
The DEVS-Driven Modeling Language and its Graphical Editor

Ufuoma Bright Ighoroje

Computer Science Stream

African University Of Science and Technology,

Abuja, Nigeria.

E-mail: b.ufuoma@gmail.com

Mamadou Kaba Traoré

LIMOS, CNRS UMR 6158

Université Blaise Pascal, Clermont-Ferrand 2

Campus des Cézeaux, 63173 Aubière,

E-mail: traore@isima.fr

Keywords: Discrete Event Simulation, DEVS, Graphical

Notation, Eclipse, GMF.

Abstract

 We propose DEVS-Driven Modeling Language

(DDML), a graphical notation for DEVS modeling and an

Eclipse-based graphical editor, Eclipse-DDML. DDML

attempts to bridge the gap between expert modelers and

domain experts making it easy to model systems, and

capture the static, dynamic, and functional aspects of a

system. At the same time, it unifies C-DEVS and P-DEVS

models. DDML integrates excellent modeling concepts from

powerful formalisms and glues them in one unique

consistent framework. Eclipse-DDML provides enhanced

graphical editing; further simplifying model construction

and promoting good modeling practices. Integration with

eclipse simplifies software development, installation and

updates, while allowing extensibility.

1. INTRODUCTION

 DEVS [1] is already established as a universal

modeling and simulation formalism. Building DEVS

models require the modeler to possess advanced skills in

programming and/or mathematics. This makes it very

difficult to discuss and verify these models with domain

experts. There is also a need to integrate advanced modeling

into generic simulation methodologies since both activities

are wide apart. Hence, a generic approach that integrates

software engineering, modeling and simulation expertise is

required. And since there is an underlying simulation

operational semantic, there is no need for

paradigm/formalism transformation.

 In order to realize this solution, an intermediate level of

abstraction has to be adopted, which is high enough to be

generalized (and accessible to a wide community) and low

enough to reduce complexity of code synthesis. This

representation needs to express the structural and behavioral

characteristics described by declarative and functional

models [2] and this must be inherently coherent. This

integrative approach should allow the use of an easy

language/notation with a potential for formal specification

of data and operations, and therefore the simulation system.

 The major properties to get in a DEVS-based modeling

notation are:

a) Highly communicable: domain experts should be

able to share and discuss the model easily with

simulation specialists about the DEVS model's

structure and behaviour captured.

b) Amenable to formal analysis: formal methods

should be applicable (no ambiguity); so that the

user can derive static and dynamic properties of the

model and obtain simulation trajectories before

running simulations.

c) High expressive power: all models that can be

expressed in the DEVS paradigm should be easy to

describe with the graphical notation. No situation

should lead to a non specifiable system using the

notation.

d) Unifying framework: the notation should provide

a common basis for CDEVS and PDEVS.

e) Supporting tool: a software tool should allow the

drawing of the graphical notation's concepts, as

well as automated code synthesis and integrated

support for formal analysis.

 We develop DDML and our tool to satisfy all of these

properties. The concrete syntax of DDML is based on the

flowchart, State-Event-Chart, Flow-Trace, State-Event-

Trace, and abstract data structure graph [3]. All of these

elements are amenable to formal analysis and all of them

have their exact DEVS equivalent (which provides the

operational semantics). We leverage Eclipse’s very rich

infrastructure to develop a graphical editing tool for DDML.

Our editor provides a rich palette of tools, with drag and

drop facilities. Integration with Eclipse’s platform also eases

software development and makes our tool extensible.

2. BACKGROUND

 The formal specification of DEVS provides a means for

mathematical formulation of a model. DEVS permits

independence of the language or methodology chosen to

implement the models, which has allowed several

simulation tools to be developed, tackling different needs

and providing advantages in specific domains.

 Related works address some visual notations and

realizations for DEVS models. One approach proposes a

framework capable of simulating a DEVS model via

Unified Modeling Language (UML) state machines [4].

Then, some set of rules are enumerated to map the UML

models to DEVS. The resultant UML models are executable

mailto:b.ufuoma@gmail.com
mailto:traore@isima.fr

within simulation frameworks. This approach requires extra

efforts to map UML models to DEVS. In addition, it does

not satisfy properties (c), (d), and (e) identified in section 1.

On the other hand, DDML does not require such advanced

mapping to DEVS because it is a direct graphical

representation of DEVS.

 DEVSJAVA [5] is a DEVS-based modeling and

simulation environment written in Java. It provides classes

for the users to implement their own DEVS models. DEVS-

C++ [6] is a DEVS-based modeling and simulation

environment written in C++, which implements parallel

execution and supports large-scale systems. While these

approaches have been very applicable, they require

advanced programming skills in Java/C++ to define DEVS

models. Hence, they do not satisfy properties (a), (b), (d),

and (e).

 CD++ Builder [7] is an advanced IDE integrated with

eclipse for modeling and simulating discrete event systems.

CD++ Builder integrates a modeler that provides a graphical

editor for coupled and DEVS-Graph atomic editors, and

visualization of simulation results. Models can be visualized

and C++ codes for the models can be generated for

simulation. However, properties (b) and (d) are not met.

 PowerDEVS [9] provides a graphical representation of

coupled models and allows definition of atomic models in

C++. It provides code assistance and a special model library

enabling re-use of models in a drag and drop fashion.

However, properties (b) and (d) are not met satisfactorily.

 JDEVS [10] is a DEVS modeling and simulation

environment implemented in Java. It allows general-

purpose, component-based, object-oriented, visual

simulation of models. It has modules for 2D and 3D

visualization, built for natural systems. This framework

however does not provide an expressive notation to define

models. It does not meet properties (a), (b), (c), and (d).

 The revised DEVS Diagram [11] is a structured

diagram form of the DEVS formalism (C-DEVS) with many

similarities with our earlier work [3]. It does not however

satisfy properties (b), (d), and (e).

3. DDML

 DDML is a direct graphical expression of DEVS

Modeling. DDML provides a unifying framework for C-

DEVS and P-DEVS modeling. At the same time, it provides

a powerful means to specify DEVS-based models using an

intuitive and an easy-to communicate specification, which

in addition can be amenable to formal verification.

 DDML methodology captures the functional aspects of

a system using processes represented as flowcharts with

ports. The behavioral aspects are captured using state

transition diagrams.

3.1. DDML Specification for Atomic and Coupled

Processes

 DDML uses flowchart-like notations to represent

system models or processes. We suggest in DDML to

define processes as instances of classes. We also suggest to

name ports and to define their domains. Comments should

be attachable to include further details and description of the

models.

 An atomic model diagram represents a distinct system

process that cannot be decomposed into sub-processes. A

coupled model diagram represents a composite system

process that can be decomposed into sub-processes. These

sub-processes might be atomic models or coupled models.

 Figure 1 shows the DDML graphical notations for

coupled and atomic model.

Figure 1: Coupled & Atomic Model Graphical Notation

 From the figure, m0 is a coupled model with sub-

models m1, m2, and m3. The first compartment of the

coupled model is used to represent the name of the process,

in addition to the class name (e.g. M0:m0) (the class name

indicates that the process is an instance of a class. The

second compartment is used to represent the select flag

which provides a tie-breaking mechanism for concurrency.

There is also a compartment that contains sub-models and

their couplings. Models (coupled and atomic) have input

and output ports. A process receives signals from external

processes via the input ports and sends out signals via the

output port. For example, coupled model m0 has input ports

A and B and output ports C and D.

 Processes in DDML are concurrent, asynchronous and

they occur instantaneously.

 Concurrency implies that processes are parallel. But in

the case of a mutual exclusion, DDML uses the select flag

(tie-breaker). The flag carries a list of processes sorted by

decreasing priorities. From the figure, the select flag {m1,

m2, m3} means that if m1, m2, and m3 are simultaneously

selected, m1 takes priority and it is executed first. A voting

paradox (or Condorcet's paradox) may occur in a selection,

for example {m3, m2} is a voting paradox. This implies that

if only m3 and m2 are selected, then m3 is executed first.

 The External Input Coupling (EIC) (represented by a

line-dot-dotted style line) is any connection between a

process’s input port and a sub-process’ input port. There are

two EIC connections in the diagram above. They include

{(A—E) and (B—I)}. The External Output Coupling

(EOC) (represented by a dashed style line) is any

connection between a process’ output port and a sub-

process’s output port. There are two EOC connections in the

diagram above. They include: {(H—C) and (J—D)}.

Internal Coupling (IC) (represented by a solid line) is any

connection between two sub-processes within a parent

process. There only one IC connections in the diagram

above. It is {(F—G)}.

3.1.1. Relation to C-DEVS

 Recall that a coupled model can be defined in classic

DEVS as

 CM = <X, Y, D, {Md│d ∈ D}, EIC, EOC, IC, select>

This model is caught in the coupled model DDML diagram

as follows:

 The coupled model (CM) corresponds to the

DDML coupled model diagram

 Each input port p of X (e.g. A and B) of the CM is

an input port of the DDML coupled model

 Each output port p of Y(e.g. C and D) of the CM is

an output port of the DDML coupled model

 Each sub-model d of D (e.g. m1, m2, and m3) is a

sub-process of the CM (Comments can be used to

give additional details about the class to which the

sub-process belongs).

 Each element in EIC (e.g. (A—E) and (B—I)),

EOC (e.g. (H—C) and (J—D)), or IC (e.g. (F—

G)) is a DDML port-to-port connection as shown

above.

 The select function is translated into the select flag.

Paradoxes might exist and multiple lines should be

added to indicate paradoxes.

3.1.2. Relation to P-DEVS

 Recall that a coupled model can be defined in parallel

DEVS as

 CM = <X, Y, D, {Md│d ∈ D}, EIC, EOC, IC>

The DDML representation of such a model is done like with

C-DEVS, but with the following changes:

 Inputs (and outputs) are all synchronized.

 There is no flag (hence the compartment for the

select flag is left empty)

3.2. DDML Model of a Traffic System

 Figure 2 shows a simple model of a traffic light system

using DDML notation. The Traffic system has three sub-

processes (Generator, Lights, and Display). The select flag,

as shown has four lines to indicate priorities of processes

when they are imminent simultaneously.

Figure 2: DDML Model for Traffic System

 The Generator has an input port (generatorSignal)

with domain ({0, 1}) defined. The generator generates a 0 or

1 signal. This signal is sent to the Lights process through its

Control port. The domain of the Control is defined as {ON,

OFF}, and this port acts as a switch to the Lights system.

The Lights process also has an output port, trafficColor

which sends the color {Black, Red, Green, Yellow} to be

displayed to the Display system through the displaySignal

port.

3.3. DDML Specification for States and State

Transitions

 A process (atomic model) is in a state at a given time.

Most systems possess an infinite number of states. In order

to effectively capture these states, we use a finite number of

state variables to group the infinite states into a finite

number of state classes. Hence, in this paper, we define a

“state” to be an equivalence class of states, with a particular

configuration of state variables. A state also has a duration

(the time the system remains in that state)

 States in DDML are classified according to the state

duration, state activities, and configuration of state

variables. A Finite State has a definite duration, a Passive

state has an infinite duration, and a Transient state has zero

duration. Each of these states is represented in DDML by a

rectangle (see Figure 3). The rectangle has four

compartments: the upper part is for the name of the state,

the second part is for the state properties (values of the state

variables, which defines the state), and the third part is for

the activities performed whenever the process enters the

state (usually in a do-block as shown in the figure) , and the

lower part is for the time advance for the given state. Figure

3 shows the graphical notation for Finite state. Transient and

Passive States use similar notation. But for Transient States,

the time advance is set to ZERO and for Passive State, the

time advance is set to INFINITY.

Figure 3: DDML Finite State Notation

 The Initial state diagram represents the first/start state

of an atomic model or process. This state is used to declare

and initialize all the state variables and to define the

subroutines that are used in other states. Variables creation

and initialization activities are specified. State functions or

sub-routines are also defined. The modeler can use any

language to express data structures and algorithms. Figure 4

shows the graphical notation for an initial state. The state

variables are defined in the second compartment; and

functions (method definitions) of a process are defined in

the last compartment.

Figure 4: DDML Initial State Notation

 States may undergo external, internal, or conflict

transition. (Conflict transition is particular to P-DEVS).

 The internal state transition is represented by a solid

line with an arrow at the end as shown in figure 5. An

internal state transition occurs automatically at the end of a

definite state or an intermediate state. An action (Lamda),

usually sending an output signal is performed at the

beginning of the transition and a computation is done at the

end (just before it enters the new state). Such a transition

always goes from the right hand side of a state to the left

hand side of another one. Infinite states do not undergo

internal transitions.

 The external state transition is represented by a broken

line with an arrow at the end as shown in Figure 5. An

external state transition occurs when a system receives an

external input or disturbance that forces it to change its

state. Such transition can occur at a time (elapse time, e (0 ≤

e ≤ ta)). An action (usually an input) is performed before

the transition and a computation is done at the end of the

transition (just before it enters the new state). External

transitions go from the upper or the lower side of a state to

the left hand side of another one.

 The Conflict transition, which is a transition that goes

from one of the right hand side corners of a state, showing

that two situations occur simultaneously: the life-time of the

state has expired while an external event occurs.

Figure 5: DDML Model for Lights Process Illustrating External and Internal Transitions

 We illustrate the external and internal transition

notations using the Traffic system example. Figure 5 shows

the DDML state graph for Lights process. As shown in the

figure, there are five states: STOP, READY_TO_GO,

READY_TO_STOP, GO, and LIGHTS_OFF. Each of

these states is defined with its state variables, activities and

time advance. Note that state LIGHTS_OFF is a passive

state (time advance is INFINITY), showing that it has

infinite time duration. Hence, it does not undergo any

internal transitions. From that state, when the process

receives an ON signal through its Control port (indicated

with Control.ON in the diagram), it undergoes an external

transition to STOP state. The system remains in STOP state

for 20 seconds (duration) before it undergoes an internal

transition to the READY_TO_GO state. Before this internal

transition, it sends out a Yellow signal through the

trafficColor port (indicated by trafficColor.^Yellow in the

figure). The system remains in the READY_TO_GO state

for 5 seconds, but if it receives an OFF signal through the

Control port, it transits to LIGHTS_OFF state (external

transition). The system works in this fashion as shown by

other states and transitions in the Figure.

 DDML also has notation to define a conditional

transition. The diamond shaped figure (Figure 5) is used to

represent a decision node which indicates a conditional

transition. A test is carried out before decision is made on

which state to transit to. In the figure shown, the system

transits to state C if Y ≠5 or transits to state B if Y == 5.

Conditional transitions could also apply to external state

transitions.

Figure 5: Conditional State Transition

3.3.1. Relation to C-DEVS

 Recall, an atomic model is defined in C-DEVS as

follows:

 M = <X, Y, S, δint, δext, λ, ta>

The DDML representation of the model is an atomic process

built as follows:

 X and Y are defined as defined in section 3.1.1.

 An initial state is defined, with declarations: v ∈ Sv.

All other states are defined and their corresponding

configurations of values for the variables specified.

Also the value returned by the time advance (ta) is

indicated for each state at the bottom of the

corresponding rectangle. Transient states are states

with ta(s) = 0 and infinite states are states with ta(s)

= +∞.

 δint (s) is defined in the DDML representation as an

internal transition from State A to state B, which

carries λ (s), by indicating how it is distributed

among output ports. Stochastic situations are

depicted using decision nodes.

 δint (s) is defined in DDML representation as an

external transition, which carries the input received

and shows how this value is distributed among

input ports. The associated guard (if mentioned)

indicates the value of the elapsed time.

3.3.2. Relation to P-DEVS

An atomic model is defined in P-DEVS as:

 M = <X
b
, Y

b
, S, δint, δext, δcon, λ, ta>

Where,

 X
b
 and Y

b
 are bags of inputs and outputs.

 S, δint, δext, λ, and ta are defined as in C-DEVS.

 δcon:Q x X
b
→ S is the conflict function;

 The DDML representation is done here like in C-

DEVS, with the following changes:

 Inputs (and outputs) are synchronized.

 Each relation δcon defines in the State-Event-Chart

a conflict transition, which carries x and λ (s).

4. ECLIPSE DDML EDITOR

 It has been shown that DDML presents an easy to use

set of graphical notations for defining simulation models

based on DEVS. To facilitate model construction using

DDML, it is necessary to use a graphical editor with drag

and drop features. This will also promote model reuse as

models can be constructed, edited, saved, and shared among

modelers. In this section, we present our DDML editor

based on Eclipse.

 We present two editors for DDML: the DDML Coupled

Model Editor and the DDML Atomic Model Editor.

4.1. DDML Coupled Model Editor

 The DDML coupled model editor contains tools to

define DEVS coupled models and sub-models (coupled

models or atomic models). Figure 6 below shows a snapshot

of the DDML Coupled Model Editor.

 The DDML coupled model editor has menu and tool

bars, a project explorer, an outline view, a properties view, a

rich palette of tools, and a diagram workspace.

Figure 6: DDML Coupled Model Editor

 Using the editor to define simulation models is very

intuitive. The Menu Bar has the following menus: File, Edit,

Diagram, Navigate, Search, Project, Run, Window, and

Help. The toolbar contains common tools for formatting the

model diagram. The project explorer view provides a

hierarchical view of the project and resources in the

Workbench. The outline view shows a graphical outline of

the workspace. The palette contains the tools for defining a

model.

 The drawing workspace is where the model is created.

States can be picked from the palette and dropped on the

workspace. Ports can be added to a model (coupled or

atomic) by simply picking the port tool (Input Port or

Output Port) and dropping it on the model. Connections are

made between ports. EIC, EOC, and IC connectors can be

used in a drag-and-drop fashion.

 The Eclipse-DDML workbench provides a properties

view that displays the detailed properties for the selected

element. Some details about a model element which can are

not shown in the drawing workspace are shown in the

properties view.

4.2. DDML Atomic Model Editor

 The DDML Atomic Model Editor contains tools that

can be used to define states and state transitions within a

process model. See Figure 7 for a screenshot of the DDML

Atomic Model Editor.

 Just like the Coupled Model Editor, the Atomic Model

Editor has a menu bar and tool bar; a project explorer, a

properties view, an outline view, a diagram workspace, and

a palette. Apart from the palette, the other sections are very

much similar to the Coupled Model Editor.

 Just like the Coupled Model Editor, the Atomic Model

Editor has a menu bar and tool bar; a project explorer, a

properties view, an outline view, a diagram workspace, and

a palette. Apart from the palette, the other sections are very

much similar to the Coupled Model Editor.

Figure 7: DDML Atomic Model Editor

 This editor can be launched by simply double clicking

on an atomic model within the DDML Coupled Model

editor.

 The Passive, Transient, and Finite States contain

compartments for defining State Variables (which can be

picked from the palette), and Activities. The State Activity

is defined within the body of the do {} in the properties view

and this must be done in the predefined language. The Time

Advance for the Passive State and Transient State is set to

infinity and zero respectively. External and Internal

Transitions can be made by using the Transition tools. This

can be done by simply picking the tool and connecting two

states. The Lambda and Computation must be defined for

the internal transition while the Trigger and the

Computation must be defined for the external transition (this

can be done either graphically or in the properties view).

5. ARCHITECTURE AND TECHNOLOGY

 In other to implement the graphical editors, several

graphics utilities were considered. We considered the native

Java Abstract Window Toolkit (AWT) and Swing Libraries.

Eclipse also provides the Standard Widget Toolkit (SWT)

and JFace library. These libraries are useful for defining

form windows but do not possess the capability to build

graphical editors. We also considered Draw2D provided by

Eclipse. Draw2D was created particularly to handle figures.

Eclipse Graphical Editing Framework (GEF) is a powerful

library that is based on Draw2D. GEF is specifically created

for building graphical editors. But in other to glue the

graphical editor with an underlying model (defined by

Eclipse Modeling Framework (EMF) [12] Ecore meta-

modeling language), we choose to use Graphical Modeling

Framework (GMF) [13].

 GMF makes it easier to build graphical editors based on

an underlying model defined in EMF. It provides a

generative component and runtime infrastructure for

developing graphical editors. GMF effectively implements

the Model-View-Controller (MVC) design pattern, making

it possible to define graphical components and model

components separately. Four meta-model files have to be

defined. The domain model in Ecore (.ecore); the graphical

definition model (.gmfgraph) which describes the shapes

and figures that are going to be used in the editor; The

tooling definition model (.gmftool) which describes the

palette tools; and the mapping model (.gmfmap) which

maps the domain model, the graphical definition model, and

the tooling definition model.

 The mapping model is used to generate the generator

model (.gmfgen) which is used to generate the editor code.

Several tweaks were made to the generated code to fulfill

the desired functionalities of our editors.

 The graphical properties are separated from domain

properties (stored in different XML files).

6. CONCLUSION

 We presented DDML, a graphical notation for defining

DEVS models. We showed how DDML maps to the formal

DEVS specification and how it captures the dynamic, static

and functional aspects of a system. DDML is a natural and

intuitive approach to modeling. Its notation can easily be

understood by both domain experts and modelers. We also

presented Eclipse-DDML with rich editors for defining

DEVS coupled models and atomic models.

 DDML is a contribution towards making DEVS

available to a wider community. Our tool is built as an

eclipse plugin, hence it can integrate and be integrated into

other utilities using Eclipse platform. This also means that it

is extensible, easy to manage, and update.

 Next steps include the following:

 The Eclipse-DDML tool should be integrated with

some methods for formal analysis

 Our editor should be extended to include ability to

automatically generate simulation code for DEVS

libraries like SimStudio, DEVSJAVA, and DEVS-

C++.

 Our tool should evolve into an integrated

development environment for all simulation tasks

(modeling, simulation, analysis of results,

verification, and validation of simulation models,

and visualization of simulation results.

References

[1] Zeigler, B; Praehofer, H; Kim, T. 2000, “Theory of

Modeling and Simulation”, 2nd Edition. Academic Press.

[2] Fishwick, P. A. 1995. “Simulation Model Design and

Execution: Building Digital Worlds," Prentice Hall.

[3] Traore, M. K. 2009. “A Graphical Notation for DEVS”.

Proceedings from the Spring Simulation Multiconference

2009.

[4] Mooney J. 2008. DEVS/UML – A Framework for

Simulatable UML Models. M.S. Thesis, Computer Science

and Engineering Dept., Arizona State University, Tempe,

AZ, USA.

[5] Sarjoughian, H; Zeigler, B. 1998, “DEVSJAVA: Basis

for a DEVS-based collaborative M&S environment”.

Proceedings of the International Conference on Web-based

Modeling & Simulation, San Diego, CA.

[6] Zeigler, B., Y. Moon, D. Kim, and D. Kim. 1996.

DEVS-C++: A high performance modeling and simulation

environment. Proceedings of 29th Hawaii International

Conference on System Sciences, Honolulu.

[7] Wainer, G. 2009. “Discrete-event modeling and

simulation: a practitioner's approach”. CRC Press.

[8] Kim, T. G. 1994. DEVSIM++ user’s manual. CORE

Lab, EE Dept, KAIST, Taejon, Korea.

[9] Pagliero, E; Lapadula, M; Kofman, E. 2003, “Power-

DEVS. An Integrated Tool for Discrete Event Simulation”.

Proceedings of RPIC, San Nicolas, Argentina.

[10] Filippi, J. B., and P. Bisgambiglia. 2004. JDEVS: An

implementation of a DEVS based formal framework.

Environmental Modeling and Software 19:261–274.

[11] Song H. S. and Kim T. G.. 2010. DEVS Diagram

Revised: A Structured Approach for DEVS Modeling.

Proceedings from European Simulation Conference 2010,

Belgium: 94 – 101.

[12] Steinberg D. et al. 2008. “Eclipse Modeling

Framework.” 2nd Edition, Addison-Wesley Professional.

[13] Gronback R. C. 2009. Eclipse Modeling Project: A

Domain-Specific Language Toolkit. Addison-Wesley.

