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Abstract. Time-dependent Advection-Diffusion-Reaction (ADR) equations are used in areas such as
chemistry, physics and engineering. These areas include chemical reactions, population dynamics, flame
propagation, and the evolution of concentrations in environmental and biological processes.

Each of the three phenomena (advection, diffusion, and reaction) evolves in a different time scale,
thus the model shows a stiff behavior.

This equation is usually discretized along the spatial variables using a grid, converting it into a large
sparse set of ordinary differential equations (ODEs) that can be then solved using numerical integration
methods that discretize the time variable.

An alternative way is the usage of Quantized State Systems (QSS) methods, a family of numerical
integration algorithms that replace the time discretization by the quantization of the state variables. Some
QSS algorithms can efficiently integrate sparse stiff ODEs,which makes them promising candidates for
the ADR problem.

In this article we study the use of QSS methods for ADR models semi–discretized with the Method
Of Lines. We compare the performance and the quality of the solutions obtained by these algorithms
with those of conventional methods, such as DASSL, Radau andDOPRI.

Analyzing simulation times we show that, in most situations, the second order linearly implicit QSS
method (LIQSS2) outperforms all the conventional algorithms in more than one order of magnitude.
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1 INTRODUCTION

Advection-diffusion equations provide the basis for describing heat and mass transfer phe-
nomena as well as processes of continuum mechanics, where the physical quantity of interest
u(x, t) could be temperature in heat conduction or concentration ofsome chemical substance.
It is well known that the advection-dominated diffusion problem often develops sharp fronts
that are nearly shocks. Therefore, it is not easy to construct an effective numerical method for
solving such a problem. Besides, there may also be a change inu(x, t) due to chemical reac-
tions, combining the three effects of advection, diffusionand chemical reaction, leading to the
advection-diffusion-reaction (ADR) equation.

Reactive multicomponent flows are studied in environmentalsciences as well as in mechan-
ical engineering. In applications of practical interest, the number of unknowns may be large
such that fast and efficient methods are needed.

Moreover, it should be considered that the chemical reactions take place on very small time
scales compared to the long term effects considered for the advection-diffusion transport. Each
of the three phenomena (advection, diffusion, and reaction) evolving in a different time scale.

Systems that exhibit simultaneous fast and slow dynamics are called stiff1

(Cellier and Kofman, 2006). Due to numerical stability issues, these systems enforcethe
usage of implicit numerical integration algorithms which have a high computational cost,
particularly when the system dimension is large.

When we say that the advection-diffusion-reaction equation is advection-reaction-
dominated, means that the diffusivity is relatively small compared with the module of the ad-
vection field or the reaction coefficient, i.e. we will have high Péclet number (Pe) and high
Damköhler number. In physical terms, the Péclet number represents the ratio of convective
forces to diffusive forces, and is a non-dimensional quantity. A larger Péclet number represents
an increasingly advection-dominated situation.

As for the numerical solution of the ADR equation, when the Peincreases numerical solu-
tions produce low accuracy or suffer from instabilities. Advection-Diffusion-Reaction problems
have been examined in the literature, with a wide range of configurations encompassing vari-
able velocity fields, variable reaction coefficients, steady and transient problems, in one, two
and three dimensions (John and Schmeyer, 2008; Theeraek et al., 2011; Portapila and Power,
2007; Caruso et al., 2012).

The numerical solution of a partial differential equation (PDE) such as the ADR prob-
lem involves discretization in space and time coordinates.While some methods perform
the simultaneous discretization in space and time, some techniques discretize only in space
transforming the PDE into a set of ODEs that are then solved bynumerical integration
algorithms (Cellier and Kofman, 2006). The Method of Lines (MOL) (Schiesser, 1991;
Cellier and Kofman, 2006) is one of thesesemi-discretizationtechniques.

The idea of the MOL is to use a grid over space and compute the solution in the grid nodes
replacing the partial derivatives by finite differences. The resulting model is then a large sparse
set of ODEs where the state variables of a grid node are only related to the state variables of
some neighbor nodes.

The resulting ODE can be then simulated with numerical integration methods such as Eu-
ler’s, Runge-Kutta (Butcher, 2005; Cellier and Kofman, 2006), DASSL (Brenan et al., 1995;

1In the context of this work, the term stiffness is used in the mathematical sense, where it is associated to the
presence of large and small eigenvalues in the Jacobian matrix. This concept of stiffness is not related to that of
structural stiffness.

F.M. BERGERO, J. FERNANDEZ, E. KOFMAN, M. PORTAPILA1104

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Petzold, 1983), which solve the equations performing a time discretization.
An alternative way to solve the ODE is given by the QSS methods(Kofman, 2006;

Cellier and Kofman, 2006), that replace the time discretization by state quantization. QSS meth-
ods are efficient when dealing with discontinuous and sparsesystems, and there are Linearly
Implicit QSS (LIQSS) methods (Migoni et al., 2013) that are also able to tackle stiff systems.

Thus, LIQSS methods appear as promising candidates for integrating the ODEs resulting
from the space discretization of Advection-Diffusion-Reaction problems.

In this article we study the use of LIQSS methods in the simulation of Advection-Diffusion-
Reaction problems semi–discretized with the MOL comparingits performance with that of clas-
sic algorithms such as DASSL and Runge–Kutta. The comparison is performed over different
sets of parameters and under different grid refinement conditions.

The article is organized as follows. Section2 introduces the main concepts used in the rest
of the paper and describes some related work in the field. Then, Section3 briefly discusses
the implementation of the model in a QSS solver and Section4 shows the main results of
the the usage of QSS methods in Advection-Diffusion-Reaction models, making performance
comparisons with classical numerical integration methods. Finally, Section5 concludes the
article and discusses some lines of future work.

2 BACKGROUND

In this section, we introduce the basic concepts that are then used along the article.
We first describe the Advection-Diffusion-Reaction model,its discretizations for space and

time, and finally we explain the Quantization Based Integration Methods.

2.1 The Advection-Diffusion-Reaction Equation

Let u(x, t) be the concentration of some species in the space coordinatex at timet. Then,
the one dimensional Advection and Diffusion (Hundsdorfer and Verwer, 2003) process can be
described by the following PDE:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂2x
(1)

wherea andd are adimensional parameters expressing the amount of advection and diffusion
respectively.

Taking into account that the species undergoes a chemical reaction, we include a reaction
term following Zeldovich’s equation (Gilding and Kersner, 2001) as follows:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂2x
+ r(u(x, t)2 − u(x, t)3) (2)

wherer is an adimensional parameter expressing the amount of reaction.
This is the model we shall work with along the rest of the article.

2.2 Space Discretization - Method of Lines

A PDE like that of Eq.(2) can be numerically solved using different approaches.
A popular technique to solve it is known as theMethod of Lines, that replaces the space

derivatives by finite difference approximations (Cellier and Kofman, 2006). That way, the prob-
lem is converted into a set of ODEs which can be solved using conventional numerical integra-
tion algorithms.
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The replacement of space derivatives by finite differences can be seen as aspatial discretiza-
tion, which is usually performed over a regular grid. For instance, the use of first order finite
differences leads to replacements like

∂u(x, t)

∂x
≈

u(xi+1, t)− u(xi, t)

∆x
=

ui+1(t)− ui(t)

∆x

wherexi is the space position of thei–th grid point,∆x is the grid width andui(t) ≈ u(xi, t).
The replacement of all space derivatives then leads to a system of pure ODEs. Naturally, this

discretization provokes what is know as theconsistency error, which can be minimized with the
use of smaller grid widths or using higher order finite difference approximations.

2.3 Classical Numerical Integration

After applying the Method of Lines, the original PDE becomesan ODE of the form

ẋ(t) = f(x(t), t) (3)

wherex(t) is the state vector.
Explicit single–step numerical algorithms transform Eq.(3) into a difference equation of the

form:
x(tk+1) = F(x(tk), tk) (4)

In multi–step algorithms the right hand side of the previousequations depends also on past
values of the state vectorx(tk−1), x(tk−2), etc.

A limitation of explicit numerical integration algorithmsis that their numerical solutions be-
come unstable as the step sizeh = tk+1−tk grows. The simulation of stiff systems (i.e., systems
with simultaneous fast and slow dynamics) (Hairer and Wanner, 1991; Cellier and Kofman,
2006) requires that the methods preserve numerical stability independently of the step size,
a feature that can be only achieved by some implicit algorithms. These methods lead to approx-
imations of the form

F(x(tk+1),x(tk), tk) = 0 (5)

wherex(tk+1) is generally obtained through iterative procedures such asthe Newton iteration.
These methods, which in the case of multi–step algorithm also depend on past values of the
state, are calledstiff stable.

The literature on numerical integration of ODEs contains many single-step, multi-
step, explicit and implicit algorithms (Hairer and Wanner, 1991; Hairer et al., 1993;
Cellier and Kofman, 2006).

In this work, we shall focus on three particular methods: Theexplicit embedded Runge Kutta
method of Dormand–Prince (DOPRI) (Dormand and Prince, 1980), the implicit RK method of
Radau5 (Hairer and Wanner, 1991) and the popular solver DASSL (Petzold, 1982), based on
variable step and variable order series of Backward Difference Formulae (BDF) algorithms
(Cellier and Kofman, 2006).

Variants of DOPRI, DASSL and Radau are the default solvers ofmost ODE and Differential
Algebraic Equations (DAE) simulation tools.

2.4 Quantization State System Methods

Quantized State System (QSS) methods replace the time discretization of classic numerical
integration algorithms by the quantization of the state variables.
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Given the ODE of Eq.(3), the first order Quantized State System method (QSS1)
(Kofman and Junco, 2001) approximates it by

ẋ(t) = f(q(t), t) (6)

Here,q is thequantized state vector. Its entries are component-wise related with those of the
state vectorx by the followinghysteretic quantization function:

qj(t) =

{

xj(t) if |xj(t)− qj(t
−)| ≥ ∆Qj

qj(t
−) otherwise

(7)

where∆Qj is calledquantumandqj(t−) denotes the left-sided limit ofqj at timet.
It can be easily seen thatqj(t) follows a piecewise constant trajectory that only changes when

the difference betweenqj(t) andxj(t) becomes equal to the quantum. After each change in the
quantized variable, it results thatqj(t) = xj(t).

The QSS1 method has the following features:

• In the solution, the quantized statesqj(t) follow piecewise constant trajectories.

• The state variablesxj(t) follow piecewise linear trajectories.

• The state and quantized variables never differ more than thequantum∆Qj . This
fact ensures stability and global error bound properties (Kofman and Junco, 2001;
Cellier and Kofman, 2006).

• The quantum∆Qj of each state variable can be chosen to be proportional to thestate
magnitude, leading to an intrinsic relative error control (Kofman, 2009).

• Each step is local to a state variablexj (the one which reaches the quantum change), and
it only provokes evaluations of the state derivatives that explicitly depend on it. This fact
implies that QSS1 performs intrinsic sparsity exploitation.

• If some state variables do not change significantly, they will not provoke any step or
evaluation at all. This feature reinforces the efficient sparsity exploitation.

• The fact that the state variables follow piecewise linear trajectories makes very easy to
detect discontinuities. Moreover, after a discontinuity is detected, its effects are not dif-
ferent to those of a normal step (because changes inqj are discontinuous). Thus, QSS1 is
very efficient to simulate discontinuous systems (Kofman, 2004).

The main limitations of QSS1 are the following:

• It only performs a first order approximation, and a good accuracy cannot be obtained
without a significant increment in the number of steps.

• It is not suitable to simulate stiff systems. In this cases, the appearence of fast oscillations
limits the step size due to stability issues.

The first limitation was solved with the introduction of higher order QSS methods like QSS2
(Kofman, 2002), where the quantized state follow piecewise linear trajectories, and QSS3
(Kofman, 2006) where the quantized state follow piecewise parabolic trajectories.
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Regarding stiff systems, a first order backward QSS method (BQSS) was introduced in
(Migoni et al., 2012). This method, in spite of being backward, was explicit due to the fol-
lowing property. In BQSS the next state value is always knownas it should beqj ±∆Qj . The
unknown is the time at which the state reaches it which can be explicitly computed.

In BQSS, the oscillations mentioned above dissapear and thestep size is no longer limited
by stability concerns. That way, BQSS integrates with smallsteps the fast variables and with
large steps the slow ones.

Unfortunately, BQSS cannot be extended to higher order approximations. However, a family
of linearly implicit QSS methods (LIQSS) of order 1 to 3 was also proposed in (Migoni et al.,
2013). LIQSS methods, like BQSS, are also explicit algorithms.

LIQSS methods have the same advantages of QSS methods, and they are able to efficiently
handle many stiff systems, provided that the stiffness is due to the presence of large entries in
the main diagonal of the Jacobian matrix.

In the context of this work, the efficient sparsity exploitation and the explicit treatment of
stiffness will provide the main advantages of LIQSS. In presence of diffusion, stiffness appears
without showing large entries anywhere in the Jacobian matrix and that will impose an impor-
tant limitation. Nevertheless, it must be considered that for the ADR equation the numerical
difficulties arise generally when the Péclet number increases, and consequently the advection
term dominates over diffusion.

2.5 Implementation of QSS Methods

It was shown that the behavior of the QSS approximation of Eq.(6) can be described as a
Discrete EVent System (DEVS)(Zeigler et al., 2000). Thus, the easiest was of implementing
these algorithm is through their equivalents on a DEVS simulation engine.

The whole family of QSS methods were implemented in PowerDEVS (Bergero and Kofman,
2011), a DEVS–based simulation platform specially designed forand adapted to simulating hy-
brid systems based on QSS methods. In addition, the explicitQSS methods of orders 1 to 3
were also implemented in a DEVS library of Modelica (Beltrame and Cellier, 2006) and imple-
mentations of the first–order QSS methods can also be found inCD++ (D’Abreu and Wainer,
2005) and VLE (Quesnel et al., 2007).

DEVS–based implementations of QSS methods are simple but they are not efficient. The
problem is that the DEVS simulation engines waste a large amount of the computational load
attending the DEVS simulation mechanism. This fact motivated the development of stand alone
QSS solvers.

A first approach to a stand–alone version of QSS1 to 3 was implemented in the Java–based
simulation toolOpen Source Physics(Esquembre, 2004), but that implementation was not more
efficient that that of PowerDEVS and it required the user to provide the system structure infor-
mation needed by QSS methods.

Recently, the complete family of QSS methods was implemented in a stand–alone QSS
solvercoded in plain C language (Fernandez and Kofman, 2012). This solver improves Pow-
erDEVS simulation times in more than one order the magnitude, and can simulate models de-
scribed in a subset of the Modelica language (Fritzson and Engelson, 1998), calledµ-Modelica
(Bergero et al., 2012).

This is the solver we shall use in the rest of this article.
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2.6 Related Work

The goal of this article is to study the efficiency of QSS methods in the simulation of the
ADR PDE semi–discretized using the MOL.

To the best of the authors knowledge, this problem was never studied. However, there are
several works that study the same PDE problem in the context of classic numerical integration
algorithms, and there are some works that study the use of QSSmethods in the simulation of
other types of PDEs.

The combination of the MOL with classic numerical algorithms for the ADR PDE
has been analyzed in (Wolke and Knoth, 2000; Sommeijer et al., 1998; Verwer et al., 2004;
Kleefeld and Martín-Vaquero, 2013; Álvarez and Rojo, 2002, 2004).

In all these works, the goal was to overcome the problem imposed by the stiffness associated
to the reaction term, using variants of Runge-Kutta algorithms.

In (Savcenco et al., 2007) Savcenco et al. study the use of multi-rate algorithms for stiff
ODE problems, including a case resulting from the semi–discretization of an advection–reaction
PDE. Multi-rate algorithms are somehow related to quantization based integration methods in
the sense that both use different time scales for different state variables.

The use of QSS methods in PDEs has not been yet studied in depth. Muzy et al. (Muzy et al.,
2011) showed the results of using QSS methods for a one dimensional diffusion problem. Hy-
perbolic PDEs representing lossless transmission lines were also simulated in the context of
QSS methods in (Kofman, 2002; Migoni et al., 2012), including also a stiff load.

3 THE ADR MODEL IN A QSS SOLVER

In this section, we first explain the way we proceeded to discretize the ADR model of Eq.(2)
using the MOL and then we show how we described in the QSS solver the resulting set of
ODEs.

3.1 ADR PDE Model

The ADR model we shall work with is described by the PDE

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂2x
+ r(u(x, t)2 − u(x, t)3) (8)

The space domain is limited to the interval0 ≤ x ≤ 10 and we shall consider the following
boundary conditions

u(x = 0, t) = 1;
∂u(x = 10, t)

∂x
= 0; (9)

The initial condition is given by

u(x, t = 0) =

{

1 if x < 2

0 otherwise
(10)

3.2 MOL Discretization of the ADR Model

In order to discretize the problem with the MOL, we shall use aregular grid of width

∆x =
10

N
(11)

whereN is the number of grid points.
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The advection term of Eq.(8) ∂u(x,t)
∂x

shall be replaced by a first order upwind finite difference:

∂u

∂x

∣

∣

∣

∣

x=xi

≈
ui − ui−1

∆x
(12)

for i = 1, · · · , N , whereui(t) ≈ u(xi, t) is thei–th state variable of the resulting ODE and
xi = i ·∆x is thei–th grid point.

Taking into account the boundary condition of Eq.(9) atx = 0, we have alsou0 = 1.
We shall discretize the diffusion term replacing the expression ∂2u

∂2x
by a second order centered

finite difference:
∂2u

∂2x

∣

∣

∣

∣

x=xi

≈
ui+1 − 2ui + ui−1

∆x2
(13)

for i = 1, · · · , N − 1.
For the last grid point, taking into account the symmetricalborder condition of Eq.(9) at

x = 10, we can replace
∂2u

∂2x

∣

∣

∣

∣

x=xN

≈
uN−1 − 2uN + uN−1

∆x2
(14)

Replacing Eqs (12)–(14) into Eq. (8) we get the following set of ODEs:

u̇i = −a
(ui − ui−1)

∆x
+ d

(ui+1 − 2ui + ui−1)

∆x2
+ r(u2

i − u3
i ) (15)

for i = 1, · · · , N − 1 and

u̇N = −a
(uN − uN−1)

∆x
+ d

(2uN−1 − 2uN)

∆x2
+ r(u2

N − u3
N) (16)

3.3 The ADR Model in the QSS Solver
The ODE model of Eqs.(15)–(16) can be described in the subset of Modelica language (µ-

Modelica) of the QSS Solver as follows.
model adv_dif_reac
constant Integer N=1000;
parameter Real a=1;
parameter Real d=1e-4;
parameter Real r=10;
parameter Real L=10;
parameter Real dx=L/N;
Real u[N];

initial algorithm
for i in 1:0.2*N loop

u[i]:=1;
end for;

equation
der(u[1])=-a*(u[1]-1)/dx+d*(u[2]-2*u[1]+1)/(dx^2)+r*(u[1]^2)*(1-u[1]);

der(u[N])=-a*(u[N]-u[N-1])/dx+d*(u[N-1]-2*u[N]+u[N-1])/(dx^2)+r*(u[N]^2)*(1-u[N]
);
for i in 2:N-1 loop

der(u[i])=-a*(u[i]-u[i-1])/dx+ d*(u[i+1]-2*u[i]+u[i-1])/(dx^2)+
r*(u[i]^2)*(1-u[i]);
end for;

end adv_dif_reac;

Notice that in this case, we used parametersa = 1, d = 10−4, r = 10 and performed
the discretization overN = 1000 grid points. The solution for this parameter set, obtained
with LIQSS2, is shown in Fig.1. There,u[400] is the discretized version ofu(x = 4), u[600]
u(x = 6), etc.
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Figure 1: Simulation results fora = 1, d = 1 · 10−4, r = 10, N = 1000 points using LIQSS2 method.

4 RESULTS

In this section we compare the performance of different numerical integration methods on the
ADR problem semidiscretized with the MOL. For that purpose,the resulting model of Eq.(15)
is simulated for different parameter settings using LIQSS2, DASSL, Radau5 and DOPRI.

• DASSL results were computed using the Fortran code DASPK described in (Brown et al.,
1994).

• DOPRI and Radau5 results were computed using the C++ implementation available at
Hairer’s websitehttp://www.unige.ch/~hairer/software.html, written by Blake Ashby.

• LIQSS2 results were obtained with the stand alone QSS Solver.

• All the simulations were performed on the same Intel i7-3770@3.40GHz computer under
a Linux Operating System (Ubuntu).

• The error in all cases were computed comparing the results with reference results obtained
using a very small error tolerance (1 · 10−10) with DOPRI.

• We did not compute consistency errors due to the MOL space discretization. We are only
interested in the ODE integration error.

• In all scenarios we gave the numerical solver a relative tolerance of1·10−3 and an absolute
tolerance of1 · 10−4.

• DASSL, DOPRI and Radau5 are variable step solvers that adaptthe step size in order to
meet the tolerance.

• LIQSS2 can also be considered a variable step solver. Moreover, the step size is adapted
differently for each state variable.
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• Taking into account that the step size is not constant, we report the number of scalar
function evaluations in each case.

• The model was simulated up tot = 10 second. Before that time, the model always
reaches an equilibrium condition.

4.1 First scenario – Variation of the grid size∆x

In this first scenario we study the computational cost and errors for different number of
pointsN in the grid. The remaining parameters were fixed,a = 1, d = 1 · 10−4, r = 1000. The
resulting Péclet Number isa/d = 10000.

Figure2 compares the CPU time of DASSL, DOPRI, Radau5 and LIQSS2 asN grows while
Table1 summarizes the results together with the number of scalar function evaluations.
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LIQSS2
DASSL
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Figure 2: CPU time(ms) vs.N (number of points in the grid) witha = 1, d = 1 · 10−4, r = 1000

LIQSS2 DASSL DOPRI Radau5
N time fun. eval. time fun. eval. time fun. eval. time fun. eval.
10 9.04 · 10−1 5.99 · 103 3.85 · 100 8.47 · 103 1.00 · 101 1.88 · 105 2.00 · 101 1.02 · 104

50 3.45 · 100 2.79 · 104 1.93 · 101 1.02 · 105 4.00 · 101 1.06 · 106 2.00 · 101 1.74 · 105

100 6.62 · 100 5.38 · 104 5.11 · 101 3.29 · 105 6.00 · 101 2.45 · 106 5.00 · 101 5.02 · 105

200 1.48 · 101 1.17 · 105 1.10 · 102 8.85 · 105 1.20 · 102 5.17 · 106 1.50 · 102 1.57 · 106

500 2.73 · 101 3.16 · 105 3.33 · 102 2.61 · 106 3.70 · 102 1.73 · 107 6.10 · 102 6.06 · 106

1000 4.66 · 101 6.05 · 105 7.41 · 102 5.64 · 106 7.00 · 102 3.54 · 107 1.29 · 103 1.23 · 107

10000 7.49 · 103 1.07 · 108 1.54 · 104 1.08 · 108 1.50 · 104 7.41 · 108 3.97 · 104 4.04 · 108

Table 1: CPU time(ms) and number of function evaluations fordifferent values ofN (number of points in the grid)
with a = 1, d = 1 · 10−4, r = 1000

Here LIQSS2 outperforms the other methods in all cases. Notice that up toN = 1000, the
CPU time grows sub–linearly with the sizeN in LIQSS2. At the pointN = 1000 LIQSS2 is
15 times faster than DOPRI and DASSL, and 27 times faster thanRadau.
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However, atN = 10000 the diffusion term at Eq.(15) becomes relevant, sinced is divided
by ∆x2 while a is only divided by∆x. This situation leads to a type of structural stiffness
that is not properly handled by LIQSS methods (Migoni et al., 2013), and its performance is
impoverished.

Although the presence of the reaction term makes the problemstiff, the explicit algorithm
DOPRI is still able to simulate it in a reasonable time. It in fact performs several function
evaluations, but its low cost per step gives it a similar performance to that of DASSL.

It must be mentioned that DASPK and Radau5 codes in use are suitable for large scale
models. Moreover, they exploit the knowledge of the tridiagonal structure of the Jacobian
matrix for this particular case. Otherwise, their computational cost would grow cubically with
N .

LIQSS2 DASSL DOPRI Radau5
N Max. Avg. Max. Avg. Max. Avg. Max. Avg.
10 5.9 · 10−2 2.8 · 10−3 7.4 · 10−1 7.9 · 10−4 3.9 · 10−3 8.7 · 10−4 2.5 · 10−3 2.7 · 10−6

50 8.4 · 10−2 8.1 · 10−4 7.0 · 10−1 6.8 · 10−4 2.2 · 10−2 1.9 · 10−3 3.5 · 10−3 6.7 · 10−6

100 1.2 · 10−1 1.7 · 10−4 6.6 · 10−1 6.1 · 10−4 3.8 · 10−2 2.5 · 10−3 9.1 · 10−3 2.9 · 10−5

200 1.6 · 10−1 1.8 · 10−3 7.5 · 10−1 7.6 · 10−4 9.8 · 10−2 3.0 · 10−3 3.0 · 10−3 1.3 · 10−5

500 1.8 · 10−1 1.1 · 10−3 5.3 · 10−1 4.0 · 10−4 3.9 · 10−2 3.8 · 10−3 1.7 · 10−2 1.4 · 10−5

1000 2.1 · 10−1 1.3 · 10−3 3.4 · 10−2 2.4 · 10−5 5.8 · 10−2 4.8 · 10−3 4.9 · 10−2 3.3 · 10−5

10000 5.9 · 10−1 8.1 · 10−4 1.0 · 100 1.4 · 10−3 1.9 · 10−1 6.6 · 10−3 3.0 · 10−1 1.3 · 10−4

Table 2: Max. and Avg. Error for different values ofN (number of points in the grid) witha = 1, d = 1 ·10−4, r =

1000

Table2 shows the maximum and mean absolute errors committed by the different algorithms.
The average errors of LIQSS2, DASSL and DOPRI are similar, and they are consistent with the
tolerance settings.

Radau, however, is about two orders of magnitude more accurate. This is because the imple-
mentation is over-conservative about the error tolerance.

The maximum absolute error is high for all algorithms (except for Radau). The reason is that
the solution is a traveling wave with a large slope. Figure1 illustrates the solution forr = 10.
For r = 1000 the solution look like a traveling step. Thus, a very small error in the wave speed
provokes a very large error in the value ofui when the wave passes through thei–th point of the
grid.

4.2 Second scenario – Variation of the grid size∆x without diffusion

In the second scenario we study the computational cost for different number of points in the
grid N without diffusion term (d = 0), i.e., a pure advection–reaction problem. The remaining
parameters were fixed:a = 1, r = 1000. Errors are not reported as they are similar to those of
the first scenario.

Figure3 compares the CPU time of DASSL, Radau5, DOPRI and LIQSS2. Table 3 summa-
rizes the results together with the number of scalar function evaluations.

The results here are similar to those withd = 1 · 10−4, except that now LIQSS2 does not
experience any problem asN grows. The absence of diffusion confines the stiffness to themain
diagonal of the Jacobian matrix, a case that LIQSS2 handles in a very efficient way.

Consequently, whenN = 10000, LIQSS2 is about30 times faster than DOPRI,38 times
faster than DASSL and98 times faster than Radau.
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Figure 3: CPU time (ms) vsN (number of points in the grid) witha = 1, d = 0, r = 1000

LIQSS2 DASSL DOPRI Radau5
N time fun. eval. time fun. eval. time fun. eval. time fun. eval.
10 8.54 · 10−1 6.14 · 103 3.78 · 100 8.47 · 103 2.00 · 101 1.88 · 105 1.00 · 101 1.02 · 104

50 1.46 · 100 2.81 · 104 1.61 · 101 1.02 · 105 3.00 · 101 1.06 · 106 3.00 · 101 1.74 · 105

100 8.30 · 100 5.92 · 104 4.49 · 101 3.12 · 105 6.00 · 101 2.46 · 106 6.00 · 101 5.02 · 105

200 1.28 · 101 1.04 · 105 9.79 · 101 8.70 · 105 1.20 · 102 5.16 · 106 1.50 · 102 1.57 · 106

500 2.33 · 101 2.70 · 105 3.17 · 102 2.74 · 106 3.40 · 102 1.65 · 107 5.80 · 102 6.06 · 106

1000 4.23 · 101 5.49 · 105 7.44 · 102 5.90 · 106 6.70 · 102 3.54 · 107 1.17 · 103 1.19 · 107

10000 3.99 · 102 6.58 · 106 1.51 · 104 1.04 · 108 1.19 · 104 6.43 · 108 3.93 · 104 4.23 · 108

Table 3: CPU time(ms) and number of function evaluations fordifferent values ofN (number of points in the grid)
with a = 1, d = 0, r = 1000

4.3 Third scenario – Variation of reaction term r

Now we consider the variation ofr with the remaining parameters fixed ata = 1, d =
1 · 10−4, N = 1000 points.

Figure4 compares the CPU time of DASSL, Radau5, DOPRI and LIQSS2 asr grows. Table
4 summarizes the results together with the number of scalar function evaluations. Errors are not
reported as they are similar to those of the first scenario.

In this scenario LIQSS2 shows a noticeable advantage over the the other methods as its perfor-
mance is not affected at all by the growth of the reaction termr. Whenr grows the problem
becomes more stiff, but this stiffness is due to a large entryin the main diagonal of the Jacobian
matrix, which is efficiently handled by LIQSS2.

However, the other methods have problems. DOPRI, being explicit, has its step size limited
by the stability region which is reduced linearly withr. Thus, the computational cost grows
linearly withr.

DASSL and Radau do not have stability issues, but the growth of r increases the non–
linearity of the problem and the Newton iteration requires more steps to converge.
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Figure 4: CPU time (ms) vs.r with a = 1, d = 1 · 10−4, N = 1000 points

LIQSS2 DASSL DOPRI Radau5
r time fun. eval. time fun. eval. time fun. eval. time fun. eval.
100 3.35 · 101 5.93 · 105 3.53 · 102 1.94 · 106 1.10 · 102 5.38 · 106 5.80 · 102 5.50 · 106

500 4.34 · 101 5.45 · 105 4.79 · 102 3.68 · 106 3.10 · 102 1.61 · 107 9.90 · 102 9.18 · 106

1000 4.66 · 101 6.05 · 105 7.41 · 102 5.64 · 106 7.00 · 102 3.54 · 107 1.29 · 103 1.23 · 107

2000 4.49 · 101 6.51 · 105 1.05 · 103 1.00 · 107 1.21 · 103 6.37 · 107 2.51 · 103 2.41 · 107

5000 5.08 · 101 6.84 · 105 1.50 · 103 1.71 · 107 2.60 · 103 1.41 · 108 3.58 · 103 3.52 · 107

10000 5.25 · 101 7.04 · 105 1.75 · 103 2.14 · 107 5.25 · 103 2.78 · 108 4.39 · 103 4.49 · 107

100000 5.64 · 101 7.68 · 105 3.29 · 103 5.12 · 107 4.68 · 104 2.71 · 109 8.93 · 103 9.43 · 107

Table 4: CPU time(ms) and number of function evaluations fordifferent values ofr with a = 1, d = 1 ·10−4, N =

1000 points

In consequence, in the last case analyzed (r = 100000), LIQSS2 is about60 times faster
than DASSL,160 times faster than Radau and830 times faster than DOPRI.

4.4 Fourth scenario – Variation of diffusion term d

In the last scenario we study the computational cost for different diffusion termsd with the
remaining parameters fixed with valuesa = 1, N = 1000 points, r = 1000. Errors are similar
to those of the first scenario so they are not reported.

Figure5 shows the computational costs for different diffusion termsd while Table5 summa-
rizes the results together with the number of scalar function evaluations.

For low values ofd, LIQSS2 again outperforms the other methods. However, as the diffusion
term grows, LIQSS2 performance is soon degraded. The reasonof this is the appearance of
stiffness which is not reflected at the main diagonal of the Jacobian matrix. These stiff cases are
not correctly handled by LIQSS algorithms, as it is analyzedin (Migoni et al., 2013).
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Figure 5: CPU time(ms) comparison for different magnitudesof diffusiond - a = 1, N = 1000 points,r = 1000

LIQSS2 DASSL DOPRI Radau5
d time fun. eval. time fun. eval. time fun. eval. time fun. eval.
1 · 10−7 3.89 · 101 5.22 · 105 8.07 · 102 6.11 · 106 6.90 · 102 3.54 · 107 1.24 · 103 1.19 · 107

1 · 10−6 4.27 · 101 5.48 · 105 7.47 · 102 5.45 · 106 6.90 · 102 3.54 · 107 1.26 · 103 1.19 · 107

1 · 10−5 4.18 · 101 5.62 · 105 7.73 · 102 5.77 · 106 6.90 · 102 3.54 · 107 1.26 · 103 1.20 · 107

1 · 10−4 4.66 · 101 6.05 · 105 7.41 · 102 5.64 · 106 7.00 · 102 3.54 · 107 1.29 · 103 1.23 · 107

1 · 10−3 5.23 · 101 6.07 · 105 7.39 · 102 5.26 · 106 7.00 · 102 3.63 · 107 1.81 · 103 1.59 · 107

1 · 10−2 6.25 · 101 8.68 · 105 5.38 · 102 4.04 · 106 6.20 · 102 3.16 · 107 9.40 · 102 9.00 · 106

1 · 10−1 3.79 · 103 6.19 · 107 3.15 · 102 2.46 · 106 1.82 · 103 9.45 · 107 4.90 · 102 4.76 · 106

Table 5: CPU time(ms) and number of function evaluations fordifferentd - a = 1, N = 1000 points,r = 1000

5 CONCLUSIONS

In this work we studied the application of Quantization Based Integration methods for semi–
discretized Advection-Diffusion-Reaction (ADR) problems.

We compared the second order Linearly Implicit QSS (LIQSS2)method against widely used
classic numerical integration methods such as DASSL, Radauand DOPRI.

We conclude that:

• LIQSS2 is a better option than classic numerical integration methods when the relation
between the advection and the diffusion is large (i.e., large Péclet Numbers).

• Provided that the diffusion term is small, LIQSS2 shows an increasing advantage over the
other methods as the sizeN grows as it scales sub–linearly with the grid refinement.

• Contrary to classic methods, LIQSS2 performance is not affected by the growth of the
reaction termr.

• In most cases, LIQSS2 performed at least 10 times faster thanclassic solvers.

Taking into account these remarks, we corroborated that LIQSS2 is a good alternative to inte-
grate ADR equations.
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However, this work was limited to a special case of a one dimensional ADR equation, with
particular initial states and border conditions, and semidiscretized with the MOL using first
order finite differences.

Future work should corroborate these results on a more general context, considering:

• More sophisticated models, including two and three dimensional problems with realistic
initial states and boundary conditions, such as environmental geochemistry, groundwater
and pollution.

• The use of different space discretization methods, such as boundary integral methods or
meshless methods.

• The usage of the MOL with higher order finite differences.
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