SDL simulator.

This execution is based on a transformation of the DEVS

representation of a simulation model to an equivalent SDL

representation. The simulator used, currently used on

production is named SDLPS, and allows to perform a

distributed simulation of all the components that represents

the model based on a representation of the model using

Specification and Description Language.

Keywords: DEVS; SDL; XML; simulation;

specification; formalism

1. INTRODUCTION

The need of a conceptual model who allows a complete

understanding of how the simulation model behaves prior to

any implementation is well understood by the simulation

community. Also is growing the set of tools that allows to

perform a simulation using a formal representation of a

model (as an example we can see CPTools, CD++ [1],

Cindarella [2], IBM‟s Tau-Telelogic [3] , etc, using different

formal languages, and SDLPS [4] who is used in this work).

This implies that the verification phase (if not avoided)

can be performed faster than if we use a simulation

infrastructure (a simulation software) that do not understand

the formal language or, if we are performing a complete

implementation using a common programming language

(like C++ or C#).

It is remarkable that the growing complexity of

simulation models implies that the different individuals

working to build the model more and more come from

different areas with different background and formation. An

example would be a social model or an economic model

with engineers, economists, sociologists, psychologists and

other researchers working on it. This factor, detailed in [5],

makes it necessary to establish mechanisms to help in the

definition of elements‟ behavior and mechanisms to

transform models between different formalisms. I that sense

several authors [6], [5] clearly express the need to establish

mechanisms for working with models specified by different

formalisms. On [6] it is explained three of the main

mechanisms for doing this, (i) Meta-formalism: A

formalism that incorporates the different formalisms of the

various sub models that makes up the system, (ii) Common

formalism: A mechanism that converts all formalisms to a

common formalism and (iii) Co-simulation: Independent

simulators that work together.

The specification formalism must be easy and clear, so

that people who are not used to working with formalisms

can quickly understand the model. The formalism must also

be powerful, so that the complexity of the model can be

represented. However it is difficult to determine if

formalism is simpler than another is, because everyone has a

personal preference. This paper doesn‟t want to discuss this,

therefore uses the connection between SDL and DEVS to

implement an infrastructure that works with the common

formalism paradigm.

SDL is one of the graphical languages that one can use

to represent a simulation model (other languages can be

Petri nets [7], state diagrams, SysML [8], [9] or other

language dependent activity diagrams like GPSS diagrams

[10], [11] or Arena diagrams). We are using Specification

and Description Language because [12]:

1. Allows an unambiguous description of the

simulation model.

2. Allows a graphical and a textual description of a

system.

3. It is an ISO, and for that the rules that define the

grammar are well known and precise. This implies

that several tools allow an automatic simulation or

code generation from a description of the model.

4. It is not language dependent.

5. Is easy to combine this formalism with an UML

formalization of the entire Decision Support

System (DSS), since exists concise rules to make

this combination.

mailto:pau@fib.upc.edu

DEVS is one of the formalisms that one can use to

represent a simulation model. We are using that formalism

because [13]:

1. Allows an unambiguous description of the

simulation model.

2. It is not language dependent.

3. Is widely used and well known in the simulation

community.

4. All the systems can be represented using DEVS.

In this paper we present an infrastructure that thanks the

relation that exists between SDL and DEVS languages [14],

[15] allows to go further and use DEVS models in a

distributed simulator named SDLPS [4]. This allows

performing simulations of DEVS models combined with

SDL models. Also enables to build an automatic

representation of DEVS models.

2. SPECIFICATION AND DESCRIPTION

LANGUAGE

Specification and Description Language (SDL) is an

object-oriented, formal language defined by the

International Telecommunication Union –

Telecommunication Standardization Sector (ITU–T) on the

Recommendation Z.100. The standardization work of ITU

dates back to 1865, with the birth of the International

Telegraph Union. It became a United Nations specialized

agency in 1947, and the International Telegraph and

Telephone Consultative Committee (CCITT), (from the

French name "Comité Consultatif International

Téléphonique et Télégraphique") was created in 1956. It

was renamed ITU-T in 1993.

The language is designed to specify complex, event-

driven, real-time, interactive applications involving many

concurrent activities using discrete signals to enable

communication [16], [17], [12].
The definition of the model is based on different

components:

 Structure: system, blocks, processes and processes

hierarchy.

 Communication: signals, with the parameters and

channels that the signals use to travel.

 Behavior: defined through the different processes

and procedures.

 Data: based on Abstract Data Types (ADT).

 Inheritances: to describe the relationships between,

and specialization of, the model elements.

The language has 4 levels (Figure 1), (i) System, (ii)

Blocks, (iii) Processes and (iv) Procedures. To know more

about the Specification and Description Language please

refers to www.sdl-forum.org, [17], [16] or Z.100

recommendation [12].

Figure 1: The levels of an SDL model, source:

http://www.iec.org/online/tutorials/sdl/topic04.html

3. GRAPHICAL AND NO GRAPHICAL

LANGUAGE

SDL have two representations, SDL PR and SDL GR.

SDL-PR is conceived to be easily processed by computers,

also allows a compact representation of a model, while

SDL-GR has some textual elements which are identical to

SDL-PR (this is to allow specification of data and signals) it

is mainly graphical. In Figure 2 figure we show an example

of a textual and graphical representation of an SDL process.

We are not using the textual version of SDL only for

one reason. Some different representations of DEVS based

on XML exist. Since we what to allow an automatic

transformation from SDL to DEVS, the use of XML

simplifies our programming code because now is easy to

read and write structured text files that follow the XML

syntax, and also, thanks the XSD we can validate the

correctness of its syntax. We are using the XML

representation for SDL proposed in [4]. Since the more

important aspects of an XML file can be represented, and

validated, through an XSD file, in the next section some

areas of the XSD file are shown.

process P;

 start;

 nextstate idle;

 state idle;

 input s;

 output t;

 nextstate idle;

 endstate idle;

endprocess P;

Figure 2: textual and graphical SDL representation

3.1. XML representation of an SDL simulation model

This representation was first presented on [15], no

modifications has been done from this schema. We next

describe the more important elements. For further details,

please see [15], or download the complete schema from

http://www-eio.upc.es/~pau/index.php?q=node/30.

In Figure 3 we show the first level of the XSD schema

we use to validate the structure of our XML. As is

represented, this first level of this schema represents the first

level of the Specification and Description Language (system

outmost block)

idle

t

s

idle

idle

1(1)process P

http://www.sdl-forum.org/
http://www.iec.org/online/tutorials/sdl/topic04.html
http://www-eio.upc.es/~pau/index.php?q=node/30

Figure 3. XSD schema, system view

In Figure 4 we shown the process type that allows

represent an SDL process.

Figure 4. XSD schema, process view

4. DEVS FORMALISM

Proposed by Bernard Zeigler in the 70‟s, the main

scope of Discrete Event System Specification (DEVS) is the

representation of simulation models. The definition of a

model using DEVS formalism is a tuple composed by the

elements defined as follows:

 *()| ()+

DEVS allows distinguish between an internal and

external transition. An internal transition is a kind of

transition that doesn‟t need any external event to be

launched. As an example, if in a “t” time, the system

reaches state “s”, The system remains in this state the during

the time defined on a “time advance” function “ta(s)” (if no

external event is received). When the time reaches the value

defined in the “ta(s)” function an output event is produced

(this output is defined on the “λ(s)” function) and the state

changes to “s‟ ”. This process is defined in the internal

transition s‟= δint(s).

External transitions define the modifications in the

model due to the reception of external events. For example,

before the model reach the state “s‟ ”, in a time “t”, due to

his internal transition, an external event, with value x, is

processed. In this case the system reach state (s,e) where

e<ta(s), the transition follows the external transition

function, defined by s‟= δext(s,e,x), and no exit event is

produced.

At this point it is important to underline that “ta(s)”

could be any real number, plus 0 and ∞, and:

• If ta(s) is 0, “s” is a transitory state.

• If ta(s)=∞, “s” is a passive state.

In the next lines we review two examples from [1]. We

use these two models to transform them automatically to a

SDL specification and to perform using SDLPS [4] a

simulation.

4.1. Processor example

This example represents a single processor that receives

different jobs. Each job has associated a processing time

(represented by a real number). Once the time is over event

“ready” is produced. When a new event reach the processor,

if this is working with a job, this event is ignored.

The DEVS formalization of this model is:

 * +

 * + , -

 * () () ()+

 () ()

 () {
(()

()

 () ()

 ()

4.2. FIFO Queue example

The queue represented in this example has the

following characteristics:

• The queue has infinite capacity.

• Different jobs reach the queue to be stored, while

the “ready” signals symbolize the necessity of transmit the

first job of the queue.

• The transmission of this job is done through an

output event.

• The queue spends 0 time units in the exit delay.

The DEVS model is:

 * + * +

 * + , -

 * () () ()+

 () ()

 () {
()

()

 ()

 ()

5. DEVS COUPLED MODELS

DEVS also allows formalize simulation models without

describing the behavior for each element belonging the

model, due is possible to describe the structural relations

that exist among identical elements. These models are

named “coupled models”.

In DEVS there are two main types of coupled models:

• Modular coupling.

• Non modular coupling.

In modular coupling integration among different model

components happens only across entries and exits defined in

the components, while in non-modular coupling, interaction

is produced across states. The literature established that is

possible to pass from one kind of coupling model to the

other [5], therefore in present paper we will focus on show

the existing relation among SDL formalism and the DEVS

modular formalism.

For simplicity the DEVS coupled model used in this

paper is DEVS coupled model with ports. In this model a

series of input and output ports are described. With this

logic is possible to depict the following example Figure 5,

representing the combination of the two models that have

been seen previously (the queue and the processor).

Figure 5. DEVS coupled model.

The coupling model specification for this model is:

N = (X, Y, D, {Md | d Î D}, EIC, EOC, IC, Select), on

X=Jx{inport1}

D={P,Q}

EIC{(N, inport1), (Q, inport1)}

EOC{(P,outport1), (N, outport1)}

IC{(P, outport2), (Q, outport2)}

6. XML REPRESENTATION OF DEVSMODELS

Our XML representation for DEVS models takes some

ideas from the XML representation presented on [18]. In

our approach we try to go little further allowing to represent

the common structures used in a DEVS model, like

programming logic, loops and if-else constructs. Regarding

the internal code of the specification we use ANSI C, since

it is an ISO standard.

We follow some conventions to represent a DEVS

model using XML syntax:

1. All the code needed to fully define the

simulation model is defined on the “values”

xml section.

2. The initial conditions of the model is defined

in the XML as well, using a ”value” attribute

related to all the variables that defines the state

of an atomic DEVS model.

3. Also, to represent the value ∞ used in the

passive states we use „inf‟ literal value.

Some parts of the XML schema we use to represent bot,

coupled and an atomic model is represented in Figure 6.

This schema can be found on http://www-

eio.upc.es/~pau/index.php?q=node/30.

Figure 6. DEVS XML schema

The complete definition of the DEVSmodel using XML

is show next. On Figure 7 is represented the whole DEVS

model using XML, on Figure 8 the definition of the states,

on Figure 9 the definition of the input and the output

elements, on Figure 10 the external functions and in Figure

11 the time advance and output functions.

From this DEVS XML representation we can obtain an

equivalent model described using Specification and

Description Language, using again XML.

Figure 7. GG1 DEVS model.

The coupled model is

Figure 8. States definition.

http://www-eio.upc.es/~pau/index.php?q=node/30
http://www-eio.upc.es/~pau/index.php?q=node/30

Figure 9. Input and output elements.

Figure 10. External an internal functions.

Figure 11. Time advance and output functions.

7. TRANSFORMING FROM DEVS TO SDL

The transformation algorithm is based on [14]. This

allows us to obtain a new XML file that represents a DEVS

model. Since the schema used here to represent the SDL

model is based on those presented on [15] we only show

here the more important aspects of the resulting XML file.

Figure 12. XML representation of the model.

On Figure 12 we can see the whole representation of the

DEVS model, now transformed to a SDL XML

representation. We can see, as we can expect, that the model

contains two processes, the queue and the procesor1.

Figure 13. Process queue definition.

On Figure 13 the XML representation using SDL for

the DEVS queue element is shown.

8. SIMULATING THE DEVS MODEL ON SDLPS

Regarding the infrastructure used, it is remarkable that

SDLPS has been build using C++ and C languages. To

establish the communication between all the different

distributed elements is used the TCP/IP layer.

On the next figure we can see the DEVS GG1 model on

SDLPS.

Figure 14. SDLPS system loading the DEVS model.

On the left side we can see the tree that contains all the

elements that define the model.

9. CONCLUDING REMARKS

In this paper we present an infrastructure that allows the

simulation of DEVS and SDL models. This combination of

both languages can be done thanks the XML representation

used for DEVS and SDL models. Using this XML

representations and the algorithm presented on [15] it is

possible to transform a DEVS model to an SDL model

allowing its internal use by the SDLPS simulator.

It is remarkable that the SDL model can be a graphical

representation for the DEVS models. This representation

can be obtained automatically using a Microsoft Visio®

Plugin that reads the XML representation of the SDL model.

This implies that on SDLPS we can see the structure of the

whole model (coupled model) despite of if its behavior is

defined using SDL or DEVS. Also, the atomic DEVS

models are represented using SDL process diagrams.

This infrastructure is currently used in a production

environment in real simulation projects for different well

known industries.

The future work is focused in the integration of the

Microsoft Visio® plugin with the SDLPS system in order to

obtain the representation of the DEVS model right on the

simulator.

References

[1] Wainer, G. (2002). CD++: a toolkit to develop

DEVS models. Software, Practice and Experience , 32 (3),

pp. 1261-1306.

[2] CINDERELLA SOFTWARE. (2007). Cinderella

SDL. Retrieved 03 31, 2009, from http://www.cinderella.dk

[3] IBM. (2009). TELELOGIC. Retrieved 03 31, 2009,

from http://www.telelogic.com/

[4] Fonseca i Casas, P. (2008). SDL distributed

simulator. Winter Simulation Conference 2008. Miami:

INFORMS.

[5] Werner, R. (2000). Structure, flow, change:

Towards a social systems simulation methodology. Annual

meeting of Sunbelt XXI: International Sunbelt Social

Network Conference. Budapest, Hungary.

[6] Vangheluwe, H. L. (2000). DEVS as a common

denominator for multi-formalism hybrid systems modelling.

IEEE International Symposium on Computer-Aided Control

System Design (pp. 129--134). IEEE Computer Society

Press.

[7] Recalde, L., Teruel, E., & Silva, E. (1999).

Autonomous continuous P/T systems. Application and

Theory of Petri Nets. Lecture Notes in Computer Science ,

107-126.

[8] OMG SysML. (2010, June). OMG SysML.

Retrieved December 2010, from OMG:

http://www.omg.org/spec/SysML/1.2/

[9] Schönherr, O., & Rose, O. (2009). FIRST STEPS

TOWARDS A GENERAL SYSML MODEL FOR

DISCRETE PROCESSES IN PRODUCTION SYSTEMS.

In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R.

G. Ingalls (Ed.), Proceedings of the 2009 Winter Simulation

Conference, (pp. 1711 - 1718).

[10] Fonseca i Casas, P., & Casanovas, J. (2009).

JGPSS, an Open Source GPSS Framework to Teach

Simulation. Procediings of the Winter Simulation

Conference 2009. Austin.

[11] Crain, R. C., & Henriksen, J. O. (1999).

Simulation using GPSS/H. In P. A. Farrington, H. B.

Nembhard, D. T. Sturrock, & G. W. Evans (Ed.),

Proceedings of the 1999 Winter Simulation Conference, (pp.

182-187).

[12] Telecommunication standardization sector of ITU.

(1999). Specification and Description Language (SDL).

Retrieved April 2008, from Series Z: Languages and general

software aspects for telecommunication systems.:

http://www.itu.int/ITU-

T/studygroups/com17/languages/index.html

[13] Zeigler, b., Praehofer, h., & Kim, d. (2000). Theory

of Modeling and Simulation. Academic Press.

[14] Fonseca i Casas, P., & Casanovas Garcia, J.

(2005). Using SDL diagrams in a DEVS specification. In G.

Tonella (Ed.), The Fifth IASTED International conference

on Modeling Simulation and Optimization. IASTED.

[15] Fonseca i Casas, P. (2009). Towards an automatic

transformation from a DEVS to a SDL specification.

Procediings of the 2009 Summer Simulation

Multiconference. Istanbul, Turkey.

[16] Reed, R. (2000). SDL-2000 form New Millenium

Systems. Telektronikk 4.2000 , 20-35.

[17] SDL Tutorial. (n.d.). Retrieved January 2009, from

IEC International Enginyeriing Consortium:

http://www.iec.org/online/tutorials/sdl/

[18] Risco-Martín, J., Mittal, S., López-Peña, M., & De

la Cruz, J. (2007). A W3C XML Schema for DEVS

Scenarios. Spring Simulation Multiconference 2007, DEVS

Symposium, pp. 279-286. Norfork, Virginia.

