
Timed Synchronizing Sequences

N. Giambiasi, C. Frydman
{norbert.giambiasi, Claudia.frydman}@univ-amu.fr

LSIS UMR CNRS 7296
Aix-Marseille University

and
CIFASIS

CONICET-UNR-AMU
Rosario, Argentina

Keywords: state identification, discrete events, sequential
machines, synchronizing sequences

Abstract
 State-identification experiments are designed to identify
the final state of a DES, which is seen as a black box, when
its initial state is unknown. A classical solution to this
problem constitutes determining a Synchronizing Sequence
or a Homing Sequence. In this paper, we show that some
classical methods for state identification in untimed
sequential machines can be easily extended to Timed
Sequential Machines.

1. INTRODUCTION
 Extensive theory is available on timed discrete event
formalisms such as the Discrete Event Specification: DEVS
[1] [2], G-DEVS [3] and Timed Automata [4-7]. These
classes of formalisms have an important expressive power
that allows complex timed behavior to be specified, verified
and simulated [8]. Less expressive timed formalisms can be
useful in some classes of applications, such as the design of
manufacturing control systems and asynchronous circuit
design [9]. In addition, minimization and testing methods
[6, 10] can easily be extended to these less expressive
formalisms. In this way, we have proposed a new
formalism, called Timed Sequential Machines. TSMs [11]
are a sub-class of DEVS that have a finite number of states.
In addition, the next state of a TSM depends on the elapsed
time in the current state.
 In this paper, we show that some classical methods for
state identification of untimed sequential machines can be
easily extended to TSM. State-identification experiments are
designed to identify the final state of a DES, which is seen
as a black box, when its initial state is unknown [10, 12]. A
classical solution to this problem constitutes determining a
Synchronizing Sequence (SS) or a Homing Sequence (HS).
This problem was essentially solved completely in the
1960’s by using untimed formalisms (finite state machines
or automata) to model the considered DES.
 Extensive theory is available on state identification for
classical finite state machines. Therefore, ordinary finite

state machines are not sufficiently powerful to model
physical systems in an accurate way or to propose practical
solutions to some classes of problems, such as state
identification. In this paper, we propose a first approach to
developing state identification experiments that have a
timed formalism: Timed Sequential Machines.
 After a recall on Timed Sequential Machines, we
propose a method for building a class of timed successor
trees of a TSM. We show that synchronizing procedures that
are developed on classical sequential machines can be
extended to the timed aspects of TSMs [10, 16]. We propose
new definitions and methods to construct synchronizing
sequences of TSMs, and some examples are given to
illustrate these methods.
 Some applications fields for this work are those for the
test of discrete event control systems and the design and test
of asynchronous sequential circuits.

2. TIMED SEQUENTIAL MACHINES (TSM) [11]
2.1. Definition

A Timed Sequential Machine (TSM) is a structure that
is defined as follows.

,

 is a finite set of input events.

 is a finite set of output events.

 is a finite set of states, where represents the lifetime of
state si, pi is the name of the state or of a subset of states, V
is any finite set of symbols or integers, and pi is called the
phase of the model. Here, is a constant that is associated
with a state, when the number of states is finite, and the
number of is finite.

A state si with an infinite lifetime is said to be a steady
or stable state. A state with a finite lifetime is a transitory
state. Denoting SS as the subset of steady states and ST as the
subset of transitory states, we have the following:

M =< X,Y ,S,δext ,δ int ,λ >

X = xi{ }
Y = yi{ }
S = si = pi,σi() ∧ pi ∈V,σi ∈ +  ∞{ }{ }

σi

σi

σi

 is the external transition function that
specifies the state changes that are due to the input (in other
words, external) events.

 is the internal transition function that defines
the state changes that are due to an internal event that
corresponds to autonomous behavior; in other words, an
internal event occurs after the lifetime of the current state
has elapsed.

, λ is the output function that is defined only for
transitory states.

The next state of a TMS does not depend on the
lifetime of the current state:

Similar to the DEVS formalism [1], we introduce the
definition of the total state qi = (si, e), where e is the elapsed
time in the current state si .

.

The elapsed time e is reset to zero when a discrete
transition occurs.

We also introduce a lifetime function, which yields the
lifetime of a state, as follows.

.

The lifetime function defines the maximum time that
the model can remain in the current state.

Remark: The output function is defined only for

transitory states because we assume that no response of a
real system can be instantaneous.

We first provide an informal interpretation of the TSM
structure.

- If the model is in state s, then the amount of time that
has elapsed since the last event is e, where

0 ≤ e ≤ lifetime(s).
- If no external event occurs, then the model remains in

this state s until e = lifetime(s). At this time, if lifetime(s) is
finite, then an output event λ(s) is emitted, and the new state
is s′ = δint(s). This state change is called an internal
transition or an autonomous transition.

- If an input event x occurs before an internal transition,
then the model instantly changes to the state s′ =δext(s,x).
This state change is called an external transition.

In the case of simultaneous internal and external events,
the supervisor of the atomic simulator first sends in the
internal event. Subsequently, the external event is treated

with the same simulation time, and the next state is defined
as follows: .
 A TSM can be represented as a classical sequential
machine by a state transition diagram or a transition table
that indicates the lifetime of the states. In the state transition
diagram of a TSM, the vertices represent the states that have
the value of a state lifetime, and the edges are labeled with
the input event or the output event that is associated with the
transition. In the case of a steady state, the lifetime is
omitted.

2.2. Definition: Legitimate TSM

 defines a legitimate TSM if

• a lifetime is defined for every state,
• the internal transition function is defined for every

transitory state, and
• the lifetime of any state is greater than 0,

.

2.3. Execution Fragments and Traces of a TSM
We introduce formal notion for the execution of a TSM

and its traces to formally specify the full behavior of a TSM.
These concepts are analogous to those concepts that are
commonly used to describe the behavior of Timed
Automata [7, 12].

First, we define the concept of the timed execution
fragment of a TSM. A timed execution fragment, which is
denoted as , is a finite alternating
sequence of state trajectories vi and discrete events zi.

2.3.1. Definition: Execution Fragment of a TSM
Model

An execution fragment of a TSM model
 is a finite alternating sequence

 that satisfies the following criteria.

1. Pure time passage.
Each vi is a function from a real interval of the form Ii =

[0, ti] to the set Q of total states of M such that

, if ,

then .

2. Discrete event transition.
Each zi is an input or an output event, and if

 and , then one of
the following conditions holds.

•

or

σ i= ∞⇔ si ∈SS ,σ i∈ + ⇔ si ∈ST ,

 S = SS  ST , SS  ST = ∅.

δext :S × X→ S

δ int :ST → S

λ :ST → Y

∀σ j ∈ +  ∞{ },δext ((pi,σ j), xi) = sl,
∀σ j ∈ +,δ int ((pi,σ j)) = sl.

Q = (si,e), si ∈S,e∈ +
0  ∞{ }{ }

lifetime : S→  +  ∞{ }

lifetime (si) =σ i

s ' = δext (δ int (sj), xi)

M =< X,Y,S,δ ext,δ int,λ >

∀si ∈S, lifetime(si) =σ i ⇒σ i > 0

 α = v0 z1 v1 z2 v2 …zn vn

M =< X,Y ,S,δext ,δ int ,λ >

 α = v0 z1 v1 z2 v2 …zn vn

 ∀j, ′j ∈ Ii | j < ′j vi (j) = (s,e)

 vi (′j) = (s,e + ′j − j)

 (sk ,e) = vi−1(sup(Ii−1),

sl ,0() = vi inf (Ii)()
zi ∈Y ,δ int(sk) = sl ,

lifetime(sk) = e ∧ λ(sk) = zi ,

• .
Every discrete event transition is associated with a

discrete event, which is either
- an output event that corresponds to an internal

transition (i.e., a first-case scenario), or
- an input event that corresponds to an external

transition (i.e., a second-case scenario).
A timed execution fragment describes all of the discrete

state changes that occur and the evolution of the state during
time-passage transitions.

 2.3.2. Definition: Execution of a TSM

Let be a TSM that has an
initial state si, where . Then, we call an execution of
M an execution fragment of M that begins with si.

We use the following definitions:
- is the set of all finite executions of M (a

finite number of events),
- is the set of all of the executions of M.
-state(α) is the set of discrete states that appear in the

execution fragment α.
- firststate(α) and laststate(α) are the respective

functions that indicate the first discrete state and the last
discrete state of a finite execution fragment

.

 2.3.3. Definition: Trace of a TSM

Let be a TSM, and let
 be an execution fragment of M.

Then, trace(α) is defined to be the tuple such
that and are sequences that are composed of all pairs
of input and output events of , respectively, and their
times of occurrences in are sorted in chronological
order. and are the respective input and output traces
of . Here, w is the total time of execution, which is
defined as follows:

.

Formally, the time of occurrence of an event of
is equal to

, where is the domain of .
The set of all of the finite traces of a TSM is defined as

follows:
.

 We denote as the function that provides the
number of events in the input (or output) traces .

 2.3.4. Definition: Trace of a TSM

We introduce the concept of a timed relative input trace
to refer to the relative time of occurrence of an event with
respect to the previous input event (and not the absolute
occurrence time). In other words, given a timed input trace
θ I = 〈(x0 ,t0),(x1,t1),…,(xn ,tn)〉 , we refer not to θ I , but to

rel (θ I), where the function rel is defined as follows:

rel(〈(x0 ,t0),(x1,t1),…,(xn ,tn)〉)

 = 〈(x0 ,0), (x1, t1 − t0),…, (xn , tn − tn−1)〉
It is easy to show that rel is bijective; as a result, it is

equivalent to use either θ I or rel(θ I) .

2.3.5. Definition: Fast Execution Fragment (FEF)
A timed execution fragment of

a TSM is a fast execution
fragment (FEF) iff

No internal event appears in a fast timed execution

fragment. Notice that
- for a given TSM and for its FEFs, all of the

transitory states have a behavior that is equivalent to stable
states.

- if is a fast execution
fragment and , then

.

In the following, for a TSM M, we note that
 - is the set of finite executions that have the

same input trace and a total time of execution that is
equal to w, and

- is the set of finite and fast executions of
M.

2.3.6. Theorem
A timed execution fragment of

a TSM is a fast timed execution
fragment if and only if

proof:

- Necessary: no output event can occur in an FTEF,
which implies that an input event occurs before the elapsed
time in the current transitory state becomes equal to the
lifetime of the current state.

- Sufficient: if the elapsed time in the current transitory
state is lower than its lifetime, then the internal transition
does not occur, and no output event is sent out.

2.3.7. Theorem

For a TSM , any execution

zi ∈X ,δext (sk , zi) = sl

M =< X,Y ,S,δext ,δ int ,λ >
 si ∈S

 execs* (M)

 execs(M)

 α = v0 z1 v1 z2 v2 …zn vn

firststate(α) = si if v0 inf(I0)() = (si ,0)

laststate(α) = si if vn sup(In)() = (si ,e).

M = < X,Y ,S,δext ,δ int ,λ >

 α = v0 z1 v1 z2 v2 …zn vn

 (θ I ,θO , w)

 θ I θO
α

α
 θ I θO

α

w =

0≤ j≤n∑ sup I j()
 zi

 α = v0 z1 v1 z2 v2 …zn vn

 0≤ j<i∑ sup I j() jI jv

traces(M) = trace(α), α ∈execs*(M){ }
 length(θ)

θ

 α = v0 z1 v1 z2 v2 …zn vn
M =< X,Y ,S,δext ,δ int ,λ >

zi ∈α ⇒ zi ∈X

 α = v0 z1 v1 z2 v2 …zn vn
laststate(α) = sn

sn ∈SS ∨ (sn ∈ST ∧ (sup(In) < lifetime(sn)))

execw
θI
k

(M)
θ I
k

execFast *(M)

 α = v0 z1 v1 z2 v2 …zn vn

M =< X,Y ,S,δext ,δ int ,λ >

∀vi ∈α,vi = (si,e)∧ si ∈ST ⇒ sup(Ii) < lifetime(si)

M =< X,Y ,S,δext ,δ int ,λ >

fragment with
and

rel(θ I) = 〈(x0,τ 0), (x1,τ1),…, (xn,τ n)〉

 such that:

∀(xi,τ i)∈θ I ,τ i <min(lifetimes(si))
is a fast execution fragment.

proof: The proof is obvious. If the elapsed time
between two successive input events is smaller than the
minimum of the transitory state lifetimes, then no internal
transition can occur, and no output event is sent out.

2.3.8. Definition: Fast Input Trace

An input trace of a TSM M is a fast input trace
for an execution fragment if

.

Notice that

.
A fast input trace is defined for a given execution fragment,
in other words, for a given initial state.

2.3.9. Definition: Total Fast Input Trace

An input trace is a total fast input trace of a
TMS M if it is a fast input trace for every initial state of M:

∀sk ∈S,∃α i

k ∈execfast
k with firstate(α i

k) = sk,
such that:

trace(α k) = (θ I
exec fast

*

,θO,w)⇒θO =∅.

A total fast input trace is a sequence of events that does not
produce any output events regardless of the initial state of
the TSM.

3. SYNCHRONIZING INPUT TRACE [12]

A real system modeled by a TSM is in an unknown
initial state, and we want to perform a finite execution of it
to drive the system into a given final state si. The
corresponding input trace is called a synchronizing input
trace for the target state si. A synchronizing input trace
takes a TSM to the same final state, regardless of the initial
state and the outputs.

3.1. Definition: Synchronizing Input Trace

Let us consider an execution fragment that has

; then, the input trace is a
synchronizing input trace of length n for sl iff

.

The last discrete states of all of the execution fragments
with the same input trace and the same time of execution
have the same final state sl.

3.2. Definition: Fast Synchronizing Input Trace

Let us consider an execution fragment:

with ; then, the input trace is a
fast synchronizing input trace of length n for sl iff

and

.

3.2. Timed Successor Tree

The successor tree of a sequential machine [10, 12]
shows the behavior of the machine starting from an Initial
State Uncertainty (ISU) under all possible input sequences.
For every input sequence, the tree contains a path that starts
from the root, and every node is annotated with the
corresponding current State Uncertainty (SU).

For a TSM, a successor tree must show the behavior of
the TSM from an ISU under all possible timed input traces.
Therefore, for a finite given time of execution and a subset
of input events, there are infinity input traces (an infinite
number of occurrence times of input events in a finite time
interval). It is obvious that it is impossible to build a
successor tree that explicitly displays all of the finite
executions of a TSM.

For a given TSM, a synchronizing sequence can be
obtained (if it exists) by constructing an execution tree by
ignoring the output events. However, it remains the problem
of an infinite tree for a finite execution time. To avoid this
problem, we propose, as a first step, to build a specific
execution tree while considering only the fastest input
traces. In this tree, a path corresponds to an infinite set of
the fastest execution fragments. This timed successor tree is
finite for a finite time of execution and a finite number of
input events.

3.3. Building a Fast Successor Tree (FST) of a TSM

For a given TSM M, a given initial uncertainty
and a total execution time w, the corresponding FST
displays the successor uncertainties only for fast execution
fragments. To build this FST, we compute all of the -
successor uncertainties for all of the fastest input traces for
the finite given time of execution. For a given state
uncertainty SUi, any time interval between the previous
input event and the considered input event is lower than the
minimum of the lifetimes of the transitory states in SUi.

 α = v0 z1 v1 z2 v2 …zn vn

trace(α) = (θ I ,θO,w)

θ I
α k

α k

∃α k ∈execfast
* (M) trace(α k) = (θ I

α k

,θO,w)

trace(α) = (θi ,θO,w)∧α ∈execfast
* (M)⇒θO =∅

θ I
exec fast

*

α i

 trace(α i) = (θ I
k ,θO

i , w) θ I
k

∀α i ∈execw
θI
K

(M), laststate(α i) = sl

 α = v0 z1 v1 z2 v2 …zn vn

 trace(α i) = (θ I
k ,θO

i , w) θ I
k

∀α i ∈execw
θI
K

(M), laststate(α i) = sl

θO
i =∅

ISUi

SUl
i

The leaves of the FST are labeled by the corresponding
vector uncertainty and are arranged in successive levels
numbered 0, 1, …, j, … The branches are labeled by the
input vectors and the time constraints that are needed to
obtain fast input traces.

Each finite path of the fast execution tree describes a set
of fast input traces with a maximum execution time w.
 For example, considering the TSM of figure 1 with an

, we have

Then, the time constraint for the first input events is
that the elapsed time in the current state must be lower than
10 t.u. For an input trace of length two, we obtain the FST
of figure 2.

From the IUS0, we consider that the input event a is
applied before the elapsed time becomes equal to 10 t.u.
because

Then, we obtain the uncertainty vector (ABC). Applying the
input event b to (ABCD) with the same time constraint, we
obtain the uncertainty vector (ABCD), and from the leaf
(ABC), we obtain the leaves (AC) and (ABCD). We can
deduce that a fast input trace with the sequence of events (a,
a) conduces the system into state A or state C.

Figure 1: Timed State Transition Diagram of M1.

Figure 2: Timed execution tree

3.4. Fast Synchronizing Tree (FST) [10, 12]
Then, the FST can be used to define fast synchronizing

input traces (if at least one exists) by adding two terminal
rules to the building process of the FST:

- the leaf is associated with an uncertainty that
appears in some leaf for a preceding level, and

- the leaf contains an uncertainty with a single
element.

A path in this tree displays a set of fastest execution
fragments. For a given state uncertainty SUi, any time
interval between two input events is lower than the
minimum of the lifetime of the transitory states of SUi:

3.5. Example

In this example, we built the FST (figure3) of the TSM
M1 (figure 1) for a total execution time of w > 100 t.u. This
TSM has the timed state transition diagram given in figure
3.

The initial uncertainty being , the FST
is built considering that the elapsed time in the states of

 is such that

Additionally, in this case,
Then, for the input events a and b, we obtain the

following successors for :

 is a terminal node because it has the same label as a
previous node.

For , the minimum of the lifetime for the
transitory states is still 10 t.u. The elapsed time before the
input event occurrences must be lower than 10 t.u., and so
on.

Figure 3: FST of M1

On this FST, we deduce that the path beginning with

(ABCD) and ending with (CC) defines a set of fast
synchronizing input traces for the target state C.
The input trace,

θ I =< (a,8)(a,15)(b, 24)(a, 44)(b, 59)(a, 64) > ,
is a fast synchronizing input trace for the target state C.

ISU0
i = (ABCD)

lifetime(A) =10 t.u.,
lifetime(B) = 25 t.u.

si ∈IUS0,min(lifetime(si)) =10 t.u.

t <10

ABCD

AC

t<10a

ABC ABCD

b

a

ABCD

b

ISU0 = (ABCD)
τ

ISU0 = (ABCD)
τ <min(lifetime(sk), sk ∈IUS0 ∧ sk ∈ST ,

τ <10 t.u.

IUS0
SU1

a = (ABC)
SU1

b = (ABCD)
SU1

b

SU1
a = (ABC)

t <10

ABCD

AC

t<10a

ABC ABCD

b

t<25

BC AC

a

AC BD

b

a

ABCD

b

t <10

a b

t<25

AC AB

a b

t<10
CC AD

a b

3.6. Greedy and Cycle Algorithms [13, 14]
The synchronizing tree method has been proposed to

provide the shortest “Synchronizing Sequences” (SS). Such
a method is suitable for small size systems. In fact, the
problem of finding the shortest SSs is known to be NP-
complete [13]. Two polynomial algorithms have been used
mainly to provide an SS (which is not necessarily the
shortest one): the so-called greedy and cycle algorithms. In
particular, the greedy algorithm [13] determines an input
sequence that takes a given sequential machine, regardless
of its initial state, to a known target state: note that the target
state is determined by the algorithm and cannot be specified
by the user. Greedy and cycle algorithms are based on the
construction of an auxiliary graph [16].

For TSMs, a fast auxiliary graph can be defined as
follows.

3.6.1. Definition: Fast Auxiliary Graph (FAG)
Let us consider a TSM with

n states, and its fast auxiliary graph has
 nodes, one for every unordered pair of

states of S, including the pairs of identical states.
There is an edge from node to that is labeled
with the input event iff

.
In this definition of the FAG, we do not include the

internal transition because we assume that the considered
input traces are fast input traces only. Then, the construction
is identical to the construction for finite sequential
machines.

If, in the auxiliary graph, there is a path from every
node to a node , then an FSS exists for the
target state [14].

3.6.2. Example
For the TMS of figure 1, we obtain the auxiliary graph

given in figure 4.
From this auxiliary graph, we can see that there is a

path from any node to the node (CC); therefore a fast
synchronizing input trace exists for the target state C [5].

Figure 4: Auxiliary graph of M1.

3.6.3. Maximal Fast Synchronizing Input Traces
If a fast synchronizing input trace exists for a given

TSM M with n states, then its length (number of input
events) is at most [10, 12]. It can be shown by a
more careful argument that the length of the constructed
synchronizing sequence is at most [13, 14].

3.6.4. Theorem
Let us consider an execution fragment with

and that is a fast synchronizing
input trace; in that case, if is a fast synchronizing input
trace, then the total time of execution is at most equal

to

Proof: The maximum number of events in the input
trace is , and the number of time intervals in
the execution fragment is . Then, the
maximum duration of the time intervals between the input
events is .

The duration after the last event is lower than
.

Therefore, is at most equal to:

3.6.5. Example

For the example given in figure 3, the fast
synchronizing input trace

θ I =< (a,8)(a,15)(b, 24)(a, 44)(b, 59)(a, 64) >
has a length of 6, and the total time of execution should be
70 t.u. (waiting 6 t.u. after the last event).

This TSM has four states. The length of its fast
synchronizing input traces must therefore be lower than 18,
and the total execution time must be lower than

θ I =< (a,8)(a,15)(b, 24)(a, 44)(b, 59)(a, 64) > respects these
constraints.

4. CONCLUSIONS

In this paper, the methods for building synchronizing
sequences on sequential machines have been extended to
Timed Sequential Machines. TSM models represent a useful
subset of timed discrete event formalisms, and TSM models
have states that can be properly identified and fault checked.
The proposed extension for synchronizing sequences is
limited to fast executions of TSMs. Future work involves
generalizing this first extension to other types of executions

M =< X,Y ,S,δext ,δ int ,λ >
FAG(M)

n(n +1) / 2 (si, sj)
(si, si)

(si, sj) (sk, sl)
xi ∈X

δext (si, xi) = sk ∧δext (sj, xi) = sl

(si, sj) (si, si)
si

AB CC
a

AD

b

CD

b

BC
a

AC
a

b

AA

a

b

a
DD

b

a
BB

b

BD

a

b

a
b

a b

a

b

n(n −1)2 / 2

n(n2 −1) / 6

α
trace(α) = (θ I ,θO,w) θ I

θ I

wmax
wmax = N.max(lifetime(si))+ min(lifetime(si)), si ∈ST
with: N = ((n(n −1)2 / 2)).

(n(n −1)2 / 2)
((n(n −1)2 / 2)+1)

max(lifetime(si)), si ∈ST

min(lifetime(si)), si ∈ST
wmax

wmax = N.max(lifetime(si))+ min(lifetime(si)), si ∈ST
with: N = ((n(n −1)2 / 2)).

wmax = 9.(25)+10,
wmax = 235.

and defining preset and adaptive synchronizing experiments
on the TSM.

REFERENCES

[1] Zeigler, B.; H. Praehofer; T. G. Kim. 2000. Theory of
Modeling and Simulation, 2nd Edition. Academic Press,
London.
[2] Zeigler, B. 1984. Theory of Modelling and Simulation.
Krieger Publishing Co., Inc., Melbourne, FL, USA.
[3] Giambiasi, N.; B. Escude; S. Ghosh. 2000. “Gdevs: A
Generalized Discrete Event Specification for Accurate
Modelling of Dynamic Systems.” Transaction of S.C.S.I.,
17, no. 3: 120–134.
[4] Alur, R.; D.L. Dill. 1994. A Theory of Timed
Automata. Theoretical Computer Science, 126: 183–235.
[5] Henzinger, T; X. Nicollin; J. Sifakis; S. Yovine. 1994.
“Symbolic Model-Checking for Real-Time Systems.” In
Information and Computation, vol 111, Issue 2, June 1994,
pages 193–244, Else
[6] Lynch, N.A.; F.W. Vaandrager. 1995. “Forward and
Backward Simulations – Part II: Timing-Based Systems.”
Technical Report, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA,
USA.
[7] Merritt, M.; F. Modugno; M.R. Tuttle. 1991. “Time–
Constrained Automata.” In Proceedings on Concurrency
Theory (CONCUR ’91), volume 527 of LNCS, Jos C. M.
Baeten and Jan Frisco Groote, eds., Berlin, Germany, 408–
423.
[8] Nance, R.E. 1981. “The Time and State Relationships in
Simulation Modeling.” Communications of the ACM, 24,
no. 4: 173–179.
[9] Dacharry, H.; Giambiasi, N. 2005. “From Timed
Automata to Devs Models: Formal Verification.” In
Proceedings of Spring Sim’05. SCS - The Society for
Modeling and Simulation International, 2005.
[10] Kohavi, Z. 1980. Switching and Finite Automata
Theory. Computer Science Series. McGraw-Hill Higher
Education.
[11] Giambiasi, N. 2009. “TSM: Temporal Sequential
Machines.” In Proceedings of the 21st European Modeling
and Simulation Symposium, SCS, Canary Island, Tenerife.
[12] Giambiasi, N.; D. Llarul; M. Cristea. 2010. “System
State Identification using DEVS.” In Discrete-event
Modeling and Simulation, Wainer, G.A., Mosterman, P.J.,
eds., CRC Press.
[13] Eppstein, D. 1990. “Reset Sequences for Monotonic
Automata.” SIAM Journal on Computing, 19: 500–510.
[14] Trahtman, A.N. 2004. “Some results of implemented
algorithms of synchronization.” In Proceedings of the 10th
Journees Mentoises d’inform, Liege, Belgium, September 8-
11.

[15] Lee, D.; Yannakakis, M. 1996. “Principles and
Methods of Testing Finite State Machines - A Survey.”
Proceedings of the IEEE, 84, no. 8.

