
Research Article
A Load Balancing Scheme Using Federate Migration Based on
Virtual Machines for Cloud Simulations

Xiao Song, Yaofei Ma, and Da Teng

Science and Technology on Aircraft Control Laboratory, School of Automation Science, Beihang University, Beijing 100191, China

Correspondence should be addressed to Yaofei Ma; mayaofeibuaa@163.com

Received 4 June 2014; Revised 18 September 2014; Accepted 20 September 2014

Academic Editor: Minrui Fei

Copyright © 2015 Xiao Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A maturing and promising technology, Cloud computing can benefit large-scale simulations by providing on-demand, anywhere
simulation services to users. In order to enable multitask and multiuser simulation systems with Cloud computing, Cloud
simulation platform (CSP) was proposed and developed. To use key techniques of Cloud computing such as virtualization to
promote the running efficiency of large-scale military HLA systems, this paper proposes a new type of federate container, virtual
machine (VM), and its dynamic migration algorithm considering both computation and communication cost. Experiments show
that the migration scheme effectively improves the running efficiency of HLA system when the distributed system is not saturated.

1. Introduction

Nowadays, Cloud computing has been recognized as a new
revolution in the IT industry. Key techniques in Cloud com-
puting such as virtualization technology, automatic deploy-
ment, resourcemanagement,Web services, SOA, high perfor-
mance I/O, and high-speed internet are well-developed and
have been widely applied in various domains. Accordingly
in the area of modeling and simulation (M&S), Cloud-based
computer simulation (CSim) [1–6] has been proposed and
designed to provide users with better solutions to solve M&S
problems including large capital outlays in hardware but low
utilization, high complexity in building simulation system,
and high labor cost in simulation software maintenance.

Currently CSim research is at its preliminary stage and
the pioneering works can be divided into three categories.

(i) CSim framework and how to plant existing simulation
software into the cloud: Liu et al. [1] presents the
process of deploying existing Parallel Discrete-Event
Simulation (PDES) engine into the cloud, the deploy-
ment includes adjusting the structure of the model
to fit the features of Cloud computing, developing
the simulation executionmode, adding the horizontal
scalability module to achieve service scalability, and
using the resource allocator. Li et al. [2] proposed

Cloud simulation platform and its prototype archi-
tecture, which implement new techniques including
HLA/RTI (runtime infrastructure, software imple-
mentation ofHLA) technique based onWeb, resource
dynamic management middleware technique based
on virtualization technique.

(ii) Optimistic time advancement algorithms in the cloud:
Jafer et al. [3] presents the state of the art in PDES, and
it summarizes current research of PDES in the clouds
and hardware acceleration. In order to address con-
cerns about interference and communication delays
that are inherent in Cloud computing environments,
Fujimoto et al. [4, 5] consecutively studied parallel
and distributed simulation in the cloud focusing on
optimistic parallel simulation advancement approach
named “time warp straggler message identification
protocol (TW-SMIP).”

(iii) Cloud agents and web-based simulations: Jávor and
Fur [6] proposes to solve high complexity problems
using advanced Web services and Cloud computing
techniques. It designs a framework in which cloud
agents are composed of Web services integrating
complex agent elements including large databases and
different novel concepts of inference engines.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 506432, 11 pages
http://dx.doi.org/10.1155/2015/506432

http://dx.doi.org/10.1155/2015/506432


2 Mathematical Problems in Engineering

Meanwhile, one of the most important M&S standards,
high level architecture (HLA) is an essential IEEE simu-
lation interoperability standard in the area of distributed
and parallel simulations. And IEEE has developed HLA
implementation standards such as HLA-evolved [7–9]. With
HLA and its implementation program runtime infrastructure
(RTI), a lot of HLA compatible simulation systems have been
developed including large-scale military HLA applications
such as ModSAF [10], CCTT SAF [11], OneSAF [12, 13],
and COSIM [14]. These large-scale simulations are usually
hardware-consuming and software-intensive as they contain
numerous models of environments and entities. Grid tech-
nology [15–17] has been used to solve the resource allocation
and scheduling problem, but Grid is not fully used while
cloud is more supported by many international companies
such as Amazon [18], Google [19], and Softlayer [20].

As such we propose to use Cloud computing techniques
to develop simulation systems, to solve the high cost and
overlapped hardware and software resources problem with
cloud. Cloud computing infrastructure offers numerous ben-
efits such as reconfigurable dynamic resources and unified
and simplified access to resources.

Although the works in [1–6] explored new paradigms
of CSim, few papers addressed the specific steps of how to
runHLA simulations in cloud, especially virtualization based
large-scale military applications. Therefore, in this paper,
we mainly study how to run existing large-scale HLA/RTI
simulations with cloud and how to run themmore efficiently.

The paper is structured as follows. In Section 2, key
technology of Cloud computing, virtualization and HLA
load balancing strategies are introduced and analyzed. Core
part of the contribution, Section 3 introduces the proposed
virtualization based HLA federation framework and run-
time dynamicmigration algorithm. Section 4 shows designed
validation experiments and discusses results. Finally, conclu-
sions are drawn and future works are discussed.

2. Related Work

In this section, virtualization related technologies and load
balancing approaches are studied and analyzed.

2.1. Virtualization Technology and HLA Simulations. In
cloud, Virtualization technology (VT) encapsulates the sim-
ulation application models and software packages to a rela-
tively independent execution environment, VM, and deploys
VMs to the underlying Physical Machines (PM, or hosts) [21].
Furthermore, by the segmentation in space and the time-
sharing in time [22, 23], VT encapsulates the distribution and
heterogeneity of the hardware resources, allowing multiple
virtual machines to run simultaneously on one host as well
as the migration of VMs among different hosts. In this way
VT greatly improves the resource utilization and quality of
service and is gradually implemented in the medium-scale
and large-scale distributed simulation platform.

One of the key virtualization technologies is VMmonitor
(VMM), which connects applications and VMs with under-
lying hardware to control the running of multiple operating
systems. VMM decouples the software from the hardware by

inserting a layer of interaction between the software running
in the VM and hardware, so that VMM could obtain direct
control of how operating systems in VMs access underlying
hardware resources [24]. The design of VMM also makes
it possible to implement the functions like live migration
[25] and security that are difficult to achieve in modern
operating systems.Through VMM, computing resources can
be encapsulated into a collection of VMs according to user’s
requirements, and VMs can be remapped and replicated
easily. In addition, the state of VMs can be suspended
and resumed at any time, and the running context can be
rolled back to a checkpoint. Thus, virtualization technology
provides the ability to consolidatemanagement of distributed
and heterogeneous resources by means of decoupling soft-
ware and hardware, transparent access, encapsulation, live
migration, and resources isolation.

Compared with the federate migration method of [17,
26], the main difference is that we use Virtual Machines
(VMs) to be containers of federates. From the perspective of
practical implementation, using cloud-based VMs to handle
the resource management and dynamic migration of HLA
simulation systems has the following merits compared with
previous approaches.

(i) It saves programming efforts to implement migration
of federates with the support of the virtualization
middleware interfaces developed by many business
or open-source VM vendors such as VMware [27],
Opennebula [28], Eucalyptus [29], and Xen [30].

(ii) VM live (or online) migration technique makes it
feasible to realize high efficient federate migration.
Previous works show that VM live migration down-
time is mainly proportional to the amount of the
“writable working set” and could have downtime as
low as 60 to 200ms [31, 32].

(iii) VM encapsulating HLA application software pack-
ages such as RTI could be copied easily. This greatly
saves the time and efforts simulation practitioners
spend to configure the operational system and soft-
ware environment, which is often a tricky and tedious
process especially during the large-scale simulation
applications deployment phase.

Therefore, it is more convenient for simulationists to
develop and run large-scale simulations if we adapt the
virtualization technology. That is why we study cloud-based
HLA simulation in this paper. However, when we are ensured
that we could use VMs to help us handle the federate
migrations, we also encounter the problems that using VM to
encapsulate federates create additional overhead. Someworks
[1, 33, 34] have designed experiments to find performance
loss caused by virtualization.They found that the applications
(with different event interaction complexity) ran in VM have
the maximum loss of 3.33% compared to ran in Physical
Machine. Although the performance loss is not high, we
still have to take more measures to make HLA federation
run faster. One effective way is to improve current load
balancing algorithms with better heuristics which considers
HLA communication cost among federates.



Mathematical Problems in Engineering 3

2.2. Load Balance Strategy in HLA and Beyond. A famous
developing IEEE standard in Modeling and Simulation
(M&S) society, HLA is also gradually known for its slow
running characteristics. One important reason is that HLA
is short of load-balance methods [17, 26, 35–38] to make the
heavy load host run faster while all the other nodes must wait
until the slowest federate advances so they can move to the
next safe lookahead.

Current studies of HLA load balance techniques could be
divided into two categories.

(i) Load Balance Algorithms for Distributed and Parallel Sys-
tems, Including HLA. Load balance strategies for distributed
and parallel systems are basically adaptable for HLA, which
is designed to provide a common set of framework and
rules for distributed simulation. In load balance algorithms,
the core concerns are computing and communication costs
[17, 26, 39–43]. Our algorithm has been influenced by earlier
works in three main areas: heuristics, computation, and
communication cost.

Most dynamic load balancing works use heuristic algo-
rithms because of its NP-hard nature [39]. Paper [40] studied
heuristic methods for dynamic load balancing in a message-
passing supercomputer. It uses easy-to-implement heuristics
(choosing a node with minimum load as the migration desti-
nation node) and variable threshold in migrating processes
among the multicomputer nodes. Genetic algorithms are
used in [41] to dynamically distribute simulation tasks and
compared with a first fit algorithm and a random allocation
scheme. In this work, the test results show that genetic
method outperforms the other two both in completion time
and average processor utilization. In paper [39], adaptive
load threshold is emphasized to suit the changing load on
the system, and its basic strategy is also to ensure that
heavily loaded node is balanced first with lightly loaded node.
Simulated annealing algorithm is addressed in paper [42],
which transforms the problem into a NP-complete problem
named degree-constrained minimum spanning tree. This
approach needs to adjust the heuristic factors according to
the practical applications. These works use heuristics as an
essential approach, which is also our basic strategy because
it is simple, practical, and time-saving, especially in large-
scale distributed simulation. However, most of the traditional
works are one-by-one migration, while in our approach it is
designed to migrate a set of interaction-aware VMs to save
the cost of migration procedure latency and communication.

Moreover, papers [17, 26] study dynamic load balancing
using Grid services for HLA-based large-scale simulations.
These pioneering works store all the resources in a queue and
organize them in ascendant order, and themigration pairs are
assembled with both extremities. The algorithm is practical
and simple but it does not consider the communication cost.
Fujimoto et al. in [4, 5] addressed “Network traffic and com-
munication delays are significant in current implementation
of Cloud computing infrastructure.” Thus, for the cloud-
based large-scale simulations, communication cost must be
taken into account in dynamic HLA load balancing.

All the abovementioned works are meaningful, but HLA
simulation systems have some more distinct characteristics

which are neglected by these researches. For instance, all
interactions among HLA federates are mainly modeled and
implemented with interaction classes and object classes. In
most cases of military simulations, the former classes are
stochastic and the latter classes are periodic. For example, the
status data describing the position of a tank in Cartesian
coordinates would be modeled as an object class and its
instance data is updated by the tank entity at every time
step. The data describing the fire of a tank entity would be
modeled as an interaction class and its instance data is sent
when the tank fires. Moreover, the interaction classes, object
classes, and their relations of subscription and publication
are all defined before the simulation starts. Therefore, despite
the stochastic interaction class communications, we can still
compute the communication cost of periodic object classes
and these core HLA characteristics will be considered in the
load balance strategy of this paper.

(ii) Federate Migration Techniques. The approach presented
by Tan et al. [35, 36] accomplishes federate migration with
a federate wrapper, which controls the federates execution
through SugarCubes stopping and resuming a federate. The
key point of this research is using the third-partymechanisms
to avoid HLA federation save/restore approach. Although
it gains less latency than some other works, its minimum
latency is about 8 seconds which is much longer than VM
approach in this paper.

To propose and implement an efficient procedure for
balancing HLA simulation’s load, paper [17] migrates feder-
ates through the GRAM Grids’ service such as Web services
grid resource allocation and management (WS GRAM)
and GridFTP. To make the migration delay as negligible
as possible, the authors implement the migration in two
steps. In the first step, it executes in a way that federate
does not stop its execution while initialization files are
transferred. In the second step, the RTI methods are called
to freeze the federation and the rest of data regarding the
federate’s running status and messages are transferred. The
two migration steps are well-devised and similar strategy is
implemented in this paper while using live VMmigration.

Furthermore, in the companion work of [17], thesis [26]
decreases the migration latency to around 0.8 seconds, which
is highly efficiency. However, as we described in the previous
section, VM live migration downtime is mainly proportional
to the amount of the frequently updated memory and could
have latency of tens of ms; thus we propose using VM as a
new federate container and migration enabler in this paper.

3. Dynamic VM/Federate Migration Method

In a Cloud computing environment resources are shared
among multiple users. The number and nature of the
workload presented by these users can vary over time [5].
In addition, large-scale military HLA systems dynamically
change their computation and communication load during
their execution time [1, 17]. Thus, migration of simulation
tasks is essential in CSim.

For CSim of military HLA, there are four basic concepts
including entity, federate, VM, and host.



4 Mathematical Problems in Engineering

HostFederateEntity VM11..n 1..n 1..n1 1

Figure 1: The mapping relations of entity, federate, VM and host.

Federate 1

Federate 2

Federate 3

Federate N

F 1

F 2

F NEntities

From entities to federate,
to VM, and to host VM migration strategy

VM

VM

VM

VMM

VM VM

HostHost

Host

Host

Host

Host

VM

VM

MMA

...

...

...

Migration command

Figure 2: The strategy of clustering entities to federate, to VM, and to host.

(i) An entity often refers to a simulation object such as a
tank, an airplane, and a helicopter or a car.

(ii) A federate is the encapsulated HLA form of one or
more entities.

(iii) VM is the container of one or more federates because
VM is the basic service unit of user’s request in CSim.

(iv) Host is the container of VMs, which means one or
more VM could be consolidated to one host mostly
depending on the host’s computation ability.

As previously mentioned, federate migration is enabled
by VM in this paper. The mapping relations among the four
concepts are illustrated in Figure 1.

The primary clustering strategy of multiscale HLA simu-
lation implementation is shown in Figure 2, where VM based
migration algorithm and implementation approach will be
illustrated.

In the following sections we study dynamic VM migra-
tion mechanisms. Section 3.1 proposes federates’ distribution
and communication architecture. Section 3.2 develops the
algorithm solving the problem when to migrate VMs, what
VMs are to be migrated, and where the migrating VMs are to
be contained.

3.1. VM Distribution and Communication Architecture. In
HLA simulations, entities are often encapsulated in federates,
which are then located into VMs deployed in different
hosts. Each federate executes the simulation by message
communication. The federate communication architecture is
shown in Figure 3.

In this architecture, each VM encapsulates a local-RTI
component (LRC) and there is one server-RTI running on a
host. The RTI communication here is hybrid, which means
that HLA global management services including time syn-
chronizations are executed by the communications among
server-RTI and LRC. Meanwhile, federate to federate com-
munications including object instance attribute reflections
and interaction instance sending/receiving are executed via
LRC in peer-to-peer mode [44].

The VM/Federate distribution architecture is designed as
Figure 4, each host is equipped with a VM monitor (VMM)
in charge of monitoring the VMs’ load and hosts’ load. In our
CSim, every VMM is both a load monitor and a migration
executor. VMM keeps track of running state of local host
and VMs. Also VMM captures the snapshots of local VMs
periodically and then keeps them in a database located in
local host.

Meanwhile, one host has a migration management agent
(MMA) in charge of monitoring all VMs’ periodic status,
triggering VM migration procedure when a host is over-
loaded, selecting the migrated federate sets and target VMs,
and sending the command.MMAmonitors all VMs’ periodic
status by collecting status data from VMM of each host. This
is a pull manner because VMM pulls data from distributed
hosts to MMA. The frequency of this monitoring is set as 1/s
in this paper.

3.2. VM Migration Algorithm. Based on the architecture
shown in Figures 3 and 4, this section delivers a solution
which handles dynamic load imbalance in HLA federations
considering both computational and communication costs.



Mathematical Problems in Engineering 5

VM VM

VM

Global management Global management

Federate to federate
communication

Global management

Federate to federate

communication

Federate to
federate

communication

Server-RTI

LRC: local RTI component

LRC LRC

LRC

Figure 3: VM/Federate communication architecture.

VM

Host Host

VM

Host

VM

VM

VMM VMM VMM

Migration
commandMigration

command

VM snapshots

State monitoring

Periodic sampling

MMA: migration mgmt agent
LRC: local RTI component

Server-RTI

MMA
LRC

LRC

LRC

LRC

VM and host states

· · ·

Figure 4: VM/Federate distribution architecture.

Let us start from analyzing the utilization and workload of
hosts.

3.2.1. Hosts’ Utilization Threshold. 𝑈𝑝𝑗(𝑡) is the utilization of
host 𝑝𝑗 at time 𝑡:

𝑈𝑝𝑗
(𝑡) = 𝛼 ∗ 𝑈cpu (𝑡) + (1 − 𝛼)𝑈mem (𝑡) ,

Th𝑝𝑗 = 𝑘, 0 < 𝑘 ≤ 1,
(1)

where 𝑈cpu(𝑡) is CPU utilization of host 𝑝𝑗 (in percent) and
𝑈mem(𝑡) is memory utilization of host 𝑝𝑗 (in percent). 𝛼 is
a coefficient representing the relative importance between
CPU utilization and memory utilization. As both CPU and
memory are equally important for running VM, 𝛼 is set to
0.5.

The utilization threshold host 𝑝𝑗 is Th𝑝𝑗 or 𝑘, which is
a parameter that allows the adjustment of the effect of the
method; the lower 𝑘 is, the higher the possible overload is and
the higher possibility of migration is. For the determination
of utilization threshold, the following equation is used: 𝑘 =
⌈(1 + 𝛽) ⋅ ((∑

𝑛

𝑗=1
𝑈𝑝𝑗
)/𝑛)⌉, where 𝑘 is the CPU utilization

threshold for all hosts, 𝑈𝑝𝑗 is load of node 𝑗, 𝑛 is the number
of hosts in the simulation system, and 0 ≤ 𝛽 ≤ 0.2 is a
normalized constant. To generate moderate migration, here
we set 𝛽 = 0.1.

Obviously there are two load states for the hosts.

(i) If 𝑈𝑝𝑗(𝑡) ≥ 𝑘, host 𝑝𝑗 is overloaded.

(ii) If 𝑈𝑝𝑗(𝑡) < 𝑘, host 𝑝𝑗 is not overloaded.



6 Mathematical Problems in Engineering

3.2.2. Load of Host and VM. At time 𝑡, load 𝐿𝑝𝑗(𝑡) of host 𝑝𝑗
is computed by the following equation:

𝐿𝑝𝑗
(𝑡) = 𝑈cpu (𝑡) ∗ 𝐶𝑗, (2)

where 𝐶𝑗 is the computation capacity of host 𝑝𝑗, which
is the frequency of the host’s CPU mapped onto millions
instructions per second (MIPS) ratings of each core [45].

In this paper we assume that each federate has variable
workload throughout a simulation, but we can use prelim-
inary experiments to test the maximum loaded VMs of a
host according to their configurations. Suppose that all VMs
are homogeneously configured and have the same amount of
entities; the load 𝐿V𝑖𝑗(𝑡) (MIPS) of VM V𝑖𝑗 at time 𝑡 is defined
as follows:

𝐿V𝑖𝑗 (𝑡) =
𝐿𝑝𝑗
(𝑡)

𝑛𝑗

, (3)

where 𝑛𝑗 is the number of VMs in host 𝑝𝑗 and the assumption
here also enables that we canmigrate a set of VMs at one time
(see algorithm studied later).

3.2.3. Communication Cost. In CSim HLA federation, fed-
erates communicate with each other through the interac-
tion class instance and object class instance. As discussed
in Section 2.2, we assume the interaction class instance is
stochastically sent and object class instance is periodically
updated every time step for the correctness of simulations.
The communication bandwidth request (bit/s) between fed-
erate 𝑎1 and 𝑎2 is as follows:

Comm𝑎1 ,𝑎2 =
1

sim step
∗ obj ins bytes ∗ 8, (4)

where obj ins bytes is the amount of object class instances
bytes exchanged every time step. This means the communi-
cation cost shown in Figure 5 is the object class instances’
requirements of network bandwidth.

Thenwe try to compute the communication cost between
host and VM and host and host. Figure 5 illustrates the
interactions.

In most cases a prerequisite is that VMs in a local host
can communicate much faster than VMs among different
hosts.Therefore, wemust consider the two cases separately. In
Figure 5(a), the solid lines are communications among VMs
within hosts, and the dashed lines are the communications
among VMs of different hosts. After communication merg-
ing, we can get Figure 5(b), where the c1s represents the sum
of communication costs between vm1 and host 𝑝𝑗.

Therefore, the communication cost at time 𝑡 between the
VM 𝑎𝑖𝑘 and the host 𝑝𝑗 is defined as follows:

Comm𝑎𝑖𝑘 ,𝑝𝑗 (𝑡) =
𝑛𝑗

∑

𝑙=1

Comm𝑎𝑖𝑘 ,𝑎𝑙𝑗 . (5)

Then hosts 𝑝𝑘 and 𝑝𝑗 communication cost at time 𝑡 is as
follows:

Comm𝑝𝑘,𝑝𝑗 (𝑡) =
𝑛𝑘

∑

𝑖=1

Comm𝑎𝑖𝑘,𝑝𝑗 (𝑡) . (6)

VM4

VM6

VM1

VM3

c14

VM2 VM5

Host j

Host j

VMs
VM1

VM3

VM2

Host k

Host jHost k

Host k

c16

c26

c34

VMs

(a)

(b)

(c)

c3s = c34

c2s = c26

c1s = c14 + c16

ckj = c1s + c2s +

c3sVMs󳰀

Figure 5: Merging of VM interactions in hosts.

With respect to two objectives of dynamic load balancing,
reducing the load of the overloaded hosts and decreasing
the interhost communication cost, a dynamic load balancing
model is proposed as follows:

min 𝑧 (𝑡) =
𝑛

∑

𝑗=1

Comm𝑝𝑘,𝑝𝑗 (𝑡) , s.t. 𝑈𝑝𝑗 (𝑡) < Th𝑝𝑗 . (7)

The objective function 𝑧(𝑡) is to minimize the interhost
communications between host 𝑝𝑘 with VM to be migrated
and other hosts, and the constraint is that each host’s
computation load is below its threshold.

3.2.4. Migration Algorithm. The migration model above is a
NP-hard problem. Many researchers have used heuristics to
find the optimal solutions and our approach is influenced
by them including the works in [17, 26, 35, 36, 39–43,
45–48]. However, compared with existing researches, our
algorithm not only considers the periodical HLA object class
communication cost, but also migrates a set of VMs every
time decreasing the migration procedure latency compared
to most one-by-one federate migration methods.

Suppose the overloaded host is 𝑝𝑘 and the destination
host selected by migration management agent (MMA) is 𝑝𝑗,
which has least utilization in the simulation. The heuristic is
to select a set of VMs from 𝑝𝑘 to migrate to 𝑝𝑗, in order to
reduce the load of 𝑝𝑘 and minimize the communication cost
after migration. The algorithm is illustrated in Algorithm 1.

For the proposed algorithm in Algorithm 1, the time
complexity of Steps 1–4 is𝑂(𝑁2ave) (𝑁ave is the average number
of VMs per host) and the time complexity of Step 5 is 𝑂(𝑚).
Thus the time complexity is 𝑂(𝑚 ∗ 𝑁2ave). Moreover, the
algorithm is executed with the same frequency of MMA
monitoring all VMs’ periodic status, that is, 1/s.



Mathematical Problems in Engineering 7

Input: VM list withm VMs, host list with n hosts.
Output: Deployment that VM to host, (VM𝑖, host𝑗 | 𝑖 ∈ (1, 𝑚) , 𝑗 ∈ (1, 𝑛)).
Algorithm:

(1) At time 𝑡, MMA finds that host 𝑝𝑘 is overloaded and needs VMmigration, where 𝑈𝑝𝑘 (𝑡) > 𝑘,
𝐿mig(𝑡) = (𝑈𝑝𝑘 ,cpu(𝑡) − 𝑘) ∗ 𝐶𝑘. Also 𝑝𝑗 is the least loaded host in host list. If 𝑈𝑝𝑗 (𝑡) ≥ 𝑘, all hosts
are overloaded and this algorithm does not perform migration; else if 𝑈𝑝𝑗 (𝑡) < 𝑘MMA
sends command to 𝑝𝑘 that 𝑝𝑗 is its migration destination host.
(2) Then min{𝐿migrate(𝑡), (𝑘 − 𝑈𝑝𝑗 (𝑡)) ∗ 𝐶𝑗} is the largest accepted migration load. The largest
accepted VM number is calculated according to 𝑛mig

𝑗
(𝑡) = floor(min{𝐿mig(𝑡), (𝑘 − 𝑈𝑝𝑗(𝑡)) ∗ 𝐶𝑗}/(𝐿V𝑖𝑘 (𝑡))).

(3) Calculate the communication cost CommV𝑖𝑘 ,𝑝𝑗 (𝑡) between every VM of 𝑝𝑘 and host 𝑝𝑗, and the
sum of communication cost CommV𝑖𝑘 ,𝑝𝑘−V𝑖𝑘 (𝑡) between the VM in 𝑝𝑘 and the rest VMs in 𝑝𝑘. The
VM which has min𝑖(CommV𝑖𝑘 ,𝑝𝑘−V𝑖𝑘 (𝑡) − CommV𝑖𝑘 ,𝑝𝑗 (𝑡)) is selected into the VM set 𝑠𝑘𝑗(𝑡). Then the
selected VM is removed from 𝑝𝑘, while 𝑝𝑗 adds the selected VM. Accordingly, the communication
relations of VMs’ communication are updated.
(4) If the number of VMs in 𝑠𝑘𝑗(𝑡) is less than 𝑛

mig
𝑗
(𝑡), back to Step 3. Otherwise output its planned

migration set 𝑠𝑘𝑗(𝑡) of 𝑝𝑘.
(5) If 𝐿 𝑠𝑘𝑗(𝑡) ≤ 𝐿mig(𝑡), VMM of host 𝑝𝑘 and 𝑝𝑗 starts the migration.

Algorithm 1: Communication cost based VM dynamic migration algorithm.

4. Experiment Results and Analysis

4.1. Experiment Design. To validate the effectiveness of the
proposed VM based HLA simulation load balancing method
in CSim, experiments have been designed and implemented.
The simulations were run in a system comprising 2 nodes
of Lenovo 8200t, 2 nodes of HP 6300 Pro MT, 6 nodes of
HP Compaq 8000 Elite CMT, and a 100Mbit/sec Ethernet
connection among all the nodes. The node of Lenovo 8200t
had an Intel i7-870 (8 cores) 2.93GHz CPU and 8G MEM.
The node of HP 6300 had an Intel i5-3470 (4 cores) 3.2 GHz
CPU and 4G MEM. The node of Compaq 8000 had an Intel
Core 2 E8400 (2 cores) 3.00GHz CPU and 2G MEM.

The nodes run a paravirtualized Linux CentOS 5.6 kernel
as a privileged virtual machine on top of the Xen hypervisor
4.0.1 [30]. The guest virtual machines are configured to
single core and run the same version of the Linux kernel as
that of the privileged one. HLA platform was AST-RTI [49,
50] version 2.0 performing communication through TCP/IP
connections.

Moreover, as our benchmark, a practical HLA armored
force game for tactical training was developed. The game
coded in C/C++ was used to conduct experiments and ana-
lyze the performance of our approach. The scenario for our
experiments was a simulation of battle engagement game of
red and blue tank forces, which were hierarchically organized
as Platoon (P), Company (C), Battalion (B), and Regiment
(R). The tank effectuated random selection of several tactical
routes and engagement strategies in two-dimensional space
that was within range of some military training location.

The organization structure of tank forces is illustrated
in Figure 6, which shows that red forces are formed hierar-
chically in 3 to 3 organization. This means that every red
company has 3 platoons and every platoon has 3 tanks, while,
for the blue side, it is formed in 4 to 4 organization, which

Table 1: The number of VMs in different game scenarios.

Scenario (or scale) Number
of VMs

1 red Company versus 1 blue Company 9
1 red Battalion versus 1 blue Company 18
1 red Company versus 1 blue Battalion 25
1 red Battalion versus 1 blue Battalion 34
1 red Battalion + 1 red Company versus 1 blue Battalion 38
1 red Battalion + 1 red Company versus 1 blue Battalion
+ 1 blue Company 43

1 red Battalion + 2 red Company versus 1 blue Battalion
+ 1 blue company 47

1 red Battalion + 2 red Company versus 1 blue Battalion
+ 2 blue Company 52

2 red Battalion versus 1 blue Battalion + 2 blue
Company 57

means every blue company has 4 platoons and every platoon
has 4 tanks.

In order to accomplish such simulations, we cluster tank
entities into VMs according to their military affiliations. The
abbreviations are P: Platoon, C: Company, B: Battalion, R:
Regiment, r: red, b: blue.

Table 1 shows the experiments’ deployment. Each VM
contains one federate in the experiments because computa-
tion and communication costs are mainly due to the number
of tank entities. When the number of entities in one VM is
fixed, the number of federates has little impact on the VM’s
costs as interhost communication cost is normally much
greater than local host cost.

Moreover, each red tank Company is deployed with
4VMs, which are Platoon-1 (P-1), P-2, P-3, and Company



8 Mathematical Problems in Engineering

Battalion 1 Battalion 1 Battalion 2Battalion 3 Battalion 3Battalion 2 Battalion 4

Company 1 Company 1Company 2

Red regiment

Company 3 Company 4Company 3

Platoon 1 Platoon 2 Platoon 3 Platoon 1 Platoon 2 Platoon 4Platoon 3

Blue
regiment

Company 2

Figure 6: Hierarchical organizational structure of red and blue forces.

tank. Each blue tankCompany is deployedwith 5VMs,which
are Platoon-1, P-2, P-3, P-4, and Company tank.

To fulfill migration algorithm addressed in Section 3.2,
the communication cost between VM/Federates were esti-
mated according to periodic HLA object class instances
while ignoring stochasticHLA interaction class instances. For
example, rR1B1C1 needs to report its information by sending
its object class instances to rR1B1 every simulation step. Its
object class contains the information of ID, name, position,
fuel consumption, ammunition, and so forth. According
to this, we can estimate the size of its object class, for
instance, 48 bytes. Assuming the simulation step is 50ms,
then the communication cost caused by the object class
instance is 960 bytes/sec. By using this method, we can get
the communication cost among all the federates.

4.2. Experimental Results and Analyses. In order to evaluate
the proposed VM based migration algorithm’s efficiency, the
experiments were accomplished in two test case groups over
heterogeneous, nondedicated sets of resources, applying an
increasing large load to the distributed system. In the first test
case group, the effectiveness of the dynamic load balancing
system was observed as distributed load imbalances occur. In
the second test case group, to analyze the detection of external
background load, an external load is added in the system and
the balancing reaction is observed.

(1) Reactivity to Load Imbalances. In this test case, all the
distributed simulations were deployed based on an initial
static partitioning that evenly placed the VM/Federates on
the resources. However, due to the resource heterogeneity
characteristics and variable federate loads, the simulation
shows an uneven distribution of load, decreasing the simu-
lations’ performance. In order to evaluate the balancing sys-
tem’s reaction to load imbalances and the VM encapsulation's
impact on simulation, the balanced VM based simulation’s
performance was compared with static distribution wrapped
and unwrapped with VM. In this case of experiments, the
system comprehended the run of the experimental scenario
with a configuration of federates that ranged from 9 to 57 (see
Table 1).

To provide trustworthy results, each execution time in
our graphs represents the average of 20 runs. For every
mean value of simulation execution time, a 95% confidence
interval was evaluated. The half-widths of all confidence
intervals are less than 5% of their respective mean values.
According to Figure 7, the proposed dynamic balancing
algorithm and VM migration improved the performance of
HLA-based simulations on large-scale distributed systems
in most of the experiments. When the distributed load was
under 20 federates, the balancing scheme’s improvement
is unnoticeable or nonexistent because the simulations did
not require any load balancing. In this case, the balancing
just caused a small overhead (2.1%) for the distributed
system, consuming computing from the resource where the
MMAwas deployed. A noticeable improvement was detected
with experiments over 25 federates because considerable
load imbalances occurred during the simulation, along with
the different deployment of VMs and the heterogeneity of
resources caused an imbalanced division of load. Then, a
high increase in execution time in the balanced system is
observed when the number of federates is over 50. This
increases evidence that the distributed system is reaching
a saturation point in which the balancing system cannot
improve the simulation performance since all resources are
becoming totally overloaded.

In addition, blue and red curves in Figure 7 show that
the average overhead with VM encapsulation compared to
without VM in all runs is 3.28%, which means using VM
is acceptable because of two reasons. Firstly, using VM, live
migration techniques saves lots of simulation programmers’
efforts in realization of federate migrations. Secondly, when
the number of federates is less than 50, that is, below the
saturated point of the system, the average execution time
saved is 22.25% compared to the static distribution runs
without VMs.

(2) Detection of Background Load. In order to measure the
efficiency of the load balancing system in detecting and
reacting to the background loads, external jobs are generated
using a tool called Stress [5]. Stress is a workload generator
for POSIX systems and allows for a configurable amount



Mathematical Problems in Engineering 9

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80

VM, static
No VM, static
VM, dynamic balancing

Number of federates

Ex
ec

ut
io

n 
tim

e (
s)

Figure 7: Dynamic balancing scheme versus a static distribution for
an increasing scale of federates.

of CPU and memory stress on the system. In the test case,
the federates were deployed evenly on the distributed nodes,
and Stress was placed on two nodes of HP Compaq 8000
workstation. The load was 1-CPU bound, 1 I/O bound, and
one memory allocator process.

As shown in Figure 8, the curves are similar to those in
Figure 7 except that introduction of an external load caused
an addition of execution time for experiments which have no
dynamic balancing scheme. However, the saturated point is
earlier (changes from 52 to 47) because of the external load
imposed on the distributed system. Thus, the load balancing
system presented a performance improvement detecting the
external load and triggering redistribution of load only when
the distributed system is not saturated.

5. Conclusions and Future Work

The paper proposes a VM based federate migration scheme
for HLA system load balancing on Cloud Simulation Plat-
form. Contribution of this work could be summed in two
aspects: (i) it proposed to use VM as the container of federate.
The overhead brought by VM is about 3.33% according to
papers [1, 33, 34] (in our tests it is around 3.28%). (ii)
It devised an algorithm of HLA load balancing under the
constraints of both computational and communication costs.
The experiment results show that the migration scheme
effectively improved the efficiency of the HLA system with
the prerequisite that the distributed system is not saturated.

As a preliminary work in Cloud computing based HLA
system, this research has a lot of future work to do. Firstly,
the computing granularity is still a difficult problem because

Number of federates

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

VM, static
No VM, static
VM, dynamic balancing

Ex
ec

ut
io

n 
tim

e (
s)

Figure 8: Capacity of the dynamic balancing scheme in detecting
background load for an increasing scale of federates.

VM is actually a heavy container for current resources, and
if one VM contains only one federate, the federate should
include as many simulation entities as possible. However,
a big federate containing many entities may not be flexible
to migrate for load balancing. Therefore, it is complex to
design an appropriate computing granularity and this should
be solved in the future. Secondly, migration algorithm should
be designed to bemore adapted toHLA systems. In this paper,
we devised an algorithm considering both computational and
communication cost. However, the algorithm neglected the
stochastic interaction classes’ characteristics, which may be
considered in an intelligent way to enhance the efficiency of
load balancing in HLA.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research in this paper was supported by Grants 61104057
and 61473013 from the Natural Science Foundation of China
and funding of the Science andTechnology onComplex Land
Systems Simulation Laboratory (63963). The authors thank
the reviewers for their comments.

References

[1] X. Liu, Q. He, X. Qiu, B. Chen, and K. Huang, “Cloud-based
computer simulation: Towards planting existing simulation



10 Mathematical Problems in Engineering

software into the cloud,” Simulation Modelling Practice and
Theory, vol. 26, pp. 135–150, 2012.

[2] B. H. Li, X. Chai, and L. Zhang, “New advances of the research
on cloud simulation,” in Advanced Methods, Techniques, and
Applications inModeling and Simulation, vol. 4 of Proceedings in
Information andCommunications Technology, pp. 144–163, 2012.

[3] S. Jafer, Q. Liu, and G. Wainer, “Synchronization methods in
parallel and distributed discrete-event simulation,” Simulation
Modelling Practice and Theory, vol. 30, pp. 54–73, 2013.

[4] R. Fujimoto, A. Malik, and A. Park, “Parallel and distributed
simulation in the cloud,” SCS Modeling and Simulation Maga-
zine, pp. 1–10, 2010.

[5] A.W. Malik, A. J. Park, and R. M. Fujimoto, “An optimistic par-
allel simulation protocol for cloud computing environments,”
SCS M&S Magazine, vol. 4, 2010.

[6] A. Jávor and A. Fur, “Simulation on the Web with distributed
models and intelligent agents,” Simulation, vol. 88, no. 9, pp.
1080–1092, 2012.

[7] IEEE Std 1516.1-2010, IEEE Standard for Modeling and Simu-
lation (M&S) High Level Architecture (HLA), Framework and
Rules Specification, 2010.

[8] IEEE Std 1516.2-2010, IEEE Standard for Modeling and Sim-
ulation (M&S) High Level Architecture (HLA), Object Model
Template (OMT) Specification, 2010.

[9] IEEE Standard, 1516.1-2010—IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)—Federate
Interface Specification, 2010.

[10] S. Radio, D. Parsons, and V. Deneen, MODSAF Overview and
MODSAFHistory [EB/OL], 2006, http://www.aiai.ed.ac.uk/∼arpi/
SUO/MODULES/modsaf.html.

[11] B. McEnany, “CCTT SAF functional analysis,” in Proceedings of
the 4th Conference on Computer Generated Forces and Behav-
ioral Representation, Institute for Simulation andTraining, 1994.

[12] A. J. Courtemanche and R. L. Wittman Jr., “OneSAF: a product
line approach for a next-generation CGF,” in Proceedings of the
11th Computer Generated Forces Conference, IEEE Computer
Society Press, Orlando, Fla, USA, 2002.

[13] One Semi-Automated Forces (OneSAF), “Operational
Requirements Document (ORD) Version 1.1[EB/OL],” 2000,
http://www.onesaf.net/community/.

[14] B. H. Li, X. Chai, Y. Di, H. Yu, Z. Du, and X. Peng, “Research
on service oriented simulation grid,” in Proceedings of the IEEE
International Symposium on Autonomous Decentralized Systems
(ISADS ’05), pp. 7–14, April 2005.

[15] I. Foster, C. Kesselman, J. M. Nick et al.,The Physiology of Grid:
An Open Grid Services Architecture, 2003.

[16] S. Tuecke, K. Czajkowski, and I. Foster, Open Grid Services
Infrastructure (OGSI), 2003, http://www.ggf.org/documents/
GFD.15.pdf.

[17] A. Boukerche and R. E. de Grande, “Dynamic load balancing
using grid services for HLA-based simulations on large-scale
distributed systems,” in Proceedings of the 13th IEEE/ACM Sym-
posium on Distributed Simulation and Real-Time Applications
(DS-RT ’09), pp. 175–183, October 2009.

[18] Amazon AWS, 2014, http://aws.amazon.com.
[19] Google, https://cloud.google.com/.
[20] Softlayer, 2014, http://www.softlayer.com/Cloud.
[21] R. N. Rodrigo, R. Ranjan, A. Beloglazov, C. A. F. de Rose, and

R. Buyya, “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource

provisioning algorithms,” Software: Practice and Experience, vol.
41, no. 1, pp. 23–50, 2011.

[22] Intel Corporation, System Virtualization-Theory and Implemen-
tation, Tsinghua University Press, Beijing, China, 2009.

[23] D. Ruest and N. Ruest, Virtualization: A Beginner’s Guide,
McGraw-Hill, NewYork, NY, USA, 2009.

[24] M. Rosenblum and T. Garfinkel, “Virtual machine monitors:
current technology and future trends,” Computer, vol. 38, no.
5, pp. 39–47, 2005.

[25] C. Clark, K. Fraser, S. Hand et al., “Live migration of virtual
machines,” in Proceedings of the 2nd ACM/USENIX Symposium
on Networked Systems Design & Implementation (NSDI ’05),
vol. 2, pp. 273–286, USENIX Association, Berkeley, Calif, USA,
2005.

[26] R. E. DeGrande,Dynamic load balancing schemes for large-scale
HLA-based simulations [Ph.D. thesis], University of Ottawa,
Ontario, Canada, 2012.

[27] VMware, 2014, http://www.vmware.com.
[28] Opennebula, 2014, http://opennebula.org/.
[29] Eucalyptus, http://www.eucalyptus.com/.
[30] Xen, http://www.xenproject.org/.
[31] C. Clark, K. Fraser, S. Hand et al., “Live migration of virtual

machines,” in Proceedings of the 2nd conference on Symposium
onNetworked Systems Design& Implementation (NSDI ’05), vol.
2, pp. 273–286, 2005.

[32] F. Travostino, P. Daspit, L. Gommans et al., “Seamless live
migration of virtual machines over the MAN/WAN,” Future
Generation Computer Systems, vol. 22, no. 8, pp. 901–907, 2006.

[33] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W.
Zwaenepoel,Diagnosing Performance Overheads in the Xen Vir-
tual Machine Environment-Network, 2014, http://www.usenix
.org/events/vee05/full papers/p13-menon.pdf.

[34] G. Diwaker and G. R. C. Ludmila, XenMon: QoS Monitor-
ing and Performance Profiling Tool, http://www.hpl.hp.com/
techreports/2005/HPL-2005-187.pdf 2014.

[35] G. Tan and K. C. Lim, “Load distribution services in HLA,”
in Proceedings of the 8th IEEE International Symposium on
Distributed Simulation and Real-Time Applications (DS-RT ’04),
pp. 133–141, October 2004.

[36] G. Tan, A. Persson, and R. Ayani, “Migration of HLA federates,”
in Proceedings of the Simulation Interoperability Workshop (SIW
’05), San Diego, Calif, USA, 2005.

[37] W. H. Tao, Task management and scheduling methods for grid-
computing-based simulation [Ph.D. thesis], National University
of Defense Technology, 2005.

[38] W. Cai, S. J. Turner, and H. Zhao, “A load management system
for running HLA-based simulation over the grid,” in Proceed-
ings of the 6th IEEE International Symposium on Distributed
Simulation and Real Time Applications, pp. 7–14, Fort Worth,
Tex, USA, 2002.

[39] T. Alam and Z. Raza, “A dynamic load balancing strategy with
adaptive threshold based approach,” in Proceedings of the 2nd
IEEE International Conference on Parallel, Distributed and Grid
Computing (PDGC ’12), pp. 927–932, Solan , India, December
2012.

[40] J. Xu and K. Hwang, “Heuristic methods for dynamic load
balancing in a message-passing supercomputer,” in Proceedings
of the ACM/IEEE conference Supercomputing (Supercomputing
’90), pp. 888–897, New York, NY, USA, November 1990.



Mathematical Problems in Engineering 11

[41] A. Y. Zomaya and Y.-H. Teh, “Observations on using genetic
algorithms for dynamic load-balancing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 12, no. 9, pp. 899–911, 2001.

[42] S. Jin and B. Ren, “A novel distributed dynamic load balancing
mechanism,” in Proceedings of the International Conference on
Information Technology, Computer Engineering and Manage-
ment Sciences (ICM ’11), pp. 133–137, Nanjing, China, September
2011.

[43] A. Boukerche and S. K. Das, “Reducing null messages overhead
through load balancing in conservative distributed simulation
systems,” Journal of Parallel and Distributed Computing, vol. 64,
no. 3, pp. 330–334, 2004.

[44] M. Eklöf, M. Sparf, F. Moradi, and R. Ayani, “Peer-to-peer-
based resource management in support of HLA-Based dis-
tributed simulations,” Simulation, vol. 80, no. 4-5, pp. 181–190,
2004.

[45] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud
data centers,” Concurrency Computation Practice and Experi-
ence, vol. 24, no. 13, pp. 1397–1420, 2012.

[46] Q. Long, J. Lin, and Z. Sun, “Agent scheduling model for
adaptive dynamic load balancing in agent-based distributed
simulations,” Simulation Modelling Practice and Theory, vol. 19,
no. 4, pp. 1021–1034, 2011.

[47] N. Rodrigo, R. Ranjan, A. Beloglazov, C. A. F. de Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol.
41, no. 1, pp. 23–50, 2014.

[48] A. Murtazaev and S. Oh, “Sercon: server consolidation algo-
rithm using live migration of virtual machines for green
computing,” IETE Technical Review, vol. 28, no. 3, pp. 212–231,
2011.

[49] Y. Xu, M. Yu, and X. Wang, “Research and development on
AST-RTI,” in Systems Modeling and Simulation: Theory and
Applications, vol. 3398 of Lecture Notes in Computer Science, pp.
361–366, 2005.

[50] N. Li, X.-Y. Peng, M.-H. Zhang, M. Wang, and G.-H. Gong,
“Multimedia communication over HLA/RTI,” Simulation Mod-
elling Practice and Theory, vol. 14, no. 2, pp. 161–176, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


