
Explicit Modelling of Statechart Simulation Environments
Sadaf Mustafiz† and Hans Vangheluwe‡,†

†School of Computer Science, McGill University, Canada
‡University of Antwerp, Belgium

sadaf@cs.mcgill.ca, hans.vangheluwe@ua.ac.be

Keywords: interactive simulation environments, experimen-
tation, Statecharts, model transformation

Abstract
In this paper, we propose an experimentation environment for
the interactive simulation of Statechart models. We choose
the Statecharts formalism as the most appropriate formalism
to model and synthesize the environment. We take inspiration
from software debugging as well as from simulation experi-
mentation to explicitly model the detailed reactive behaviour
of our environment. We map program debugging techniques
such as execution modes, steps, and breakpoints to the simu-
lation domain. We further explore how to integrate the notion
of simulation time for the purpose of (scaled) real-time visu-
alisation. Finally, we provide support for a (browser)client-
server architecture, again making use of the features of Stat-
echarts. We build the experimentation model on top of the
model to be simulated by instrumenting it using model trans-
formation techniques. The entire Statechart modelling, sim-
ulation, and experimentation environment described in this
work is supported by our tool, AToMPM.

1. INTRODUCTION
Over the past decades, numerous interactive modelling and
simulation environments have been developed. This has
greatly simplified the design and development of complex
systems. Most of these environments are however hand-
crafted, complex software systems. The hand-crafting is
labour-intensive and uses abstractions (namely software) that
are far from optimal. In particular, it is hard to understand
and evolve simulation experimentation environments as they
are reactive (to both user and simulation engine events) and
time-dependent.
The software engineering community has recently developed
various techniques and tools for model-driven engineering
of complex systems. Meta-modelling, model transformation,
and code synthesis now support the rigorous and rapid engi-
neering of modelling languages with accompanying (visual)
modelling environments, simulators, and code generators.
There is a need to integrate model-driven engineering (and in
particular modelling language engineering) and simulation.
This will enable the rigorous and rapid development of inte-
grated environments for modelling and simulation of models
in formalisms such as Statecharts, DEVS, Causal Block Dia-

grams, and Petri nets. In this paper we will focus on the sin-
gle, popular formalism Statecharts. Simulation experimenta-
tion environments for multi-formalism models are even more
complex than single-formalisms environments. We believe
the work in this paper is a first step to the future model-based
development of multi-formalism simulation experimentation
environments.
Our goal is to explicitly model and subsequently synthe-
size an interactive simulation experimentation environment
for models in the Statechart formalism by bringing together
inspiration from software debugging and simulation experi-
mentation domains.
We choose to explicitly model the simulation experimenta-
tion environment with Statecharts due to the expressiveness
of this formalism. It allows us to model interrupts, timeouts,
hierarchy, and history in a modular and intuitive fashion. In
this paper, we restrict ourselves to the simulation of State-
chart models. This simplifies the (code) synthesis, but is by no
means limiting. Simulation models in a discrete-event formal-
ism such as DEVS pose no problems as such formalisms have
similar expressiveness. Early experiments have shown that
models in the rather different Causal Block Diagram (also
known as Synchronous Data Flow) formalism can equally
well be integrated in a simulation experimentation modelled
using Statecharts. This is the subject of our future work.
Explicitly modelling the simulation environment has many
advantages. It acts as a form of documentation for the user as
well as for the developer of the environment. It helps in under-
standing, is easier to modify, and allows for formal analysis
and testing. It allows for example modellers to guarantee that
the environment always responds to user request within cer-
tain time bounds. It also is possible to explicitly model the
user leading to a fully autonomous simulation environment.
We seek inspiration in techniques used in the debugging of
software programs. Debugger primitives such as execution
modes, step, and breakpoints, have proved to be of utmost
use in the programming domain. In our work, we lift these
concepts to the modelling and simulation realm to allow us to
experiment with models through simulation in much the same
way that we can with code.
We also take inspiration in the theory of modelling and
simulation, and in particular, in the notion of Experimental
Frame [10, 11]. The Experimental Frame describes experi-
mental conditions and environment under which the system



under study and corresponding models will be used. It reflects
the objectives of the experimenter who performs the experi-
ment on a real system or, through simulation, on a model.
Experimentation is the act of carrying out an experiment. An
experiment may interfere with system operation (influence its
input and parameters). As such, the experimentation environ-
ment may be seen as a system in its own right and it may be
modelled explicitly.
This paper is organised as follows: Section 2. gives back-
ground information on Statecharts and model transformation.
Section 3. discusses our approach of explicit modelling of
an experimentation environment. Section 4. describes the im-
plementation of the Statecharts simulation environment. Sec-
tion 5. presents related work and section 6. draws some con-
clusions and presents directions for future work.

2. BACKGROUND
Within the context of this paper, we follow the terminology
presented in [4]. A model is completely described by its ab-
stract syntax (its structure), concrete syntax (its notation, or
how it is presented to the user – textually and/or visually)
and semantics (its unique and precise meaning). A modelling
language is a possibly infinite set of (abstract syntax) models.
This set can be concisely described by means of a grammar
or a meta-model. No semantics or concrete syntax is given in
meta-models. When the language is combined with concrete
syntax semantics, we call it a formalism. Our work in this pa-
per is based on the Statecharts formalism. The use of model
transformation is an integral part of our work. We give a brief
background on the two topics in this section.
The Statecharts formalism is an extension of Determin-
istic Finite State Automata with hierarchy, orthogonality
and broadcast communication introduced by David Harel in
1987 [5]. It is a popular formalism for the modelling of
the behaviour of reactive systems. It has an intuitive yet
rigourously defined visual notation and semantics. It is the ba-
sis for documentation, analysis, simulation, and code synthe-
sis. A statechart model is usually described with the following
basic elements: states (basic, orthogonal, composite), tran-
sitions (event-based or time-based), enter/exit actions, his-
tory state, guards, and actions. Please refer to [5] for details.
Many variants of Statecharts exist, including the one in the
UML standard. In our modelling environment, we support the
DCharts [3] variant and the UML syntax. Our simulator sup-
ports the Statemate semantics introduced by Harel [5].
Model transformation [2] concerns the mapping of source
models in one or more formalisms to target models in one or
more formalisms, using a collection of transformation rules.
In this work, we use rule-based graph transformation as well
as template-based model-to-code generation as the means for
model transformations. The former requires (meta-)models to
be stored as typed, attributed graphs, thus allowing model ma-

nipulations to be defined as graph transformation rules.

3. MODELLING AN EXPERIMENTATION
ENVIRONMENT USING STATECHARTS

In this section, we outline how we blend different aspects:
(1) debugging concepts, (2) simulation experimentation con-
cepts, (3) animation techniques and (4) means to support a
client/server architecture. We start by describing each aspect,
and then discuss how we integrate them in our environment.

3.1. Debugging
As with the adoption of debugging concepts in domain spe-
cific modelling proposed in [7], we describe a conceptual
mapping between key debugging concepts in the software
programming world and their simulation domain counter-
parts. We integrate several debugging concepts into our simu-
lation experimentation environment: step, breakpoint, and in-
put.

3.1.1. Steps
In analogy with the stepping through code line by line, sim-
ulations can be run step by step, pausing for user input af-
ter every step. In the case of the Statechart formalism, this
implies that we want to single step from state to state. In pro-
gramming, it is possible to step through code in three possible
ways: step into, step over, and step out. We address the need
for such debugging primitives in our experimentation envi-
ronment.

Step into A software function is an encapsulion unit. It en-
capsulates local data on the stack as well as control flow.
Step into refers to stepping through instructions including
any child functions defined within. The analog of an encap-
sulation unit in a Statechart is a hierarchical state. Stepping
through a model in such a case means stepping through each
composite and orthogonal state at the level of basic states.

Step over Step into and step over are each other’s dual. Sim-
ulation in step over mode implies that we step through the
model at the composite state level. Step over can be seen as
a filter. When debugging, we only have control over pausing
and resuming. Step over does not mean that we do not ex-
ecute the underlying functions, we only hide the underlying
details. Events can still trigger change at a low level, but that
is done transparently. Hence, stepping over several units of
encapsulation only animates the states at the composite state
level. This is helpful for didactic purposes since it gives a
high-level (trace) view of the model. Note that we only apply
this to hierarchical components and not to orthogonal com-
ponents. While it is technically possible to do the same for
concurrent states, it does not logically make sense as it would
create un-balance between and states. It makes sense to make
them either all visible or invisible.



Step out This makes it possible to start stepping through
a function and then when requested by the user switch to
continuous mode. In Statechart, when simulated in step into
mode, the user has the option, at every step, to switch to sim-
ulating in the step out mode. At that point, the animation is
applied at the composite state level and the details inside the
state are hidden.

The inputs for simulation can be given in several ways: (1)
we can start a dialog to get inputs from the user in real-time;
(2) the user can give a model of the input; or (3) we can have
a trace-driven input (a special kind of input model).

3.1.2. Breakpoint
Steps in debugging is orthogonal to breakpoints. Breakpoints
in programming are in essence assertions. Once the assertion
becomes true, the execution halts. This may be triggered by
a particular (algebraic) relationship holding over variables, or
by reaching a particular line (in source code). In analogy, we
support breakpoints in our experimentation environment to
pause or terminate the simulation. The environment allows
users to set a breakpoint and when the condition holds, the
execution pauses. Breakpoints can be of three kinds.

(Modal) state This specifies a particular state (or set of
states). When these are reached, the execution of the model
is paused.

Store This specifies a particular condition (e.g., x+ y > 10,
where x and y are variables within the model) which needs to
be met for the execution to be paused.

Time This specifies a particular simulation time. When this
time is reached, the execution is to be paused (as is the simu-
lation time). The aspect of time and the issues related to it are
discussed in more detail in Sec 3.3..

3.1.3. Execution modes
Just as it is possible to stop or pause and then resume the ex-
ecution of code during debugging at any point in time, in our
Statecharts environment we allow simulations to be paused or
stopped by the user at any given moment during the execution
of the model.
We build the experimentation environment on top of the
model to be simulated using graph transformations. The en-
vironment is by default in a Ready mode. When the user
starts the simulation, the environment switches to the Run-
ning mode. In the Running mode, the modeller can switch
between the different simulation modes: step into, step over,
and step out (described in Sec 3.1.1.). While the simulation
is running, the user can choose to pause the simulation at any
time, thus switching to Pause mode. From the pause mode,
the user can resume simulation. This leads to returning to the

Running mode and to exactly the state(s) in the model prior
to pausing the simulation. The environment retains the his-
tory of the model and can resume from where the user had
left off. Terminating a simulation puts the environment in a
Stopped mode. A timed reset event is triggered to reset the
environment and return to the initial Ready mode from the
Stopped mode. The different states and modes are illustrated
in Figure 6.

3.1.4. Inspect/Modify Variables
Debugging environments allow the user to inspect and/or
modify parameter and variable values. In the Statechart en-
vironment, the user can choose to keep track of a list of vari-
ables and any changes to these variables due to actions be-
ing executed when transitions are triggered are displayed to
the user. Our environment does not support this feature at the
moment, but we plan on implementing it in the near future.

3.2. Experimentation
We borrow notions from the theory of modelling and simula-
tion and in particular the concept of Experimental Frames to
build our simulation environment for the Statecharts formal-
ism.
This tells us we have the model on the one hand and the
experimentation environment on the other. Variables (states)
need to be assigned initial values (conditions), as well as do
parameters (constants), both for the model and for the envi-
ronment. When we set up an experiment, we must customize
the model by first choosing a particular model, giving it ini-
tial conditions by setting initial values for variables, giving it
parameters, and also providing a model for the environment
(that specifies the inputs). In case of an autonomous system,
there are no inputs. For example, in a Statechart, if the model
contains orthogonal components and time delays it may never
deadlock, even without any events coming from the environ-
ment.
In our domain of interest, namely Statecharts, the parameters
and initial conditions are specified within the model. The ini-
tial states are set using a visual special syntax (such as pseudo
states in UML) or by setting an initial state attribute to true
(such as in DCharts); the variables and parameters can be set
in the enter/exit actions of states or in the actions triggered by
transitions. For other formalisms, it might be necessary to set
the parameters and variables outside the model.
Structural changes change the structure of the model and re-
quires recompilation. Parameteric changes usually only af-
fect the behaviour of the model. However, structural param-
eters may be defined which leads to structural changes but is
based on a parameter which determines the structure. For ex-
ample in the equation, Y = Ax+B , changing A or B changes
the behaviour of the model whereas adding an extra parame-
ter, Cx2 changes the structure of the model.



A simulation runs until some condition is satisfied (possibly
over the variables, or some time is reached) or until a user
intervenes. Time can increase in fixed steps or variable steps,
and we continue and update time accordingly till the simu-
lation terminates. The experiment can possibly output some
performance results. Based on the results, it might be nec-
essary to refine model parameters and initial conditions and
repeat the experiment one or more times. Figure 1 shows the
activities in model-based system analysis. Our focus is on the
simulation phase.

Requirements Modelling

Systems Modelling

Simulation

Validation

statechart modelling 
environment

statechart simulation 
environment 

op
tim

iz
e

Statechart
 Environment

Model-based Analysis 
Activities

structural
parameters

modelling requirements 
with statecharts

Figure 1. Modelling and Simulation Activities

3.3. Time/Animation
Time in simulated environments can be defined in three ways
(see Figure 3).

• Real-time means to run the simulation in synch with the
wall-clock time.

• Scaled real-time means to run the simulation faster or
slower than real-time, but with a constant (scale factor)
relating them.

• As-fast-as-possible simulation (known as “analytical”
in the HLA community) implies that there is no lin-
ear relationship between simulated and wall-clock time.
Rather, the simulated time is updated in leaps and
bounds.

Time is what sets simulation apart from the execution of code.
In code, a statement execution changes the state and then the
control flow determines which statement should be executed
next. Though causality must be preserved, the actual time
value is irrelevant. In the case of simulation, a much more
detailed notion of time is used. We need to consider times at
which events occur, times at which simulation actions happen
internally, and times when users give inputs. There are several
issues relating to time that we need to address.

• Our environment allows us to pause the simulation at
any time, but this can lead to ambiguous situations for
which design decisions need to be made. In our envi-
ronment, the pause event during timed transitions would
interrupt the transition and put the model in the originat-
ing state. Figure 2 shows a possible case which requires
us to return to the source state if a pause event occurs.
This would be strange if the timed transition is a few
hours long which would mean we interrupt and restart
the transition. In such simulations we usually use scaled
time, which lessens the error. A correct approach is not
only to keep track of which state the system was in, but
also how long it was in that state for (the elapsed time
of the DEVS formalism). It is possible to instrument our
models such that elapsed time can be measured.

Figure 2. Statechart Example: Issues in the Pause Mode

• While rollbacks are possible in as-fast-as-possible sim-
ulation, with real-time systems, such methods cannot be
applied. The inexorable passage of time does not allow
us to go back in time and to insert inputs at a time less
than the current time. This is depicted in Figure 3.

3.4. Client/Server
We move on to the more technical aspects of our work which
involves being able to model and simulate the Statecharts in a
browser. Therefore, we need to address and adapt our imple-
mentation to work in a client-server architecture. Since our
intention is to experiment with Statecharts within a browser,
it is necessary to transform and instrument our model and
the generated code with backward links to enable the model,
when simulated on a server, to be animated in the browser.
Figure 4 shows a snapshot of a sample model being simulated
and animated in a browser in step into mode.

3.5. Modelling Method
The experimentation environment is modelled explicitly (de-
scribed further in Section 4.). We model the experimentation
model on top of the model to be simulated using Statecharts.
The model artifact itself is a Statechart (see sample model
in Figure 5). We use model transformation to generate the
experimentation model which adds extra states and transi-
tions to model the simulation environment. The initial Stat-
echart model is moved to a composite state, Running, and



Figure 3. Different notions of time

Figure 4. Simulating Sample Model in Experimentation Environment

extra states Ready, Pause, and Done are added to the instru-
mented model. Figure 6 shows the instrumented Statechart
for the model in Figure 5. The instrumented model is subse-
quently processed by a compiler which generates the running
system.

An alternate way of modelling the experimentation environ-
ment would be to model the states of the simulator (ready,
running, paused) as an orthogonal component, with the model
contained in a second orthogonal component. Events can be
broadcast based on received pause/resume events which trig-



gers the model to move to the next state. This allows the ex-
perimentation environment to have a clear separation from
the actual model artifact, and makes it easier to plug in the
environment with other formalisms. More details of the im-
plementation are discussed in Section 4.

Figure 5. Sample Statechart Model

4. DESIGN AND IMPLEMENTATION OF
AN EXPERIMENTATION ENVIRON-
MENT IN ATOMPM

We use metamodelling and model transformations to im-
plement our modelling and simulation environment using
our tool, AToMPM [6], A Tool for Multi-Paradigm Mod-
elling. AToMPM rigorously applies the “model and conform-
ing meta-model” workflow to all facets of domain-specific
modelling. It allows modelling of language syntax (abstract
and concrete) and semantics. The tool supports rule-based
graph transformations and pre- and post-condition pattern
languages to allow specification of model transformations.
AToMPM consists of clients running in a web browser and
a server and provides support for real-time, distributed col-
laboration.

4.1. Experimentation Model
The experimentation environment itself is a Statechart model
that conforms to our Statechart language. Our Statecharts
modelling environment has been meta-modelled in AToMPM
by explicitly modelling the abstract syntax and the concrete
syntax. The model to be simulated is first modelled using this
environment. For simulating the model, it is transformed to
an instrumented experimentation model by rule-based graph
transformation. The model is instrumented with the states:
Ready, Running, Paused, and Done (as discussed in Sec-
tion 3.5.). The model to be simulated is incrementally added
to the container, Running, and a deep history state (H*) is in-
cluded inside the container since we need to return to the prior

state when a user pauses and resumes the simulation. Due to
space reasons, details of the transformation and rules are not
included here.

4.2. Statechart Simulation
We transform our Statechart model in AToMPM to the
DCharts Textual Syntax (DES) [3] using model-to-code gen-
eration techniques. We have created a plugin for AToMPM
to generate the DCharts description file. A code snippet of
the generated DES is presented here. We then use SCC (Stat-
eChart Compiler) [3] to generate Python source code from
the Statechart descriptions in DES format. SCC generates ef-
ficient Java, Python, and C++ source code from DES. The
Python source is then executed to simulate the model. The
above outlined steps are all carried out at the server side. The
user does not need to be aware of the technicalities of DES
and SCC.

... ...
OPTIONS: ENTER:
InnerTransitionFirst = 1 N: CS1

O: [DUMP("CS1 entered")]

STATECHART: EXIT:
CS1 [HS*] S: CS1
OC1 [CS] O: [DUMP("CS1 exited")]
B ...
A [DS]
C TRANSITION:

OC2 [CS] S: CS1.OC1.A
D [DS] N: CS1.OC1.B
E E: A2B

CS2 C: 1
X [DS] ...
Y

...

4.3. Modelling and Simulation Environment
4.3.1. Toolbar and Execution Modes
We have modelled the toolbar as a buttons model in
AToMPM. The toolbar provides an interface via which the
user can give the commands: start simulation (in step into
mode), pause simulation, resume simulation, switch to step
over mode, switch to step out mode, and stop simulation. The
toolbar also includes buttons to generate DES code and to ex-
port models as SVG images.
Figure 4 presents a snapshot of our simulation environment
in AToMPM. The Statecharts toolbar is shown within a red-
bordered rectangle.

4.3.2. Steps and Breakpoints
For debugging, we instrument the DES code with extra Enter
and Exit actions to animate states in each simulation mode
(details in Section 4.4.). In the step into mode, only the basic
states are animated which requires the Enter/Exit actions of
the basic states to be instrumented with extra code. In the step
over and step out mode, the composite states are animated
and the details within are made invisible.



Figure 6. Instrumented Statechart Model

Users can also choose to run the simulation in continuous
mode (step into) and specify a breakpoint to terminate or
pause the simulation. The breakpoint is input via a dialog
box on the client-side which is displayed to the user when
he presses the simulate button in the toolbar. The user has the
option of specifying a breakpoint as a state set, a condition,
or a specific time, or “none”. When the condition is satisfied,
the simulator state changes to “paused”.

4.3.3. Time
When the simulate command is given, a user dialog is started
to take inputs for scaling time. In the instrumented DES
model, the timed transitions are modified and the time is mul-
tiplied by a scale factor (t * scale factor).
It is also possible to change the scale factor after a pause
event. The instrumented code gets the scale factor from a vari-
able, and when we pause we tweak that variable.
For the time being, we only accept user input in real-time.

4.4. Animation in Client Server Environment
We use remote APIs defined in AToMPM to animate the
models remotely which forwards specially formatted HTTP
queries targeted at the back-end to the client. A code snippet
from the instrumented DES code is shown here.

INITIALIZER:
import httplib, json
method = ’PUT’
host = ’localhost:8124’
uri = ’/GET/console?wid=65’
timeout = 5000

def highlightState(nodeId):
headers = {’Content-Type’: ’text/plain’}
data = json.dumps({’text’:’CLIENT_BDAPI
:: {"func":"_highlight","args":{"asid":’+str(nodeId)
+ ’,"followCrossFormalismLinks":"*"}}’})

conn = httplib.HTTPConnection(host)
conn.request(method, uri, data, headers)
resp = conn.getresponse()
conn.close()

...
ENTER:
N: CS1.OC1.B
O: highlightState(3)

ENTER:
N: CS1.OC1.A
O: highlightState(4)

ENTER:
N: CS1.OC1.C
O: highlightState(5)

...

5. RELATED WORK
Many simulation environments and tools currently exist.
However, their development was mostly adhoc. The simula-
tion tools are often independent of the modelling environ-
ments and are implemented using some programming lan-
guage. Moreover, very few works have addressed the need for
an experimentation environment for carrying out simulations.
There remains a need to have explicitly modelled simulation
environments integrated with the modelling environment.
Traore and Muzy [9] discuss the need to be able to differen-
tiate between the model and its context, and propose to for-
malize the context using experimental frames. Similar to the
separation of concerns in modelling and simulation, the au-
thors suggest that experimental frames should also be defined



according to the activity involved. They form a coupled rela-
tionship between the model and the frame, and between the
simulator and the experimenter, and then define a mapping of
the framed model to the simulator context. Similarly, Daum
and Sargent [1] adapt the experimental frame concept to fit
discrete event simulation, and implement it in their modelling
and simulation system, HiMASS-j. Their modelling environ-
ment allows for structural and parametric changes to be made
during simulation without the need to recompile the model.
While we have been inspired by experimental frames and
consider them in our work, we have not looked into formaliz-
ing experimental frame in such a manner. Our focus has been
on creating a simulation environment based on the experi-
mental frame idea, and to extend it with debugging facilities.
Shang and Wainer [8] extend traditional static-structure sim-
ulation and implement an experimental environment that al-
lows dynamic structure changes to DEVS models during the
simulation process. While our high-level goals are similar,
namely to be able to experiment with models during simula-
tion, our simulation model is of static nature and the purpose
of our simulation environment is primarily to be able to run
and test or debug the model in different modes.
Mannadiar and Vangheluwe [7] addressed the need for de-
bugging model transformations and synthesized applications,
and proposed the mapping of debugging activities from the
programming domain to model-based design. They focus on
domain-specific modelling, and do not address simulation-
level concerns and needs.

6. CONCLUSION AND FUTURE WORK
We have proposed a simulation environment for Statecharts
using Statecharts in a client-server environment. We have de-
scribed our mapping of debugging and experimental frame
concepts to the simulation domain.
We have explicitly modelled the Statechart language, the
modelling environment, and the experimentation environ-
ment using AToMPM. To begin with, the abstract syntax and
the concrete syntax of Statecharts have been meta-modelled.
Once a model is created, it can be simulated by first trans-
forming it to an instrumented model using graph transforma-
tion. This creates the experimentation model, which needs to
be executed to start the simulation process. The interface al-
lows users to pause, resume, and stop simulations. The en-
vironment also allows users to simulate the model in several
modes, step into, step over, and step out, and also provides the
option of setting breakpoints. The simulation can be run in
real-time or scaled real-time as specified by the user. We use
the SCC compiler and simulator to simulate our models. SCC
runs together with the AToMPM kernel. We also have a ded-
icated user interface on the client side. The Statechart model
to be simulated is instrumented with extra actions to allow the
Statechart in the browser to be animated during simulation.

We believe our experimentation environment can be useful
if applied to other formalisms, such as Causal Block Dia-
grams and DEVS. We intend to provide support for simu-
lating models in formalisms other than Statecharts (and their
combinations) within our environment. Moreover, we are also
interested in looking at extending the work to allow tools in-
stead of users to interact remotely with the environment. Ul-
timately, it should be possible to model our experimentation
environment as a means to do tool integration.

REFERENCES
[1] T. Daum and R. Sargent. Experimental frames in a mod-

ern modeling and simulation system. IIE Transactions,
33(3):181–192, 2001.

[2] H. Ehrig and G. Rozenberg. Handbook of Graph Gram-
mars and Computing by Graph Transformation. World
Scientific, 1999.

[3] T. H. Feng. DCharts, a formalism for modeling
and simulation based design of reactive software sys-
tems. M.Sc. dissertation, School of Computer Science,
McGill University, 2004.

[4] H. Giese, T. Levendovszky, and H. Vangheluwe. Sum-
mary of MPM 2006 Workshop. In MoDELS’06, pages
252–262, 2006.

[5] D. Harel. On visual formalisms. Commun. ACM,
31(5):514–530, May 1988.

[6] R. Mannadiar. A Multi-Paradigm Modelling Approach
to the Foundations of Domain-Specific Modelling. PhD
thesis, McGill University, June 2012.

[7] R. Mannadiar and H. Vangheluwe. Debugging in
domain-specific modelling. In Software Language En-
gineering, SLE’10, pages 276–285, Berlin, Heidelberg,
2011. Springer-Verlag.

[8] H. Shang and G. Wainer. Dynamic structure DEVS:
Improving the real-time embedded systems simulation
and design. In ANSS, pages 271–278, 2008.

[9] M. K. Traoré and A. Muzy. Capturing the dual rela-
tionship between simulation models and their context.
Simulation Modelling Practice and Theory, 14(2):126 –
142, 2006.

[10] B. Zeigler. Theory of Modelling and Simulation. A
Wiley-Interscience Publication. John Wiley, 1976.

[11] B. Zeigler, H. Prähofer, and T. Kim. Theory of Mod-
elling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press, 2000.


