
Symbolic Flattening of DEVS Models

Bin Chen and Hans Vangheluwe
School of Computer Science

Mcgill University
Montr éal, Canada

binchen, hv@cs.mcgill.ca

Keywords: DEVS, Direct Connection, Flattening

Abstract
Based on the ClassicDiscrete Event system Specifica-
tion (DEVS) formalism, many efficient simulation languages
have been proposed to meet the expressiveness and perfor-
mance requirements of various applications. We propose the
Symbolic Flatteningof DEVS models to enhance simula-
tion efficiency. TheModelica language is extended to pro-
vide a standard concrete syntax forDEVS. Based on the clo-
sure under coupling ofDEVS, flattening is implemented in
two steps:Direct ConnectionandFlattening. We use the do-
main of digital circuits to get quantitative insight into the im-
provement brought by our approach. We conclude that the ap-
proach is most effective forHigh Interaction , Low Compu-
tation(HILC) models. The technique is modular and may be
combined with simulator-level (as opposed to our technique,
which is symbolic, modeling level) techniques, or distributed
simulation.

1. INTRODUCTION
The Discrete Event system Specification[1] formalism has

been widely used in modeling and simulation for many years.
The formalism is expressive and allows for the hierarchical
and modular description of discrete event models.
Based on theClassic DEVS formalism, many extensions
were proposed to meet different application requirements.
This, as there does not exist a single formalism which is op-
timal, both from an expressiveness and from a performance
point of view, for all application domains.Cell DEVS[2]
adds spatial distribution features ofCellular Automata to
DEVS and allows the modeling of physical systems by
supporting spatially distributed, interacting cells.Dynamic
Structure DEVS[3] is used when the model structure can
change dynamically.
Parallel & Distributed DEVS[4] is well suited for High
Computation, Low Interaction(HCLI) models, especially
for large-scale systems.
The distribution of models speeds up the simulation by
adding concurrent computing nodes. [4] presents a parallel
simulation methodology which employs hierarchical schedul-
ing for simulation of models within a processor and theTime
Warp mechanism for global synchronization. [5] presents

a DEVS modeling and simulation framework over a Peer
to Peer network systemDEVS / P2P. This extension of
DEVS results in a customized new simulation protocol for
distributed simulation which does not involve a coordinator.
[6] presents a sequential way to processPDEVSmodels. The
abstract sequential simulator reduces the thread number, and
the Flatten algorithm in simulator simplifies message transfer.
The process way is integrated in a new simulator in [7]. Large
Coupled model is split up into Virtual coupled models. These
models can be simulated in both distributed and sequential
manner with the support of the new simulator. [8] presents an
improved simulation engine that combinesDynamic Struc-
ture DEVS with a real-time simulation engine. This leads to
a powerful environment to support the development of em-
bedded systems.
All the work mentioned above provides optimizations of the
simulation level. [4] modifies the messaging mechanism to
makeTime Warp more efficient; [5] applies the P2P tech-
nique to emphasize the distribution; [2] focuses on the mod-
eling of environments that are inherent compositional; [8]re-
duces the coordinator to improve the simulation performance
by flattening the model hierarchy at run time. Algorithms are
given to optimize the event scheduling, and message trans-
fer in the coordinator. However, when the computation due to
interactions between sub-models is much larger than the com-
putation of individual models, the performance improvement
is minimal. [6] modified the simulator forPDEVS, Select and
data transfer in classical DEVS are not referred. [9] presents
model composition to speedup simulation based on the closed
under coupling property of DEVS.
We use these ideas as a starting point for our work to improve
performance, at the modeling level, independent of the sim-
ulator. We propose to flatten DEVS models symbolically to
optimize simulation performance forHigh Interaction , Low
Computation(HILC) models. Our approach transforms cou-
pled DEVS models textually represented inModelica to a
behaviorally equivalent atomicDEVS model. The interac-
tions among models are integrated into the computation in-
side the atomic model. In contrast with simulation algorithms,
all computation (transformation) is done on models before
simulation time. This implies there is no run-time overhead.
The rest of this paper is organized as follows: Section 2 de-
scribes the ClassicDEVS formalism in detail. Section 3 de-



scribes how to representDEVS models in the neutral model-
ing languagemodelica. Section 4 describes the implementa-
tion of our approach. Section 5 presents a case study in which
digital circuits are constructed to test the impact of our flat-
tening on simulation performance. Section 6 concludes the
paper.

2. DEVS FORMALISM
The DEVS formalism was introduced in the late seventies

by Bernard Zeigler as a rigorous basis for the compositional
modeling and simulation of discrete event systems [10]. It has
been successfully applied to the design, performance analy-
sis, and implementation of a plethora of complex systems.

A DEVS model is either anAtomicBlockor a Coupled-
Block. An atomic model describes the behaviour of a timed,
reactive system. A coupled model is the parallel composi-
tion of several DEVS sub-models which can be either atomic
or coupled. Sub-models haveports, which are connected by
channels. Ports are directional and are eitherInport or Out-
port. Ports and channels allow a model to receive and send
events from and to other models. A channel must go from
an output port of some model to an input port of a different
model, from an input port of a coupled model to an input port
of one of its sub-models, or from an output port of a sub-
model to an output port of its parent model.

An atomic DEVSmodel is a structure
〈S,X,Y,δint ,δext,λ,τ〉

whereS is a set of sequentialstates.
X is a set of allowedinput events.
Y is a set of allowedoutput events.
There are two types of transitions between states:
δint : S→ S is theinternal transition function and
δext : Q×X → S is theexternal transition function .
Associated with each state areτ : S→ R

+
0 , thetime-advance

function andλ : S→Y, theoutput function .
In this definition,Q = {(s,e) |s∈ S,0≤ e≤ τ(s)} is called
thetotal state space.
For each(s,e) ∈ Q, e is called theelapsed time, the time the
system has spent in a sequential states since the last transi-
tion. R+ denotes the positive reals (with zero included).

Informally, the operational semantics of an atomic model
is as follows: the model starts in its initial state. It will remain
in any given state for as long as the time-advance of that state
specifies or until input is received on some port. If no input
is received, after the time-advance of the state expires, the
model first (before changing state) produces an output event
as specified by the output function. Then, it instantaneously
jumps to a new state specified by the internal transition func-
tion. However, if an input event is received before the time
for the next internal transition, then it is theexternal transi-
tion which is applied. The external transition depends on the
current state, the time elapsed since the last transition and the
input event.

A coupled DEVSmodel namedC is a structure
〈X,Y,N,M, I ,Z,select〉

whereX andY are as before.
N is a set ofcomponent names(or labels) such thatC 6∈ N.
M = {Mn | n∈ N,Mn is a DEVS model (atomic or coupled)
with input setXn and output setYn} is a set of DEVSsub-
models.
I = {In | n∈ N, In ⊆ N∪{C}} is a set ofinfluencer sets for
each component namedn.
Z = {Zi,n|∀n∈ N, i ∈ In,Zi,n : Yi → Xn∨ZC,n : X → Xn∨Zi,C :
Yi →Y} is a set oftransfer functions from each component
i to some componentn.
select: 2N → N is theselector tie-breaking function. 2N de-
notes the powerset ofN (the set of all sub-sets ofN).

The connection topology of sub-models is expressed by the
influencer setIn of each componentn. Note that for a given
modeln, this set includes not only the external models that
provide inputs ton, but also its own internal sub-models that
produce its output (ifn is a coupled model). Transfer func-
tions represent output-to-input translations between compo-
nents. They can be thought of as channels that make the ap-
propriate type translations. For example, a “departure” event
output of one sub-model is translated to an “arrival” event on
a connected sub-model’s input. Theselectfunction takes care
of conflicts as explained below.

The semantics for a coupled model is, informally, the par-
allel composition of all the sub-models. A priori, each sub-
model in a coupled model is assumed to be an independent
process, concurrent to the rest. There is no explicit method
of synchronization between processes. Blocking does not oc-
cur except if it is explicitly modelled by the output function
of a sender, and the external transition function of a receiver.
There is however aserializationwhenever there are multi-
ple sub-models that have an internal transition scheduled to
be performed at the same time. The modeler controls which
of the conflicting sub-models undergoes its transition firstby
means of theselectfunction.

We have developed our own DEVS simulator called
pythonDEVS [11], grafted onto the object-oriented script-
ing language Python. We usepythonDEVS for the work de-
scribed in this paper.

3. DEVS MODEL MODELICA SYNTAX
3.1. Why use Modelica?

Modelica is an object-oriented model description lan-
guage[12]. It provides a structured, computer-supported way
of doing mathematical and equation-based modeling.
The design goal ofModelica is to build a modeling language
based onthe Differential Algebraic Equation (DAE) for-
malism[13] with discrete-event features to handle disconti-
nuities and sampled systems. It has been successfully used to
specify models of systems in many physical domains. Though
Modelica is originally designed for describing physical mod-



els, it has enough constructs to describe models in other for-
malism, including discrete-event ones.
This insight leads us to useModelica as the description lan-
guage forDEVS models [14]. The reasons for this choice
are as follows. Firstly,Modelica has been developed and
applied in modeling for several years, it is a relatively ma-
ture language. Secondly,Modelica comes with theModel-
ica Standard Library(MSL), a large model repository for
different domains which has accumulated a large group of
users. Thirdly,DEVS has been shown to be a formalism
that is suitable for hybrid system modeling. Lastly,Modelica
constructs such as (computationally) non-causal parameter-
coupling equations may be used to increase the (re-)usability
of DEVS models.

3.2. Elements of Representation
3.2.1. Basic Elements inModelica
The basic structural element inModelica is a class, as in

other object-oriented languages. A class inModelica uses
equations to describe model behavior. Class composition and
inheritance are used to mimic the hierarchy and composition
of real-world entities.
There are at least seven restricted classes used to represent
DEVS models. They are introduced below:
model: The only restriction of a model class is that it may
not be used in connections. Its semantics are identical to the
general class construct inModelica, and it is most commonly
used.
record: The record class is used to describe structured data.
No equations are allowed in the definition or in any of its
components.
type: A type is a class that is an alias or extension of an exist-
ing class. A type restricted class may only be an extension to
a predefined type,enumeration, record, or array of
type. The purpose of using type is to identify a data structure
by a meaningful name.
connector:The restrictions of connector classes are identical
to those of store classes[12], except that connector classes are
designed to be used in connections.
block: The block restricted class is used to model causal (in-
put/output) block diagrams. In Modelica, the two keywords,
input andoutput, are used as component prefixes to pos-
tulate the data flow direction.
Function: The body of aModelica function is an algorithm
that specifies the execution behavior when the function is
called. The parameters for a function are specified by the key-
wordinput, and results are saved to variables marked by the
keywordoutput.

3.2.2. Modelica representation of DEVS models
The atomic model consists of parameters, sequential states,

model state, input and output ports, and behavior functions. In

the parameter declarations part of a model, parameters needed
for instantiating a model are specified (with their default val-
ues).
Sequential states are represented using theModelica
enumeration type. The model state is declared as a
normal Modelica class instance variable. Input and out-
put ports are declared usinginput and output key-
words and are instances of a predefined classDEVSPort.
All the DEVS functions are defined asModelica functions.
The timeAdvance function requires an output parameter
timespan, through which the value of the time interval for
a sequential state is returned.
Similar to atomic models, A coupledDEVS model has pa-
rameters, input and output ports, sub-models, and port con-
nections. Ports and parameters are declared in the same way
as for atomic models. Sub-models are declared as normal
Modelica class instances.
Port connections are defined byModelica’s connect op-
erator. In plainModelica, connect is used to connect two
Modelica connectors, and here we use it to connect twoDE-
VSports.
Additionally,DEVS’ Z (transfer) andSelectfunctions are de-
fined usingModelica functions in the coupled model. There
may be severalZ functions in a coupled model. It is worth-
while to note that theZ function is combined with the ports
in the connect function, as will be shown in the example
later. TheSelect tie-breaking function to resolve conflicts
between simultaneous internal transitions in different sub-
models is defined using the input and output parameters of
Modelica and returns the selected sub-model.

3.3. Example
We use a DEVS model of logical gates to demonstrate the

atomic and coupled DEVS model representation inModel-
ica. The atomic and coupled DEVS model are listed below.

class NotGate
extends AtomicDEVS
parameter String Name=‘Not’;
input DevsPort NotGateInput;
output DevsPort NotGateOutput;
NotGateState state();
function intTransition

%current state not changed;
end intTransition;
function extTransition
state.input := peek(NotGateInput);

end extTransition;
function outputFunc
if state.input == 1 then
poke(0, NotGateOutput);

else
poke(1, NotGateOutput);

end if;
end outputFunc;
function timeAdvance
output Real timespan



timespan:=0.0000005;
end timeAdvance;

end NotGate;

class Circuit
extends CoupledDEVS
parameter String Name=‘Circuit’;
input DevsPort Input;
output DevsPort Output;
NotGate Not1();
NotGate Not2();
equation
connect(Input, Not1.NotGateInput,Z1);
connect(No1.NotGateOutput, Not2.NotGateInput);
connect(Not2.NotGateOutput, Output);

end
function Z1
input Integer in
output Integer out
if in > 1 then
out := 1

end if;
end Z1
function Select
Input BaseDevsList immList
output BaseDEVS imm
imm := immList[0];

end Select
end Circuit;

4. FLATTENING DEVS MODELS
As mentioned in [1], it is possible to construct aresultant

atomic DEVS model for each coupled DEVS. Thisclosure
under coupling[15] of atomic DEVS models makesanycou-
pled DEVS behaviorally equivalent to the resultant atomic
DEVS. Supported by this property of closure, theFlattening
of DEVS is implemented in two steps:Direct Connectionand
Flattening.

4.1. Closure of DEVS under coupling
As mentioned before, anyhierarchically coupled DEVS

can thus be flattened to an atomic DEVS by induction. As a
result, the requirement that each of the components of a cou-
pled DEVS be an atomic DEVS can be relaxed to be atomic
or coupled as the latter can always be replaced by an equiva-
lent atomic DEVS.

The core of the closure procedure is the selection of the
mostimminent(i.e. soonest to occur) event from all the com-
ponents’ scheduled events [1]. In case of simultaneous events,
the selectfunction is used. In the sequel, the resultant con-
struction is described.

From the coupled DEVS

〈Xsel f,Ysel f,D,{Mi},{Ii},{Zi, j},select〉,

with all componentsMi atomic DEVS models

Mi = 〈Si , tai ,δint,i ,Xi ,δext,i ,Yi ,λi〉,∀i ∈ D

the atomic DEVS〈S,ta,δint ,X,δext,Y,λ〉 is constructed.
The resultant set of sequential states is the product of the

total state sets of all the componentsS= ×i∈DQi , where

Qi = {(si ,ei)|s∈ Si ,0≤ ei ≤ tai(si)},∀i ∈ D.

The time advance functionta ta : S→ R
+
0,+∞ is constructed

by selecting themost imminentevent time, of all the compo-
nents. This means, finding the smallest timeremaininguntil
internal transition, of all the components

ta(s) = min{σi = tai(si)−ei|i ∈ D}.

A number ofimminentcomponents may be scheduled for a
simultaneousinternal transition. These components are col-
lected in a setIMM(s) = {i ∈ D|σi = ta(s)}. From IMM , a
set of elements ofD, onecomponenti∗ is chosen by means
of theselect tie-breakingfunction of the coupled model

select : 2D → D
IMM(s) → i∗

Output of the selected component is generatedbeforeit makes
its internal transition. Note also how, as in a Moore machine,
input does not directly influence output. In DEVS models,
onlyan internal transition produces output. An input can only
influence/generate output via an internal transition similar to
the presence ofmemoryin the form of integrating elements
in continuous models. Allowing an external transition to pro-
duce output could lead to infinite instantaneous loops. Thisis
equivalent to algebraic loops in continuous systems. The out-
put of the component is translated into coupled model output
by means of the coupling information

λ(s) = Zi∗,sel f(λi∗(si∗)), if sel f ∈ Ii∗ .

If the output ofi∗ is not connected to the output of the coupled
model, the non-eventφ can be generated as output of the cou-
pled model. Asφ literally stands for no event, the output can
also be ignored without changing the meaning (but increasing
performance of simulator implementations).

The internal transition function transforms the different
parts of the total state as follows:

δint(s) = (. . . ,(s′j ,e
′
j), . . .), where

(s′j ,e
′
j) = (δint, j (sj ),0) ,for j = i∗,

= (δext, j (sj ,ej + ta(s),Zi∗, j(λi∗(si∗))),0) ,for j ∈ Ii∗ ,
= (sj ,ej + ta(s)) ,otherwise.

The selected imminent componenti∗ makes an internal tran-
sition to sequential stateδint,i∗(si∗). Its elapsed time is reset
to 0. All the influencees ofi∗ change their state due to an
external transition prompted by an input which is the output-
to-input translated output ofi∗, with an elapsed time adjusted



Figure 1. Transformation from Original Model to Direct Connected Model

for the time advanceta(s). The influencees’ elapsed time is
reset to 0. Note howi∗ is not allowed to be an influencee of
i∗ in DEVS. The state of all other components is not affected
and their elapsed time is merely adjusted for the time advance
ta(s).

The external transition function transforms the different
parts of the total state as follows:

δext(s,e,x) = (. . . ,(s′i ,e
′
i), . . .), where

(s′i ,e
′
i) = (δext,i(si ,ei +e,Zsel f,i(x)),0) , for i ∈ Isel f,

= (si ,ei +e) ,otherwise.

An incoming external event is routed, with an adjustment for
elapsed time, to each of the components connected to the cou-
pled model input (after the appropriate input-to-input transla-
tion). For all those components, the elapsed time is reset to
0. All other components are not affected and only the elapsed
time is adjusted.

4.2. Direct Connection
Muzy and Nutaro [16] have presented a simulation algo-

rithm for Dynamic Structure DEVS. The algorithm trans-
fers messages directly from one atomic model to another
without passing via a coordinator. In our paper,Direct Con-
nectiondoes not work at the simulator level, but rather we
symbolicallytransform a hierarchical coupled model into a
coupled model with depth one.
As shown in Figure 1, the original model’s hierarchy tree
describes the connection and containment relationships be-
tween the atomic and coupled sub-models. It is transformed
to a two-level hierarchy model.Direct Connectionis used to
simplify the complexity and lower the redundancy inDEVS
models. Without the overhead of passing messages through
ports and coordinators, message transfering becomes direct
and efficient.

4.2.1. Algorithm
TheDirect Connectionalgorithm is shown in Figure 2. The

algorithm starts from the root node and traverses all the nodes

Figure 2. Direct ConnectionAlgorithm

Figure 3. Ports Elimination in the Transformation
in the hierarchy tree using theDirect Connectionfunction.
Each node is checked whether it is a coupled model. The
atomic models and connections between them are copied to
the root node first.
The connections that contain the ports from coupled mod-
els are replaced in the following three phases: Find the port
which is connected to the coupled model’s port; Construct
a new connection to connect the target port with the atomic
port; Delete the former connection and coupled ports, then
move the new one to the root node. If the sub-model is still
a coupled one, invoke theDirect Connectionfunction again.
The recursion is guaranteed to terminate thanks to the finite
depth of the model tree.
Figures 3 and 4 describe the port elimination and connection
evolution during the connecting process. Figure 3 also shows
that messages transferred between ports are transformed to
data passing in the ports dictionary in theFlattened Atomic
Model. This will be discussed in detail later.

4.2.2. Z and Select Functions in Direct Connection
Though theDirect Connectionfunction eliminates cou-

pled models, the coupled model’sZ Functions and theSe-
lect Function have to be taken into account to guarantee
that the transformation preserves behavior. ForZ, the first
step is to rename the functions beforeDirect Connection.
This is because the ports information ofZ Functions will



be lost when the connection is eliminated. So we have to re-
name the functions to record the ports and model information.
The new name format is:Z [Output Model and Port
Name] [Input Model Port Name]. When the ports
of atomic models are direct connected, there will likely be
more than oneZ Function. The problem is how to handle mul-
tiple Z Functions in one connection. The solution is shown
in Figure 4. As mentioned before, the names ofZ Functions
have been modified to add the extra information. For the cou-
pled ports that have been eliminated inDirect Connection,
the names ofZ Functions have to be changed accordingly.
The new name is composed of the names from new output
and input ports. When a name conflict occurs, a postfix is ap-
pended to make the names unique. The content of the postfix
is the order of the function, ranked by the position from output
port to input port. As shown in the figure, the function clos-
est to the output port gets the highest order, and vice versa.
This is somewhat arbitrary but guarantees uniqueness. As for
the Select, the function is directly copied to the root model
because there is only oneSelectFunction in every coupled
model. The name of theSelectFunction has to be changed
in order to avoid name conflicts in the root model. The name
of the coupled model is used to prefix theSelectFunction’s
name as in ‘BB2 Select()’.

Figure 4. TheZ Functions in Ports Elimination

4.3. Flattening
After the Direct Connection, Flattening is much easier

since the hierarchy of original model has been simplified. The
goal ofFlatteningis to turn a coupled model into an atomic
one. It means that all the connections between atomic models
are transformed to computation inside theFlattened Atomic
Model. This implies that the simulation mechanisms tradi-
tionally encoded in a simulation engine’s coordinator suchas
message transfer, event scheduling, and time advance have to
be explicitly inserted in theFlattened Atomic Modelto main-
tain the consistency in the model transformation. Addition-
ally, theZ andSelectFunctions have to be re-implemented
too.

4.3.1. Algorithm
TheFlatteningalgorithm consists of three phases: Modify

atomic DEVS models connected in the coupled model; Con-

struct a newFlattened Atomic Modelto reconstruct the mes-
sage transfer, scheduling and time advance mechanism; Inte-
grate theZ andSelectFunctions into theFlattened Atomic
Model.

4.3.2. Modification of Atomic Models
The atomic models have to be modified to meet the require-

ments ofFlattening. As all ports are eliminated, the messages
can not be sent and received through ports. DictionariesX
and Y are added to store the messages. The keys used to
index the dictionaries are the names of ports while the val-
ues are the messages. Likewise, theextTransition and
intTransition andoutput functions are adapted to the
dictionaries too. In the specific case of PythonDEVS, this en-
tails updating thepeek andpoke functions which encode
message reception inextTransition and message output
in output respectively. Thepeek functions are replaced
by X[portName] and thepoke functions are replaced by
Y[portName]. The atomic models have the responsibility
to inform their context whether there are messages to be sent.
The symbolIsSendMsg is used to encode this in our flat-
tened model.

4.3.3. Flattened Atomic Model Construction
The Flattened Atomic Modelis a special atomic model

which encodes the coupled simulation mechanism. It opti-
mizes inter-model message transfer and improves the effi-
ciency of event list scheduling. As this model encodes the
functionality of a coordinator, it requires some helper dic-
tionaries and functions. TheX, Y andisSendMsg are still
needed at the highest level to communicate with the out-
side. States, UpdateModels, OutputModels and Connec-
tions are newly created dictionaries to be inserted into the
Flattened Atomic Model. CollectModels(), MapConnection
and MapY2X are the new functions whileextTransition,
outputFunc(), intTransition() and timeAdvance() are the
modified functions.StatesandModels: Statesis the set of
states in theFlattened Atomic Model. The set is encoded as
a dictionary indexed by the unique identifiers of sub-models.
These are the names of sub-models with ‘State’ appended.
Models is the dictionary which stores all the atomic sub-
models inside theFlattened Atomic Model. The keys ofMod-
elsareStates.
UpdateModels: collects all the sub-models’ received mes-
sages. The keys are again the keywords of sub-models be-
longing toState. By means ofUpdateModels, it is possibly
to directly access only those models which have received a
message.
OutputModels: collects all the sub-models sending mes-
sages after their internal transition.isSendMsg is used to
check whether a sub-model sent a messages. If true, the sub-
model is added to the dictionary.
Connections: replaces the connect function of the direct con-
nected coupled model. It stores the connection information



between the sub-models. As every connection is composed
of the object producing output and that receiving input, keys
of Connectionsare the outputting features which are gen-
erated from the output sub-model and port name. Since one
outputting object may be connected to several receivers, the
values stored in the dictionary are collections of receiverfea-
tures generated from the input sub-model and port name. Us-
ing Connections, all the receivers can be determined when
some sub-models output messages.
CollectModels(): extracts the sub-models of a direct con-
nected coupled model to construct theModels with States.
The function is invoked during the initialization ofFlattened
Atomic Model.
MapConnection(): transforms the connect function in a di-
rect connected coupled model intoConnections. It is invoked
during the initialization ofFlattened Atomic Model. extTran-
sition(): is the same as the atomic model’s function. It should
be emphasized however that the use ofY andX is reversed as
messages are passed fromY to X. For this reason, the mes-
sages from outside the model arepokeed to theY of the
Flattened Atomic Model. Messages are subsequently passed
to sub-models byMapY2X .
outputFunc(): The originaloutputFunc is modified to
poke messages from dictionaryX to the outside.X has to
be cleared after poking.
intTransition() : is exactly the same as the original one. The
sub-model is indexed by the current state and executes the in-
ternal transition and output of the current sub-model.
timeAdvance(): is modified to do the event list scheduling
and time advancing in theFlattened Atomic Model.

When the Flattened Atomic Modelis initialized, the
TimeList is constructed by traversing all the initi ate times
of sub-models. The keys ofTimeList are the keywords of
sub-models while the relevant value istL. During the con-
struction ofTimeList, the ordered time dictionary is built
by SetModelAtTime(). The sub-models are arranged by the
time stamp in theordered time dictionary. Sub-models with
identicaltL are collected in an array at every time stamp.

TheUpdateModelsis traversed to executeextTransition()
of sub-models receiving messages.tN of every sub-model is
calculated and theordered time dictionary is updated im-
mediately so that the ordered sub-model array is maintained
synchronously.

Thanks to theordered time dictionary, event list schedul-
ing can be done easily as the first array of the dictionary
is immList. Then, the immediate sub-model is selected
by Flatten Selectand the current state ofFlattened Atomic
Model is fixed. tN of the current sub-model is calculated by
timeAdvance()plustL and it is inserted into theordered time
dictionary . The time span is calculated by the current time
andtN of current sub-model. IftN is greater than the current
time, the time span is the time stamp minus the current time

and the current time is set totN. Otherwise the time span is
zero. The time span here is used to control the time advanc-
ing of Flattened Atomic Model. As each sub-model shares the
sametimeAdvance(), the time can only be advanced when all
the sub-models have already advanced.

MapY2X() : replaces the message transfer mechanism in
the coordinator of coupled models. It traversesUpdateMod-
els and sends messages to connected sub-models. During
the traversal, the outputting objects are retrieved through the
sub-model and port information fromUpdateModels. Then,
Connectionsprovides the receiving objects corresponding to
the outputting objects. Based on the connected objects, the
messages are passed from theY of output sub-model to theX
of the receiving sub-model. TheZ Functions are executed.

Figure 5. The Principle ofFlatten Select Function

4.3.4. Z Functions and FlattenSelect Function

As mentioned before, all theZ Functions have been trans-
formed to the direct connected model. In order to reuse them
in the flattened model, they are copied toFlattened Atomic
Model. In theMapY2X , they are invoked in theZ Functions.
The invoking order is decided by the postfix of the function’s
name.

Figure 5 describes the principle ofFlatten Select Function.
If the sub-model meets a time advance conflict, the common
select function is need. But not all the sub-models belong to
the same coupled model. So, it is necessary to find the com-
mon parent coupled model of the sub-models. This means
that the coupled model must contain all the sub-models. From
the bottom of the hierarchy, the select function of the first
common coupled model is the one used in the original model.
The algorithm is depicted below:

First, the top two sub-models are popped to do the selec-
tion. According to the coupled information saved in the name
of sub-models, the common coupled parent model is found.
As shown in the figure, the common coupled parent of sub-
modela2 andb221 is Root. So theRoot Select is cho-
sen to do the selection. Thus, the input isA andB.

Second, ifA is selected, the sub-modela2 is selected, oth-
erwiseb221 is selected. The next sub-model inImmList
is popped to do the selection with the former selected sub-
model again. Finally, the immediate sub-model can be output
while traversing theImmList.



Figure 6. Case Study: Circuit from gate to ALU

5. CASE STUDY
5.1. Compiling a DEVS Model

Obviously, aDEVS model represented in Modelica can
not be simulated directly as it is just a textual representation.
Thus, a compiler is needed to transform theDEVS model into
a form suitable for simulation. We use ourµModelica com-
piler [14] which by default generates input for ourPython-
DEVS simulator. The compiler was extended with a flatten-
ing phase which is invoked before generating simulatable out-
put.

5.2. Benchmark Model
As mentioned in the introduction,DEVS Flattening may

improve simulation performance ofHigh Interaction and
Low Computation(HILC) models. We choose aLogical
Circuit to be our benchmark model. It is well known that
gates are the basic units ofLogical Circuit s. EvenVery-
large-scale integration (VLSI) systems are composed of
simple gates such asAnd, Or , Not andXor . The time de-
lay between input and output of basic gates is in the order
of a few nanosenconds which is an indication that the inter-
nal computation is low. Hence, logical circuit models are a
typical example ofHILC .

We build two kinds of circuit: the real circuit and the
test circuit. RealVLSI circuits are shown in Figure 6.
Starting from basic gates, First Level Coupled Circuits can
be constructed: the Adder(1Bit), Mux(2Bit), Or(8Bit) and
so forth. The First Level Coupled Circuits can be com-
bined to form Second Level Coupled Circuits: Adder(8Bit),
Mux(8Bit),Sra(8Bit) and so forth. Lastly, Second Level Cou-
pled Circuits can be combined to form an Arithmetic and
Logic Unit (ALU ). Likewise,Control andMemory compo-
nents of a CPU’s datapath (realizing a given Instruction Set
Architecture) can be modeled.
In order to test the performance improvement obtained by
Flattening, we build a test circuit which is composed of Not
gates. The number of gates and connections in the test cir-
cuit can be changed for the purpose of our experiments. The
circuit is created according to the rules below: the coupled
models are not allowed to contain more than 10 sub-models.

When the number of the sub-models in the coupled model is
going to exceed 10, another coupled model is created to con-
tain the new sub-model. By increasing the number of gates,
the hierarchy of the test model becomes a structure like a
pyramid. This is what is commonly found in real circuit mod-
els.
The simulations are tested on an Intel Core 2 Extreme X6800
processor at 2.66GHz with 8Gb of memory. All the results are
obtained from multiple repeated experiments. First, the out-
liers are removed and subsequently, the average is computed.

5.3. Analysis
In Figure 7, the left part shows the improvement of di-

rect connected models compared to original models, while the
right part shows the improvement of flattened models with re-
spect to the original models. The direct connected model does
not improve performance much as shown in the figure. The
curve only goes up a bit and then down quickly. On the con-
trary, the curve of flatten/original goes up all the time. This
means that the more complex a model is, the higher the im-
provement achieved.

Let us first investigate the performance of the direct con-
nected model as compared to that of the original model.
Port elimination improves the performance slightly when the
model is not complex. This, because the messages can be
transferred directly between atomic models, doing away with
port overhead. As the model becomes more and more com-
plex, all the atomic models are managed by a single coordina-
tor. The reasons for bad performance are summarized below:

• When the model becomes complex, the sorting process
gradually occupied most of the time. The size of the
event list grows with the complexity of the model (as-
suming that all components are active most of the time).
The larger the the event list, the lower the performance
of the sorting process.

• According to the coordinator protocol, sub-models are
traversed to check whether there are some messages to
be transferred. The traversing is time consuming if the
number of sub-models is high. However, it is very well
possible that most of the sub-models traversed did not
receive any messages.

The two causes cut off the improvement brought by port
elimination. And the performance improvement decrease to
0 when the model complexity reaches that of anALU .
The results in the figure show that the flattened model leads
to significantly improved simulation performance compared
with the original model. The reasons are summarized below:

• Messages are transferred inside theFlattened Atomic
Model. Time used to send and receive messages between
the ports and atomic models is saved.



Table 1. Simulation Performance for the Real Circuit: Original, Direct Connected, Flattened
Circuit GateAmount Original(s) Connected(s) Flattened(s)

NotGate 1 0.000678 0.000679 0.000633
Adder(2Bit) 17 0.021018 0.020978 0.009163

Adder(2Bit) + Mux(2Bit) * 2 25 0.070707 0.092659 0.032808
Adder(4Bit) 33 0.048223 0.087518 0.017283

Adder(4Bit)+Mux(2Bit)*3 54 0.364086 0.837083 0.136674
Adder(8Bit) 54 0.465491 1.401712 0.161146

Adder(8Bit)+Mux(8Bit) 183 3.215183 20.686988 0.913302
Adder(8Bit)*2+Mux(8Bit)*3 439 12.846081 109.308622 3.435668

ALU 641 29.153758 371.523992 6.380175

Figure 7. Improvement thanks to Flattening in Real Circuit Models

• The event list data structure is optimized to help improve
the efficiency of the sorting process. All the sub-models
are ordered by time stamps. The complexity of the event
list is related to the number of events, not to the increas-
ing number of sub-models. In the case of a digital cir-
cuit, the time stamps of gates are always the same. Thus,
the size of the event list is so small that the speed of the
sorting process is improved drastically.

• The dictionaryUpdateModels is used to collect the
sub-models that receive the messages. Therefore, only
the sub-model receiving messages is traversed to do
extTransition().

• The dictionaryOutputModels is used to collect the sub-
models that send the messages. InMapY2X , only the
sub-model sent messages is traversed to pass the mes-
sage to relevant sub-models.

These four causes help improve the simulation performance
of a flattened model. Theoretically, the improvement will be
proportional with the increasing complexity of the model.
This is especially so when the limitations of the simulator
hardware are reached. This is because the complexity of the
original model is higher than that of the flattened one. Thus,
simulation of the original model will reach the limitation
(usually memory) first.
The runtime becomes extreme long at that point, whereas the
runtime for the flattened model still increases linearly. So,
the improvement is close to infinity at this point. We use the
speed of gates (vg) as another performance metric in the case
of the test circuit.vg is the reciprocal of time used per gate.
It descends when the improvement ascends by the increas-

ing of gates. The combination ofvg and the improvement of
performance inFlatten DEVScan help find the optimized
point where the improvement and efficiency are all consid-
ered. The performance of the test circuit are shown in Figure

Figure 8. Flatten Improvement and Optimal Point of Gate Number

8. Thevg curves of original and flattened model are shown in
the top-left. The top-right is the improvement curve which is
still rising, though there are negligible oscillations. The bot-
tom curve shows that the optimal point is 5600 gates with
improvement factor5.4 over the original model. The cir-
cuit scale at the optimal point is relatively smaller than the
circuit simulation mentioned in [17]. There are two main rea-
sons: First, the experiments here are implemented inPython
code. Though it is an easy to use object oriented language,
the efficiency is lower, especially compared withC++. Sec-
ond, we used the ClassicDEVS formalism without any op-
timizations in the simulation framework. We emphasized the
performance increase bySymbolic Flatteningin the modeling
domain instead of working on the simulation itself.

6. CONCLUSION
In this paper we first introduced theDEVS formalism and

subsequently presented its textual representation in the stan-
dard modelling languageModelica. The closure ofDEVS
under coupling was discussed. We present our contribution:
optimization at the modeling level (as opposed to simulation-
level optimizations), first byDirect Connectionand then by



Flattening. Compared to [9], transformation algorithms are
introduced and the automaticSymbolic Flatteningof DEVS
model is described in detail. The transformations are imple-
mented inside our own compilerµModelica.
Digital circuits are modeled to illustrate the performanceof
our flattening procedure. We notice that flattening greatly im-
proves simulation performance. Actually,Symbolic Flatten-
ing is perfectly complementary to the formalisms and run-
time optimization mentioned in section 1.. From our perfor-
mance studies, we conclude thatSymbolic Flatteningis most
effective in theHigh Interaction , Low Computation do-
main. Moreover, flattening scattered sub-models can improve
the utilization of memory.
It is worthwhile to point out that the optimization brought by
flattening is compositional. This means that it can be applied
to models generated from other formalisms (such as State-
charts or Differential Equations). The approach is indepen-
dent of the simulation framework used.
Thanks to the compositionality, we envision flattening other
formalisms in future. Examples areParallel & Distributed
DEVS andDynamic Structure DEVS. In the case ofPar-
allel & Distributed DEVS, the models can be completely
analyzed before the simulation. The high interaction models
are flattened before partitioning to minimize the size of the
simulation. Thus, the final simulation will benefit from both
modeling and simulation-time optimization in two aspects.
The remaining bottleneck in our approach is still the event
list management in aFlattened Atomic Model. This is how-
ever a known problem for which solutions have been devised
in the simulation literature. We plan to apply and evaluate our
techniques on very large scale problems.

REFERENCES
[1] P. B. Zeigler, P. Herbert, and K. T. Gon.,Theory of Mod-

eling and Simulation, Second Edition. Academic Press,
2000.

[2] G. A. Wainer, “Applying cell-devs methodology for
modeling the environment,”SIMULATION, vol. 82,
no. 10, pp. 635–660, October 2006.

[3] F. J. Barros, “Modeling formalisms for dynamic struc-
ture systems,”ACM Trans. Model. Comput. Simul.,
vol. 7, no. 4, pp. 501–515, 1997.

[4] T. G. K. Ki Hyung Kim, Yeong Rak Seong and K. H.
Park, “Distributed simulation of hierarchy devs models:
Hierarchical scheduling locally and time warp globally,”
Trans. Soc. Comput. Simul. Int., vol. 13, no. 4, pp. 135–
154, 1997.

[5] S. Cheon, C. Seo, and B. P. Z. Sunwoo Park, “Design
and implementation of distributed devs simulation in a
peer to peer network system,” in2004 Military, Govern-
ment, and Aerospace Simulation, 2004.

[6] J. Himmelspach and A. M. Uhrmacher, “Sequetial pro-
cessing of pdevs models,” in3rd EUROPEAN MOD-
ELING AND SIMULATION. SYMPOSIUM, Barcelona,
Spain, 2006, pp. 239–244.

[7] J. Himmelspach, R. Ewald, S. Leye, and A. M. Uhrma-
cher, “Parallel and distributed simulation of parallel
devs models,” inSpringSim ’07: Proceedings of the
2007 spring simulation multiconference. San Diego,
CA, USA: Society for Computer Simulation Interna-
tional, 2007, pp. 249–256.

[8] H. Shang and G. A. Wainer, “Dynamic structure devs:
Improving the real-time embedded systems simulation
and design.” inAnnual Simulation Symposium. IEEE
Computer Society, 2008, pp. 271–278.

[9] W. B. Lee and T. G. Kim, “Simulation speedup for devs
models by composition-based compilation,” inSummer
Computer Simulation Conference, SCSC2003, 2003, pp.
395–400.

[10] P. B. Zeigler,Multifacetted modelling and discrete event
simulation. San Diego, CA, USA: Academic Press
Professional, Inc., 1984.

[11] J.-S. Bolduc and H. Vangheluwe, “The modelling and
simulation package pythondevs for classical hierarchi-
cal devs,” Tech. Rep., 2001.

[12] P. Fritzson and P. Bunus, “Modelica, a general object-
oriented language for continuous and discrete-event sys-
tem modeling and simulation,” inIn Proceedings of the
35th Annual Simulation Symposium, 2002, pp. 14–18.

[13] H. Elmqvist and S. E. Mattsson, “An introduction to the
physical modeling language modelica,” inProc. 9th Eu-
ropean Simulation Sympossium ESS97, SCS Int, 1997,
pp. 110–114.

[14] H. Song, “Infrastructure for devs modelling and experi-
mentation,”Master Thesis, 2006.

[15] H. Vangheluwe, “Lecture notes for cousre of modeling
and simulation,” Montreal, Canada, Tech. Rep., 2002.

[16] A. Muzy and J. Nutaro, “Algorithms for efficient imple-
mentations of the devs & dsdevs abstract simulators,” in
1st Open International Conference on Modeling & Sim-
ulation, OICMS2005, 2005, pp. 273–279.

[17] Q. Xu and C. Tropper, “Towards large scale optimistic
vlsi simulation,” Simulation Modelling Practice and
Theory, vol. 14, no. 6, pp. 695–711, 2006.


