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Abstract 
 State-identification experiments are designed to identify 
the final state of a DES, which is seen as a black box, when 
its initial state is unknown. A classical solution to this 
problem constitutes determining a Synchronizing Sequence 
or a Homing Sequence. In this paper, we show that some 
classical methods for state identification in untimed 
sequential machines can be easily extended to Timed 
Sequential Machines. 
 
1. INTRODUCTION 
 Extensive theory is available on timed discrete event 
formalisms such as the Discrete Event Specification: DEVS 
[1] [2], G-DEVS [3] and Timed Automata [4-7]. These 
classes of formalisms have an important expressive power 
that allows complex timed behavior to be specified, verified 
and simulated [8]. Less expressive timed formalisms can be 
useful in some classes of applications, such as the design of 
manufacturing control systems and asynchronous circuit 
design [9]. In addition, minimization and testing methods 
[6, 10] can easily be extended to these less expressive 
formalisms. In this way, we have proposed a new 
formalism, called Timed Sequential Machines. TSMs [11] 
are a sub-class of DEVS that have a finite number of states. 
In addition, the next state of a TSM depends on the elapsed 
time in the current state. 
 In this paper, we show that some classical methods for 
state identification of untimed sequential machines can be 
easily extended to TSM. State-identification experiments are 
designed to identify the final state of a DES, which is seen 
as a black box, when its initial state is unknown [10, 12]. A 
classical solution to this problem constitutes determining a 
Synchronizing Sequence (SS) or a Homing Sequence (HS). 
This problem was essentially solved completely in the 
1960’s by using untimed formalisms (finite state machines 
or automata) to model the considered DES.  
 Extensive theory is available on state identification for 
classical finite state machines. Therefore, ordinary finite 

state machines are not sufficiently powerful to model 
physical systems in an accurate way or to propose practical 
solutions to some classes of problems, such as state 
identification. In this paper, we propose a first approach to 
developing state identification experiments that have a 
timed formalism: Timed Sequential Machines. 
 After a recall on Timed Sequential Machines, we 
propose a method for building a class of timed successor 
trees of a TSM. We show that synchronizing procedures that 
are developed on classical sequential machines can be 
extended to the timed aspects of TSMs [10, 16]. We propose 
new definitions and methods to construct synchronizing 
sequences of TSMs, and some examples are given to 
illustrate these methods. 
 Some applications fields for this work are those for the 
test of discrete event control systems and the design and test 
of asynchronous sequential circuits. 
 
2. TIMED SEQUENTIAL MACHINES (TSM) [11] 
2.1. Definition 

A Timed Sequential Machine (TSM) is a structure that 
is defined as follows. 

, 

 is a finite set of input events. 

 is a finite set of output events. 

 

 is a finite set of states, where represents the lifetime of 
state si, pi is the name of the state or of a subset of states, V 
is any finite set of symbols or integers, and pi is called the 
phase of the model. Here,  is a constant that is associated 
with a state, when the number of states is finite, and the 
number of  is finite. 

A state si with an infinite lifetime is said to be a steady 
or stable state. A state with a finite lifetime is a transitory 
state. Denoting SS as the subset of steady states and ST as the 
subset of transitory states, we have the following: 

M =< X,Y ,S,δext ,δ int ,λ >

X = xi{ }
Y = yi{ }
S = si = pi,σi( ) ∧ pi ∈V,σi ∈ +  ∞{ }{ }

σi

σi

σi



  

 

 is the external transition function that 
specifies the state changes that are due to the input (in other 
words, external) events. 

 is the internal transition function that defines 
the state changes that are due to an internal event that 
corresponds to autonomous behavior; in other words, an 
internal event occurs after the lifetime of the current state 
has elapsed.  

, λ is the output function that is defined only for 
transitory states. 

The next state of a TMS does not depend on the 
lifetime of the current state: 

 

Similar to the DEVS formalism [1], we introduce the 
definition of the total state qi = (si, e), where e is the elapsed 
time in the current state si . 

. 

The elapsed time e is reset to zero when a discrete 
transition occurs. 

We also introduce a lifetime function, which yields the 
lifetime of a state, as follows.   

. 

The lifetime function defines the maximum time that 
the model can remain in the current state. 

 
Remark: The output function is defined only for 

transitory states because we assume that no response of a 
real system can be instantaneous.  

We first provide an informal interpretation of the TSM 
structure.  

- If the model is in state s, then the amount of time that 
has elapsed since the last event is e, where 

0 ≤ e ≤ lifetime(s). 
- If no external event occurs, then the model remains in 

this state s until e = lifetime(s). At this time, if lifetime(s) is 
finite, then an output event λ(s) is emitted, and the new state 
is s′ = δint(s). This state change is called an internal 
transition or an autonomous transition. 

- If an input event x occurs before an internal transition, 
then the model instantly changes to the state s′ =δext(s,x). 
This state change is called an external transition. 

In the case of simultaneous internal and external events, 
the supervisor of the atomic simulator first sends in the 
internal event. Subsequently, the external event is treated 

with the same simulation time, and the next state is defined 
as follows: . 
 A TSM can be represented as a classical sequential 
machine by a state transition diagram or a transition table 
that indicates the lifetime of the states. In the state transition 
diagram of a TSM, the vertices represent the states that have 
the value of a state lifetime, and the edges are labeled with 
the input event or the output event that is associated with the 
transition. In the case of a steady state, the lifetime is 
omitted. 
 
2.2. Definition: Legitimate TSM  

  defines a legitimate TSM if 

• a lifetime is defined for every state,  
• the internal transition function is defined for every 

transitory state, and 
• the lifetime of any state is greater than 0, 

. 
 

2.3. Execution Fragments and Traces of a TSM 
We introduce formal notion for the execution of a TSM 

and its traces to formally specify the full behavior of a TSM. 
These concepts are analogous to those concepts that are 
commonly used to describe the behavior of Timed 
Automata [7, 12]. 

First, we define the concept of the timed execution 
fragment of a TSM. A timed execution fragment, which is 
denoted as , is a finite alternating 
sequence of state trajectories vi and discrete events zi. 
 

2.3.1. Definition: Execution Fragment of a TSM 
Model 

An execution fragment of a TSM model 
 is a finite alternating sequence 

 that satisfies the following criteria.  

1. Pure time passage. 
Each vi is a function from a real interval of the form Ii = 

[0, ti] to the set Q of total states of M such that 

, if , 

then . 

2. Discrete event transition. 
Each zi is an input or an output event, and if

 and , then one of 
the following conditions holds. 

•  

or 

σ i= ∞⇔ si ∈SS ,σ i∈ + ⇔ si ∈ST ,

   S = SS  ST , SS  ST = ∅.

δext :S × X→ S

δ int :ST → S

λ :ST → Y

∀σ j ∈ +  ∞{ },δext ((pi,σ j ), xi ) = sl,
∀σ j ∈ +,δ int ((pi,σ j )) = sl.

Q = (si,e), si ∈S,e∈ +
0  ∞{ }{ }

lifetime : S→  +  ∞{ }

lifetime (si ) =σ i

s ' = δext (δ int (sj ), xi )

M =< X,Y,S,δ ext,δ int,λ >

∀si ∈S, lifetime(si ) =σ i ⇒σ i > 0

   α = v0 z1 v1 z2 v2 …zn vn

M =< X,Y ,S,δext ,δ int ,λ >

   α = v0 z1 v1 z2 v2 …zn vn

  ∀j, ′j ∈ Ii | j < ′j   vi ( j) = (s,e)

  vi ( ′j ) = (s,e + ′j − j)

  (sk ,e) = vi−1(sup(Ii−1),
  

sl ,0( ) = vi inf (Ii )( )
zi ∈Y ,δ int( sk ) = sl ,

lifetime( sk ) = e ∧ λ( sk ) = zi ,



• . 
Every discrete event transition is associated with a 

discrete event, which is either 
- an output event that corresponds to an internal 

transition (i.e., a first-case scenario), or 
- an input event that corresponds to an external 

transition (i.e., a second-case scenario). 
A timed execution fragment describes all of the discrete 

state changes that occur and the evolution of the state during 
time-passage transitions. 

 2.3.2. Definition: Execution of a TSM 

Let  be a TSM that has an 
initial state si, where . Then, we call an execution of 
M an execution fragment of M that begins with si. 

We use the following definitions: 
-  is the set of all finite executions of M (a 

finite number of events), 
-  is the set of all of the executions of M. 
-state(α) is the set of discrete states that appear in the 

execution fragment α. 
- firststate(α) and laststate(α) are the respective 

functions that indicate the first discrete state and the last 
discrete state of a finite execution fragment 

. 
 

 

 2.3.3. Definition: Trace of a TSM 

Let  be a TSM, and let 
 be an execution fragment of M. 

Then, trace(α) is defined to be the tuple  such 
that  and are sequences that are composed of all pairs 
of input and output events of , respectively, and their 
times of occurrences in  are sorted in chronological 
order. and are the respective input and output traces 
of . Here, w is the total time of execution, which is 
defined as follows: 

. 

Formally, the time of occurrence of an event  of 
is equal to  

, where  is the domain of . 
The set of all of the finite traces of a TSM is defined as 

follows: 
. 

 We denote  as the function that provides the 
number of events in the input (or output) traces . 

 2.3.4. Definition: Trace of a TSM 

We introduce the concept of a timed relative input trace 
to refer to the relative time of occurrence of an event with 
respect to the previous input event (and not the absolute 
occurrence time). In other words, given a timed input trace 
θ I = 〈(x0 ,t0 ),(x1,t1),…,(xn ,tn )〉 , we refer not to  θ I , but to 

rel ( θ I ), where the function rel is defined as follows:  

rel(〈(x0 ,t0 ),(x1,t1),…,(xn ,tn )〉)  

   = 〈(x0 ,0), (x1, t1 − t0 ),…, (xn , tn − tn−1)〉  
It is easy to show that rel is bijective; as a result, it is 

equivalent to use either  θ I or   rel(θ I ) . 
 

2.3.5. Definition: Fast Execution Fragment (FEF) 
A timed execution fragment of 

a TSM is a fast execution 
fragment (FEF) iff 

 
No internal event appears in a fast timed execution 

fragment. Notice that 
- for a given TSM and for its FEFs, all of the 

transitory states have a behavior that is equivalent to stable 
states. 

- if  is a fast execution 
fragment and , then 

. 
 
In the following, for a TSM M, we note that 
 - is the set of finite executions that have the 

same input trace  and a total time of execution that is 
equal to w, and 

- is the set of finite and fast executions of 
M. 
 

2.3.6. Theorem  
A timed execution fragment  of 

a TSM is a fast timed execution 
fragment if and only if 

 
proof:  

-  Necessary: no output event can occur in an FTEF, 
which implies that an input event occurs before the elapsed 
time in the current transitory state becomes equal to the 
lifetime of the current state. 

- Sufficient: if the elapsed time in the current transitory 
state is lower than its lifetime, then the internal transition 
does not occur, and no output event is sent out.  
 

2.3.7. Theorem 

For a TSM , any execution 

zi ∈X ,δext (sk , zi ) = sl

M =< X,Y ,S,δext ,δ int ,λ >
 si ∈S

  execs* ( M )

  execs( M )

   α = v0 z1 v1 z2 v2 …zn vn

  
firststate(α ) = si if v0 inf(I0 )( ) = (si ,0)

laststate(α ) = si if vn sup(In )( ) = (si ,e).

M = < X,Y ,S,δext ,δ int ,λ >

   α = v0 z1 v1 z2 v2 …zn vn

   (θ I ,θO , w)

 θ I  θO
α

α
 θ I  θO

α

  
w =

0≤ j≤n∑ sup I j( )
 zi

   α = v0 z1 v1 z2 v2 …zn vn

  0≤ j<i∑ sup I j( ) jI jv

traces(M ) = trace(α ), α ∈execs*(M ){ }
  length(θ )

θ

   α = v0 z1 v1 z2 v2 …zn vn
M =< X,Y ,S,δext ,δ int ,λ >

zi ∈α ⇒ zi ∈X

   α = v0 z1 v1 z2 v2 …zn vn
laststate(α ) = sn

sn ∈SS ∨ (sn ∈ST ∧ (sup(In ) < lifetime(sn )))

execw
θI
k

(M )
θ I
k

execFast *(M )

   α = v0 z1 v1 z2 v2 …zn vn

M =< X,Y ,S,δext ,δ int ,λ >

∀vi ∈α,vi = (si,e)∧ si ∈ST ⇒ sup(Ii ) < lifetime(si )

M =< X,Y ,S,δext ,δ int ,λ >



fragment  with 
and

rel(θ I ) = 〈(x0,τ 0 ), (x1,τ1),…, (xn,τ n )〉  

 such that: 

∀(xi,τ i )∈θ I ,τ i <min(lifetimes(si ))  
is a fast execution fragment. 

proof: The proof is obvious. If the elapsed time 
between two successive input events is smaller than the 
minimum of the transitory state lifetimes, then no internal 
transition can occur, and no output event is sent out. 

 
2.3.8. Definition: Fast Input Trace 

An input trace of a TSM M is a fast input trace 
for an execution fragment if 

. 

Notice that 

. 
A fast input trace is defined for a given execution fragment, 
in other words, for a given initial state.  
 

2.3.9. Definition: Total Fast Input Trace 

An input trace  is a total fast input trace of a 
TMS M if it is a fast input trace for every initial state of M:

 
∀sk ∈S,∃α i

k ∈execfast
k with firstate(α i

k ) = sk,
such that:

trace(α k ) = (θ I
exec fast

*

,θO,w)⇒θO =∅.

 

A total fast input trace is a sequence of events that does not 
produce any output events regardless of the initial state of 
the TSM. 
 
3. SYNCHRONIZING INPUT TRACE [12] 

A real system modeled by a TSM is in an unknown 
initial state, and we want to perform a finite execution of it 
to drive the system into a given final state si. The 
corresponding input trace is called a synchronizing input 
trace for the target state si. A synchronizing input trace 
takes a TSM to the same final state, regardless of the initial 
state and the outputs. 
 
3.1. Definition: Synchronizing Input Trace 

Let us consider an execution fragment  that has 

; then, the input trace  is a 
synchronizing input trace of length n for sl iff 

. 
 

The last discrete states of all of the execution fragments 
with the same input trace and the same time of execution 
have the same final state sl.  
 
3.2. Definition: Fast Synchronizing Input Trace 

Let us consider an execution fragment: 
 

with ; then, the input trace  is a 
fast synchronizing input trace of length n for sl iff 

 
and  

. 
 
3.2. Timed Successor Tree  

The successor tree of a sequential machine [10, 12] 
shows the behavior of the machine starting from an Initial 
State Uncertainty (ISU) under all possible input sequences. 
For every input sequence, the tree contains a path that starts 
from the root, and every node is annotated with the 
corresponding current State Uncertainty (SU). 

For a TSM, a successor tree must show the behavior of 
the TSM from an ISU under all possible timed input traces. 
Therefore, for a finite given time of execution and a subset 
of input events, there are infinity input traces (an infinite 
number of occurrence times of input events in a finite time 
interval). It is obvious that it is impossible to build a 
successor tree that explicitly displays all of the finite 
executions of a TSM.  

For a given TSM, a synchronizing sequence can be 
obtained (if it exists) by constructing an execution tree by 
ignoring the output events. However, it remains the problem 
of an infinite tree for a finite execution time. To avoid this 
problem, we propose, as a first step, to build a specific 
execution tree while considering only the fastest input 
traces. In this tree, a path corresponds to an infinite set of 
the fastest execution fragments. This timed successor tree is 
finite for a finite time of execution and a finite number of 
input events. 
 
3.3. Building a Fast Successor Tree (FST) of a TSM 

For a given TSM M, a given initial uncertainty 
and a total execution time w, the corresponding FST 
displays the successor uncertainties only for fast execution 
fragments. To build this FST, we compute all of the -
successor uncertainties for all of the fastest input traces for 
the finite given time of execution. For a given state 
uncertainty SUi, any time interval between the previous 
input event and the considered input event is lower than the 
minimum of the lifetimes of the transitory states in SUi. 

   α = v0 z1 v1 z2 v2 …zn vn

trace(α ) = (θ I ,θO,w)

θ I
α k

α k

∃α k ∈execfast
* (M ) trace(α k ) = (θ I

α k

,θO,w)

trace(α ) = (θi ,θO,w)∧α ∈execfast
* (M )⇒θO =∅

θ I
exec fast

*

α i

   trace(α i ) = (θ I
k ,θO

i , w)  θ I
k

∀α i ∈execw
θI
K

(M ), laststate(α i ) = sl

   α = v0 z1 v1 z2 v2 …zn vn

   trace(α i ) = (θ I
k ,θO

i , w)  θ I
k

∀α i ∈execw
θI
K

(M ), laststate(α i ) = sl

θO
i =∅

ISUi

SUl
i



The leaves of the FST are labeled by the corresponding 
vector uncertainty and are arranged in successive levels 
numbered 0, 1, …, j, … The branches are labeled by the 
input vectors and the time constraints that are needed to 
obtain fast input traces. 

Each finite path of the fast execution tree describes a set 
of fast input traces with a maximum execution time w. 
 For example, considering the TSM of figure 1 with an 

, we have 

 

Then, the time constraint for the first input events is 
that the elapsed time in the current state must be lower than 
10 t.u. For an input trace of length two, we obtain the FST 
of figure 2. 

From the IUS0, we consider that the input event a is 
applied before the elapsed time becomes equal to 10 t.u. 
because 

 
Then, we obtain the uncertainty vector (ABC). Applying the 
input event b to (ABCD) with the same time constraint, we 
obtain the uncertainty vector (ABCD), and from the leaf 
(ABC), we obtain the leaves (AC) and (ABCD). We can 
deduce that a fast input trace with the sequence of events (a, 
a) conduces the system into state A or state C. 

 
 

Figure 1: Timed State Transition Diagram of M1. 
 

 
 

Figure 2: Timed execution tree 
 

3.4. Fast Synchronizing Tree (FST) [10, 12] 
Then, the FST can be used to define fast synchronizing 

input traces (if at least one exists) by adding two terminal 
rules to the building process of the FST: 
 

- the leaf is associated with an uncertainty that 
appears in some leaf for a preceding level, and 

- the leaf contains an uncertainty with a single 
element. 

A path in this tree displays a set of fastest execution 
fragments. For a given state uncertainty SUi, any time 
interval between two input events is lower than the 
minimum of the lifetime of the transitory states of SUi:  
 
3.5. Example 

In this example, we built the FST (figure3) of the TSM 
M1 (figure 1) for a total execution time of w > 100 t.u. This 
TSM has the timed state transition diagram given in figure 
3. 

The initial uncertainty being , the FST 
is built considering that the elapsed time  in the states of 

 is such that  
 

Additionally, in this case,  
Then, for the input events a and b, we obtain the 

following successors for : 

 

 is a terminal node because it has the same label as a 
previous node. 

For , the minimum of the lifetime for the 
transitory states is still 10 t.u. The elapsed time before the 
input event occurrences must be lower than 10 t.u., and so 
on. 

 
Figure 3: FST of M1 

 
On this FST, we deduce that the path beginning with 

(ABCD) and ending with (CC) defines a set of fast 
synchronizing input traces for the target state C.  
The input trace, 

θ I =< (a,8)(a,15)(b, 24)(a, 44)(b, 59)(a, 64) > , 
is a fast synchronizing input trace for the target state C. 

ISU0
i = (ABCD)

lifetime(A) =10 t.u.,
lifetime(B) = 25 t.u.

si ∈IUS0,min(lifetime(si )) =10 t.u.

t <10

ABCD

AC

t<10a

ABC ABCD

b

a

ABCD

b

ISU0 = (ABCD)
τ

ISU0 = (ABCD)
τ <min(lifetime(sk ), sk ∈IUS0 ∧ sk ∈ST ,

τ <10 t.u.

IUS0
SU1

a = (ABC)
SU1

b = (ABCD)
SU1

b

SU1
a = (ABC)

t <10

ABCD

AC

t<10a

ABC ABCD

b

t<25

BC AC

a

AC BD

b

a

ABCD

b

t <10

a b

t<25

AC AB

a b

t<10
CC AD

a b



3.6. Greedy and Cycle Algorithms [13, 14] 
The synchronizing tree method has been proposed to 

provide the shortest “Synchronizing Sequences” (SS). Such 
a method is suitable for small size systems. In fact, the 
problem of finding the shortest SSs is known to be NP-
complete [13]. Two polynomial algorithms have been used 
mainly to provide an SS (which is not necessarily the 
shortest one): the so-called greedy and cycle algorithms. In 
particular, the greedy algorithm [13] determines an input 
sequence that takes a given sequential machine, regardless 
of its initial state, to a known target state: note that the target 
state is determined by the algorithm and cannot be specified 
by the user. Greedy and cycle algorithms are based on the 
construction of an auxiliary graph [16].  

For TSMs, a fast auxiliary graph can be defined as 
follows. 
 

3.6.1. Definition: Fast Auxiliary Graph (FAG) 
Let us consider a TSM  with 

n states, and its fast auxiliary graph has 
 nodes, one for every unordered pair  of 

states of S, including the pairs of identical states. 
There is an edge from node  to  that is labeled 
with the input event  iff 

. 
In this definition of the FAG, we do not include the 

internal transition because we assume that the considered 
input traces are fast input traces only. Then, the construction 
is identical to the construction for finite sequential 
machines. 

If, in the auxiliary graph, there is a path from every 
node  to a node , then an FSS exists for the 
target state [14]. 
 

3.6.2. Example 
For the TMS of figure 1, we obtain the auxiliary graph 

given in figure 4. 
From this auxiliary graph, we can see that there is a 

path from any node to the node (CC); therefore a fast 
synchronizing input trace exists for the target state C [5]. 
 

 
 

Figure 4: Auxiliary graph of M1. 

3.6.3. Maximal Fast Synchronizing Input Traces 
If a fast synchronizing input trace exists for a given 

TSM M with n states, then its length (number of input 
events) is at most [10, 12]. It can be shown by a 
more careful argument that the length of the constructed 
synchronizing sequence is at most  [13, 14]. 
 

3.6.4. Theorem 
Let us consider an execution fragment  with 

and that  is a fast synchronizing 
input trace; in that case, if  is a fast synchronizing input 
trace, then the total time of execution  is at most equal 

to   

Proof: The maximum number of events in the input 
trace is , and the number of time intervals in 
the execution fragment is . Then, the 
maximum duration of the time intervals between the input 
events is .  

The duration after the last event is lower than 
. 

Therefore,  is at most equal to:

 

 
3.6.5. Example 

For the example given in figure 3, the fast 
synchronizing input trace 

θ I =< (a,8)(a,15)(b, 24)(a, 44)(b, 59)(a, 64) >  
has a length of 6, and the total time of execution should be 
70 t.u. (waiting 6 t.u. after the last event). 

This TSM has four states. The length of its fast 
synchronizing input traces must therefore be lower than 18, 
and the total execution time must be lower than 

 

θ I =< (a,8)(a,15)(b, 24)(a, 44)(b, 59)(a, 64) >  respects these 
constraints. 
 
4. CONCLUSIONS 

In this paper, the methods for building synchronizing 
sequences on sequential machines have been extended to 
Timed Sequential Machines. TSM models represent a useful 
subset of timed discrete event formalisms, and TSM models 
have states that can be properly identified and fault checked. 
The proposed extension for synchronizing sequences is 
limited to fast executions of TSMs. Future work involves 
generalizing this first extension to other types of executions 

M =< X,Y ,S,δext ,δ int ,λ >
FAG(M )

n(n +1) / 2 (si, sj )
(si, si )

(si, sj ) (sk, sl )
xi ∈X

δext (si, xi ) = sk ∧δext (sj, xi ) = sl

(si, sj ) (si, si )
si

AB CC
a

AD

b

CD

b

BC
a

AC
a

b

AA

a

b

a
DD

b

a
BB

b

BD

a

b

a
b

a b

a

b

n(n −1)2 / 2

n(n2 −1) / 6

α
trace(α ) = (θ I ,θO,w) θ I

θ I

wmax
wmax = N.max(lifetime(si ))+ min(lifetime(si )), si ∈ST
with: N = ((n(n −1)2 / 2)).

(n(n −1)2 / 2)
((n(n −1)2 / 2)+1)

max(lifetime(si )), si ∈ST

min(lifetime(si )), si ∈ST
wmax

wmax = N.max(lifetime(si ))+ min(lifetime(si )), si ∈ST
with: N = ((n(n −1)2 / 2)).

wmax = 9.(25)+10,
wmax = 235.



and defining preset and adaptive synchronizing experiments 
on the TSM. 
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