
Business Process Simulation: Transformation of BPMN 2.0 to DEVS Models

Hassan Bazoun, Youssef Bouanan, Gregory Zacharewicz, Yves Ducq, Hadrien Boye

Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France.

Hardis / Hardis Conseil, 3 rue Guglielmo Marconi, 44800 Saint Herblain, France

hassan.bazoun@ims-bordeaux.fr, youssef.bouanan@ims-bordeaux.fr, gregory.zacharewicz@ims-bordeaux.fr,

yves.ducq@ims-bordeaux.fr, hadrien.boye@hardis.fr

Keywords:BPMN, DEVS, Model transformation, Business

Process simulation.

Abstract

 Industrial enterprises gradually move their goals

towards production of physical products, but increasingly

supplemented by intangible services to differentiate

themselves from the competition. The study of these

services, their set up and the evaluation of their efficiency is

a rising research domain. In the frame of Model Driven

Service Engineering Architecture (MDSEA), a service

system is modeled from different point of views (static and

dynamic) at the different MDSEA levels (BSM, TIM, and

TSM). Dynamicof such system deals with simulation; in

consequence it needs a sound M&S formalisms for

simulation activities.Accordingly, this paper presents the

simulation of service systems based on DEVS models. It

defines a transformation approach of BPMN models into

DEVS simulation models based on the metamodel

approach, and describes the enrichment of obtained DEVS

models with performance indicators (time and costs).

1. INTRODUCTION

 To remain competitive, a company must differentiate

itself from the competition. Improving the produced product

itself with better performance can reach some limits. One

open issue is toimprove enterprise service system, redefine

with this occasion its business processes and share more

information (considered as additional services) with

customers and suppliers.

 In the frame of Model Driven Service Engineering

Architecture (MDSEA) [Bazoun et al. 2014]], a distinction

can be made between static and dynamic modeling of

service system [Cardoso et al. 2012]. A business process is

a series of activities that produces a product or service for a

customer. Business Process Modeling (BPM) [Cardoso et

al. 2012] is the activity resulting in a representation of an

organization’s business processes so that they may be

analyzed and improved [Weske 2007]. Models of business

processes are able to provide suitable static view, but

missing the temporal dimension to express output

performance such as an expected cost or a desired duration.

This issue can be overcome by running a business process

simulation, whose goal is to help in the analysis and

understanding of the business process model according to its

dynamic.

 This paper presents research work results performed in

the frame of the FP7 MSEE (Manufacturing Service

Ecosystem) Integrated Project [FP7 2011].The main result

of MSEE is the development of a Model Driven Service

Engineering Architecture (MDSEA).The first step of

MDSEA concernsthe transformation of Business models

(represented with the Extended Actigram formalism) to

Technical models (represented with BPMN [OMG 2011]);

it has been presented in [Bazoun et al. 2013]. This paper

introduces the second step. It defines a transformation of

BPMN models into DEVS simulation models based on

metamodel matching. The paper is organized as follows.

First, a brief overview of the research literature studying the

transformation BPMN to DEVS is proposed.Then the meta-

models for BPMN and DEVS are presented. After that, the

model transformation from BPMN to DEVS is explained in

detail. Finally, the perspectives of this work will be

proposed at the end of this paper.

2. STATE OF THE ART

2.1. Transformation from BPMN to DEVS

 In the context of BPMN to DEVS transformation,

authors in [Cetinkaya et al. 2012] and [Mittal et al. 2012]

presented a Model Driven Development (MDD) framework

for modeling and simulation (MDD4MS). In the frame of

this framework they defined a model to model

transformation from BPMN as a conceptual modeling

languageto DEVS as a simulation model

specification.BPMN and DEVS Meta-models were

presented. In addition a set of transformation rules were

defined in order to transform BPMN models into DEVS

models. According to these rules, some BPMN concepts

(Pool, Lane, SubProcess) were mapped to DEVS coupled

component, while Task, Event (Start, End, and

Intermediate), and Gateway were mapped to DEVS atomic

component.

 Comparing the BPMN metamodel defined with the

latest version of BPMN 2.0 metamodel [OMG 2011] we can

conclude that several concepts are missing and thus were

not transformed into their corresponding DEVS concept.

Authors didn’t mention the different types of BPMNTasks

(UserTask, ManualTask, ServiceTask…) and BPMN

mailto:hassan.bazoun@ims-bordeaux.fr
mailto:gregory.zacharewicz@ims-bordeaux.fr
mailto:yves.ducq@ims-bordeaux.fr
mailto:hadrien.boye@hardis.fr

Intermediate Events (message, signal…) that can be mapped

differently when transformed to DEVS concepts. The

difference would be in the number of states forming each

DEVSAtomicComp. Based on these remarks, the work

presented in this paper took into consideration these points

in an attempt to benefit from previous work and propose

new mapping and transformation rules.

2.2. DEVS Simulators

 Electing a target DEVS tool for model transformation

has required performing a literature review of current DEVS

Simulation tools. Literature reports on an important number

of DEVS editors tools used both for modeling tender

specification and running high performance. To sum-up, the

DEVS group standardization maintains on his web sitethe

updated list of most used DEVS tools known by the DEVS

community [Wainer 2013]. In [Hamri and Zacharewicz

2012], the authors have given a brief description and

comparison of popular tools.

 ADEVS was the first DEVS tool developed in C++ by

the Arizona University. It consists in an ad-hoc simulator.

DEVS abstractclasses should be extended by user to define

atomic and coupled models; then, the simulation canbe

lunched. The drawback resides in the fact the user

needsprogramming skills to code the models.

 DEVSJAVA is a Java framework in which the kernel

simulator is ADEVS. It supportsalso modeling and

simulation of DEVS with variable structures. However, at

atomic level, the user shouldimplement the corresponding

DEVS behavior in Java (in our opinion the user has not

enough skills toprogram his atomic models).

 CD++Builder is a DEVS modeling and simulation

environment that integrates interesting features and facilities

for the user. It allows modeling and simulation of other

DEVS formalisms (cell-DEVS, Quantized-DEVS, etc). It

provides a DEVS graphical editor to model coupled and

atomic models, and to encapsulate them through

components for further reuse.

 Other DEVS tools are dedicated to specific areas. VLE,

this is a C++ M&S framework that integrates heterogeneous

models from different scientific fields. This integrationis

based on the agent paradigm. In addition, JDEVS is the Java

implementation of a DEVS formal framework. It supports

multi-modeling paradigms based on DEVS. It ensures the

interoperability among the reused components. Also

SIMSTUDIO can be considered. It is focused on a

simplified DEVS editor for DEVS non Expert. Authors also

investigate LSIS_DME that is focused on a graphical

interface and the code source generation in order to

complete the model by complex Java functions.

 At the end each DEVS is covering interesting aspects

that complete basic DEVS facilities or propose different

model views. Nevertheless we faced that it is difficult to

import non DEVS models other than hard coded matching

by the tool, i.e. the customization is limited. We suggest that

the feeding by other model can be facilitated if following a

Model Driven approach, e.g. MDA. One core concept of

MDA is the Meta Model that is required for model

matching. In the paper [Garredu et al. 2012], a Meta model

is proposed.

3. MODEL TRANSFORMATION FROM BPMN 2.0

TO DEVS MODELS

 This section introduces the main transformation

principles from BPMN model to DEVS model, including

the transformation architecture, DEVS metamodel, the

mapping of BPMN concepts to DEVS concepts, and the

implementation using a transformation language.

3.1. Concept

3.1.1. Transformation Architecture

 The metamodel approach [OMG 2003] is one of the

most used transformation techniques. Figure 1 presents the

metamodel approach adapted to the context of model

transformation from BPMN 2.0 model to DEVS model.

Three different levels are identified: model, metamodel, and

meta-metamodel. The BPMN model is the source model to

be transformed, while the DEVS model is the target model

resulting from the ATL transformation. BPMN and DEVS

models conform to the BPMN 2.0 and DEVS metamodels

respectively. In addition both metamodels conform to a

meta-metamodel named Ecore [McNeill 2010] metamodel.

A mapping is defined between the concepts belonging to

BPMN2.0 and DEVS metamodels. This mapping is

implemented by ATL (Atlas Transformation Language)

[ATL 2012].

Figure 1.Transformation architecture

3.1.2. BPMN and DEVS MetaModels

 Source and target metamodels should be well identified

to proceed with the transformation according to Figure 1.

BPMN 2.0 metamodel specified in [OMG 2011] is the

source metamodel. There is no endorsed metamodel for the

target DEVS metamodel, but several researches were held

for the purpose of building a DEVS metamodel but a

synthesis work is proposed in [Garredu et al. 2012]. The

transformation from BPMN to DEVS models has required

gathering previous works for setting a DEVS metamodel, as

a result the authors proposed a simplified DEVS

metamodel. It is used as a target metamodel which conforms

to the DEVS specification [Zeigler et al. 2000]. Figure 2

presents the DEVS metamodel defined in Eclipse Ecore

format.

Figure 2.Simplified DEVS metamodel

In DEVS, there are two types of models: atomic and

coupled models. Each model has a list of InputPorts and

OutputPorts. An atomic model has four main methods:

internal transition, external transition, output, and time

advance. A coupled model is a decomposition of DEVS

models (atomic or coupled) and DEVS Coupling. In

addition, there are three types of coupling between ports:

External Input Coupling (connections between the

inputports of the coupled model and its internal

components), External Output Coupling (connections

between theinternal components and the output ports of the

coupledmodel, and Internal Coupling (connections between

the internalcomponents).

3.1.3. Mapping of concepts

 The role of mapping in model transformation is to

define links between concepts and relations from both

metamodels (BPMN and DEVS). In [Mittal et al. 2012], a

first mapping was proposed by the authors. Nevertheless,

this early mapping didn’t distinguishall the various types of

tasks and events existing in BPMN 2.0 which differ with

respect to the potential situationsa task might treat.

 To complete this approach and to reach BPMN 2.0

requirements, different types of tasks are detailed (Receive

task, Send Task, User Task, Service Task, and Manual

Task), all of these tasks mapped to “DEVSAtomicModel”

concept but differing by the local behavior. This is also

applied to intermediate events (Receiving and Sending

Messages).Also we clearly distinguish Tokens and

Messages. The structure of a token and message is a multi-

value event as described in G-DEVS [Zacharewicz 2006]

that is implemented by one object with several variables.

Each variable is representing one data. Some information of

the token will be updated by the workflow according to

action defined in task, current values of the token and

message received. At the end,the token reflects the path

taken, the duration, etc.All the data are tracked in order to

compute some performance indicators. This paper will not

detail each concept, only most relevant are elaborated in the

following.

3.1.3.1. Tasks

Basic Task model: a task is an activity where a work is

performed by a resource. It consumes a certain amount of

time. The token represents the work item entity with its

arrival status. The status is evolving during simulation. At

the end the token data are employed to analyse performance

indicators regarding the service process completion.

 A task is specified by the following parameters:

 Working time required to complete the task by a

resource on an entity.

 If the type of the entity token changes due to the

process activity, the task changes the entity type status.

 Once a task is executed the value of an entity changes,

the entity is described by variables that are affected by

the process.

 To represent the behaviour of a business with some

duration, the simulation component of the task will delay an

entity arriving at the port of entry for a specified period of

time before sending it to the output port.

 When a task is in the "Init" state, it means that no

resource currently performs this task. Due to the arrival of

an external event, the state changes to "State_X" with {X €

[1...*]}. Figure 3 is describing the basic task with its

equivalent DEVS model according to DEVS graphical

representation of Song. The task is triggered by the entity

token only. Then the activity required some duration and

then at the end the token is released after some delay and

some modification on its variable attributes.

Figure 3.Basic Task DEVS State diagram

Reception Task Model: For a more accurate matching

between BPMN model and DEVS model it has been chosen

to distinguish the “Reception Task” from the “Basic Task”

(Figure 4). The reason is based on the synchronization

between the considered task and a triggering message that

can come from another resource lane or pool. In that case

Init_State

ta=

State_1

ta=Task Duration

«In_Token » ? Token arrives

Store_Token(Token)

« In_Token »

« Out_Token »

«Out_Token » ! Modify_Token(Token)

@ no other item in the Task

«In_Token » ? Token arrives

Store_Token(Token)

«Out_Token » ! Modify_Token(Token)

@ other item in the Task

State variables update fonction
Store_Token()
Modify_Token()

Basic Task

the reception of the token is not sufficient to launch the task;

the task is submitted to a triggering message.

Figure 4.State diagram Task Reception Model

We distinguish two Types of Inputport: Message Object and

Token Object. The outputport Type is only a Token Object.

The action of this task consist in the received input message

contains information that will be used to modify the entity,

understand the type of entity or just attribute values

3.1.3.2. Events

 The notion of event is used to represent something that

“happens” during the course of the process, it is

representing a step in the process the meaning differ from

DEVS event. These events affect the flow of the process.

There are three types of events, based on when they affect

the flow: Start event, intermediate event, and end event. In

this paper we will present an example of an intermediate

event; intermediate reception event (Figure 5).

 An IntermediateEvent can occur in the process flow. It

means that a triggering event is required to continue the

process. An IntermediateEvent may occur on the edge of

"Tasks" and "SubProcesses". In that case, itis a triggered

eventduring the course ofthe activity.It indicates that

something can happen coming some other lane or pool

between the beginning and end of a process.

Figure 5.State diagram Intermediate Event Model

Figure 6.State diagram Task Reception Model

Figure 6 presents the synthesis of the mapping between

BPMN and DEVS. It details in bold the new concepts added

regarding the previous approaches in the literature.

3.2. Implementation

3.2.1. Transformation Language

 ATL is a model transformation language specified as

both a metamodel and a textual concrete syntax. In the field

of Model-Driven Engineering (MDE), ATL provides

developers with a mean to specify the way to produce a

number of target models from a set of source models.

 ATL is notable for its hybrid approach to model

transformation. Most parts of a transformation to be

implemented can be specified in ATL's declarative style.

Because declarative style code is not as expressive as

imperative code, some model transformation problems are

hard to implement by using a declarative-only approach.

Therefore ATL offers also support for imperative code.

Imperative code can be used in do blocks of transformation

rules, or completely separated in helper rules.

 ATL-code is compiled and then executed by the ATL

transformation engine. ATL supports only unidirectional

transformations. ATL offers dedicated support for tracing.

The order of the rule execution is determined

automatically,with the exception of lazy rules, which need

to be called explicitly. Helper functions provide imperative

constructs. ATL does not support incremental model

transformation, so a complete source model is read and

complete target model is created.

 An ATL M2M (eclipse) component is developed inside

the Eclipse Modeling Project (EMP). The ATL Integrated

Environment (IDE) provides a number of standard

development tools (syntax highlighting, debugger, etc.) that

aims to ease development of ATL transformations. The

ATL project includes also a library of ATL transformations.

The project is using ATL M2M for compliance reason with

SLMToolBox also developed under Eclipse and presented

in the next section.

Init_State

ta=

State_1

ta=∞

« In_Token »

« Out_Token »

State_2

ta=0

« In_Message »

«In_Message» ? Message

Store_Message(Message)

«Out_Token » !

Modify_Token(Token)

State variables update fonction
Store_Token()
Store_Message()
Modify_Token()

Reception Task

«In_Token » ? Token arrives

Store_Token(Token)

«In_Token » ? Token arrives

Store_Token(Token)

«In_Message» ? Message

Store_Message(Message)

«In_Token » ? Token arrives

Store_Token(Token)

Init_State

ta=

State_1

ta=∞

« In_Token »

« Out_Token »

State_2

ta=0

« In_Message »

«Out_Token » ! Token

Intermediate Event

State variables update fonction
Store_Token()
Store_Message()

«In_Token » ? Token arrives

Store_Token(Token) «In_Token » ? Token arrives

Store_Token(Token)

«In_Token » ? Token arrives

Store_Token(Token)

«In_Message» ? Message

Store_Message(Message)

«In_Message» ? Message

Store_Message(Message)
« Out_Message »

«Out_Message » ! Message

3.2.2. SLMToolBox

SLMToolBox [Boye et al. 2014] is a software tool

developed by Hardis [Hardis 2013] in the frame of MSEE

project. The SLMToolBox will be used by enterprises

willing to develop a new service or improve an existing one,

within a single enterprise or a virtual manufacturing

enterprise [14]. The tool will be used at the stage of

“requirement” and “design” of the service engineering

process. The SLMToolBox is regarded to be an integration

of several scientific concepts related to services into one

tool. These concepts can be summarized into MDSEA

methodology, services’ modeling, engineering, simulation,

monitoring and control.

 The simulation feature is based on model

transformation from BPMN to DEVS models. Source

BPMN model is extracted from the BPMN graphical editor

(integrated in SLMToolBox), a transformation engine is

implemented based on ATL, and the output of this engine is

DEVS model. A new developed version of [Zacharewicz et

al. 2008] will be integrated in the SLMToolBox for

graphical visualization and simulation of DEVS models.

3.3. Case Study

 Oneuse case model from the MSEE European project

has been reused to serve in this research as a case study. The

process consists in the creation of a cloth patron adapted and

fitted to each client by tailoring thanks to customer data.

 In the project, the modeling isstarting from BSM level

with an Extended Actigram model. Then the next step is

going down to the BPMN model at TIM level. At this level

before to create the service from the model it could be

valuable to simulate its behaviour in order to correct

potential error of conception that can be detected thanks the

dynamical aspects not seen only by reading a static model.

The next part of the section will focus on the transformation

to the simulation model.

 One extract from the BPMN model is detailed in Figure

7. Two pools of the client and manufacture are described in

the use case model presented. In particular the sequence and

the messages exchanged with the client areconsidered.The

distinctive contribution of this research work permits fist to

differentiate the type of BPMN event. For instance the

model shows an intermediary “Message Event”. In addition,

the task 1 is emitting a message to another blind pool(with

basic a reception and triggering behavior). We consider this

possibility as expressing representatively BPMN 2.0

collaboration model.

Figure 7.BPMN2.0 model for DEVS transformation

 At DEVS level, the LSIS_DME editor [Zacharewicz et

al. 2008] was tentatively selected to perform test on the

DEVS models obtained from BPMN matching before

moving at final development stage, to the DEVS engine of

the SLMTOOLBOX. One interest for the tool comes from

the fact it enables the creation, storage library, modification

and composition of XML based models that can be feed in

our case by the transformation from ATL BPMN models.

Also, the editor allows editing visually a model with

geometric shapes representing the different elements of a

DEVS atomic or coupled DEVS model.

 Mapping realized the DEVS Coupled Model based on

the library developed from BPMN components (Figure 4)

and integrated in the LSIS_DME DEVS models library of

BPMN diagram. The DEVS coupled model presented in

Figure 8 is the transformation results of the selected extract

from the Figure 7 BPMN model of MSEE Case.

Figure 8.Equivalent DEVS model example in LSIS DME

 Then Figure 8 has been run to present an extract of the

simulation results provided by the tool. In this simulation it

was confirmed that the token variables declared in the initial

state of each “start event” atomic model can be followed in

term of evolution of their attributes values accordingly to

activities actions of the process and regarding time. The new

values depend on the operation of the task and message

received. The main idea resulting from the first simulations

performed is the proof of feasibility in term of definition

and monitoring of quality indicators, the capacity to

measure the impact of input factors and parameters. The

goal is to provide simulation feedbacks to parameters tuning

to reach as closed as possible the services desired results.

 The simulation result in Figure 9 shows an extract of

the output of the simulation. The simulation has been set up

to follow performance indicators on tokens. The tokens

gatherinformation on the service building and its delivery.

For instance the time to complete the service delivery can be

traced during the simulation. The number of resources

called to achieve the service delivery process and the cost of

materialand human resources can be computed using the

simulation. Another point is to analyzefailure in the service

delivery. Some service building can lead to bottle necks that

prevent the client from the service. Several scenarios can be

proposed and run to evaluate the best one before the next

implantation step: the architecture implementation.

Figure 9. DEVS Workflow model results example

4. PERSPECTIVE

 Transformation from BPMN models to DEVS models

is one key step in a procedure covering business process

modeling languages, model transformations, and simulation.

DEVS models resulting from the transformation will be

later visualized in a DEVS Graphical editor integrated in the

SLMToolBox. The DEVS metamodel will be completed

independently from any simulator’s architecture. In addition

new features such as export format will be developed.

Storage will be improved. Authors stress that the durability

of this work relies on the adoption of the open platform.

 In addition, BPMN models (subject of simulation) will

be animated for better understanding of the process. Thanks

to the visualization of DEVS models, users will be capable

of tuning more precisely performance indicators’ values

(time, costs and combined indicators) needed for simulation.

 The simulation run report results with sufficient

information needed for business process analysis but the

problem frequently faced is the lack of temporal data from

enterprises because of the domain no long experience.

5. CONCLUSION

 This paper introduced business process modeling and

simulation in the frame of MDSEA project. In consequence,

it presented a transformation of BPMN models into DEVS

models based on previous projects and researches done in

this domain. It proposed a mapping from BPMN concepts to

DEVS concepts, transformation architecture, and

implementation in an M&S tool (SLMToolBox). In

addition, it briefed the perspectives that place it in a well-

defined perspective. The work is still ongoing; it remains

the final integration of the simulation code in the

SLMToolBox and the animation of the BPMN.

Acknowledgement

This work has been partially supported by the FP7 Project

ID 284860 MSEE project.

References

[ATL 2012] “ATL/User Guide – The ATL Language”

http://wiki.eclipse.org/ATL/ (accessed 10 November 2013).

[Bazoun 2013]: Bazoun, H., Zacharewicz. G., Ducq. Y.,

Boye, H. “Transformation of Extended Actigram Star to

BPMN 2.0 and Simulation Model in the frame of Model

Driven Service Engineering Architecture”. TMS, (2013).

[Bazoun 2014]: Bazoun, H., Zacharewicz. G., Ducq. Y.,

Boye, H. “SLMToolBox: An implementation of MDSEA for

Servitisation and Enterprise Interoperability”. Paper

accepted in I-ESA (2014) 7
th

 international conference.

[Boye 2014]: boyé, H., Bazoun, H., Belkhelladi, K.

"SLMToolBox: ATool Set For Service Engineering". Paper

accepted in MODELSWARD 2014 2nd international conf

on Model-Driven Engineering and Software Development

[Cardoso 2012]: Cardoso, J., Pedrinaci, C., Leidig, T.,

Rupino, P., De Leenheer P. “Open semantic service net-

works.” Paper presented at: The international Symposium

on Service Science (ISSS); (2012).

[FP7 2011]: FP7 – FoF-ICT-2011.7.3 – “Manufacturing

SErvice Ecosystem Project- Annex 1 description of work” –

July 29th 2011. http://interop-vlab.eu/

[Garredu 2012]: Garredu, S., Vittori, E., Santucci, J-F.,

Bisgambiglia, P-A. “A Meta-Model for DEVS Designed

following Model Driven Engineering specifications.”

SIMULTECH, page 152-157. SciTePress, (2012).

[Hardis 2013]: Hardis is a software company with specialist

expertise in management computing http://www.hardis.fr/

eng/ jsp/site/Portal.jsp (accessed 18 October 2013).

[Hamri 2012]: Hamri, M. and Zacharewicz, G. “Automatic

generation of object-oriented code from DEVS graphical

specifications.”. In WSC'12. Article 409 , 12 pages, 2012.

[Cetinkaya 2012]: Çetinkaya, D., Verbraeck, A., Seck,

M.D. “Model Transformation from BPMN to DEVS in the

MDD4MS Framework”, TMS-DEVS, (2012): 304-309

[Mittal 2012]: Mittal, S., and Risco Martin, J.L. Netcentric

System of Systems Engineering with DEVS Unified Process.

610-613, 2012. CRC Press.

[McNeill 2010] Ken McNeill “How to extend the Eclipse

Ecore metamodel.” http://www.ibm.com/developerworks/

library/os-eclipse-emfmetamodel/index.html

[OMG 2011]: OMG, “Business Process Model and Notation

(BPMN) version 2.0” document num: formal/2011-01-03.

[OMG 2003] : OMG, “MDA Guide Version 1.0.” document

number: omg/2003-05-01.

[Thoben 2001]: Thoben, K.-D., Jagdev, H., Eschenbcher, J.

“Extended Products: evolving traditional product

concepts” In the 7th International Conference on

Concurrent Enterprising: Bremen, Germany, June 2001.
[Wainer 2013]: DEVS TOOLS, hosted by G. Wainer at

Carlton University, November 2013,
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

[Zacharewicz 2008]: Zacharewicz G.; Frydman C.;

Giambiasi N. “G-DEVS/HLA Environment for Distributed

Simulations of Workflows”, Simulation, 2008, 84(5), pp.

197–213

[Weske 2007]: Weske, M., 2007. “Business Process

Management: Concepts, Languages, Architectures”. New

York, Springer-Verlag, (2007): p. 368.

[Zeigler 2000]: Zeigler, B.P., Praehofer, H. and Kim, T.G.

“Theory of Modeling and Simulation”, NY, 2000.

http://wiki.eclipse.org/ATL/
http://interop-vlab.eu/
http://www.hardis.fr/%20eng/%20jsp/site/Portal.jsp
http://www.hardis.fr/%20eng/%20jsp/site/Portal.jsp
http://www.ibm.com/developerworks/
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

