
http://sim.sagepub.com

SIMULATION 

DOI: 10.1177/0037549707084490 
 2007; 83; 473 SIMULATION

Thomas Wutzler and Hessam S. Sarjoughian 
 Languages

Interoperability among Parallel DEVS Simulators and Models Implemented in Multiple Programming

http://sim.sagepub.com/cgi/content/abstract/83/6/473
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATION Additional services and information for 

 http://sim.sagepub.com/cgi/alerts Email Alerts:

 http://sim.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.com/journalsPermissions.navPermissions: 

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com


Interoperability among Parallel DEVS
Simulators and Models Implemented in
Multiple Programming Languages

Thomas Wutzler
Max-Planck Institute for Biogeochemistry
Hans Knöll Str. 10
07745 Jena, Germany
thomas.wutzler@bgc-jena.mpg.de

Hessam S. Sarjoughian
Arizona Center for Integrative Modeling & Simulation
School of Computing and Informatics
Arizona State University, Tempe, Arizona, USA

Flexible yet efficient execution of heterogeneous simulations benefits from concepts and methods
that can support distributed simulation execution and independent model development. To enable
formal model specification with submodels implemented in multiple programming languages, we
propose a novel approach called the Shared Abstract Model (SAM) approach, which supports simu-
lation interoperability for the class of Parallel Discrete Event System Specification (DEVS) compliant
simulation models. Using this approach, models written in multiple programming languages can be
executed together using alternative implementations of the Parallel DEVS abstract simulator. In this
paper, we describe the SAM concept, detail its specification and exemplify its implementation with
two disparate DEVS-simulation engines. We demonstrate the simplicity of integrating simulation of
component models written in the programming languages Java, C++ and Visual Basic. We describe
a set of illustrative examples that are developed in an integrated DEVSJAVA and Adevs environ-
ment. Further, we stage simulation experiments to investigate the execution performance of the pro-
posed approach and compare it with alternatives. We conclude that application domains, in which
independently-developed heterogeneous component models consistent with the Parallel DEVS for-
malism, benefit from a rigorous foundation and are also interoperable across different simulation
engines.

Keywords: DEVS, interoperability, distributed simulation, middleware, scalability

1. Introduction

Interoperability among simulators continues to be of key
interest within the simulation community [1, 2]. A chief
reason is the existence of legacy simulations which are de-
veloped using a variety of software engineering paradigms
that are jointly executed using modern, standardized simu-
lation interoperability infrastructures such as HLA [3] and

SIMULATION, Vol. 83, Issue 6, June 2007 473–490
c� 2007 The Society for Modeling and Simulation International
DOI: 10.1177/0037549707084490
Figure 8 appears in color online: http://sim.sagepub.com

DEVS-BUS [4]. The latter supports the Discrete Event
System Specification (DEVS) modeling and simulation
approach [5]. Based on general purpose simulation inter-
operability techniques and high-performance computing
technologies, these approaches offer robust means for a
concerted execution of disparate models. However, use of
such approaches can be prohibitive in terms of time and
redevelopment cost of existing models.

For example, in natural and social sciences applica-
tion domains, often mathematical and experimental data
are directly represented in (popular) programming lan-
guages including C, C++, C#, Fortran, Java and Visual
Basic [e.g. 6, 7] instead of first being cast in appropri-
ate modeling and simulation frameworks. Since computer

Volume 83, Number 6 SIMULATION 473

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

programming languages are intended to be generic and not
specialized for simulation, they do not offer some simula-
tion artifacts—such as causal output to input interactions
and time management—that are essential for separating
simulation correctness versus model validation [8, 9]. The
consequence is often, therefore, custom-built simulations
where separation between models and simulators are weak
or otherwise difficult to understand.

Fortunately, these legacy programming-code models
often have well-defined mathematical formulations, facil-
itating their conversion to simulation-code models. The
translation from programming-code to simulation-code
models can be valuable since the latter can benefit from
rich modeling concepts and artifacts which in turn enable
rich simulation model formulation, development, execu-
tion and reuse. A key advantage of using a well-defined
simulation protocol is that it allows a simulator to exe-
cute models independent of their realizations, in particu-
lar, programming languages. Achieving model exchange
requires a modular design with well-defined interface
specifications and a mechanism to execute the models
within a concerted simulation environment [10, 11]. Var-
ious approaches exist for exchanging model implemen-
tations and their concerted execution. Techniques range
from highly-specialized coupling solutions [12], the use of
blackboards for message exchange [13], modeling frame-
works [14] and XML-based descriptions of models [15] to
the usage of standardized simulation middleware [16].

In this work, we propose the Shared Abstract Model
(SAM) interoperability approach, which provides a novel
capability for concerted execution of a set of DEVS-based
models written in different programming languages. For
example, a DEVS-compliant adaptation of a model of for-
est growth [17] implemented in Java may be executed
together with a soil carbon dynamics model [18] im-
plemented in C++, using the DEVS simulation engines
DEVSJAVA [19] and Adevs [20, 21]. Furthermore, the
Abstract Model allows the execution of models written in
a programming language for which no simulator has been
developed. An example of this could be a model written
in Visual Basic, but simulated in DEVSJAVA once it is
wrapped inside a component which implements the Ab-
stract Model.

In the remainder of this paper, we will describe the
SAM concept and its realization for executing DEVS (or
DEVS-compliant) simulation models that are expressed
in one programming language, but that are executed in a
simulation environment implemented in another program-
ming language. We exemplify this approach for discrete-
event and optimization models. Finally, we will examine
the scalability of the Abstract Model with respect to the
number of couplings between the models, which shows
potential applicability toward large-scale simulations us-
ing high performance computing platforms.

2. Background and Related Work

Significant advances have been achieved toward simula-
tion interoperability. The importance of simulation inter-
operability lies in systematic capabilities to overcome dif-
ferences between simulations that may have vastly dif-
ferent or partially formal underpinnings, i.e. the types
of dynamics each simulation can express could be very
different. Other key benefits are support for develop-
ment, execution and management of large-scale simula-
tions and emulations. Interoperability, therefore, is chiefly
used for federating disparate simulations, software appli-
cations and physical systems with humans in the loop.
Therefore, simulation interoperability must deal with dif-
ferences between syntax and semantics at a common level
of abstraction among simulations and software applica-
tions that are treated as simulations. A common level of
model expressiveness may exceed or constrain the kinds
of simulations that are federated (for an example, see
[22]). In this context, interoperability serves as a standard
such as High Level Architecture [3, 23]. Nonetheless, in-
teroperability concepts and methods lend themselves to
distributed execution. Examples of these methods are nu-
merous and they are generally used for specific classes of
simulation models.

A key advantage of a well-defined modeling and sim-
ulation framework is to support building large, complex
simulation models using system-theoretic concepts. Such
a framework can provide a unified basis for analysis, de-
sign and implementation of simulation models for com-
plex systems [24, 25]. Systems-theory and its foundational
concept of hierarchical composition from parts lends it-
self naturally to object-based modeling and distributed ex-
ecution. Furthermore, the combination of systems-theory
and object-orientation offers a potent basis for develop-
ing scaleable, efficient modeling and simulation environ-
ments. A well-known approach to system-theoretic mod-
eling and simulation is the DEVS framework [5].

In the context of the DEVS framework, the concept of
DEVS-Bus [26] was introduced to support distributed ex-
ecution and later extended using HLA [27, 28] and ACE-
TAO ORB in logical and (near) real-time [4, 29]. A re-
cent development executes DEVS models using Service
Oriented Architecture (SOA) [30]. However, these ap-
proaches execute models using a single simulation engine.
Considering a modeling framework such as DEVS, inter-
operability for a class of DEVS-based simulation models
(e.g. Python DEVS [31] and DEVS-C++ [5]) can address
a different kind of need: handling differences between
alternative realizations of a formal model specifications
and simulation protocols. This research, therefore, is in-
volved in interoperability and enabling standardization
while making use of common interoperability concepts
and technologies.

In this paper we focus on the Parallel DEVS formalism,
which extends classic DEVS [5, 32]. The formalism is
well suited to provide the basic mechanism for interopera-

474 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

tion of simulation models for the following reasons. First,
models can be combined using input and output ports and
their couplings. These models can have arbitrary complex-
ity (structure and behavior) based on a generic, yet for-
mal specification. Second, it allows concurrency with the
closure under coupling property. Concurrency is impor-
tant for handling multiple external events arriving simul-
taneously from one or more models and handling simulta-
neously scheduled internal and external events. Closure
under coupling ensures correctness of input/output ex-
changes among components of hierarchical coupled mod-
els. Third, DEVS can reproduce the other major Discrete-
Time (DTSS) and approximate continuous modeling para-
digms (DESS) that are commonly used in describing eco-
logical and other natural systems. Fourth, Object-Oriented
DEVS, which supports model inheritance, provides a ba-
sis for model extensibility and distributed execution in
logical and/or real-time.

The DEVS formalism is independent of programming
languages or software design choices. Indeed, there exist a
variety of DEVS simulation engines implemented in sev-
eral programming languages and distributed using HLA,
CORBA middleware technologies or Web-Services [33,
34]. However, interoperability issues arise among DEVS
simulation engines. For example, implementation and de-
sign choice differences between DEVSJAVA and Adevs
prevent sharing and reuse of the DEVS models. In the
context of this paper, we refer to models implemented in
different programming languages and executed using dif-
ferent simulation engines as heterogeneous models, given
the same DEVS formal modeling framework.

Aside from basic research in developing simulation en-
vironments such as DEVSJAVA to support combined logi-
cal and real-time simulations (Figure 1, bottom left), there
has also been interest in distributed simulation given a sin-
gle DEVS abstract simulator implementation (Figure 1,
top left) (RTDEVS/CORBA [4] and DEVS/HLA [29]).
Moreover, distributed simulations where models are im-
plemented in different programming languages are also of
interest as noted in the previous section. This is because
a primary objective of reusing model implementation is
to avoid recoding models expressed in different program-
ming languages into a single programming language (Fig-
ure 1, bottom right). The interoperation between hetero-
geneous models can be considered as a general case of
distributed simulation because different implementations
of DEVS will run in different processes that communi-
cate with HLA or general-purpose middleware such as
CORBA (Figure 1, top right).

Given these last two considerations, we can consider
three approaches that enable mixed DEVS-based simula-
tion interoperability: (i) adding translations directly into
the models to account for differences between program-
ming languages and alternative simulation engine designs,
which can be automated to a large extent [35]� (ii) map-
ping different DEVS simulations to a middleware that
is less formal than DEVS itself� and (iii) extending the

Figure 1. DEVS-based simulators realizations, given multi-
ple programming languages and processors

DEVS coupling interface schemes (i.e. the syntax and se-
mantics of the DEVS ports and couplings) to support in-
teroperation among different models and distinct simula-
tors implemented in different programming languages.

In the earth sciences, the most common approach for
executing coupled models in high performance comput-
ing is approach (i). All different component models are
combined and compiled in ad hoc fashion by one team
into a single model [36]. Compared to the type of interop-
erability proposed in this paper, this approach helps cus-
tomizing performance of simulations, but model develop-
ment is very laborious and inflexible. Furthermore, this
kind of support for interoperability impedes the indepen-
dent development of the component models by different
research groups. Combined with weak support for model
verification and validation, there disadvantages are major
obstacles in using approach (i) and thus meeting a grow-
ing need for alternative approaches in environmental mod-
eling and simulation [11, 37, 38].

The HLA simulation middleware approach (ii) enables
the joint simulation of different kinds of models. Com-
pared to the type of interoperability proposed in this pa-
per, it emphasizes simulation interoperability and capabil-
ities (e.g. data distribution management) instead of the-
oretical modeling and abstract simulator concepts and
specifications [8, 22]. HLA standard is considered more
powerful in terms of supporting any kind of simulation
that can be mapped into HLA Object Model Template,
including interoperation with physical software/systems.
In particular, any non-simulated federate may be feder-
ated with simulated federates using a common set of HLA
services (e.g. time management). However, it is difficult
with HLA to ensure simulation correctness as described
by Lake et al. [22].

Our primary focus, therefore, is on DEVS simulation
interoperability (iii) which is based on formal syntax and
semantics and where simulation correctness among het-
erogeneous DEVS-based simulations is ensured. This is
useful given the simplicity and universality of the DEVS
framework for time-stepped logical- and real-time mod-

Volume 83, Number 6 SIMULATION 475

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

els. Also, it is well suited for complex, large-scale mod-
els that are common in the natural sciences and can be
described rigorously in the DEVS, DTSS and DEVS for-
malisms. One technique for implementing this approach is
to design wrappers for the DEVS-models written in differ-
ent programming languages. These can be used by simula-
tors to allow for example cellular atomic models written in
C++ and C# to exchange messages [39]. In this approach,
simulators use wrappers written for different implementa-
tions of atomic models to directly communicate with one
another.

In contrast to the above approaches, we present an Ab-
stract Model of the Parallel DEVS formalism in logical
time to establish an interface for model interoperation be-
tween multiple implementations of the DEVS Abstract
simulators. The core of the SAM approach is an Abstract
Model Interface which is based on the DEVS simulation
protocol. This Abstract Model Interface has a fundamental
role in enabling concerted simulation of disparate models
executing using distinct simulators. The Abstract Model
approach requires the DEVS simulation engines to pro-
vide adapters that support the Abstract Model Interface for
their native models. In this way, the disparity between dif-
ferent atomic/coupled models and their distinct simulators
is accounted for. We describe a realization of this approach
in terms of the DEVSJAVA and Adevs simulation engines.
We show the benefits of the Abstract Model with ex-
amples highlighting (a) interoperation between different
DEVS simulation engines� (b) implementation of models
in a programming language for which there is no DEVS
simulators� and (c) integrating non-DEVS models within
a DEVS simulation.

Since DEVS can reproduce time-stepped and approx-
imate continuous systems, it acts as a generic interface
for coupling discrete-event, discrete-time and continuous
models. Each component model needs to specify ports,
initialization, state transitions, time advance and output
functions. Models can be hierarchically combined to form
a coupled model. Simulators and coordinators take care
of the correct simulation of the coupled model. Although
there are a variety of extensions to Parallel DEVS, in this
work we consider logical-time simulations.

Before proceeding further, we provide a brief descrip-
tion of the abstract DEVS simulator [5, 32]. Every atomic
component model M = �X, S, Y, �ext , �int , �con f , �, ta�
is simulated by a simulator and every coupled compo-
nent model N = �X, Y, D, {Md�D}, {Ic�D��N �}, {Zc�d}� is
simulated by a coordinator. Hence, the DEVS simulation
engine constructs a hierarchy of simulators/coordinators,
which corresponds to the hierarchy of atomic/coupled
models. The coordinator at the root of the hierarchy is
called root coordinator. It manages the global clock and
controls the execution of the simulators/coordinator hier-
archy. The simulators and coordinators of one simulation
engine share a common input/output interface (i.e. input
events and ports X and output events and ports Y) which
is used by the parent coordinator.

The DEVS simulation proceeds in cycles based on dis-
crete events occurring in continuous time. Coordinator
and simulator advance their time based on the time of
last event (tL) and the time of next event (tN). The tN
for a simulator is determined based on time advance of
the atomic models. The tN for coordinators is determined
by taking the minimum tN of all its simulator and coordi-
nator children. The simulation cycle is controlled by the
root coordinator. The root coordinator starts the cycle by
obtaining the minimum tN of all simulators (global tN).
Second, it advances global time. Next, it asks every atomic
simulator to call its model’s output function �. The simu-
lator does this if it is imminent, i.e. simulator’s tN is equal
to global time. Then, all output events are sent as input
events to their respective destinations. Subsequently, all
imminent simulators are told to execute one of the model’s
three transition functions. Lastly, tL and tN of the root co-
ordinator are updated. When all atomic models have their
time of next events scheduled for infinity, the root coordi-
nator simulation cycle terminates.

A simulator decides which of the three transition func-
tions (�ext , �int , �con f ) of a model is to be invoked by com-
paring the model’s time advance function (ta()) to global
tN. Time advance function specifies the relative time un-
til a next internal transition function in the model, i.e. a
scheduled next event time. The external transition (�ext ) is
invoked by the simulator if inputs (i.e. X) for the model
arrive at times prior to the model’s next event time. The
internal transition (�int ) is invoked once the model’s time
advance is expired, but no external events arrive prior to or
at this time. The confluent transition (�con f ) is invoked if
the model’s time advance is the same as the time when ex-
ternal events arrive. If there is no input event to the model
and the model’s time advance is not yet expired, no action
is taken. Lastly, simulator tN and tL are updated based on
models ta(), and coordinator tN is updated to the mini-
mum tN of its simulator and coordinator children. The re-
sponsibility of a coordinator is to exchange input and out-
put events (X and Y) between itself and its simulators and
coordinator children using external input/output and inter-
nal couplings (i.e. {Zc�d}) defined in a coupled model.

All events in DEVS are bags of messages. Each bag
may contain several messages of varying types for each
port at a given time instance. It enables the modeler to deal
with parallel external input or output events. DEVS can
also handle zero time advances, i.e. a complete simulation
cycle taking zero time. To avoid infinite loops there must
be at least one atomic model in each feedback loop that
generates a non-zero time advance after a finite number
of zero time steps.

476 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

Figure 2. Abstraction of different DEVS implementations

Listing 1. The Abstract Model Interface specification

3. Approach

3.1 An Abstract Model for Alternative DEVS Model
Implementations

Different implementations of the DEVS formalism share
the same semantics due to the DEVS mathematical
specification, but they differ in the underlying software
design. In order to allow an abstraction for different imple-
mentations, we have defined an Abstract Model as shown
in Figure 2. The Abstract Model Interface is shared by

all participating simulators and models. Adapters account
for disparities between the implementations. The opera-
tions of this Abstract Model can be realized with a mid-
dleware. A simulator usually directly invokes operations
on the model. In the presented approach, the method invo-
cations are mediated by the Abstract Model.

We specified the Abstract Model Interface in OMG-idl
(Listing 1) and used CORBA to invoke these operations
expressed in different programming languages. It is im-
portant to note that one basic interface is defined for mod-
els instead of defining interfaces for simulators. Further-

Volume 83, Number 6 SIMULATION 477

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

Figure 3. Adapting specific DEVS implementations to support the Abstract Model approach

more, we have not defined an interface for coupled models
as the execution of a coordinator of a coupled model can
be specified as an atomic model. This will be explained in
Section 3.2.2.

3.2 Adapting DEVS simulation engines

To support the functionality of the above Abstract Model,
existing DEVS simulation engines are required to pro-
vide adapters to the Abstract Model Interface. A simu-
lator does not need to know that some of the submod-
els are executed in a remote process. This is achieved by
using a Model Proxy as shown in Figure 3. The Model
Proxy translates its method invocations to invocations of
the Abstract Model Interface. While the translation is only
syntactical in nature and preserves Parallel DEVS model
semantics, the handling of message contents can be non-
trivial.

The invocations of the Abstract Model Interface can
be mediated to a remote process using a middleware. If
the actual model implementation, as shown in Process
2, cannot directly support the Abstract Model, a Model
Adapter is needed to translate the invocations of the Ab-
stract Model to the invocations of the Model Implementa-
tion (Figure 3). In this setting, therefore, the Simulator and
the Model Implementation remain unchanged. The Model
Proxy and the Model Adapter need to be developed only
once for a given simulation engine. The simulator can then
simulate any implementation of the Abstract Model, and
all models specified for the simulation engine can be rep-
resented as implementations of the Abstract Models.

3.2.1 Model Proxy and Model Adapter for Atomic
Models

The implementation of the model proxy and the model
adapter for atomic models is straightforward as the ab-
stract model interface actually corresponds to an atomic
model. The model proxy was implemented in both exam-
ple implementations DEVSJAVA (Listing 2) and Adevs
by extending the atomic model. All invocations are simply
translated to invocations of the Abstract Model Interface.
The only non-trivial issue is the translation of message

contents, for which an additional software component is
employed. Error handling has been omitted from Listing 2
for compactness.

3.2.2 Model Adapter for Coupled Models

While the model adapter for atomic models is as straight-
forward as the model proxy, the model adapter for coupled
models is cleverer. It makes use of the DEVS closure un-
der coupling property, which states that each coupling of
systems defines a basic system [5]. Our basic idea is to
consider the execution of a coordinator as the execution
of an atomic model. Hence, the model adapter for a cou-
pled model employs a coordinator to wrap the execution
of the coupled model according to the specification of the
Abstract Model. Therefore, the simulation cycle of a co-
ordinator is specified as a DEVS-model within the model
adapter. Although this use of the Abstract Model for cou-
pled models is unusual given the simulator/coordinator
separation, this approach has several advantages, which
will be discussed in Section 6.

In the following, the term ‘processor’ is used as a
generic term for both simulator and coordinator. In DEVS-
environments DEVSJAVA and Adevs, the processors ex-
hibited the following methods in their interfaces.

	 ComputeIO(t): with global time t, first invokes
ComputeIO function of associated processors
(which eventually call the output function of the im-
minent models) and second distributes the outputs
to other processors and the parent coordinator.

	 DeltFunc(t, m): with global time t and message m,
adds given message bag to the inputs of the coor-
dinator, distributes these inputs to the correspond-
ing processors and invokes DeltFunc of the associ-
ated processors (which eventually execute transition
functions of the models) for time t and updates the
times of last and next event (tL, tN).

Usually these methods are called by the parent-
coordinator. In order to execute a coordinator within an
Abstract Model, these methods have to be called from the
methods of the model adapter in the same correct order as

478 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

Listing 2. DEVSJAVA implementation of the model proxy

by the parent-coordinator. The crucial point is that each
processor receives all inputs before its delta-Function is
invoked. The parallel DEVS simulation protocol guaran-
tees that the output function is called exactly once before
the internal or confluent transition function. The functions
tL, tN, and getOutputs return the coordinator’s last event
time, next event time and the bag of external outputs re-
spectively. With these conditions, the coordinators’ meth-
ods can be mapped to the Abstract Model as shown in
Listing 3. Error handling and message translation have
been omitted from the listing for compactness. In Sec-
tion 4.1.3, it will be demonstrated that the execution order
is kept correct.

The implementation of the coordinator can be poten-
tially very different from the description in Listing 3 given
other DEVS simulation engines. However, all the imple-
mentations are to exhibit the division into calculation and
distribution of processors outputs on the one hand, and ex-
ecution of the transition on the other hand. Hence, the de-
scription in Listing 3 can guide the development of model
adapters for coupled models of other simulation engines.

3.2.3 Integration of Non-DEVS Functionality

In addition to interoperating various DEVS simulation en-
gines, the Abstract Model can also be used to integrate
non-DEVS functionality. In this case, the model adapter
maps the non-DEVS functionality to the Abstract Model.
Three examples of this integration follow.

(1) One use case is the integration of time-stepped
models. The time-advance function has to return the
time until the next time step. The internal transition
executes the transition. The external transition will
only store the inputs for the next transition.

(2) A second use case is the integration of continuous
time models that specify the calculation of deriva-
tives but have no notion of DEVS yet. The model
adapter will employ quantization [40]. The transi-
tion functions will invoke the calculation of the new
derivatives within the model implementation. Next,
the transition functions will update a quantized in-
tegrator and calculate the time until the next bound-
ary crossing. After an ordinary internal transition,

Volume 83, Number 6 SIMULATION 479

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

Listing 3. DEVSJAVA implementation of the model adapter for coupled models

an internal output transition is scheduled. The time-
advance function will return the calculated time un-
til the next boundary crossing. The output function
of the model adapter will return the output of the
continuous model, but only if it is in the output
phase.

(3) Another use case is the integration of functions that
do not depend on time, i.e. a Mealy-type passive
model, e.g. an optimization procedure. The exter-
nal transition function of the model adapter will in-
voke the original f optimization’s function and im-
mediately schedule an internal transition in phase
‘output’. Within the internal transition the model is
again set to a passive state, i.e. with a time-advance
of infinity. The output function will return the re-
sult of the function invocation, but only if it is in the
output phase.

4. Example Applications

4.1 Interoperation between Different DEVS
Simulation Engines

The first detailed example demonstrates how a coupled
model, which is developed and implemented in one DEVS
simulation engine, is used as a component model within
a larger coupled model within another DEVS simulation
engine.

4.1.1 The ef-p Example Model

The ef-p model is a simple coupled model of three atomic
models (Figure 4). The atomic and coupled models are
shown as blocks and couplings between them are shown
as unidirectional arrows with input and output port names
attached to them. The generator atomic model generates
job-messages at fixed time intervals and sends them via
the Out port. The transducer atomic model accepts job-
messages from the generator at its Arrived port and re-
members their arrival time instances. It also accepts job-
messages at the Solved port. When a message arrives at
the Solved port, the transducer matches this job with the
previous job that had arrived on the Arrived port ear-
lier and calculates their time difference. Together, these
two atomic models form an experimental frame coupled
model. The experimental frame sends the generators job
messages on the Out port and forwards the messages re-
ceived on its In port to the transducers Solved port. The
transducer observes the response (in this case the turn-
around time) of messages that are injected into an ob-
served system. The observed system in this case is the
processor atomic model. A processor accepts jobs at its
In port and sends them via the Out port again after some
finite, but non-zero, time period. If the processor is busy
when a new job arrives, the processor discards it.

480 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

Figure 4. Experimental frame (ef)-processor (p) model

Figure 5. Distributed setup of the ef-p model

4.1.2 Implementation of the ef-p Example Model
using DEVSJAVA, Adevs, and CORBA

This example and the following were developed and run
on several personal computers running the operating sys-
tem Windows XP. All examples have been tested on a sin-
gle machine and, in addition, also with running the com-
ponent models on different machines. We partitioned the
models into two different simulation engines according
to Figure 5. Rounded boxes represent operating system
processes, white angled boxes represent simulators, dark
gray boxes represent models, light grey shapes represent
interoperation components and arrows represent interac-
tions.

First, we implemented the model proxy and the model
adapters for the atomic and coupled models, as described

in Section 3.2, in the two DEVS simulation engines
DEVSJAVA and Adevs using the programming environ-
ments Eclipse version 3.1 and Visual Studio version 7.1.
Next, we implemented the ef coupled model in DEVS-
JAVA and the processor in Adevs in the usual way, using
only one DEVS simulation engine. Finally, we set up and
performed the simulation of the ef-p model. The experi-
mental frame coupled model, a message translator, and the
model adapter were constructed and started in a DEVS-
JAVA server process (Listing 4a). Further, the CORBA-
Object of the model adapter was constructed using the
SUN Object Request Broker (ORB) and naming service
which is part of the JDK 1.5 (SUN 2006). The CORBA-
stub of this adapter was then obtained in the C++/Adevs
client process using the ACE/TAO ORB version 1.5. To-
gether with a message translator the model proxy was con-

Volume 83, Number 6 SIMULATION 481

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

Listing 4. Constructing and using the remote experimental frame sub-model

structed (Listing 4b). Finally, this model proxy was used
as any other Adevs atomic model within the Adevs simu-
lation (Listing 4c).

4.1.3 Execution of the ef-p Example Model

The execution of the coupled ef model by the model
adapter using a coordinator appears to the model proxy as
the execution of an atomic model. The following section
illustrates that the execution order is kept by an execution
trace. The example is a complex confluent transition of
the model setup according to Figure 5. The generator pro-
duces job messages at time intervals of 5 s and the proces-
sor has a processing time of 10 s. Before the confluent
transition at time 10 the processor had accepted the first
job at time 0 and neglected the second at time 5. Next
event times are 10 for the processor, 10 for the generator
and infinity for the transducer. Next event time for the ef
coupled model is the minimum of the time advance for the
generator and the transducer models (i.e. ta() = 10).

First, the output function of the Adevs model proxy
is invoked. The model proxy invokes the output function
of the DEVSJAVA model adapter (Figure 6). The sig-
natures of the model adapter correspond to the Abstract
Model (Listing 1). The signatures of the coordinator and
the simulators are according to DEVSJAVA implemen-
tation and correspond to the methods described in Sec-
tion 3.2.2. Most of the complexity is hidden within the
coordinator. There are only two calls between processes,
i.e. between model proxy and model adapter. The model
adapter tells its coordinator to compute and distribute the
outputs. The coordinator does this by first letting the sim-
ulator of the only imminent component (generator) invoke
the generators output function via computeIO. Second, the
coordinator calls the simulator’s sendMessages method.
This causes the simulator of the generator (g) to put mes-
sages on the transducers (t) input and on the coordinators
output port. Finally, the model adapter is able to return
the outputs of the coordinator as the result of the output
function.

The Adevs coordinator of the ef-p model routes the out-
put of the processor (job 1) to the model proxy. Because
the model proxy is imminent, its confluent transition is
invoked. The model proxy invokes the confluent transi-
tion of the model adapter. Next, the model adapter places
the external input at the coordinator’s inputs by calling
putMessages. Next, it invokes the coordinator’s transition
function DeltFunc with the next event time. The coor-
dinator first routes the input job to the simulator of the
transducer. Next, it asynchronously invokes the transition
functions of the simulators of the generator and the trans-
ducer. The generator’s simulator has no external inputs but
it is imminent, hence it executes the internal transition,
which schedules the next job. The transducer is in pas-
sive state, hence its simulator executes the external transi-
tion with a bag of two inputs. When both generator’s and
transducer’s transitions have completed, the coordinator
updates its times of last and next event.

After control flow has returned to the model adapter,
the model adapter asks the coordinator for the times of last
and next events and returns the time difference. Finally,
the model proxy holds the atomic model in active state for
this time.

4.2 DEVS-Compliant Models without Simulators

The second application example illustrates the simulation
of a DEVS-compliant model that has been implemented
without a corresponding DEVS simulation engine. We im-
plemented the processor model (see the previous section)
within VBA routines of a workbook of MS-Excel version
2003. The class of the Visual Basic processor model de-
scended directly from the portable object adapter classes
which were generated by VBORB, an object request bro-
ker for Visual Basic [41]. This processor directly imple-
mented the Abstract Model. Hence, no model adapter was
needed. The processing time of the processor was ob-
tained from a cell of a workbook. Therefore, the user could
easily change the model behavior before or during the
simulation. Within a start-up routine of the workbook, a

482 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

Figure 6. Sequence diagram of an output and a subsequent confluent transition

CORBA object was constructed and published. Within a
DEVSJAVA simulation a model proxy was initialized with
the CORBA-stub of this processor and coupled to an ex-
perimental frame model. For the DEVSJAVA simulation
it was completely transparent that the processor submodel
was executing a remote process of the Excel-worksheet.

4.3 Non-DEVS Models

The third application example demonstrates integration of
Non-DEVS functionality as described in Section 3.2.3(3).
We wrapped an optimization problem, i.e. a timeless func-
tion, by the Abstract Model Interface. The optimization
problem minimized the price for power supply by order-
ing the power from different providers with different pric-
ing schemes. The proportions of the power that were or-
dered by the different providers were optimized depend-
ing on the amount of required total power. The problem
was modeled within an MS-Excel worksheet and solved
by employing the MS-Excel solver. Further, a simple
DEVSJAVA experiment was devised that consisted of the
proxy of the optimizer model, a generator model and an
observer model. The latter two submodels and the cou-
pled model were specified in DEVSJAVA. The generator

submodel produced events of changes in the amount of
total required power. This output was connected to the
optimizer model. The outcomes of the optimization, i.e.
shares of power and price, were coupled to the observer
model. The observer logged the inputs together with the
time of receiving them. On execution the optimization was
carried out whenever the generator produced changes in
power demand, and the observer logged the result of the
optimization at the same points in logical time when the
changes in required power took place.

5. Simulation Experiments on Model
Performance and Scalability

This section describes some experimental results on the
performance of the Abstract Model approach using a set
of ef-p models, which were presented in Section 4.1.1.
The first aim for these experiments was to show that the
Abstract Model approach scales well with the number
of component models and links. The second aim was to
demonstrate that performance gains are achieved by dis-
tributing the simulation to several machines using the Ab-
stract Model. In these performance studies, the overall
coupled model was composed of n = 2..64 ef-p component

Volume 83, Number 6 SIMULATION 483

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

Figure 7. Allocation of model components to different operating system processes

Table 1. Scenarios for measuring the performance impact of the
Abstract Model

InProc BetweenProc

Baseline n = 2, 4, 8, 16, 32, 64

Local n = 2, 4, . . . , 64 n = 2, 4, . . . , 64

Remote n = 2, 4, . . . , 64 n = 2, 4, . . . , 64

Distributed n = 2, 4, . . . , 64 n = 2, 4, . . . , 64

models. We set up a suite of experiments including four
scenarios (Table 1). In the Baseline scenario, all models
are simulated using DEVSJAVA in a single operating sys-
tem process without using the Abstract Model. In the Lo-
cal scenario, the Abstract Model was used to mediate in-
teroperation between component models. The component
models and their model adapters were executed in two
operating system processes that were different from the
process of the root-coordinator (Figure 7a). All processes
executed on a single machine. In the Remote scenario, the
root coordinator process executed on one machine while
the two model processes executed on another. In the Dis-
tributed scenario, all processes executed on different ma-
chines (i.e. each process executes on its own dedicated
machine).

Two kinds of overhead are important to consider when
interoperating (heterogeneous or distributed) simulations.
The first is due to time synchronization and the second
to message passing among distinct processors (or logi-
cal processes). The second is strongly correlated with the
number of nominal data links [26].

To capture these kinds of overhead, InProc and Be-
tweenProc configurations were devised (Figure 7). Gray
boxes represent models, arrows represent couplings (mes-
sage passing) and round boxes represent operating system
processes. The atomic models in InProc and BetweenProc
configurations were the same, only the coupling to ef-p
models varied. In the former InProc configuration (Figure
7b), each ef-p model was executed within one operating
system process and message passing between the com-
ponent models of each ef-p model occurred within only
one operating system process. In this configuration, only

synchronization messages were exchanged across process
boundaries as there were no nominal data links between
processes. In the latter BetweenProc configuration (Fig-
ure 7c), the component models of each ef-p model resided
in different processes and the couplings (ef-p coupled
model) were specified in the root coordinator’s process.
In this configuration, the component models of each
ef-p model additionally exchanged data messages across
process boundaries. The number of nominal data links in-
creased by two with each additional ef-p model.

The Local, Remote, and Distributed scenarios were
compared to the Baseline scenario and to one another to
quantify the impact of the Abstract Model on total simula-
tion execution times. Scaling effects were studied within
each scenario by varying the number of ef-p models that
were simulated together with one root coordinator.

First, time synchronization overhead was studied by
comparing the DEVSJAVA scenario and the Local InProc
scenario.

overheadSynchronization


 timeLocal_InProc � timeBaseline

timeBaseline
� 100%

Second, message passing overhead was studied by
comparing the local InProc scenario with the local Be-
tweenProc scenario.

overheadMessagePassing


 timeLocal_BetweenProc � timeLocal_InProc

timeLocal_InProc
� 100%

Finally, the speedup of distributing the models on dif-
ferent machines was studied by comparing the remote and
the distributed scenario.

speedup 
 timeRemote

timeDistributed

Performance studies were performed on an IBM T42
computer with 1 GB main memory and a 1.7 GHz Pen-
tium processor. For the remote and distributed scenarios,

484 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

Figure 8. (a), (b) Execution times� (c) overheads� and (d) speedup of the performance experiments

two identical computers (1 GB main memory, 2.8 GHz
Pentium processor) were connected to the T42 with a
100 Mbps network connection. Execution times were
measured using the System.nanoTime() function. Other
processes (virus protection, etc.) were still running dur-
ing the performance studies, causing an additional ran-
dom component in execution times. All atomic and cou-
pled models were implemented and executed using JAVA
version 1.5 and DEVSJAVA version 2.7.2 that was ex-
tended with multi-threading. To help measure execution
times, 104 flops were added to the Proc model transition
function.

5.1 Results of the Performance Studies

In all scenarios, the execution time basically increased
linearly with the number of simulated ef-p models (see

Figure 8a and 8b). The execution time of models execut-
ing in different processes at the same computer was 2–4
times longer than the Baseline scenario execution time.
For example, in the case of having 64 ef-p models, the
local BetweenProc execution time was 3.5 times that of
the Baseline scenario, corresponding to a 250% overhead.
The overhead was due to synchronization and message
passing (Figure 8c), each roughly accounting for half of
the total overhead. No increasing trend of the overhead
was observed due to the scaling of the number of the sim-
ulated models and the associated higher number of data
links. In the case of 16 ef-p models, the execution time for
the local InProc scenario was, by chance, exceptionally
high.

With models residing on one different machine (remote
scenario), the execution times of the InProc configuration
were similar to the case where models were executed on

Volume 83, Number 6 SIMULATION 485

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

Listing 5. Use of abstract interfaces for simulators instead of models

the same machine (local scenario). However, for the Be-
tweenProc configuration, the execution time was higher
than in the local scenario (compare Figure 8a and 8b). Dis-
tributing the models on two computers reduced execution
times by two-thirds to nearly half within both scenarios
(see Figure 8b). This corresponds to a speedup of 1.5–2
(see Figure 8d). It is noted that the speedup does not de-
crease with the number of simulated models.

6. Discussion

High performance computing often deals with complex
models that are built from component models of differ-
ent scientific fields and often by different teams, organi-
zations or institutions. Two commonly-used approaches
for simulation of the coupled model are (i) translating the
component models into one complex model and (ii) us-
ing simulation middleware (e.g. HLA). The first approach
impedes independent component model development and
the second approach may not formally ensure simulation
correctness. The approach of utilizing DEVS to couple
component models (iii) presented in this paper is capa-
ble of overcoming both shortcomings at the same time.
First, the component models can be implemented inde-
pendently with different simulation engines and different
programming languages and run as different processes al-
lowing distributed execution. Second, the DEVS formal-

ism formally ensures simulation correctness. The precon-
dition for the application of the presented approach is that
all component models comply with the (parallel) DEVS
formalism. The execution of the coupled model by sev-
eral communicating processes naturally leads to distrib-
uted simulation platform settings.

In order to overcome differences in various DEVS im-
plementations and programming languages, we proposed
the Abstract Model and specified its interface in a meta-
language. There are also alternative approaches to ab-
stracting these differences. As shown in Listing 5 (Sim-
ulator 1), an abstract interface can be defined for simu-
lators instead of models [42]. The simulator is asked at
each simulation cycle to generate outputs if it is imminent.
There is only one transition function and the simulator de-
cides itself based on global time and inputs which kind
of transition is to be performed. A performance optimiza-
tion may be achieved by integrating the invocation of tN
function into the start function or DeltFunc, which calls
�ext , �int or �con f of the model (Listing 5, Simulator 2). In
yet another approach (Listing 5, Simulator 3), the simu-
lators are informed about their coupling information and
send messages directly to the other simulators instead of
the coordinator (e.g. [39]).

However, the SAM approach exhibits a better perfor-
mance than using an abstract interface for simulators be-
cause the SAM utilizes the sparseness of the DEVS for-
malism, which is grounded in the asynchronous way of

486 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

model execution. Performance is determined to a great de-
gree by the number of communications between the differ-
ent operating system processes (possibly executed on dif-
ferent nodes) and only to a smaller degree by in-process
sub-routine invocations. One invocation of a method of
the abstract model interface or abstract simulator interface
respectively corresponds to one inter-process communica-
tion. While there are two invocations of the abstract sim-
ulator2 interface at each simulation cycle (and even more
invocations with simulator1 and simulator3), the Abstract
Model interface is only invoked in the subset of simula-
tion cycles where there are input messages to the model
or if the model is imminent.

Both time synchronization and message passing over-
head of the Abstract Model were about 120%. This
is worse compared to the shared memory version of
the DEVS-BUS (synchronization overhead 20–25%), but
much better than the HLA/RTI implementation of the
DEVS-BUS (5,000–6,000%). The message passing over-
head does not increase with the number of messages and
the number of nominal data links (which is true for the
DEVS-BUS). One major advantage of the Abstract Model
compared to the DEVS-BUS is the exploitation of par-
allelism. The execution of the model on two comput-
ers shows almost the same performance as in the case
where no Abstract Model is used (Figure 8). Performance
can improve further when a model can be partitioned ap-
propriately to execute on a larger number of processing
nodes.

The execution of the models can be migrated to a grid.
The configuration of the model servers can be done by
a naming service and the factory pattern. There was no
need to change the configuration of the client (the process
of the root coordinator) to switch between the local, re-
mote and distributed scenario in the performance experi-
ments. The locations of the component models are com-
pletely transparent to the simulation. In addition to show-
ing reasonable performance characteristics, the SAM ap-
proach for combining heterogeneous DEVS models has
the advantage of making it straightforward for sub-models
to participate in a coupled simulation. Hence, few or
no changes are necessary for the DEVS models that are
written for specific simulation engines, for which model
adapters have been developed. Often relatively simple
adapters will suffice. We demonstrated the simplicity of
specifying component models and the setup of the coupled
simulation (Section 4.1.2). Additionally, we demonstrated
how easy legacy models can be integrated into a cou-
pled simulation by developing specific DEVS-compliant
model adapters (Sections 4.2 and 4.3). Other approaches
(e.g. directly using HLA) place more constraints on the
sub-models. This is because HLA is intended to support
all simulations as well as physical systems with support
for different types of simulation protocols (e.g. combined
conservative and optimistic simulations). A further advan-
tage of the proposed approach is the free availability of
both CORBA implementations and DEVS simulation en-

gines for common programming languages which are used
in industrial-strength settings as well as research and de-
velopment.

Correctness of model execution, in the presented ap-
proach, is grounded in the DEVS formal specification.
The synchronization among distributed models and coor-
dinators is handled by the DEVS protocol. Within DEVS
the models have no notion of ‘global’ time. However,
the transitions of the remote model are invoked in cor-
rect order (see background section). In order to support
this functioning, the developer of a model adapter for a
specific DEVS simulation engine has to show that the
model adapter is compliant to the Abstract Model. This
ensures that every model that is legitimate in logical time
in the original simulator is also legitimate in the heteroge-
neous case. Interoperability between different DEVS sim-
ulation engines using the SAM approach allows employ-
ing (or implementing) different engines without having a
coupled Abstract Model. Instead, we mapped the execu-
tion of a coordinator to an atomic model. Hence, the inter-
operability takes place at the model level, not at the simu-
lator level. The benefits are that only few constraints need
to be placed on models that were not specifically designed
for a DEVS-simulator and that less messages between
processes are required (see section performance consider-
ations above). The coupled structure of a remote model is
transparent to the simulator. Nonetheless, from the mod-
eling perspective, every hierarchical coupled model can
be systematically mapped onto a flat model without any
side-effect on the approach presented here.

We note that the SAM approach does not rely on
any particular middleware such as CORBA, although the
choice of a middleware has importance including perfor-
mance and interoperability robustness. Thus, the Abstract
Model may be implemented, for example, with COM,
Web services or MPI.

A recent work that is aimed at combining different
DEVS models is DEVS Modeling Language (DEVSML).
It relies on semi-automatic translation DEVS models to
their XML counterpart [35]. This environment is being
applied to system acquisition test and evaluation [30]. In
terms of execution, the environment supports synthesiz-
ing coupled DEVS models. The translation of the models
that are specified using DEVSML to simulation code is far
more complex in comparison to the approach developed
in this paper, and currently only the single programming
language JAVA is supported.

In the context of this work, we have accounted for
logical-time DEVS models. The approach presented in
this paper, however, is in principle also applicable to real-
time DEVS models [43]. In this case, the interface of
the Abstract Model can stay the same, but the seman-
tics (execution) of the Abstract Model needs to comply
with real-time DEVS specifications. Activities, which are
defined as abstractions of tasks in a real system, are part
of the real-time DEVS transition functions. Each activ-
ity takes non-zero wallclock time to be completed and

Volume 83, Number 6 SIMULATION 487

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

thus cannot return immediately. An activity is to be com-
puted within a finite time period. For example, the ex-
ternal transition of the optimization model (Section 4.3)
would schedule an internal transition after a time greater
than zero that reflects an optimistic estimate of the time
to do the optimization calculation. It would then start
the optimization activity, but return immediately. After
calculating the ‘optimal price’ activity in real-time, the
price is returned with the output function. The imple-
mentation of the activity is left to model specification.
RTDEVS/CORBA can simulate any DEVSJAVA model in
real time. Hence, with the DEVSJAVA model proxy, it will
be able to simulate a Parallel DEVS Abstract Model in real
time.

The first use case of the SAM approach is the inter-
operation of several DEVS models that are implemented
in different DEVS simulation engines or different pro-
gramming languages. This was already possible by the
DEVS-Bus/HLA implementation [29] or using HLA di-
rectly. However, the SAM approach requires far less im-
plementation complexity and in many cases less perfor-
mance overhead. The second use case is distributing a
simulation of DEVS-models that are implemented in the
same simulation engine. This was also possible before
with several methods (DEVS-Bus, DEVS/CORBA [44],
CD++ [39]). Which of these methods is most efficient
in performance depends upon the number of models, the
number of links between the models and the implementa-
tion of the DEVS simulation engine. The SAM approach
also allows the inclusion of non-DEVS component mod-
els by designing model adapters. This gives the SAM ap-
proach the potential to develop to a simulation middleware
that ensures simulation correctness. The usage of HLA or
MPI to design a distributed model from the beginning will
lead to solutions that are more efficient in performance in
most cases. However, we think that the usage of the Ab-
stract model for setting up an ad hoc integration of ex-
isting models will be much easier, flexible, scalable and
easier to maintain in most cases.

The SAM approach places only few constraints on par-
titioning a complex model into component models and al-
locating models on different machines. Both structure and
allocation of a component model is completely transpar-
ent to the simulator/coordinator that simulates the com-
ponent model. This gives the possibility of extending the
approach to include variable structure [45] or to perform
dynamic re-allocation of component models during run-
time [46]. However, this requires extending the model
proxy described in Section 3.2.1. Furthermore, the SAM
approach presented here can aid the DEVS Standardiza-
tion effort [47].

6.1 Outlook

To further the work presented, it is important to employ
the proposed approach with high performance comput-
ing for conducting large-scale simulations. As part of this

effort, simulation services such as message filtering, re-
mote parameterization and automated stop/save/recovery
of simulations may be developed and supported. Given
the interest in simplifying and automating distributed sim-
ulation configuration, management and execution, an-
other research direction is devising a testbed with met-
rics to help evaluate alternative simulation design experi-
ments. This may be done by considering performance fea-
tures of different simulation engines, complexity of data
transformations, communication bandwidth and service-
oriented realizations. Further research in automated parti-
tioning and configuration of models for distributed simu-
lation is of great interest [46]. In particular, generic model
partitioning offers a basis for assigning execution of
model components to simulation engines given domain-
independent computational cost modeling and thus im-
proving the performance and efficiency of complex multi-
scale biological system modeling. Further, the proposed
approach is planned to be applied to simulating forest car-
bon dynamics that consists of component models of forest
growth, soil carbon dynamics and carbon in wood prod-
ucts [48]. This research includes developing SAM model
adapters to account for mixed continuous/discrete dynam-
ics described with differential equations and discrete-time
system specifications, as outlined in section 3.2.3.

7. Conclusions

The Shared Abstract Model (SAM) interoperability ap-
proach presented here supports DEVS-based simulations
and their extensions consistent with the DEVS formal-
ism. With this approach, component models can be devel-
oped independently in alternative DEVS simulation en-
vironments and programming languages. The correctness
of disparate simulations is ensured based on DEVS for-
malism. The SAM can be implemented using sound dis-
tributed middleware concepts and techniques. The Ab-
stract Model supports desirable scalability trait. It uti-
lizes the sparseness inherent in the DEVS formalism and
inter-process communications and exhibits good simula-
tion speedup. The basic interface developed on top of
the DEVS formalism enables flexible and non-tedious
integration of new component models. Furthermore, the
SAM approach may be extended with standardizing mes-
sage formats and simulation services. We conclude that
the proposed interoperability approach supports DEVS-
based simulator interoperability providing several advan-
tages and thus that it is indispensable for the use in appli-
cation domains where heterogeneous simulation models
are executing on parallel/distributed platforms.

8. Acknowledgements

This work was funded by a doctoral scholarship of the
German Academic Exchange Service. The authors thank

488 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


INTEROPERABILITY AMONG PARALLEL DEVS SIMULATORS AND MODELS IMPLEMENTED

the anonymous reviewers of an earlier version of this pa-
per. Their critiques and suggestions helped with the orga-
nization of the paper and the presentation of the materials
within.

9. References

[1] Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems.
John Wiley and Sons, Inc.

[2] Righter, R., and J. C. Walrand. 1989. Distributed Simulation of Dis-
crete Event Systems. In Proceedings of the IEEE 77(1): 99–113.

[3] IEEE. 2000. HLA Object Model Template, Version IEEE 1516.2-
2000. IEEE.

[4] Cho, Y. K., X. L. Hu, and B. P. Zeigler. 2003. The RTDEVS/Corba
Environment for Simulation-Based Design of Distributed Real-
Time Systems. Simulation: Transactions of the Society for Mod-
eling and Simulation International 79(4): 197–210.

[5] Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling
and Simulation 2nd Edition. Academic Press.

[6] Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer,
J. O. Kaplan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and
S. Venevsky. 2003. Evaluation of Ecosystem Dynamics, Plant
Geography and Terrestrial Carbon Cycling in the LPJ Dynamic
Global Vegetation Model. Global Change Biology 9(2): 161–85.

[7] Thornton, P. E., B. E. Law, H. L. Gholz, K. L. Clark, E. Falge, D.
S. Ellsworth, A. H. Golstein, R. K. Monson, D. Hollinger, M.
Falk, J. Chen, and J. P. Sparks. 2002. Modeling and Measuring
the Effects of Disturbance History and Climate on Carbon and
Water Budgets in Evergreen Needleleaf Forests. Agricultural and
Forest Meteorology 113(1–4): 185–222.

[8] Sarjoughian, H. S., and B. P. Zeigler. 2000. DEVS and HLA: Com-
plementary Paradigms for Modeling and Simulation? Simula-
tion: Transactions of the Society for Modeling and Simulation
International 17(4): 187–97.

[9] Zeigler, B. P., and H. S. Sarjoughian. 2002. Implications of M&S
Foundations for the V&V of Large Scale Complex Simula-
tion Models, Invited Paper. Paper presented at the Verification
& Validation Foundations Workshop, Laurel, Maryland, VA.
Society for Computer Simulation, https://www.dmso.mil/
public/transition/vva/foundations, John Hopkins University,
October 2002.

[10] Reynolds, J. F., and B. Acock. 1997. Modularity and Genericness in
Plant and Ecosystem Models. Ecological Modelling 94(1): 7–16.

[11] Filippi, J. B., and P. Bisgambiglia. 2004. Jdevs: An Implementation
of a DEVS Based Formal Framework for Environmental Mod-
elling. Environmental Modelling & Software 19(3): 261–74.

[12] Valcke, S., E. Guilyardi, and C. Larsson. 2006. Prism and Enes:
A European Approach to Earth System Modelling. Concurrency
And Computation: Practice And Experience 18(2): 231–45.

[13] Liu, J., C. Peng, Q. Dang, M. Apps, and H. Jiang. 2002. A Com-
ponent Object Model Strategy for Reusing Ecosystem Models.
Computers and Electronics in Agriculture 35: 17–33.

[14] Hillyer, C., J. Bolte, F. van Evert, and A. Lamaker. 2003. The Mod-
com Modular Simulation System. European Journal of Agron-
omy 18(3–4): 333–43.

[15] Pullar, D. 2004. Simumap: A Computational System for Spatial
Modelling. Environmental Modelling & Software 19(3): 235–43.

[16] HLA. 2000. HLA Framework and Rules. IEEE 1516-2000, IEEE.
[17] Nagel, J. 2003. TreeGrOSS: Tree Growth Open Source Soft-

ware – a Tree Growth Model Component. Programmdokumen-
tation, Niedersächsischen Forstlichen Versuchsanstalt, Abteilung
Waldwachstum.

[18] Liski, J., T. Palosuo, M. Peltoniemi, and R. Sievanen. 2005. Car-
bon and Decomposition Model Yasso for Forest Soils. Ecological
Modelling 189(1–2): 168–82.

[19] ACIMS. 2005. DEVSJAVA Modeling & Simulation Tool.
Arizona Center for Integrative Modelling and Simulation,

�http://www.acims.arizona.edu/SOFTWARE/software.shtml#
DEVSJAVA�. (7 August 2007).

[20] Nutaro, J. J. 2005. Adevs (a Discrete Event System Simulator) C++
Library. �http://www.ece.arizona.edu/
nutaro/index.php�. (7
August 2007).

[21] Nutaro, J. J. 2003. Parallel Discrete Event Simulation with Appli-
cation to Continuous Systems. Ph.D. dissertation, Electrical and
Computer Engineering Dept, University of Arizona, 2003.

[22] Lake, T. W., B. P. Zeigler, H. S. Sarjoughian, and J. J. Nutaro.
2000. DEVS Simulation and HLA Lookahead. Paper presented
at the Simulation Interoperability Workshop, Orlando, FL IEEE,
Spring 2000.

[23] IEEE. 2003. HLA Federation Development and Execution Process,
Version IEEE 1516.3. IEEE.

[24] Kim, T. G., S. M. Cho, and W. B. Lee. 2001. DEVS Framework for
Systems Development, Unified Specification for Logical Analy-
sis, Performance Evaluation, and Implementation. In Discrete
Event Modeling and Simulation Technologies: A Tapestry of
Systems and Ai-Based Theories and Methodologies. H. S. Sar-
joughian and F. E. Cellier (eds), New York: Springer� 131–166.

[25] Davis, P. K., and R. H. Anderson. 2004. Improving the Compos-
ability of Department of Defense Models and Simulations. Santa
Monica, CA: RAND.

[26] Kim, Y. J., J. H. Kim, and T. G. Kim. 2003. Heterogeneous Simu-
lation Framework Using DEVS Bus. Simulation: Transactions of
the Society for Modeling and Simulation International 79: 3–18.

[27] Dahmann, J., M. Salisbury, C. Turrel, P. Barry, and P. Blemberg.
1999. HLA and Beyond: Interoperability Challenges. Paper pre-
sented at the Simulation Interoperability Workshop, Orlando, FL
IEEE.

[28] Fujimoto, R. 1998. Time Management in the High-Level Architec-
ture. Simulation: Transactions of the Society for Modeling and
Simulation International 71(6): 388–400.

[29] ACIMS. 2005. DEVS/HLA Software. Arizona Center for Integra-
tive Modeling and Simulation �http://www.acims.arizona.edu/
SOFTWARE/software.shtml#DEVS/HLA�. (7 August 2007).

[30] Mittal, S., J. L. R. Martín, and B. P. Zeigler. 2007. DEVS-Based
Simulation Web Services for Net-Centric T&E. Paper presented
at the Summer Computer Simulation Conference SCSC’07, San
Diego 2007.

[31] Bolduc, J.-S., and H. Vangheluwe. 2002. A Modeling and Sim-
ulation Package for Classic Hierarchical DEVS. Modelling,
Simulation and Design lab, McGill University in Montreal,
Quebec, Canada., �http://moncs.cs.mcgill.ca/MSDL/research/
projects/DEVS/PythonDEVS/PythonDEVS.pdf�. (7 August
2007).

[32] Chow, A. C. H. 1996. Parallel DEVS: A Parallel, Hierarchical, Mod-
ular Modeling Formalism and Its Distributed Simulator. Simula-
tion: Transactions of the Society for Modeling and Simulation
International 13(2): 55–67.

[33] Cheon, S., and B. P. Zeigler. 2006. Web Service Oriented Architec-
ture for DEVS Model Retrieval by System Entity Structure and
Segment Decomposition. Paper presented at the DEVS Integra-
tive M&S Symposium, Huntsville, AL 2006.

[34] Kim, K. H., and W. S. Kang. 2004. A Web Services-Based Distrib-
uted Simulation Architecture for Hierarchical DEVS Models. In
Proceedings of 13th International Conference on Artificial Intel-
ligence and Simulation, 370–379.

[35] Mittal, S., and J. L. R. Martín. 2007. DEVSML: Automating DEVS
Execution over SOA Towards Transparent Simulators Special
Session on DEVS Collaborative Execution and Systems Mod-
eling over SOA. Paper presented at the DEVS Integrative M&S
Symposium DEVS’ 07.

[36] Raddatz, T. J., T. J. Schnitzler, E. Roeckner, W. Knorr, C. Reick,
R. Schnur, and P. Wetzel. 2005. Modelling the Carbon Cycle
Response to Anthropogenic CO2 Emissions: Uncertainties and
Constraints. Geophysical Research Abstracts 7, 04642.

[37] Papajorgji, P., H. W. Beck, and J. L. Braga. 2004. An Ar-
chitecture for Developing Service-Oriented and Component-

Volume 83, Number 6 SIMULATION 489

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wutzler and Sarjoughian

Based Environmental Models. Ecological Modelling 179(1): 61–
76.

[38] Roxburgh, S. H., and I. D. Davies. 2006. Coins: An Integrative
Modelling Shell for Carbon Accounting and General Ecological
Analysis. Environmental Modelling & Software 21(3): 359–74.

[39] Lombardi, S., G. A. Wainer, and B. P. Zeigler. 2006. An Experiment
on Interoperability of DEVS Implementations. Paper presented at
the SIW 2006.

[40] Kofman, E. 2004. Discrete Event Simulation of Hybrid Systems.
Siam Journal on Scientific Computing 25(5): 1771–97.

[41] Both, M. 2006. Vborb – an Visual Basic Object Request Broker.
�http://www.martin-both.de/vborb.html�. (7 August 2007).

[42] Zeigler, B. P., D. Kim, and S. J. Buckley. 1999. Distributed Supply
Chain Simulation in a DEVS/Corba Execution Environment. In
Proceedings of the 1999 Winter Simulation Conference 1999.

[43] Kim, T. G., S. M. Cho, and W. B. Lee. 1997. A Real-Time Discrete
Event System Specification Formalism for Seamless Real-Time
Software Development. Discrete Event Dynamic Systems 7: 355–
75.

[44] Kim, K. H., and W. S. Kang. 2004. Corba-Based, Multi-Threaded
Distributed Simulation of Hierarchical DEVS Models: Trans-
forming Model Structure into a Non-Hierarchical One. Compu-
tational Science and Its Applications, ICCSA Pt 4, 167–76.

[45] Hu, X., X. Hu, B. P. Zeigler, and S. Mittal. 2005. Variable Structure
in DEVS Component-Based Modeling and Simulation. Simula-
tion: Transactions of the Society for Modeling and Simulation
International 81(2): 91–102.

[46] Park, S., C. A. Hunt, and B. P. Zeigler. 2006. Cost-Based
Partitioning for Distributed and Parallel Simulation of Decom-

posable Multi-Scale Constructive Models. Simulation: Transac-
tions of the Society for Modeling and Simulation International
82(12): 809–26.

[47] Wainer, G., B. Zeigler, H. Sarjoughian, and J. Nutaro. 2004. DEVS
Standardization Study Group Terms of Reference. Simulation In-
teroperability Standards Organization, 2004.

[48] Wutzler, T. 2004. To Build a Spatial Model of Forest Growth Us-
ing Stand-Based Forest Inventory. In Proceedings of Interna-
tional Conference on Modeling Forest Production – Scientific
Tools, Data Needs and Sources, Validation and Application, H.
Hasenauer and A. Mäkelä (eds). Vienna, Austria: Department
of Forest- and Soil Sciences BOKU University of Natural Re-
sources and Applied Life Sciences, pg 503.

Thomas Wutzler is a PhD student at Max-Planck Institute for
Biogeochemistry, Jena, Germany and was a visiting scholar in
2005 at the Arizona Center for Integrative Modeling and Simu-
lation (ACIMS), Tempe, USA.

Hessam Sarjoughian is Assistant Professor of Computer Sci-
ence and Engineering at Arizona State University, Tempe and
Co-Director of the Arizona Center for Integrative Modeling
and Simulation. His research includes modeling and simula-
tion methodologies, model composability, network co-design
and agent-based simulation.

490 SIMULATION Volume 83, Number 6

 © 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARLETON UNIV on January 7, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com

