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Abstract  

 We propose DEVS-Driven Modeling Language 

(DDML), a graphical notation for DEVS modeling and an 

Eclipse-based graphical editor, Eclipse-DDML. DDML 

attempts to bridge the gap between expert modelers and 

domain experts making it easy to model systems, and 

capture the static, dynamic, and functional aspects of a 

system. At the same time, it unifies C-DEVS and P-DEVS 

models. DDML integrates excellent modeling concepts from 

powerful formalisms and glues them in one unique 

consistent framework. Eclipse-DDML provides enhanced 

graphical editing; further simplifying model construction 

and promoting good modeling practices. Integration with 

eclipse simplifies software development, installation and 

updates, while allowing extensibility.  

 

1. INTRODUCTION 

 DEVS [1] is already established as a universal 

modeling and simulation formalism. Building DEVS 

models require the modeler to possess advanced skills in 

programming and/or mathematics. This makes it very 

difficult to discuss and verify these models with domain 

experts. There is also a need to integrate advanced modeling 

into generic simulation methodologies since both activities 

are wide apart. Hence, a generic approach that integrates 

software engineering, modeling and simulation expertise is 

required. And since there is an underlying simulation 

operational semantic, there is no need for 

paradigm/formalism transformation. 

 In order to realize this solution, an intermediate level of 

abstraction has to be adopted, which is high enough to be 

generalized (and accessible to a wide community) and low 

enough to reduce complexity of code synthesis. This 

representation needs to express the structural and behavioral 

characteristics described by declarative and functional 

models [2] and this must be inherently coherent. This 

integrative approach should allow the use of an easy 

language/notation with a potential for formal specification 

of data and operations, and therefore the simulation system.  

 The major properties to get in a DEVS-based modeling 

notation are: 

a) Highly communicable: domain experts should be 

able to share and discuss the model easily with 

simulation specialists about the DEVS model's 

structure and behaviour captured. 

b) Amenable to formal analysis: formal methods 

should be applicable (no ambiguity); so that the 

user can derive static and dynamic properties of the 

model and obtain simulation trajectories before 

running simulations. 

c) High expressive power: all models that can be 

expressed in the DEVS paradigm should be easy to 

describe with the graphical notation. No situation 

should lead to a non specifiable system using the 

notation.  

d) Unifying framework: the notation should provide 

a common basis for CDEVS and PDEVS.  

e) Supporting tool: a software tool should allow the 

drawing of the graphical notation's concepts, as 

well as automated code synthesis and integrated 

support for formal analysis. 

 We develop DDML and our tool to satisfy all of these 

properties. The concrete syntax of DDML is based on the 

flowchart, State-Event-Chart, Flow-Trace, State-Event-

Trace, and abstract data structure graph [3]. All of these 

elements are amenable to formal analysis and all of them 

have their exact DEVS equivalent (which provides the 

operational semantics). We leverage Eclipse’s very rich 

infrastructure to develop a graphical editing tool for DDML. 

Our editor provides a rich palette of tools, with drag and 

drop facilities. Integration with Eclipse’s platform also eases 

software development and makes our tool extensible.  

 

2. BACKGROUND 

 The formal specification of DEVS provides a means for 

mathematical formulation of a model. DEVS permits 

independence of the language or methodology chosen to 

implement the models, which has allowed several 

simulation tools to be developed, tackling different needs 

and providing advantages in specific domains.  

 Related works address some visual notations and 

realizations for DEVS models. One approach proposes a 

framework capable of simulating a DEVS model via 

Unified Modeling Language (UML) state machines [4]. 

Then, some set of rules are enumerated to map the UML 

models to DEVS. The resultant UML models are executable 
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within simulation frameworks. This approach requires extra 

efforts to map UML models to DEVS. In addition, it does 

not satisfy properties (c), (d), and (e) identified in section 1. 

On the other hand, DDML does not require such advanced 

mapping to DEVS because it is a direct graphical 

representation of DEVS.  

 DEVSJAVA [5] is a DEVS-based modeling and 

simulation environment written in Java. It provides classes 

for the users to implement their own DEVS models. DEVS-

C++ [6] is a DEVS-based modeling and simulation 

environment written in C++, which implements parallel 

execution and supports large-scale systems. While these 

approaches have been very applicable, they require 

advanced programming skills in Java/C++ to define DEVS 

models. Hence, they do not satisfy properties (a), (b), (d), 

and (e).  

 CD++ Builder [7] is an advanced IDE integrated with 

eclipse for modeling and simulating discrete event systems. 

CD++ Builder integrates a modeler that provides a graphical 

editor for coupled and DEVS-Graph atomic editors, and 

visualization of simulation results. Models can be visualized 

and C++ codes for the models can be generated for 

simulation. However, properties (b) and (d) are not met. 

 PowerDEVS [9] provides a graphical representation of 

coupled models and allows definition of atomic models in 

C++. It provides code assistance and a special model library 

enabling re-use of models in a drag and drop fashion. 

However, properties (b) and (d) are not met satisfactorily. 

 JDEVS [10] is a DEVS modeling and simulation 

environment implemented in Java. It allows general-

purpose, component-based, object-oriented, visual 

simulation of models. It has modules for 2D and 3D 

visualization, built for natural systems. This framework 

however does not provide an expressive notation to define 

models. It does not meet properties (a), (b), (c), and (d). 

 The revised DEVS Diagram [11] is a structured 

diagram form of the DEVS formalism (C-DEVS) with many 

similarities with our earlier work [3]. It does not however 

satisfy properties (b), (d), and (e). 

  

3. DDML 

 DDML is a direct graphical expression of DEVS 

Modeling. DDML provides a unifying framework for C-

DEVS and P-DEVS modeling. At the same time, it provides 

a powerful means to specify DEVS-based models using an 

intuitive and an easy-to communicate specification, which 

in addition can be amenable to formal verification. 

 DDML methodology captures the functional aspects of 

a system using processes represented as flowcharts with 

ports. The behavioral aspects are captured using state 

transition diagrams.  

 

3.1. DDML Specification for Atomic and Coupled 

Processes 

 DDML uses flowchart-like notations to represent 

system models or processes.  We suggest in DDML to 

define processes as instances of classes. We also suggest to 

name ports and to define their domains. Comments should 

be attachable to include further details and description of the 

models.  

 An atomic model diagram represents a distinct system 

process that cannot be decomposed into sub-processes. A 

coupled model diagram represents a composite system 

process that can be decomposed into sub-processes. These 

sub-processes might be atomic models or coupled models.  

 Figure 1 shows the DDML graphical notations for 

coupled and atomic model.  

 

 
 

Figure 1: Coupled & Atomic Model Graphical Notation 

 

 From the figure, m0 is a coupled model with sub-

models m1, m2, and m3. The first compartment of the 

coupled model is used to represent the name of the process, 

in addition to the class name (e.g. M0:m0) (the class name 

indicates that the process is an instance of a class. The 

second compartment is used to represent the select flag 

which provides a tie-breaking mechanism for concurrency. 

There is also a compartment that contains sub-models and 

their couplings. Models (coupled and atomic) have input 

and output ports. A process receives signals from external 

processes via the input ports and sends out signals via the 

output port. For example, coupled model m0 has input ports 

A and B and output ports C and D.   

 Processes in DDML are concurrent, asynchronous and 

they occur instantaneously. 

 Concurrency implies that processes are parallel. But in 

the case of a mutual exclusion, DDML uses the select flag 

(tie-breaker). The flag carries a list of processes sorted by 

decreasing priorities. From the figure, the select flag {m1, 



m2, m3} means that if m1, m2, and m3 are simultaneously 

selected, m1 takes priority and it is executed first. A voting 

paradox (or Condorcet's paradox) may occur in a selection, 

for example {m3, m2} is a voting paradox. This implies that 

if only m3 and m2 are selected, then m3 is executed first. 

 The External Input Coupling (EIC) (represented by a 

line-dot-dotted style line) is any connection between a 

process’s input port and a sub-process’ input port. There are 

two EIC connections in the diagram above. They include 

{(A—E) and (B—I)}. The External Output Coupling 

(EOC) (represented by a dashed style line) is any 

connection between a process’ output port and a sub-

process’s output port. There are two EOC connections in the 

diagram above. They include: {(H—C) and (J—D)}. 

Internal Coupling (IC) (represented by a solid line) is any 

connection between two sub-processes within a parent 

process. There only one IC connections in the diagram 

above. It is {(F—G)}. 

 

3.1.1. Relation to C-DEVS 

 Recall that a coupled model can be defined in classic 

DEVS as  

 CM = <X, Y, D, {Md│d ∈ D}, EIC, EOC, IC, select> 

This model is caught in the coupled model DDML diagram 

as follows: 

 The coupled model (CM) corresponds to the 

DDML coupled model diagram 

 Each input port p of X (e.g. A and B) of the CM is 

an input port of the DDML coupled model 

 Each output port p of Y(e.g. C and D) of the CM is 

an output port of the DDML coupled model 

 Each sub-model d of D (e.g. m1, m2, and m3) is a 

sub-process of the CM (Comments can be used to 

give additional details about the class to which the 

sub-process belongs). 

 Each element in EIC (e.g. (A—E) and (B—I)), 

EOC (e.g. (H—C) and (J—D)), or IC (e.g. (F—

G)) is a DDML port-to-port connection as shown 

above.  

 The select function is translated into the select flag. 

Paradoxes might exist and multiple lines should be 

added to indicate paradoxes. 

 

3.1.2. Relation to P-DEVS 

 Recall that a coupled model can be defined in parallel 

DEVS as 

 CM = <X, Y, D, {Md│d ∈ D}, EIC, EOC, IC> 

The DDML representation of such a model is done like with 

C-DEVS, but with the following changes: 

 Inputs (and outputs) are all synchronized. 

 There is no flag (hence the compartment for the 

select flag is left empty) 

 

3.2. DDML Model of a Traffic System 

 Figure 2 shows a simple model of a traffic light system 

using DDML notation. The Traffic system has three sub-

processes (Generator, Lights, and Display). The select flag, 

as shown has four lines to indicate priorities of processes 

when they are imminent simultaneously. 

 

 

Figure 2: DDML Model for Traffic System 

 

 The Generator has an input port (generatorSignal) 

with domain ({0, 1}) defined. The generator generates a 0 or 

1 signal. This signal is sent to the Lights process through its 

Control port. The domain of the Control is defined as {ON, 

OFF}, and this port acts as a switch to the Lights system. 

The Lights process also has an output port, trafficColor 



which sends the color {Black, Red, Green, Yellow} to be 

displayed to the Display system through the displaySignal 

port.  

 

3.3. DDML Specification for States and State 

Transitions 

 A process (atomic model) is in a state at a given time. 

Most systems possess an infinite number of states. In order 

to effectively capture these states, we use a finite number of 

state variables to group the infinite states into a finite 

number of state classes. Hence, in this paper, we define a 

“state” to be an equivalence class of states, with a particular 

configuration of state variables.  A state also has a duration 

(the time the system remains in that state) 

 States in DDML are classified according to the state 

duration, state activities, and configuration of state 

variables. A Finite State has a definite duration, a Passive 

state has an infinite duration, and a Transient state has zero 

duration. Each of these states is represented in DDML by a 

rectangle (see Figure 3). The rectangle has four 

compartments: the upper part is for the name of the state, 

the second part is for the state properties (values of the state 

variables, which defines the state), and the third part is for 

the activities performed whenever the process enters the 

state (usually in a do-block as shown in the figure) , and the 

lower part is for the time advance for the given state. Figure 

3 shows the graphical notation for Finite state. Transient and 

Passive States use similar notation. But for Transient States, 

the time advance is set to ZERO and for Passive State, the 

time advance is set to INFINITY.  

 

 
 

Figure 3: DDML Finite State Notation 
 

 The Initial state diagram represents the first/start state 

of an atomic model or process. This state is used to declare 

and initialize all the state variables and to define the 

subroutines that are used in other states. Variables creation 

and initialization activities are specified. State functions or 

sub-routines are also defined. The modeler can use any 

language to express data structures and algorithms. Figure 4 

shows the graphical notation for an initial state. The state 

variables are defined in the second compartment; and 

functions (method definitions) of a process are defined in 

the last compartment. 

 

 
Figure 4: DDML Initial State Notation 

 

 States may undergo external, internal, or conflict 

transition. (Conflict transition is particular to P-DEVS). 

 The internal state transition is represented by a solid 

line with an arrow at the end as shown in figure 5. An 

internal state transition occurs automatically at the end of a 

definite state or an intermediate state. An action (Lamda), 

usually sending an output signal is performed at the 

beginning of the transition and a computation is done at the 

end (just before it enters the new state). Such a transition 

always goes from the right hand side of a state to the left 

hand side of another one. Infinite states do not undergo 

internal transitions. 

 The external state transition is represented by a broken 

line with an arrow at the end as shown in Figure 5. An 

external state transition occurs when a system receives an 

external input or disturbance that forces it to change its 

state. Such transition can occur at a time (elapse time, e (0 ≤ 

e ≤ ta)). An action (usually an input) is performed before 

the transition and a computation is done at the end of the 

transition (just before it enters the new state). External 

transitions go from the upper or the lower side of a state to 

the left hand side of another one.  

 The Conflict transition, which is a transition that goes 

from one of the right hand side corners of a state, showing 

that two situations occur simultaneously: the life-time of the 

state has expired while an external event occurs.  



 
  

Figure 5: DDML Model for Lights Process Illustrating External and Internal Transitions 

 

 We illustrate the external and internal transition 

notations using the Traffic system example. Figure 5 shows 

the DDML state graph for Lights process. As shown in the 

figure, there are five states: STOP, READY_TO_GO, 

READY_TO_STOP, GO, and LIGHTS_OFF. Each of 

these states is defined with its state variables, activities and 

time advance. Note that state LIGHTS_OFF is a passive 

state (time advance is INFINITY), showing that it has 

infinite time duration. Hence, it does not undergo any 

internal transitions. From that state, when the process 

receives an ON signal through its Control port (indicated 

with Control.ON in the diagram), it undergoes an external 

transition to STOP state. The system remains in STOP state 

for 20 seconds (duration) before it undergoes an internal 

transition to the READY_TO_GO state. Before this internal 

transition, it sends out a Yellow signal through the 

trafficColor port (indicated by trafficColor.^Yellow in the 

figure). The system remains in the READY_TO_GO state 

for 5 seconds, but if it receives an OFF signal through the 

Control port, it transits to LIGHTS_OFF state (external 

transition). The system works in this fashion as shown by 

other states and transitions in the Figure. 

 DDML also has notation to define a conditional 

transition. The diamond shaped figure (Figure 5) is used to 

represent a decision node which indicates a conditional 

transition.  A test is carried out before decision is made on 

which state to transit to. In the figure shown, the system 

transits to state C if Y ≠5 or transits to state B if Y == 5. 

Conditional transitions could also apply to external state 

transitions. 

 
Figure 5: Conditional State Transition 

 

3.3.1. Relation to C-DEVS 

 Recall, an atomic model is defined in C-DEVS as 

follows: 

 M = <X, Y, S, δint, δext, λ, ta> 

The DDML representation of the model is an atomic process 

built as follows: 

 X and Y are defined as defined in section 3.1.1. 

 An initial state is defined, with declarations: v ∈ Sv. 

All other states are defined and their corresponding 

configurations of values for the variables specified. 

Also the value returned by the time advance (ta) is 

indicated for each state at the bottom of the 

corresponding rectangle. Transient states are states 

with ta(s) = 0 and infinite states are states with ta(s) 

= +∞. 



 δint (s) is defined in the DDML representation as an 

internal transition from State A to state B, which 

carries λ (s), by indicating how it is distributed 

among output ports. Stochastic situations are 

depicted using decision nodes. 

 δint (s) is defined in DDML representation as an 

external transition, which carries the input received 

and shows how this value is distributed among 

input ports. The associated guard (if mentioned) 

indicates the value of the elapsed time. 

 

3.3.2. Relation to P-DEVS 

An atomic model is defined in P-DEVS as:  

 M = <X
b
, Y

b
, S, δint, δext, δcon, λ, ta> 

Where,  

 X
b
 and Y

b
 are bags of inputs and outputs.  

 S, δint, δext, λ, and ta are defined as in C-DEVS.  

 δcon:Q x X
b
→ S is the conflict function; 

 The DDML representation is done here like in C-

DEVS, with the following changes:  

 Inputs (and outputs) are synchronized.  

 Each relation δcon defines in the State-Event-Chart 

a conflict transition, which carries x and λ (s). 

 

4. ECLIPSE DDML EDITOR 

 It has been shown that DDML presents an easy to use 

set of graphical notations for defining simulation models 

based on DEVS. To facilitate model construction using 

DDML, it is necessary to use a graphical editor with drag 

and drop features. This will also promote model reuse as 

models can be constructed, edited, saved, and shared among 

modelers. In this section, we present our DDML editor 

based on Eclipse. 

 We present two editors for DDML: the DDML Coupled 

Model Editor and the DDML Atomic Model Editor.  

 

4.1. DDML Coupled Model Editor 

 The DDML coupled model editor contains tools to 

define DEVS coupled models and sub-models (coupled 

models or atomic models). Figure 6 below shows a snapshot 

of the DDML Coupled Model Editor. 

 The DDML coupled model editor has menu and tool 

bars, a project explorer, an outline view, a properties view, a 

rich palette of tools, and a diagram workspace. 

 

 

 
 

Figure 6: DDML Coupled Model Editor 



 Using the editor to define simulation models is very 

intuitive. The Menu Bar has the following menus: File, Edit, 

Diagram, Navigate, Search, Project, Run, Window, and 

Help. The toolbar contains common tools for formatting the 

model diagram. The project explorer view provides a 

hierarchical view of the project and resources in the 

Workbench. The outline view shows a graphical outline of 

the workspace. The palette contains the tools for defining a 

model.  

 The drawing workspace is where the model is created. 

States can be picked from the palette and dropped on the 

workspace. Ports can be added to a model (coupled or 

atomic) by simply picking the port tool (Input Port or 

Output Port) and dropping it on the model. Connections are 

made between ports. EIC, EOC, and IC connectors can be 

used in a drag-and-drop fashion. 

 The Eclipse-DDML workbench provides a properties 

view that displays the detailed properties for the selected 

element. Some details about a model element which can are 

not shown in the drawing workspace are shown in the 

properties view. 

 

4.2. DDML Atomic Model Editor 

 The DDML Atomic Model Editor contains tools that 

can be used to define states and state transitions within a 

process model. See Figure 7 for a screenshot of the DDML 

Atomic Model Editor.  

 Just like the Coupled Model Editor, the Atomic Model 

Editor has a menu bar and tool bar; a project explorer, a 

properties view, an outline view, a diagram workspace, and 

a palette. Apart from the palette, the other sections are very 

much similar to the Coupled Model Editor.  

 Just like the Coupled Model Editor, the Atomic Model 

Editor has a menu bar and tool bar; a project explorer, a 

properties view, an outline view, a diagram workspace, and 

a palette. Apart from the palette, the other sections are very 

much similar to the Coupled Model Editor.  

 

 

 
 

Figure 7: DDML Atomic Model Editor 

 

  This editor can be launched by simply double clicking 

on an atomic model within the DDML Coupled Model 

editor.  

 The Passive, Transient, and Finite States contain 

compartments for defining State Variables (which can be 

picked from the palette), and Activities. The State Activity 

is defined within the body of the do {} in the properties view 

and this must be done in the predefined language. The Time 

Advance for the Passive State and Transient State is set to 

infinity and zero respectively. External and Internal 

Transitions can be made by using the Transition tools. This 

can be done by simply picking the tool and connecting two 



states. The Lambda and Computation must be defined for 

the internal transition while the Trigger and the 

Computation must be defined for the external transition (this 

can be done either graphically or in the properties view). 

 

5. ARCHITECTURE AND TECHNOLOGY 

 In other to implement the graphical editors, several 

graphics utilities were considered. We considered the native 

Java Abstract Window Toolkit (AWT) and Swing Libraries. 

Eclipse also provides the Standard Widget Toolkit (SWT) 

and JFace library. These libraries are useful for defining 

form windows but do not possess the capability to build 

graphical editors. We also considered Draw2D provided by 

Eclipse. Draw2D was created particularly to handle figures. 

Eclipse Graphical Editing Framework (GEF) is a powerful 

library that is based on Draw2D. GEF is specifically created 

for building graphical editors. But in other to glue the 

graphical editor with an underlying model (defined by 

Eclipse Modeling Framework (EMF) [12] Ecore meta-

modeling language), we choose to use Graphical Modeling 

Framework (GMF) [13]. 

 GMF makes it easier to build graphical editors based on 

an underlying model defined in EMF. It provides a 

generative component and runtime infrastructure for 

developing graphical editors. GMF effectively implements 

the Model-View-Controller (MVC) design pattern, making 

it possible to define graphical components and model 

components separately. Four meta-model files have to be 

defined. The domain model in Ecore (.ecore); the graphical 

definition model (.gmfgraph) which describes the shapes 

and figures that are going to be used in the editor; The 

tooling definition model (.gmftool) which describes the 

palette tools; and the mapping model (.gmfmap) which 

maps the domain model, the graphical definition model, and 

the tooling definition model. 

 The mapping model is used to generate the generator 

model (.gmfgen) which is used to generate the editor code. 

Several tweaks were made to the generated code to fulfill 

the desired functionalities of our editors.  

 The graphical properties are separated from domain 

properties (stored in different XML files). 

 

6. CONCLUSION 

 We presented DDML, a graphical notation for defining 

DEVS models. We showed how DDML maps to the formal 

DEVS specification and how it captures the dynamic, static 

and functional aspects of a system. DDML is a natural and 

intuitive approach to modeling. Its notation can easily be 

understood by both domain experts and modelers. We also 

presented Eclipse-DDML with rich editors for defining 

DEVS coupled models and atomic models.  

 DDML is a contribution towards making DEVS 

available to a wider community. Our tool is built as an 

eclipse plugin, hence it can integrate and be integrated into 

other utilities using Eclipse platform. This also means that it 

is extensible, easy to manage, and update.  

 Next steps include the following: 

 The Eclipse-DDML tool should be integrated with 

some methods for formal analysis 

 Our editor should be extended to include ability to 

automatically generate simulation code for DEVS 

libraries like SimStudio, DEVSJAVA, and DEVS-

C++. 

 Our tool should evolve into an integrated 

development environment for all simulation tasks 

(modeling, simulation, analysis of results, 

verification, and validation of simulation models, 

and visualization of simulation results. 

 

References 

[1] Zeigler, B; Praehofer, H; Kim, T. 2000, “Theory of 

Modeling and Simulation”, 2nd Edition. Academic Press. 

[2] Fishwick, P. A. 1995. “Simulation Model Design and 

Execution: Building Digital Worlds," Prentice Hall. 

[3] Traore, M. K. 2009. “A Graphical Notation for DEVS”. 

Proceedings from the Spring Simulation Multiconference 

2009. 

[4] Mooney J. 2008. DEVS/UML – A Framework for 

Simulatable UML Models. M.S. Thesis, Computer Science 

and Engineering Dept., Arizona State University, Tempe, 

AZ, USA. 

[5] Sarjoughian, H; Zeigler, B. 1998, “DEVSJAVA: Basis 

for a DEVS-based collaborative M&S environment”. 

Proceedings of the International Conference on Web-based 

Modeling & Simulation, San Diego, CA. 

[6] Zeigler, B., Y. Moon, D. Kim, and D. Kim. 1996. 

DEVS-C++: A high performance modeling and simulation 

environment. Proceedings of 29th Hawaii International 

Conference on System Sciences, Honolulu. 

[7] Wainer, G. 2009. “Discrete-event modeling and 

simulation: a practitioner's approach”. CRC Press. 

[8] Kim, T. G. 1994. DEVSIM++ user’s manual. CORE 

Lab, EE Dept, KAIST, Taejon, Korea. 

[9] Pagliero, E; Lapadula, M; Kofman, E. 2003, “Power-

DEVS. An Integrated Tool for Discrete Event Simulation”. 

Proceedings of RPIC, San Nicolas, Argentina. 

[10] Filippi, J. B., and P. Bisgambiglia. 2004. JDEVS: An 

implementation of a DEVS based formal framework. 

Environmental Modeling and Software 19:261–274. 

[11] Song H. S. and Kim T. G.. 2010. DEVS Diagram 

Revised: A Structured Approach for DEVS Modeling. 

Proceedings from European Simulation Conference 2010, 

Belgium: 94 – 101.  

[12] Steinberg D. et al. 2008. “Eclipse Modeling 

Framework.” 2nd Edition, Addison-Wesley Professional. 

[13] Gronback R. C. 2009. Eclipse Modeling Project: A 

Domain-Specific Language Toolkit. Addison-Wesley. 


