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Abstract  
Time Wrap algorithm is a well-known mechanism of optimistic synchronization in a parallel 
discrete-event simulation (PDES) system. It offers a run time recovery mechanism that deals 
with the causality errors. For an efficient use of rollback, the global virtual time (GVT) 
computation is performed to reclaim the memory, commit the output, detect the termination, 
and handle the errors. This paper presents a new unacknowledged message list (UML) 
scheme for an efficient and accurate GVT computation. The proposed UML scheme is based 
on the assumption that certain variables are accessible by all processors. In addition to GVT 
computation, the proposed UML scheme provides an effective solution for both simultaneous 
reporting and transient message problems in the context of synchronous algorithm. To support 
the proposed UML approach, two algorithms are presented in details, with a proof of its 
correctness. Empirical evidence from an experimental study of the proposed UML scheme on 
PHOLD benchmark fully confirms the theoretical outcomes of this paper. 
(Received in June 2009, accepted in April 2010. This paper was with the authors 5 months for 3 revisions.) 
 
Key Words: Discrete Event Simulation, GVT Computation, Optimistic Algorithm, 
  Parallel and Distributed Systems, Time Wrap Algorithm 

 
1. INTRODUCTION 
 
The main problem associated with the distributed system is the synchronization among the 
discrete events that run simultaneously on multiple machines [1]. If the synchronization 
problem is not properly handled, it can degrade the performance of parallel discrete event 
simulation (PDES) [2]. Historically, two main methods have been introduced to deal with this 
problem: conservative [3, 4] and the optimistic synchronization algorithms (or Time Wrap) 
[5]. Two of the most common synchronization protocols for parallel simulation are the 
Chandy-Misra protocol [3] and the Time Warp protocol [5] (different approaches for parallel 
and discrete-event simulation and its applications are discussed elsewhere [6-12]). An 
introduction to the Chandy-Misra protocol and the Time Warp protocol can be found in [6, 
13]. The conservative synchronization ensures that the local causality constrain requirement 
must not be violated by the logical processes (LPs) within the simulation system [14]. On the 
other hand, optimistic synchronization allows the violation of the local causality constraint 
requirement. However, such violation can not only be detected at run time but can also be 
dealt by using the rollback mechanism provided by optimistic algorithms [14-16]. 
      The Time Wrap [5, 17] is one of the mechanisms of optimistic time management 
algorithm (TMA) which includes rollback, anti-message, and global virtual time (GVT) 
computation techniques [1]. GVT defines a lower bound on any unprocessed event in the 
system and defines the point beyond which events should not be reclaimed [15]. GVT 
computation is perhaps the only global operation in Time Warp. All other operations, such as 
rollbacks, state saving, and sending and handling of anti-messages, can be carried out locally. 
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Therefore, GVT computation is known to be the least scalable component of Time Warp and 
it is no surprise that the accuracy and overhead of the GVT computation may dominate the 
overall performance of Time Warp [18]. The rollback mechanism is used to remove causality 
errors by dealing with straggling events. The straggling events are referred to those events 
whose time-stamp is less than the current simulation time of an LP. In addition, the 
occurrence of a straggling event may cause the propagation of incorrect events messages to 
the other neighboring LPs. The anti-message is one of the techniques of the Time Wrap 
algorithm that deals with the incorrect event messages by cancelling them out. 
 
2. RELATED WORK 
 
In order to achieve optimized performance from the Time Wrap algorithm, it is essential that 
the GVT computation should operate as efficiently as possible. The GVT computation 
method, widely used in earlier algorithms [19-21], is generally based on the two rounds of 
message transmission. In the first round, a start message is transmitted for initiating the GVT 
computation. After the transmission of the first message, the initiator goes into the wait stage 
unless it receives all responses from the LPs. Once the initiator becomes active, a stop 
message is transmitted to announce the new value of GVT. Both rounds define an interval for 
GVT computation. 
      In addition to define a lower bound on the unprocessed events, a GVT algorithm must also 
address the following two problems: transient message and simultaneous reporting problems 
[22]. Transient messages are those that have been sent but have not been yet received [1]. 
Since a transient message is a delayed message, neither the sender nor the receiver considers 
the time stamp of the message in their respective GVT computation. Thus, in order to 
calculate a correct value of GVT, these messages must be accounted in the GVT computation 
for by either a sender or a receiver or both. The simultaneous reporting problem arises 
because not all LPs report their lower bound on time stamp (LBTS) value at precisely the 
same instant in wall clock time [2]. 
      Some earlier GVT computation algorithms [19-21] provide a simple solution of message 
acknowledgments for dealing with these two problems. In this solution, any message whose 
acknowledgment has not been received will be considered as a transient message and its 
corresponding timestamp must be considered during the GVT computation. It has been 
observed [15, 18] that the earlier GVT algorithms [19-21] provide a significant transmission 
overhead in terms of the number of messages that an LP needs to exchange and maintain 
during the GVT computation process. 
      Samadi’s algorithm [19] provides a foolproof solution to all problems cited above as long 
as the algorithm is implemented as described. However, the algorithm itself does not 
guarantee that the GVT computation is fast enough that it can minimize the execution time or 
the number of GVT messages. In addition, the primary problem associated with the Samadi’s 
algorithm is that it requires acknowledgement messages to be sent for each message and anti-
message. Besides a large number of these acknowledgement messages that each LP needs to 
transmit, Samadi’s algorithm requires that each LP maintains at least three separate queues, so 
that the LP can transmit the following information to the controller upon receiving the GVT 
computation message: the minimum time stamp of all the unprocessed event-message within 
the LP, all unacknowledged and anti-messages it has sent, and all marked acknowledgement 
messages it has received. This implies that the Samadi’s algorithm not only requires 
maintaining a large number of queues but also demands transmitting comparatively large 
amount of information to the controller in response to the GVT computation message. 
      The performance degradation in optimistic algorithm is due to the fact that the large 
transmission of messages across LPs cause frequent state saving and rollbacks. Under heavy 

118 

https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/220101206_Time_Quantum_GVT_A_Scalable_Computation_of_the_Global_Virtual_Time_in_Parallel_Discrete_Event_Simulations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3189256_Distributed_Simulation_A_Case_Study_in_Design_and_Verification_of_Distributed_Programs?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3602006_A_hypercube_algorithm_for_GVT_computation_and_its_application_inoptimistic_parallel_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3602006_A_hypercube_algorithm_for_GVT_computation_and_its_application_inoptimistic_parallel_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/3602006_A_hypercube_algorithm_for_GVT_computation_and_its_application_inoptimistic_parallel_simulation?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221525156_Parallel_simulation_distributed_simulation_systems?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==
https://www.researchgate.net/publication/221117769_Seven-O'Clock_A_New_Distributed_GVT_Algorithm_Using_Network_Atomic_Operations?el=1_x_8&enrichId=rgreq-816babbc4c9f6dc80fb3fb49abdb75b7-XXX&enrichSource=Y292ZXJQYWdlOzIyODkyMTc3NztBUzoxMDQwNzk2NzQwNTI2MjNAMTQwMTgyNTkzNzg5NA==


Rizvi, Riasat, Elleithy: An Efficient Optimistic Time Management Algorithm for Discrete … 

load of network messages, optimistic simulators pay heavy synchronization cost in terms of 
large number of state saving and rollbacks. Since the messages are randomly exchanged 
across the LPs, there is a high probability of frequent occurrence of rollbacks as well as the 
size of the state grows with respect to an increase in the event-message traffic. 
 
3. ANALYSIS OF GLOBAL VIRTUAL TIME (GVT) ALGORITHMS 
 
The notion of Global Virtual Time (GVT) was first introduced by Jefferson [5] to track the 
earliest unprocessed events in the entire simulation. Formally, the GVT can be defined as a 
minimum time-stamp among all the unprocessed and partially processed event messages and 
anti-messages present in the simulation time at current clock time Ts. Any processed event 
with a timestamp earlier than the current GVT will not be rolled back under any 
circumstances, and therefore the memory associated with it can be safely released [18]. 
      Without the use of GVT, the Time Warp mechanism would be impractical since it 
requires reasonably large memory. Thus, it is imperative that the GVT computation operates 
as efficiently as possible [15]. However, it is impossible to compute the exact GVT as it 
would require collecting information on distributed processors at exactly the same wall-clock 
time [18]. GVT is not only required for optimistic algorithm but it can also be used in few 
variants of conservative protocols, such as the conditional event approach [23] and the LBTS 
approach [24], which largely depend on the amount of Lookahead (we refer this to L value), 
that also need to compute LBTS which computationally is equivalent to GVT [18]. 
      Designs of GVT algorithms focus on either shared-memory or distributed computers [18]. 
Shared-memory GVT algorithms assume that certain variables are accessible by all processors 
[25, 26], so they perform well on symmetric multi processing (SMP) machines. Distributed 
GVT algorithms do not use global variables and therefore are more scalable. Distributed GVT 
algorithms are further classified with respect to specific techniques they use such as 
overlapping intervals [20], two cuts [14, 27], or global reduction [28, 29]. 
      The proposed unacknowledged message list (UML) scheme, however, differs from the 
other traditional schemes in such a way that it only requires each LP to maintain a single list 
for unacknowledged messages with one or more first-in-first-out (FIFO) queues of 
unprocessed event-messages. Due to a single list, the computation of local minimum for each 
LP requires fewer steps, thus provides a fast GVT computation. In addition to the fast GVT 
computation, a comparatively small amount of memory will be utilized per LP. For further 
optimization, the proposed scheme piggy-backs the acknowledgment messages in the regular 
outgoing event messages as described in [30]. Further reduction in message-overhead can 
achieve by using a sequence number as described in [8]. 
 
4. OVERVIEW OF UNACKNOWLEDGED MESSAGE LIST (UML)
 
The proposed scheme partially reduces the processor idle time at the expense of a very small 
amount of memory use by each LP to maintain an UML. Before we present the proposed 
scheme, it is worth mentioning some of our key assumptions. 
 
4.1  System model and assumptions 
 
We assume that the simulation system consists of n number of LPs where each LP maintains 
one FIFO queue per neighboring LPs that stores the corresponding incoming event-messages. 
The head of the FIFO queue contains the smallest time stamp event-message. For instance, if 
we assume a mesh topology for providing internetworking among LPs, then each LP must 
maintain at least one FIFO queue per neighboring LP resulting in a total of n-1 number of 
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FIFO queues for n-1. Moreover, we only consider those event-messages that are generated 
and scheduled for remote LPs. These event-messages can be referred as globally generated 
event-messages as opposed to the locally generated event-messages that are scheduled by an 
LP for itself. The simulation executive/engine is not only responsible to maintain FIFO 
queues within an LP but also responsible to search the head of each FIFO queue in order to 
determine the smallest time stamp event-message. This time stamp will be considered the 
time stamp of the next event-message that an LP will execute in a row. The computation of 
this time stamp is essential for solving the problem of transient messages and computing the 
LBTS values.  
 
4.2  Algorithm description for UML 
 
The primary difference between the proposed UML scheme and the other existing GVT 
algorithms is that it uses a dedicated controller LP to monitor the GVT computation process. 
The dedicated controller LP refers as CR in our proposed algorithm. Specifically, CR is 
responsible to initiate the GVT computation, collect local minimum values from each active 
LP, and finally announce the new GVT value as shown in Algorithm A. Non controller LPs 
are not directly involved in the GVT computation process except each LP is required to 
compute its local minimum and reports to CR as shown in Algorithm B. The details of each 
statement in both Algorithms A and B are provided by means of comments. 
      The proposed UML approach can be considered as a centralized approach since both steps 
of GVT computation is done by the dedicated LP which greatly simplifies the design of the 
GVT algorithm. In this perspective, proposed UML scheme is similar to the pGVT [31] and 
TQ-GVT [18] since both schemes require a single controller to monitor the GVT computation 
process. However, it differs from the TQ-GVT where GVT computation never initiated by the 
dedicated LP. Instead, the GVT master (i.e., the dedicated CR LP) passively listens to GVT 
messages and takes actions only when they come. In the proposed UML scheme, controller 
LP uses Algorithm A for both initiating the GVT computation and computing the new GVT 
value. Non controller LP uses Algorithm B for computing their local minimum and compiling 
the report for the CR. 
      The proposed UML scheme uses four different types of messages as shown in both 
Algorithms A and B. The first is the timestamp event message, denoted by ( , )SSE T T , which is 
 

program controller (CR) LP (n LBTSi)  
 
/*initialization phase for all the queues maintained by an LP*/ 
S1 Report [] = 0; LBTS = 0; GVTNew = 0; GVTComp = 0; Count = 0; 

/*CR initiates GVT computation by broadcasting a message for all LPs */ 

S2 for all LPs do GVTComp;   /* { }1 2, ,..........,CompGVT
nCR LP LP LP⎯⎯⎯⎯→ */ 

/*CR continuous to receive LBTS from each LP*/ 
S3 while (CR receive Report from each LP) do 

/* A Report has received from LPi. Only first 2 elements are needed for GVT computation*/ 

S4 if Report [ ]( ) is received , , ,ID TLP LBTS MST S L

S5  Report [LPID] = LBTS; /* local minimum for LPi is stored */ 
S6  Count = Count +1; /* count is incremented until it reaches to n */ 

end while /* CR counter reaches to n, indicating that n Report messages have received*/ 
  /* computing new global minimum value*/ 

S7 GVTNew = Min (Report [LPID]); 
/* CR announces the new GVT value by broadcasting a message for all LPs */ 

S8 for all LPs do GVTNew; /* { }1 2, ,..........,NewGVT
nCR */ LP LP LP⎯⎯⎯→

Algorithm A: Controller LP simulation algorithm sketch for initiating and announcing GVT computation 
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the carrier of a positive event or an anti-event similar to the message structure described in 
[18]. The first variable Ts represents the timestamp of E whereas the Ts  is the copy of the 
original time stamp stored in the UML. This message structure is implemented to ensure that 
the transient message(s) must be accounted in the GVT computation by each active LP. All 
variables ( , )SST T  of E play an important role in dealing with the transient message and 
simultaneous reporting problems. The second is the GVT message transmits from CR, 
denoted by GVTComp that signals the start of the GVT computation (see line S2 of Algorithm 
A). This message type is similar to the GVT initiation process described in Fujimoto’s shared 
memory GVT algorithm [25]. The third is the GVT message transmitted from CR, denoted by 
GVTNew, that simply contains the value of the new GVT estimate (see line S7 of Algorithm 
A). From the proposed algorithm perspective, both messages transmitted from CR to LPs use 
global variables to initiate GVT computation and announce the new estimated value of GVT. 
      Finally, the fourth is a report message which has the format of Report (LPID, LBTS, MST 

[ST, L]). Upon completion of the local minimum computation, each LP has to compile the 
 

(Report) program LPi

 
/*initialization phase for all the queues maintained by an LP*/ 
S1  TSFIFO = 0; TSUML = 0; UML = { }; LBTS = 0; Report [] = 0; 
S2  execute one or more events /*process both local and remote event messages*/ 

S3 for any remote message E (Ts, ST ) do 

S4  UML [i] = ST ; /*storing the copy of time stamp in UML for accounting transient message/ 
S5  LPi receives the GVTComp message from CR /*receives the GVT request*/ 
S6 while (LPi not finish computing local minimum) do 
S7 If   TSUML = 1 then /*if there exists only one element in UML*/ 

/*get Min (TSFIFO) from n FIFOs*/ 
S8 TSFIFO == Min {H1(FIFO-1) , H1(FIFO-2) ,………., H1(FIFO n-1)}; 

/*get TSUML from UMLi for LPi and initialize the TSUML (Min)*/  
S9  TSUML (Min) == TSUML;  

 /*compare TSUML (Min) and TSFIFO (Min) and select LBTSi for LPi */ 
S10  LBTSi == Min {TSUML (Min), TSFIFO (Min)};  
S11  return (Report); /*report LBTSi from LPi to CR. Set LPID*/ 
S12 elseif TSUML > 1 then /*if there exists multiple elements in the UML*/ 
   /*get Min (TSUML) from UMLi for LPi*/ 
S13  TSUML (Min) == Min {UML1, UML2,……..,UML(m-1)};  
   /*get TSFIFO (Min) from n FIFOs maintained by LPi */ 

S14  TSFIFO == Min {H1 (FIFO-1) , H1(FIFO-2) ,..…., H1(FIFO n-1)};  
/*compare TSUML (Min) from TSFIFO (Min) and select LBTSi for LPi */ 

S15  LBTSi == Min {TSUML (Min) ,TSFIFO (Min)}; 
S16  return (Report); /*report LBTSi from LPi to CR. Set LPID */  
S17 elseif TSUML = 0 then /*if there exists none element in the UML*/ 

/*compute TSFIFO(Min) from n FIFOs*/ 
S18  TSFIFO == Min {H1(FIFO-1) , H1(FIFO-2) ,.., H1(FIFO n-1)};  

/*compute smallest time stamp from each FIFO queue*/ 
S19  H1(FIFO J) == Min {H1, H2 ,……., Hm};  
S20  LBTSi == TSFIFO (Min); /* initialize the LBTSi with the TSFIFO (Min value) */ 
S21  return (Report); /*report LBTSi from LPi to CR. Set LPID */  

end if;  
end while 

Algorithm B: Algorithm for implementing unacknowledged message list (UML) in LP 
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report message which will be sent to CR. LPID in the report message is the processor id that 
reports its local minimum to CR. LBTS represents the lower bound on the timestamp of the 
event messages that could be delivered to the simulation in the future. MST [ST, L] is the 
minimum sending time that represents the earliest time when a remote event message can be 
sent by an LP to one of its neighboring LPs. MST is the sum of the current simulation time 
(ST) of an LP (also refer as local virtual time) and the Lookahead (L) value. 
      It should be noted that no other counters are needed to account the transient messages. 
Instead, in our proposed approach, this is typically done by UML that maintains a record of 
transient messages by simply storing the copy of the time stamp ST  of each outgoing 
message. A local minimum computation process of an LP can not be satisfied and completed 
unless the LP considers the minimum of all ST  stored in the UML in its LBTS computation 
(this is refer as UMLMin in our algorithms). The consideration of UMLMin in the local 
minimum computation is essential since this guarantees that the CR yields a correct value of 
GVT. The execution of report message and the UML in a LP is shown in Algorithm B (see 
lines S4-S17). 
      The main factor that contributes to the reduced message overhead for the proposed UML 
scheme is that the GVT computation does not interfere with the simulation activities except 
the transmission of GVT initiation message and the report collection. In addition, the 
participating LPs need not be engaged in the GVT computation process except computing 
their local minimum values and reporting to the CR when a request arrives. The reporting 
process by each LP should be done periodically without halting the normal execution of 
event-messages. 
 
4.3  Proposed scheme for transient message problem 
 
In our proposed scheme each LP maintains a list that contains the time stamp of each 
outgoing message as shown in Fig. 1. This list is referred as UML in our proposed scheme. 
The primary purpose of UML is to ensure that for each outgoing message, the sending LP 
ideally receives an acknowledgment. In addition, for each outgoing message, the sending LP 
must store the corresponding time stamp of the recently transmitted message in the UML. 
When the event-message is sent out, the copy of the time stamp of that event-message must 
be stored in the UML of that LP. On the other hand, when an LP schedules a remote event-
message for one of its neighboring LPs, the receiving LP must send an acknowledgement 
back to the sending LP. Upon reception of an acknowledgment from the receiving LP for one 
of the previously sent messages, the sending LP eliminates the corresponding time stamp of 
the acknowledged message from the UML. This ensures that the LP does not need to account 
the acknowledged event-messages in the next GVT computation. It should also be noted that 
each LP does not require maintaining a list of incoming messages. Instead, the UML of each 
LP is responsible to take care of the unacknowledged event-messages only. When an LP is 
about to start computing its LBTS value, LP must ensure that the UML does not contain any 
time stamp of an unacknowledged message. However, if the UML is not empty, the smallest 
time stamp present in the UML must be considered by an LP in its LBTS computation. 

 Proof of correctness: If two or more time stamps are found in the UML, the smallest time 
stamp will be selected from the UML. The selected time stamp will then be compared to the 
time stamp of the next event-message that the LP is supposed to execute (i.e., the smallest 
time stamp within n-1 number of time stamps present at the head of the FIFO queues of an 
LP). Whichever is smallest will be selected as the time stamp of the next event-message that 
the LP will execute. As a result, the final time stamp will be considered by an LP during the 
LBTS computation. If only one time stamp is found in the UML for one of the 
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 Figure 1: Internal architecture of an LP. LP maintains one FIFO queue per neighboring LP and one 
                UML. Each LP can have a total of m number of event-messages ( 0 m≤ ⎯⎯→∞ ).  
 

unacknowledged event-messages, then that time stamp must be compared with the time stamp 
of the next event message that an LP will execute. LP selects the smallest time stamp out of 
the two and uses that value in the LBTS computation. Finally, if none of the time stamp is 
found in the UML (i.e., no outstanding unacknowledged messages left in the list), the LP 
follows the regular procedure of computing its LBTS value by adding the time stamp of the 
next event-message with the corresponding Lookahead value. In particulate, this can be 
expressed as: LBTS LPk = TSFIFO + LAk where TSFIFO represents the smallest time stamp of 
the next event message that an LPk executes and LAk represents the corresponding Lookahead 
value associated with the LPk. 
 
4.4  Solution of simultaneous reporting problem 
 
An illustration of our proposed solution for the simultaneous reporting problem is shown in 
Fig. 2. The controller LP initiates the GVT computation by broadcasting a message for all LPs 
that exist within the simulation system. When an LP receives such message from the 
controller LP CR, it computes its local minimum value by using the proposed Algorithm B. 
Once the local minimum value is determined by an LP, the controller will be notified with a 
small synchronization message (we refer this message as Report). Once all the LPs 
transmitted their local minimum values to the controller, the controller selects the global 
minimum value. Once the global minimum value is determined, the controller LP broadcasts 
another message to notify each LP with the new value of global minimum. Upon reception of 
the new GVT value, each LP can then distinguish between the safe and unsafe event messages 
unless they receive another GVT computation message from the controller LP CR. If GVT 
messages do not come to time, active LPs are never delayed or blocked as in the case of some 
other algorithms. Since each LP uses UML that keeps track of all the unacknowledged 
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Figure 2: An illustration of proposed scheme dealing with the simultaneous reporting problem. 
 
messages, the possibility that an LP does not consider the time stamp of one or more transient 
message is negligible. Thus, this guarantees that the use of UML in each LP yields a correct 
value of local minimum.  

Proof of correctness: For instance, if LPB receives a delayed GVT computation message 
from the controller, it does not cause the other LPs (such as LPA) of the simulation system to 
report an incorrect local minimum value to CR. Since LPA was bounded to the minimum 
value of either UML (we refer this to UMLMIN in Algorithm B) or TSFIFO after receiving the 
GVT computation message, this forces the LPA to stick with the same local minimum value 
within all the queues maintained in that LP (for implementation, see Fig. 3). For the same 
scenario (i.e., LPB receives a delayed GVT computation message from the controller LP), 
even if LPB sends an event-message to LPA, LPA will only accept it (i.e., it stores the event-
message in its FIFO queue) but will not send any acknowledgement back to the sending LP 
(i.e., LPB) with the assumption that the sending LP will consider the time stamp of this 
received event-message in its own local minimum computation. This also shows that when an 
LP receives a GVT computation message from the controller, it may accept the new event-
message coming from the other neighboring LPs. However, it does not consider the time 
stamp of the newly arrived event-message in its local minimum computation. This is due to 
the fact that the receiving LP does not require maintaining the UML. 
 
4.5  High level architecture of the proposed scheme 
 
We assume that the simulation system consists of n number of LPs where each LP is assumed 
to execute the high level architecture of the proposed solution as shown in Fig. 3. Initially, the 
controller broadcasts a message to all LPs asking to initiate the GVT computation. Upon 
reception of this broadcast message, each LP initiates the LBTS computation based on the 
FIFO queues and the UML list that each LP maintains. Once the LBTS value for an LP is 
determined, it reports the new LBTS value to the controller. 
      The proposed scheme ensures that no LP advances its current simulation time beyond the 
value of the minimum time stamp in the entire simulation. For instance, if one of the LPs 
receives the GVT computation message from the controller, it performs the following steps to 
complete the computation process as shown in Fig. 3. Upon reception of the GVT initiation 
message from the controller, each LP initiates the LBTS computation. In order to determine 
the LBTS value, each LP must first visit the UML to count the number of unacknowledged 
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messages present in the list. Therefore, the first conditional-box determines the possibility of 
the presence of only one unacknowledged message in the UML. The TSUML represents the 
number of time stamps of the unacknowledged messages present in the list. If there is only 
one time stamp message exists in the UML, that time stamp will be selected and removed 
from the UML list and forwarded to the comparison/selection box. This time stamp is 
represented as TSUML(Min). At the same time, all the head of the FIFO queues will be 
exhaustively searched in order to determine the time stamp of the next event-message that the 
LP executes. Once determine, the time stamp will be forwarded to the comparison/selection 
box. This time stamp is represented as TSFIFO(Min). In the comparison/selection box, the two 
input values will be compared and the smallest one will be selected as the new local LBTS 
value of the LP. Finally, the resultant LBTS value will be reported to the controller. 

 

Figure 3: High level architecture of the proposed scheme. 
 

On the other hand, if the first conditional box produces a false value, the control will be 
transferred to the second conditional box. In the second conditional box, the presence of 
multiple time stamps in the UML will be tested. If more than one time stamps are presented in 
the UML, the smallest value of the time stamp will be selected and forwarded to the 
comparison/selection box for further processing. The selection of minimum value of time 
stamp in the UML is presented in Fig. 3 such as: TSUML(Min) = Min {UML1,UML2, … ,UMLm-1} 
where m represents the total number of messages the UML has at the time of selection. At the 
same time, the control is transferred to search all the head of the FIFO queues, so that we 
determine the time stamp of the next event-message that the LP executes. Once the value of 
TSFIFO(Min) is determined, the selected time stamp will be forwarded to the 
comparison/selection box. The same comparison and selection will be performed between the 
two values and the resultant LBTS will be reported to the controller. 
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      Finally, if the UML shows an empty list indicating that all the sent messages have been 
acknowledged by the receiving LPs, the control will unconditionally transfer to the 
comparison/selection box. At the same time, the minimum value of TSFIFO(Min) is determined 
and forwarded to the comparison/selection box. Since the UML shows an empty list, the 
TSFIFO(Min) value is selected as a new LBTS which consequently reported to the controller. 
 
5. PERFORMANCE RESULTS OF THE PROPOSED UML SCHEME
 
Experiments were performed to compare the performance of proposed UML approach with 
both the tree and the butterfly barriers with respect to event processing rate and GVT message 
generation. All experiments were run on a dedicated SGI Origin 2000 server with 16 
processors running on IRIX version 6.5. The SGI server has two R10000 processors per IP27 
board running on 180 MHz clock speed with second level cache of 1 MB with fifteen 1.34 
GHz Sun Ultra 25 workstation running version 10 of Sun Solaris operating system with the 
Sun's development tools. Each Sun Ultra 25 workstation carries UltraSPARC IIIi processor 
performance and enhanced connectivity. 
      For the sake of simulation results and experimental verifications, we use PHOLD 
benchmark, a synthetic workload generator proposed by Fujimoto [32]. PHOLD is a 
commonly used benchmark for testing the performance of Time Warp simulators [33, 34]. 
PHOLD has minimal event processing, minimal look ahead due to event scheduling being 
based on a random distribution and a random communication pattern. In general, PHOLD 
model consists of n fully connected LPs among which a fixed message population circulates 
[35]. It can be parameterized by: (i) the routing probabilities; (ii) the message population size; 
(iii) message size; (iv) timestamp increment distribution; and (v) a spin-delay simulating 
event granularity. 
      In PHOLD, processing of each message takes a finite amount of time, after which a new 
message is sent to another LP with a specified time stamp increment. The initial event 
messages have a timestamp that is exponentially distributed between 0 and 1. We used a 
variable size of message population with the initial size of 16 messages per LP. The number 
of LPs involved in the simulation model has been fixed at 256 and the model is executed on 
16 machines with even distribution of the LPs on the machines resulting in 16 LPs per 
processor. 
 
5.1  Performance evaluation of UML scheme 
 
Figs. 4 and 5 show the aggregate event rate of PHOLD as a function of processor count. Fig. 5 
shows that the UML scheme with the tree barrier continues to provide linear speedup than the 
butterfly barrier. For the 16 events per LP case, we observed a rate of 38,000 events/second 
on 10 processors (the other 6 processors are never used in this simulation), which remains 
almost linear and stable throughout the execution. Comparing the simulation results of Fig. 4 
with Fig. 5, we observed that the introduction of variable message population results in the 
performance degradation in terms of event processing rate. The number of remote event 
messages increases slightly with the number of processors, since the amount of messages on 
each processor was fixed for Fig. 4 simulation results. However, in Fig. 5, there is a slight 
decrease in the event processing rate with respect to the number of processors. In addition to 
the introduction of variable size messages per processor, this slight drop in the event 
processing rate may also happen due to the fact that there is an overhead of memory and time 
used for storing and releasing the processed events in the parallel processor for using in case 
of rollbacks [18]. 
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      Figs. 6 and 7 show the GVT message generation for the corresponding event message 
generation presented in Figs. 4 and 5, respectively. For Fig. 6, the number of GVT messages 
almost remains same for the number of processors except there is a slight 30 % decrease of 
GVT messages. This slight reduction in GVT messages was caused since we found that the 
GVT computation was rarely initiated by the CR during the overall simulation process. It 
should be noted that these GVT messages are generated with a fixed message population on 
16 processors. In harmony with our expectations, Fig. 7 shows a constant number of GVT 
messages even with a variable size of message load on each processor. When comparing the 
result of Fig. 7 with Fig. 5, we can observe that both suffer from slight performance 
degradation due to a variable load on each processor. The GVT messages for Fig. 7 are not 
only smooth but also stable for all values of processors except the same 35 % reduction can be 
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seen for the same reason discussed for Fig. 6. 

 

          

 

      The simulation results of event processing rate and GVT messages with variable size of 
message population for 16 processors on PHOLD benchmark are shown in Figs. 8 and 9, 
respectively. For these two simulation results, the same configuration parameters were used as 
we discussed for Figs. 5 and 6, except that we used all 16 processors with comparatively large 
message population. For Fig. 8, the number of remote event messages increased linearly with 
the number of processors, except that changing from 8 processors to 16 processors caused a 
sudden stability in the remote event processing. The number of GVT messages increased 
linearly too in Fig. 9, except that a wide difference can be found between tree and butterfly 
barriers from 8 processors to 16 processors. Finally, for the sake of computing the speedup, 
we have run the experiments for selective 4, 8, and 12 processors with respect to the memory 
buffer requirements. In Fig. 10, it was observed that the achievable speedup using the 

 
Figure 10: Effect of unacknowledged message list (UML) scheme on the speedup with respect to 4, 
                 8, and 12 processor systems in tree and butterfly barriers. 
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proposed UML approach for all cases (4, 8, and 12 processors) are stable and linear with 
respect to the increase in the memory buffers. As we increase the number of processors in the 
system, it increases both total remote event messages and the relative speedup for each case. 
 
6. CONCLUSION
 
This paper presented the implementation of synchronous barriers with the optimistic TMA. 
This approach is quite new since it combines two different families of algorithms 
(conservative and optimistic) to go for the same task of synchronization. We started our 
discussion from the optimistic algorithm in general and Time Wrap and Samadi’s algorithms 
in particular. We also presented an analysis to show why an optimistic algorithm must have 
the capability to deal with some common problems like rollback, reclaiming memory, 
transient messages, and simultaneous reporting. Finally, we presented a new UML scheme 
that solves the transient message problem. To support the implementation of the proposed 
scheme, two algorithms are presented. Both our theoretical analysis and simulation results 
suggest that the tree barrier performs well with the UML scheme than the pure optimistic 
algorithm in terms of the number of synchronization messages that need to be transmitted to 
compute the GVT value. 
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