
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228921777

AN	EFFICIENT	OPTIMISTIC	TIME
MANAGEMENT	ALGORITHM	FOR	DISCRETE-
EVENT	SIMULATION	SYSTEM

Article		in		International	Journal	of	Simulation	Modelling	·	September	2010

DOI:	10.2507/IJSIMM09(3)1.146

CITATIONS

4

READS

117

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Optimized	Cooperative	Localization	Technique	Based	on	Linear	Intersection	over	Wireless	Sensor

Networks	View	project

Automobile	Security	View	project

Syed	S	Rizvi

Pennsylvania	State	University

115	PUBLICATIONS			152	CITATIONS			

SEE	PROFILE

Khaled	Elleithy

University	of	Bridgeport

373	PUBLICATIONS			735	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Khaled	Elleithy	on	27	February	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/228921777_AN_EFFICIENT_OPTIMISTIC_TIME_MANAGEMENT_ALGORITHM_FOR_DISCRETE-EVENT_SIMULATION_SYSTEM?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228921777_AN_EFFICIENT_OPTIMISTIC_TIME_MANAGEMENT_ALGORITHM_FOR_DISCRETE-EVENT_SIMULATION_SYSTEM?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Optimized-Cooperative-Localization-Technique-Based-on-Linear-Intersection-over-Wireless-Sensor-Networks?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automobile-Security?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Syed_Rizvi20?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Syed_Rizvi20?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pennsylvania_State_University?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Syed_Rizvi20?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khaled_Elleithy?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khaled_Elleithy?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bridgeport?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khaled_Elleithy?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khaled_Elleithy?enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Int j simul model 9 (2010) 3, 117-130
ISSN 1726-4529 Original scientific paper

AN EFFICIENT OPTIMISTIC TIME MANAGEMENT

ALGORITHM FOR DISCRETE-EVENT SIMULATION SYSTEM

Rizvi, S. S.*; Riasat, A.** & Elleithy, K. M.*

* Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT 06604, USA
** Department of Computer Science, Institute of Business Management, Karachi, 75100, Pakistan

E-Mail: srizvi@bridgeport.edu, aasia.riasat@iobm.edu.pk, elleithy@bridgeport.edu

Abstract
Time Wrap algorithm is a well-known mechanism of optimistic synchronization in a parallel
discrete-event simulation (PDES) system. It offers a run time recovery mechanism that deals
with the causality errors. For an efficient use of rollback, the global virtual time (GVT)
computation is performed to reclaim the memory, commit the output, detect the termination,
and handle the errors. This paper presents a new unacknowledged message list (UML)
scheme for an efficient and accurate GVT computation. The proposed UML scheme is based
on the assumption that certain variables are accessible by all processors. In addition to GVT
computation, the proposed UML scheme provides an effective solution for both simultaneous
reporting and transient message problems in the context of synchronous algorithm. To support
the proposed UML approach, two algorithms are presented in details, with a proof of its
correctness. Empirical evidence from an experimental study of the proposed UML scheme on
PHOLD benchmark fully confirms the theoretical outcomes of this paper.
(Received in June 2009, accepted in April 2010. This paper was with the authors 5 months for 3 revisions.)

Key Words: Discrete Event Simulation, GVT Computation, Optimistic Algorithm,
 Parallel and Distributed Systems, Time Wrap Algorithm

1. INTRODUCTION

The main problem associated with the distributed system is the synchronization among the
discrete events that run simultaneously on multiple machines [1]. If the synchronization
problem is not properly handled, it can degrade the performance of parallel discrete event
simulation (PDES) [2]. Historically, two main methods have been introduced to deal with this
problem: conservative [3, 4] and the optimistic synchronization algorithms (or Time Wrap)
[5]. Two of the most common synchronization protocols for parallel simulation are the
Chandy-Misra protocol [3] and the Time Warp protocol [5] (different approaches for parallel
and discrete-event simulation and its applications are discussed elsewhere [6-12]). An
introduction to the Chandy-Misra protocol and the Time Warp protocol can be found in [6,
13]. The conservative synchronization ensures that the local causality constrain requirement
must not be violated by the logical processes (LPs) within the simulation system [14]. On the
other hand, optimistic synchronization allows the violation of the local causality constraint
requirement. However, such violation can not only be detected at run time but can also be
dealt by using the rollback mechanism provided by optimistic algorithms [14-16].
 The Time Wrap [5, 17] is one of the mechanisms of optimistic time management
algorithm (TMA) which includes rollback, anti-message, and global virtual time (GVT)
computation techniques [1]. GVT defines a lower bound on any unprocessed event in the
system and defines the point beyond which events should not be reclaimed [15]. GVT
computation is perhaps the only global operation in Time Warp. All other operations, such as
rollbacks, state saving, and sending and handling of anti-messages, can be carried out locally.

DOI:10.2507/IJSIMM09(3)1.146 117

mailto:srizvi@bridgeport.edu
mailto:aasia.riasat@iobm.edu.pk
https://www.researchgate.net/publication/35869708_Simulation_of_packet_communication_architecture_computer_systems?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/4292288_Efficient_Analysis_of_Simultaneous_Events_in_Distributed_Simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220800961_Performance_estimation_of_distributed_real-time_embedded_systems_by_discrete_event_simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220954078_A_new_mathematical_model_for_optimizing_the_performance_of_parallel_and_discrete_event_simulation_systems?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221611578_Lightweight_Time_Warp_-_A_Novel_Protocol_for_Parallel_Optimistic_Simulation_of_Large-Scale_DEVS_and_Cell-DEVS_Models?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3189256_Distributed_Simulation_A_Case_Study_in_Design_and_Verification_of_Distributed_Programs?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220653972_A_parallel_and_distributed_discrete_event_approach_for_spatial_cell-biological_simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/242637666_Virtual_time_1i_the_cancelback_protocol_for_storage_management_in_distributed_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/2580519_Efficient_Algorithms_for_Distributed_Snapshots_and_Global_Virtual_Time_Approximation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/2580519_Efficient_Algorithms_for_Distributed_Snapshots_and_Global_Virtual_Time_Approximation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221530050_A_teragrid-enabled_distributed_discrete_event_agent-based_epidemiological_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221525156_Parallel_simulation_distributed_simulation_systems?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221525156_Parallel_simulation_distributed_simulation_systems?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221117769_Seven-O'Clock_A_New_Distributed_GVT_Algorithm_Using_Network_Atomic_Operations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221117769_Seven-O'Clock_A_New_Distributed_GVT_Algorithm_Using_Network_Atomic_Operations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/2529812_Global_Virtual_Time_Approximation_with_Distributed_Termination_Detection_Algorithms?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/261446689_Parallel_and_Distributed_Simulation_Traditional_Techniques_and_Recent_Advances?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220404865_Virtual_Time?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220404865_Virtual_Time?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220404865_Virtual_Time?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

Therefore, GVT computation is known to be the least scalable component of Time Warp and
it is no surprise that the accuracy and overhead of the GVT computation may dominate the
overall performance of Time Warp [18]. The rollback mechanism is used to remove causality
errors by dealing with straggling events. The straggling events are referred to those events
whose time-stamp is less than the current simulation time of an LP. In addition, the
occurrence of a straggling event may cause the propagation of incorrect events messages to
the other neighboring LPs. The anti-message is one of the techniques of the Time Wrap
algorithm that deals with the incorrect event messages by cancelling them out.

2. RELATED WORK

In order to achieve optimized performance from the Time Wrap algorithm, it is essential that
the GVT computation should operate as efficiently as possible. The GVT computation
method, widely used in earlier algorithms [19-21], is generally based on the two rounds of
message transmission. In the first round, a start message is transmitted for initiating the GVT
computation. After the transmission of the first message, the initiator goes into the wait stage
unless it receives all responses from the LPs. Once the initiator becomes active, a stop
message is transmitted to announce the new value of GVT. Both rounds define an interval for
GVT computation.
 In addition to define a lower bound on the unprocessed events, a GVT algorithm must also
address the following two problems: transient message and simultaneous reporting problems
[22]. Transient messages are those that have been sent but have not been yet received [1].
Since a transient message is a delayed message, neither the sender nor the receiver considers
the time stamp of the message in their respective GVT computation. Thus, in order to
calculate a correct value of GVT, these messages must be accounted in the GVT computation
for by either a sender or a receiver or both. The simultaneous reporting problem arises
because not all LPs report their lower bound on time stamp (LBTS) value at precisely the
same instant in wall clock time [2].
 Some earlier GVT computation algorithms [19-21] provide a simple solution of message
acknowledgments for dealing with these two problems. In this solution, any message whose
acknowledgment has not been received will be considered as a transient message and its
corresponding timestamp must be considered during the GVT computation. It has been
observed [15, 18] that the earlier GVT algorithms [19-21] provide a significant transmission
overhead in terms of the number of messages that an LP needs to exchange and maintain
during the GVT computation process.
 Samadi’s algorithm [19] provides a foolproof solution to all problems cited above as long
as the algorithm is implemented as described. However, the algorithm itself does not
guarantee that the GVT computation is fast enough that it can minimize the execution time or
the number of GVT messages. In addition, the primary problem associated with the Samadi’s
algorithm is that it requires acknowledgement messages to be sent for each message and anti-
message. Besides a large number of these acknowledgement messages that each LP needs to
transmit, Samadi’s algorithm requires that each LP maintains at least three separate queues, so
that the LP can transmit the following information to the controller upon receiving the GVT
computation message: the minimum time stamp of all the unprocessed event-message within
the LP, all unacknowledged and anti-messages it has sent, and all marked acknowledgement
messages it has received. This implies that the Samadi’s algorithm not only requires
maintaining a large number of queues but also demands transmitting comparatively large
amount of information to the controller in response to the GVT computation message.
 The performance degradation in optimistic algorithm is due to the fact that the large
transmission of messages across LPs cause frequent state saving and rollbacks. Under heavy

118

https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3189256_Distributed_Simulation_A_Case_Study_in_Design_and_Verification_of_Distributed_Programs?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3602006_A_hypercube_algorithm_for_GVT_computation_and_its_application_inoptimistic_parallel_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3602006_A_hypercube_algorithm_for_GVT_computation_and_its_application_inoptimistic_parallel_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3602006_A_hypercube_algorithm_for_GVT_computation_and_its_application_inoptimistic_parallel_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221525156_Parallel_simulation_distributed_simulation_systems?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221117769_Seven-O'Clock_A_New_Distributed_GVT_Algorithm_Using_Network_Atomic_Operations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

load of network messages, optimistic simulators pay heavy synchronization cost in terms of
large number of state saving and rollbacks. Since the messages are randomly exchanged
across the LPs, there is a high probability of frequent occurrence of rollbacks as well as the
size of the state grows with respect to an increase in the event-message traffic.

3. ANALYSIS OF GLOBAL VIRTUAL TIME (GVT) ALGORITHMS

The notion of Global Virtual Time (GVT) was first introduced by Jefferson [5] to track the
earliest unprocessed events in the entire simulation. Formally, the GVT can be defined as a
minimum time-stamp among all the unprocessed and partially processed event messages and
anti-messages present in the simulation time at current clock time Ts. Any processed event
with a timestamp earlier than the current GVT will not be rolled back under any
circumstances, and therefore the memory associated with it can be safely released [18].
 Without the use of GVT, the Time Warp mechanism would be impractical since it
requires reasonably large memory. Thus, it is imperative that the GVT computation operates
as efficiently as possible [15]. However, it is impossible to compute the exact GVT as it
would require collecting information on distributed processors at exactly the same wall-clock
time [18]. GVT is not only required for optimistic algorithm but it can also be used in few
variants of conservative protocols, such as the conditional event approach [23] and the LBTS
approach [24], which largely depend on the amount of Lookahead (we refer this to L value),
that also need to compute LBTS which computationally is equivalent to GVT [18].
 Designs of GVT algorithms focus on either shared-memory or distributed computers [18].
Shared-memory GVT algorithms assume that certain variables are accessible by all processors
[25, 26], so they perform well on symmetric multi processing (SMP) machines. Distributed
GVT algorithms do not use global variables and therefore are more scalable. Distributed GVT
algorithms are further classified with respect to specific techniques they use such as
overlapping intervals [20], two cuts [14, 27], or global reduction [28, 29].
 The proposed unacknowledged message list (UML) scheme, however, differs from the
other traditional schemes in such a way that it only requires each LP to maintain a single list
for unacknowledged messages with one or more first-in-first-out (FIFO) queues of
unprocessed event-messages. Due to a single list, the computation of local minimum for each
LP requires fewer steps, thus provides a fast GVT computation. In addition to the fast GVT
computation, a comparatively small amount of memory will be utilized per LP. For further
optimization, the proposed scheme piggy-backs the acknowledgment messages in the regular
outgoing event messages as described in [30]. Further reduction in message-overhead can
achieve by using a sequence number as described in [8].

4. OVERVIEW OF UNACKNOWLEDGED MESSAGE LIST (UML)

The proposed scheme partially reduces the processor idle time at the expense of a very small
amount of memory use by each LP to maintain an UML. Before we present the proposed
scheme, it is worth mentioning some of our key assumptions.

4.1 System model and assumptions

We assume that the simulation system consists of n number of LPs where each LP maintains
one FIFO queue per neighboring LPs that stores the corresponding incoming event-messages.
The head of the FIFO queue contains the smallest time stamp event-message. For instance, if
we assume a mesh topology for providing internetworking among LPs, then each LP must
maintain at least one FIFO queue per neighboring LP resulting in a total of n-1 number of

119

https://www.researchgate.net/publication/4292288_Efficient_Analysis_of_Simultaneous_Events_in_Distributed_Simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220136260_Computing_Global_Virtual_Time_in_Shared-Memory_Multiprocessors?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220594846_Overlapping_Window_Algorithm_for_Computing_Gvt_in_Time_Warp?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221527149_Non-interfering_GTV_Computation_via_Asynchronous_Global_Reductions?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/2580519_Efficient_Algorithms_for_Distributed_Snapshots_and_Global_Virtual_Time_Approximation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221117769_Seven-O'Clock_A_New_Distributed_GVT_Algorithm_Using_Network_Atomic_Operations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/2606957_An_Efficient_Gvt_Computation_Using_Snapshots?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220404865_Virtual_Time?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

FIFO queues for n-1. Moreover, we only consider those event-messages that are generated
and scheduled for remote LPs. These event-messages can be referred as globally generated
event-messages as opposed to the locally generated event-messages that are scheduled by an
LP for itself. The simulation executive/engine is not only responsible to maintain FIFO
queues within an LP but also responsible to search the head of each FIFO queue in order to
determine the smallest time stamp event-message. This time stamp will be considered the
time stamp of the next event-message that an LP will execute in a row. The computation of
this time stamp is essential for solving the problem of transient messages and computing the
LBTS values.

4.2 Algorithm description for UML

The primary difference between the proposed UML scheme and the other existing GVT
algorithms is that it uses a dedicated controller LP to monitor the GVT computation process.
The dedicated controller LP refers as CR in our proposed algorithm. Specifically, CR is
responsible to initiate the GVT computation, collect local minimum values from each active
LP, and finally announce the new GVT value as shown in Algorithm A. Non controller LPs
are not directly involved in the GVT computation process except each LP is required to
compute its local minimum and reports to CR as shown in Algorithm B. The details of each
statement in both Algorithms A and B are provided by means of comments.
 The proposed UML approach can be considered as a centralized approach since both steps
of GVT computation is done by the dedicated LP which greatly simplifies the design of the
GVT algorithm. In this perspective, proposed UML scheme is similar to the pGVT [31] and
TQ-GVT [18] since both schemes require a single controller to monitor the GVT computation
process. However, it differs from the TQ-GVT where GVT computation never initiated by the
dedicated LP. Instead, the GVT master (i.e., the dedicated CR LP) passively listens to GVT
messages and takes actions only when they come. In the proposed UML scheme, controller
LP uses Algorithm A for both initiating the GVT computation and computing the new GVT
value. Non controller LP uses Algorithm B for computing their local minimum and compiling
the report for the CR.
 The proposed UML scheme uses four different types of messages as shown in both
Algorithms A and B. The first is the timestamp event message, denoted by (,)SSE T T , which is

program controller (CR) LP (n LBTSi)

/*initialization phase for all the queues maintained by an LP*/
S1 Report [] = 0; LBTS = 0; GVTNew = 0; GVTComp = 0; Count = 0;

/*CR initiates GVT computation by broadcasting a message for all LPs */

S2 for all LPs do GVTComp; /* { }1 2, ,..........,CompGVT
nCR LP LP LP⎯⎯⎯⎯→ */

/*CR continuous to receive LBTS from each LP*/
S3 while (CR receive Report from each LP) do

/* A Report has received from LPi. Only first 2 elements are needed for GVT computation*/

S4 if Report []() is received , , ,ID TLP LBTS MST S L

S5 Report [LPID] = LBTS; /* local minimum for LPi is stored */
S6 Count = Count +1; /* count is incremented until it reaches to n */

end while /* CR counter reaches to n, indicating that n Report messages have received*/
 /* computing new global minimum value*/

S7 GVTNew = Min (Report [LPID]);
/* CR announces the new GVT value by broadcasting a message for all LPs */

S8 for all LPs do GVTNew; /* { }1 2, ,..........,NewGVT
nCR */ LP LP LP⎯⎯⎯→

Algorithm A: Controller LP simulation algorithm sketch for initiating and announcing GVT computation

120

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

the carrier of a positive event or an anti-event similar to the message structure described in
[18]. The first variable Ts represents the timestamp of E whereas the Ts is the copy of the
original time stamp stored in the UML. This message structure is implemented to ensure that
the transient message(s) must be accounted in the GVT computation by each active LP. All
variables (,)SST T of E play an important role in dealing with the transient message and
simultaneous reporting problems. The second is the GVT message transmits from CR,
denoted by GVTComp that signals the start of the GVT computation (see line S2 of Algorithm
A). This message type is similar to the GVT initiation process described in Fujimoto’s shared
memory GVT algorithm [25]. The third is the GVT message transmitted from CR, denoted by
GVTNew, that simply contains the value of the new GVT estimate (see line S7 of Algorithm
A). From the proposed algorithm perspective, both messages transmitted from CR to LPs use
global variables to initiate GVT computation and announce the new estimated value of GVT.
 Finally, the fourth is a report message which has the format of Report (LPID, LBTS, MST

[ST, L]). Upon completion of the local minimum computation, each LP has to compile the

(Report) program LPi

/*initialization phase for all the queues maintained by an LP*/
S1 TSFIFO = 0; TSUML = 0; UML = { }; LBTS = 0; Report [] = 0;
S2 execute one or more events /*process both local and remote event messages*/

S3 for any remote message E (Ts, ST) do

S4 UML [i] = ST ; /*storing the copy of time stamp in UML for accounting transient message/
S5 LPi receives the GVTComp message from CR /*receives the GVT request*/
S6 while (LPi not finish computing local minimum) do
S7 If TSUML = 1 then /*if there exists only one element in UML*/

/*get Min (TSFIFO) from n FIFOs*/
S8 TSFIFO == Min {H1(FIFO-1) , H1(FIFO-2) ,………., H1(FIFO n-1)};

/*get TSUML from UMLi for LPi and initialize the TSUML (Min)*/
S9 TSUML (Min) == TSUML;

 /*compare TSUML (Min) and TSFIFO (Min) and select LBTSi for LPi */
S10 LBTSi == Min {TSUML (Min), TSFIFO (Min)};
S11 return (Report); /*report LBTSi from LPi to CR. Set LPID*/
S12 elseif TSUML > 1 then /*if there exists multiple elements in the UML*/
 /*get Min (TSUML) from UMLi for LPi*/
S13 TSUML (Min) == Min {UML1, UML2,……..,UML(m-1)};
 /*get TSFIFO (Min) from n FIFOs maintained by LPi */

S14 TSFIFO == Min {H1 (FIFO-1) , H1(FIFO-2) ,..…., H1(FIFO n-1)};
/*compare TSUML (Min) from TSFIFO (Min) and select LBTSi for LPi */

S15 LBTSi == Min {TSUML (Min) ,TSFIFO (Min)};
S16 return (Report); /*report LBTSi from LPi to CR. Set LPID */
S17 elseif TSUML = 0 then /*if there exists none element in the UML*/

/*compute TSFIFO(Min) from n FIFOs*/
S18 TSFIFO == Min {H1(FIFO-1) , H1(FIFO-2) ,.., H1(FIFO n-1)};

/*compute smallest time stamp from each FIFO queue*/
S19 H1(FIFO J) == Min {H1, H2 ,……., Hm};
S20 LBTSi == TSFIFO (Min); /* initialize the LBTSi with the TSFIFO (Min value) */
S21 return (Report); /*report LBTSi from LPi to CR. Set LPID */

end if;
end while

Algorithm B: Algorithm for implementing unacknowledged message list (UML) in LP

121

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

report message which will be sent to CR. LPID in the report message is the processor id that
reports its local minimum to CR. LBTS represents the lower bound on the timestamp of the
event messages that could be delivered to the simulation in the future. MST [ST, L] is the
minimum sending time that represents the earliest time when a remote event message can be
sent by an LP to one of its neighboring LPs. MST is the sum of the current simulation time
(ST) of an LP (also refer as local virtual time) and the Lookahead (L) value.
 It should be noted that no other counters are needed to account the transient messages.
Instead, in our proposed approach, this is typically done by UML that maintains a record of
transient messages by simply storing the copy of the time stamp ST of each outgoing
message. A local minimum computation process of an LP can not be satisfied and completed
unless the LP considers the minimum of all ST stored in the UML in its LBTS computation
(this is refer as UMLMin in our algorithms). The consideration of UMLMin in the local
minimum computation is essential since this guarantees that the CR yields a correct value of
GVT. The execution of report message and the UML in a LP is shown in Algorithm B (see
lines S4-S17).
 The main factor that contributes to the reduced message overhead for the proposed UML
scheme is that the GVT computation does not interfere with the simulation activities except
the transmission of GVT initiation message and the report collection. In addition, the
participating LPs need not be engaged in the GVT computation process except computing
their local minimum values and reporting to the CR when a request arrives. The reporting
process by each LP should be done periodically without halting the normal execution of
event-messages.

4.3 Proposed scheme for transient message problem

In our proposed scheme each LP maintains a list that contains the time stamp of each
outgoing message as shown in Fig. 1. This list is referred as UML in our proposed scheme.
The primary purpose of UML is to ensure that for each outgoing message, the sending LP
ideally receives an acknowledgment. In addition, for each outgoing message, the sending LP
must store the corresponding time stamp of the recently transmitted message in the UML.
When the event-message is sent out, the copy of the time stamp of that event-message must
be stored in the UML of that LP. On the other hand, when an LP schedules a remote event-
message for one of its neighboring LPs, the receiving LP must send an acknowledgement
back to the sending LP. Upon reception of an acknowledgment from the receiving LP for one
of the previously sent messages, the sending LP eliminates the corresponding time stamp of
the acknowledged message from the UML. This ensures that the LP does not need to account
the acknowledged event-messages in the next GVT computation. It should also be noted that
each LP does not require maintaining a list of incoming messages. Instead, the UML of each
LP is responsible to take care of the unacknowledged event-messages only. When an LP is
about to start computing its LBTS value, LP must ensure that the UML does not contain any
time stamp of an unacknowledged message. However, if the UML is not empty, the smallest
time stamp present in the UML must be considered by an LP in its LBTS computation.

 Proof of correctness: If two or more time stamps are found in the UML, the smallest time
stamp will be selected from the UML. The selected time stamp will then be compared to the
time stamp of the next event-message that the LP is supposed to execute (i.e., the smallest
time stamp within n-1 number of time stamps present at the head of the FIFO queues of an
LP). Whichever is smallest will be selected as the time stamp of the next event-message that
the LP will execute. As a result, the final time stamp will be considered by an LP during the
LBTS computation. If only one time stamp is found in the UML for one of the

122

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

 Figure 1: Internal architecture of an LP. LP maintains one FIFO queue per neighboring LP and one
 UML. Each LP can have a total of m number of event-messages (0 m≤ ⎯⎯→∞).

unacknowledged event-messages, then that time stamp must be compared with the time stamp
of the next event message that an LP will execute. LP selects the smallest time stamp out of
the two and uses that value in the LBTS computation. Finally, if none of the time stamp is
found in the UML (i.e., no outstanding unacknowledged messages left in the list), the LP
follows the regular procedure of computing its LBTS value by adding the time stamp of the
next event-message with the corresponding Lookahead value. In particulate, this can be
expressed as: LBTS LPk = TSFIFO + LAk where TSFIFO represents the smallest time stamp of
the next event message that an LPk executes and LAk represents the corresponding Lookahead
value associated with the LPk.

4.4 Solution of simultaneous reporting problem

An illustration of our proposed solution for the simultaneous reporting problem is shown in
Fig. 2. The controller LP initiates the GVT computation by broadcasting a message for all LPs
that exist within the simulation system. When an LP receives such message from the
controller LP CR, it computes its local minimum value by using the proposed Algorithm B.
Once the local minimum value is determined by an LP, the controller will be notified with a
small synchronization message (we refer this message as Report). Once all the LPs
transmitted their local minimum values to the controller, the controller selects the global
minimum value. Once the global minimum value is determined, the controller LP broadcasts
another message to notify each LP with the new value of global minimum. Upon reception of
the new GVT value, each LP can then distinguish between the safe and unsafe event messages
unless they receive another GVT computation message from the controller LP CR. If GVT
messages do not come to time, active LPs are never delayed or blocked as in the case of some
other algorithms. Since each LP uses UML that keeps track of all the unacknowledged

123

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

Controller CR

LPB

LPA

LBTS Computation Region

Initiating GVT
Computation

LBTS
Computation

LBTS
Reporting

GVT
Computation

GVT
Reporting

Simulation
Time

• Execution
Region

• Wait for
new GVT
request

Figure 2: An illustration of proposed scheme dealing with the simultaneous reporting problem.

messages, the possibility that an LP does not consider the time stamp of one or more transient
message is negligible. Thus, this guarantees that the use of UML in each LP yields a correct
value of local minimum.

Proof of correctness: For instance, if LPB receives a delayed GVT computation message
from the controller, it does not cause the other LPs (such as LPA) of the simulation system to
report an incorrect local minimum value to CR. Since LPA was bounded to the minimum
value of either UML (we refer this to UMLMIN in Algorithm B) or TSFIFO after receiving the
GVT computation message, this forces the LPA to stick with the same local minimum value
within all the queues maintained in that LP (for implementation, see Fig. 3). For the same
scenario (i.e., LPB receives a delayed GVT computation message from the controller LP),
even if LPB sends an event-message to LPA, LPA will only accept it (i.e., it stores the event-
message in its FIFO queue) but will not send any acknowledgement back to the sending LP
(i.e., LPB) with the assumption that the sending LP will consider the time stamp of this
received event-message in its own local minimum computation. This also shows that when an
LP receives a GVT computation message from the controller, it may accept the new event-
message coming from the other neighboring LPs. However, it does not consider the time
stamp of the newly arrived event-message in its local minimum computation. This is due to
the fact that the receiving LP does not require maintaining the UML.

4.5 High level architecture of the proposed scheme

We assume that the simulation system consists of n number of LPs where each LP is assumed
to execute the high level architecture of the proposed solution as shown in Fig. 3. Initially, the
controller broadcasts a message to all LPs asking to initiate the GVT computation. Upon
reception of this broadcast message, each LP initiates the LBTS computation based on the
FIFO queues and the UML list that each LP maintains. Once the LBTS value for an LP is
determined, it reports the new LBTS value to the controller.
 The proposed scheme ensures that no LP advances its current simulation time beyond the
value of the minimum time stamp in the entire simulation. For instance, if one of the LPs
receives the GVT computation message from the controller, it performs the following steps to
complete the computation process as shown in Fig. 3. Upon reception of the GVT initiation
message from the controller, each LP initiates the LBTS computation. In order to determine
the LBTS value, each LP must first visit the UML to count the number of unacknowledged

124

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

messages present in the list. Therefore, the first conditional-box determines the possibility of
the presence of only one unacknowledged message in the UML. The TSUML represents the
number of time stamps of the unacknowledged messages present in the list. If there is only
one time stamp message exists in the UML, that time stamp will be selected and removed
from the UML list and forwarded to the comparison/selection box. This time stamp is
represented as TSUML(Min). At the same time, all the head of the FIFO queues will be
exhaustively searched in order to determine the time stamp of the next event-message that the
LP executes. Once determine, the time stamp will be forwarded to the comparison/selection
box. This time stamp is represented as TSFIFO(Min). In the comparison/selection box, the two
input values will be compared and the smallest one will be selected as the new local LBTS
value of the LP. Finally, the resultant LBTS value will be reported to the controller.

Figure 3: High level architecture of the proposed scheme.

On the other hand, if the first conditional box produces a false value, the control will be
transferred to the second conditional box. In the second conditional box, the presence of
multiple time stamps in the UML will be tested. If more than one time stamps are presented in
the UML, the smallest value of the time stamp will be selected and forwarded to the
comparison/selection box for further processing. The selection of minimum value of time
stamp in the UML is presented in Fig. 3 such as: TSUML(Min) = Min {UML1,UML2, … ,UMLm-1}
where m represents the total number of messages the UML has at the time of selection. At the
same time, the control is transferred to search all the head of the FIFO queues, so that we
determine the time stamp of the next event-message that the LP executes. Once the value of
TSFIFO(Min) is determined, the selected time stamp will be forwarded to the
comparison/selection box. The same comparison and selection will be performed between the
two values and the resultant LBTS will be reported to the controller.

125

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

 Finally, if the UML shows an empty list indicating that all the sent messages have been
acknowledged by the receiving LPs, the control will unconditionally transfer to the
comparison/selection box. At the same time, the minimum value of TSFIFO(Min) is determined
and forwarded to the comparison/selection box. Since the UML shows an empty list, the
TSFIFO(Min) value is selected as a new LBTS which consequently reported to the controller.

5. PERFORMANCE RESULTS OF THE PROPOSED UML SCHEME

Experiments were performed to compare the performance of proposed UML approach with
both the tree and the butterfly barriers with respect to event processing rate and GVT message
generation. All experiments were run on a dedicated SGI Origin 2000 server with 16
processors running on IRIX version 6.5. The SGI server has two R10000 processors per IP27
board running on 180 MHz clock speed with second level cache of 1 MB with fifteen 1.34
GHz Sun Ultra 25 workstation running version 10 of Sun Solaris operating system with the
Sun's development tools. Each Sun Ultra 25 workstation carries UltraSPARC IIIi processor
performance and enhanced connectivity.
 For the sake of simulation results and experimental verifications, we use PHOLD
benchmark, a synthetic workload generator proposed by Fujimoto [32]. PHOLD is a
commonly used benchmark for testing the performance of Time Warp simulators [33, 34].
PHOLD has minimal event processing, minimal look ahead due to event scheduling being
based on a random distribution and a random communication pattern. In general, PHOLD
model consists of n fully connected LPs among which a fixed message population circulates
[35]. It can be parameterized by: (i) the routing probabilities; (ii) the message population size;
(iii) message size; (iv) timestamp increment distribution; and (v) a spin-delay simulating
event granularity.
 In PHOLD, processing of each message takes a finite amount of time, after which a new
message is sent to another LP with a specified time stamp increment. The initial event
messages have a timestamp that is exponentially distributed between 0 and 1. We used a
variable size of message population with the initial size of 16 messages per LP. The number
of LPs involved in the simulation model has been fixed at 256 and the model is executed on
16 machines with even distribution of the LPs on the machines resulting in 16 LPs per
processor.

5.1 Performance evaluation of UML scheme

Figs. 4 and 5 show the aggregate event rate of PHOLD as a function of processor count. Fig. 5
shows that the UML scheme with the tree barrier continues to provide linear speedup than the
butterfly barrier. For the 16 events per LP case, we observed a rate of 38,000 events/second
on 10 processors (the other 6 processors are never used in this simulation), which remains
almost linear and stable throughout the execution. Comparing the simulation results of Fig. 4
with Fig. 5, we observed that the introduction of variable message population results in the
performance degradation in terms of event processing rate. The number of remote event
messages increases slightly with the number of processors, since the amount of messages on
each processor was fixed for Fig. 4 simulation results. However, in Fig. 5, there is a slight
decrease in the event processing rate with respect to the number of processors. In addition to
the introduction of variable size messages per processor, this slight drop in the event
processing rate may also happen due to the fact that there is an overhead of memory and time
used for storing and releasing the processed events in the parallel processor for using in case
of rollbacks [18].

126

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

 Figs. 6 and 7 show the GVT message generation for the corresponding event message
generation presented in Figs. 4 and 5, respectively. For Fig. 6, the number of GVT messages
almost remains same for the number of processors except there is a slight 30 % decrease of
GVT messages. This slight reduction in GVT messages was caused since we found that the
GVT computation was rarely initiated by the CR during the overall simulation process. It
should be noted that these GVT messages are generated with a fixed message population on
16 processors. In harmony with our expectations, Fig. 7 shows a constant number of GVT
messages even with a variable size of message load on each processor. When comparing the
result of Fig. 7 with Fig. 5, we can observe that both suffer from slight performance
degradation due to a variable load on each processor. The GVT messages for Fig. 7 are not
only smooth but also stable for all values of processors except the same 35 % reduction can be

127

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

seen for the same reason discussed for Fig. 6.

 The simulation results of event processing rate and GVT messages with variable size of
message population for 16 processors on PHOLD benchmark are shown in Figs. 8 and 9,
respectively. For these two simulation results, the same configuration parameters were used as
we discussed for Figs. 5 and 6, except that we used all 16 processors with comparatively large
message population. For Fig. 8, the number of remote event messages increased linearly with
the number of processors, except that changing from 8 processors to 16 processors caused a
sudden stability in the remote event processing. The number of GVT messages increased
linearly too in Fig. 9, except that a wide difference can be found between tree and butterfly
barriers from 8 processors to 16 processors. Finally, for the sake of computing the speedup,
we have run the experiments for selective 4, 8, and 12 processors with respect to the memory
buffer requirements. In Fig. 10, it was observed that the achievable speedup using the

Figure 10: Effect of unacknowledged message list (UML) scheme on the speedup with respect to 4,
 8, and 12 processor systems in tree and butterfly barriers.

128

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

proposed UML approach for all cases (4, 8, and 12 processors) are stable and linear with
respect to the increase in the memory buffers. As we increase the number of processors in the
system, it increases both total remote event messages and the relative speedup for each case.

6. CONCLUSION

This paper presented the implementation of synchronous barriers with the optimistic TMA.
This approach is quite new since it combines two different families of algorithms
(conservative and optimistic) to go for the same task of synchronization. We started our
discussion from the optimistic algorithm in general and Time Wrap and Samadi’s algorithms
in particular. We also presented an analysis to show why an optimistic algorithm must have
the capability to deal with some common problems like rollback, reclaiming memory,
transient messages, and simultaneous reporting. Finally, we presented a new UML scheme
that solves the transient message problem. To support the implementation of the proposed
scheme, two algorithms are presented. Both our theoretical analysis and simulation results
suggest that the tree barrier performs well with the UML scheme than the pure optimistic
algorithm in terms of the number of synchronization messages that need to be transmitted to
compute the GVT value.

REFERENCES

[1] Fujimoto, R. (2003). Parallel simulation: distributed simulation system, Proceedings of the 35

Winter Simulation Conference, 124-134
th

[2] Fujimoto, R. (2000). Parallel and Distributed Simulation Systems, John Wiley and Sons
[3] Chandy, K.; Misra, J. (1979). A case study in the design and verification of distributed programs,

IEEE Transactions on Software Engineering, Vol. 5, No. 5, 440-452
[4] Bryant, R. (1977). Simulation of packet communication architecture computer systems,

Technical Report: TR-188, Massachusetts Institute of Technology, Cambridge, MA
[5] Jefferson, D. R. (1985). Virtual time, ACM Transactions on Programming Languages and

Systems, Vol. 7, No. 3, 404-425
[6] Perumalla, K. (2006). Parallel and distributed simulation: traditional techniques and recent

advances, Proceedings of the 38th Winter Simulation Conference, 84-95
[7] Jeschke, M.; Ewald, R.; Park, A.; Fujimoto, R.; Uhrmacher, A. (2008). A parallel and distributed

discrete event approach for spatial cell-biological simulations, Special Issue on the Quantitative
Evaluation of Biological Systems, Vol. 35, No. 4, 22-31

[8] Peschlow, P.; Martini, P. (2007). Efficient analysis of simultaneous events in distributed
simulation, Proceedings of the 11th IEEE International Symposium on Distributed Simulation and
Real-Time Applications, 244-251

[9] Madl, G.; Dutt, N.; Abdelwahed, S. (2007). Performance estimation of distributed real-time
embedded systems by discrete event simulations, Proceedings of the 7th ACM & IEEE
International Conference on Embedded Software, 183-192

[10] Liu, Q.; Wainer, G. (2008). Lightweight Time Warp - a novel protocol for parallel optimistic
simulation of large-scale DEVS and Cell-DEVS models, Proceedings of the 12 IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Applications, 131-138

th

[11] Roberts, D.; Simoni, D. (2007). A teragrid-enabled distributed discrete event agent-based
epidemiological simulation, Proceedings of the 39th Winter Simulation Conference, 1551-1554

[12] Rizvi, S. S.; Elleithy, K. M.; Riasat, A. (2008). A new mathematical model for optimizing the
performance of parallel and discrete event simulation systems, Proceedings of the 2008 Spring
Simulation Multi-Conference, Article No.: 2

[13] Lees, M.; Logan, B.; Dan, C.; Oguara, T.; Theodoropoulos, G. (2006). Analysing the
performance of optimistic synchronisation algorithms in simulations of multi-agent systems,
Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, 37-44

129

Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete …

[14] Mattern, F. (1993). Efficient algorithms for distributed snapshots and global virtual time
approximations, Journal of Parallel and Distributed Computing, Vol. 18, No. 4, 423-434

[15] Bauer, D.; Yaun, G.; Carothers, C.; Kalyanaraman, S. (2005). Seven-O'clock: a new distributed
GVT algorithm using network atomic operations, 19th Workshop on Principles of Advanced and
Distributed Simulation, 39-48

[16] Mattern, F.; Mehl, H.; Schoone, A.; Tel, G. (1991). Global virtual time approximation with
distributed termination detection algorithms, Technical Report: RUU-CS-91-32, Department of
Computer Science, University of Utrecht, The Netherlands

[17] Jefferson, D. R. (1990). Virtual time II: the cancelback protocol for storage management in
distributed simulation, Proceedings of the 9th Annual ACM Symposium on Principle of
Distributed Computation, 75-90

[18] Chen, G.; Szymanski, B. (2007). Time quantum GVT: A scalable computation of the global
virtual time in parallel discrete event simulations, International Journal for Parallel and
Distributed Computing, Vol. 8, No. 4, 423-436

[19] Samadi, B. (1985). Distributed simulation, algorithms and performance analysis (load
balancing, distributed processing), PhD Thesis, Computer Science Department, University of
California, Los Angeles

[20] Bellenot, S. (1990). Global virtual time algorithms, SCS Multi-Conference on Distributed
Simulation, 122-127

[21] Das, S.; Sarkar, F. (1995). A hypercube algorithm for GVT computation and its application in
optimistic parallel simulation, Proceedings of the 28 Annual Simulation Symposiumth , 51-60

[22] Leye, S.; Uhrmacher, A.; Priami, C. (2008). A bounded-optimistic, parallel beta-binders
simulator, Proceedings of the 2008 12 IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications, 139-148

th

[23] Chandy, K.; Sherman, R. (1989). Conditional event approach to distributed simulation,

Proceedings of Distributed Simulation Conference Distributed Simulation, 93-99
[24] Fujimoto, R.; McLean, T.; Perumalla, K.; Tacic, I. (2000). Design of high performance RTI

software, 4th Workshop on Parallel and Distributed Simulation and Real-Time Applications, 89-
96

[25] Fujimoto, R.; Hybinette, M. (1997). Computing global virtual time in shared-memory
multiprocessors, ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, 425-
446

[26] Xiao, Z.; Gomes, F.; Unger, B.; Cleary, J. (1995). A fast asynchronous GVT algorithm for shared
memory multiprocessor architectures, 9th Workshop on Parallel and Distributed Simulation, 203-
208

[27] Choe, M.; Tropper, C. (1998). An efficient GVT computation using snapshots, Proceedings of
Computer Simulation Methods and Applications, 33-43

[28] Perumalla, K.; Fujimoto, R. (2001). Virtual time synchronization over unreliable network
transport, 15th Workshop on Parallel and Distributed Simulation, 129-136

[29] Srinivasan, S.; Reynolds, P. (1993). Non-interfering GVT computation via asynchronous global
reductions, Proceedings of the 25 th Winter Simulation Conference, 740-749

[30] Baldwin, R.; Chung, M.; Chung, Y. (1991). Overlapping window algorithm for computing GVT
in Time Warp, 11th International Conference on Distributed Computing Systems, 534-541

[31] Souza, L. M. D.; Fan, X.; Wilsey, P. A. (1994). pGVT: an algorithm for accurate GVT
estimation, 8th Workshop on Parallel and Distributed Simulation, 102-109

[32] Fujimoto, R. (1990). Performance of Time Warp under synthetic workloads, Proceedings of the
SCS Multi-Conference on Distributed Simulation, Vol. 22, No. 1, 23-28

[33] Wang, J.; Tropper, C. (2007). Optimizing time warp simulation with reinforcement learning
techniques, Proceedings of the 39th Winter Simulation Conference, 577-584

[34] Perumalla, K. (2007). Scaling Time Warp based discrete event execution to 10^4 processors on a
Blue Gene supercomputer, Proceedings of the 4th International Conference on Computing
frontiers, 69-76

[35] Chen, G.; Szymanski, B. (2005). DSIM: scaling time warp to 1,033 processors, Proceedings of
the 37th Winter Simulation Conference, 346-355

130

View publication statsView publication stats

https://www.researchgate.net/publication/228921777

