Symbolic Flattening of DEVS Models

Bin Chen and Hans Vangheluwe
School of Computer Science
Mcgill University
Montr éal, Canada
binchen, hv@cs.mcgill.ca

Keywords: DEVS, Direct Connection, Flattening a DEVS modeling and simulation framework over a Peer
to Peer network systerDEVS / P2P. This extension of
Abstract DEVS results in a customized new simulation protocol for

Based on the ClassiDiscrete Event system Specifica- distributed simulation which does not involve a coordimato
tion (DEVS) formalism, many efficient simulation languages [6] presents a sequential way to procBEEVS models. The
have been proposed to meet the expressiveness and perfabstract sequential simulator reduces the thread nunmwbr, a
mance requirements of various applications. We propose thidae Flatten algorithm in simulator simplifies message fiems
Symbolic Flatteningof DEVS models to enhance simula- The process way is integrated in a new simulator in [7]. Large
tion efficiency. TheModelica language is extended to pro- Coupled model is split up into Virtual coupled models. These
vide a standard concrete syntax RIEVS. Based on the clo- models can be simulated in both distributed and sequential
sure under coupling dDEVS, flattening is implemented in manner with the support of the new simulator. [8] presents an
two stepsDirect ConnectiorandFlattening We use the do- improved simulation engine that combin@gnamic Struc-
main of digital circuits to get quantitative insight intcethm- ture DEVS with a real-time simulation engine. This leads to
provement brought by our approach. We conclude that the a@ powerful environment to support the development of em-
proach is most effective fddigh Interaction, Low Compu- bedded systems.
tation(HILC) models. The technigue is modular and may beAll the work mentioned above provides optimizations of the
combined with simulator-level (as opposed to our techniquesimulation level. [4] modifies the messaging mechanism to
which is symbolic, modeling level) techniques, or disttémi makeTime Warp more efficient; [5] applies the P2P tech-
simulation. nique to emphasize the distribution; [2] focuses on the mod-
eling of environments that are inherent compositionaly¢8]
duces the coordinator to improve the simulation performeanc
1 INTRODUCTION o) by flattening the model hierarchy at run time. Algorithms are
The Discrete Event system Specification[1] formalism ha%given to optimize the event scheduling, and message trans-
been widely used in modeling and simulation for many yearsger in the coordinator. However, when the computation due to
The formalism is expressive and allows for the hierarchicalyeractions between sub-models is much larger than the com
and modular description of discrete event models. putation of individual models, the performance improvemen
Based on theClassic DEVS formalism, many extensions s minimal. [6] modified the simulator fd?DEV'S, Select and
were proposed to meet different application requirementsyata transfer in classical DEVS are not referred. [9] pressen
This, as there does not exist a single formalism which is 0pm, el composition to speedup simulation based on the closed
t|m_al, both from an expressiveness and from a performancgnqer coupling property of DEVS.
point of view, for all application domaingCell DEVS[2] \ye yse these ideas as a starting point for our work to improve
adds spatial distribution features Gkllular .Automata to performance, at the modeling level, independent of the sim-
DEVS and allows the modeling of physical systems by yjator. We propose to flatten DEVS models symbolically to
supporting spatially distributed, interacting celBynamic nimize simulation performance féfigh Interaction , Low
Structure DEV_S[3] is used when the model structure can Computation(HILC) models. Our approach transforms cou-
change dynamically. _ _ _ pled DEVS models textually represented Modelica to a
Parallel & Distributed DEVS[4] is well suited forHigh pepayiorally equivalent atomiPEVS model. The interac-
Computation, Low Interaction(HCLI) models, especially jons among models are integrated into the computation in-
for large-scale systems. _ _ side the atomic model. In contrast with simulation algarigh
The distribution of models speeds up the simulation byy computation (transformation) is done on models before
adding concurrent computing nodes. [4] presents a parallglimyjation time. This implies there is no run-time overhead
simulation methodology which employs hierarchical schedu The rest of this paper is organized as follows: Section 2 de-

ing for simulation of models within a processorandT@e gcripes the ClassiDEVS formalism in detail. Section 3 de-
Warp mechanism for global synchronization. [5] presents

scribes how to represeBEVS models in the neutral model- A coupled DEVSmodel named is a structure

ing languagenodelica. Section 4 describes the implementa- X,Y,N,M,1,Z selech

tion of our approach. Section 5 presents a case study in whichthereX andY are as before.

digital circuits are constructed to test the impact of ourfla N is a set ocomponent namegor labels) such that ¢ N.
tening on simulation performance. Section 6 concludes th&1 = {Mp | n € N,M; is a DEVS model (atomic or coupled)
paper. with input setX, and output seY} is a set of DEVSsub-

models
2. DEVS FORMALISM I ={ln|ne NI C NU{C}} is a set ofinfluencer sets for

The DEVS formalism was introduced in the late seventiesgch component named
by Bernard Zeigler as a rigorous basis for the compositionay _ {ZinlVNeNi €1n,Zin: Y =X VZen: X = X VZic:
modeling and simulation of discrete event systems [10R$th v _, v} is a set oftransfer functions from each component
been successfully applied to the design, performance analy g some componenmt
sis, and implementation of a plethora of complex systems. gg|ect: 2N — N is theselector tie-breaking function.® de-

A DEVS model is either arAtomicBlockor a Coupled- notes the powerset of (the set of all sub-sets o¥).
Block An atomic model describes the behaviour of a timed, The connection topology of sub-models is expressed by the
reactive system. A coupled model is the parallel composiinfluencer set, of each component. Note that for a given
tion of several DEVS sub-models which can be either atomignodeln, this set includes not only the external models that
or coupled. Sub-models haperts which are connected by provide inputs ta, but also its own internal sub-models that
channels. Ports are directional and are eithgort or Out- produce its output (ifi is a coupled model). Transfer func-
port. Ports and channels allow a model to receive and senflons represent output-to-input translations betweenpmm
events from and to other models. A channel must go fronhents. They can be thought of as channels that make the ap-
an output port of some model to an input port of a differentpropriate type translations. For example, a “departurehev
model, from an input port of a coupled model to an input portoytput of one sub-model is translated to an “arrival” event o
of one of its sub-models, or from an output port of a sub-3 connected sub-model's input. Thelectfunction takes care

model to an output port of its parent model. of conflicts as explained below.

An atomic DEVS model is a structure The semantics for a coupled model is, informally, the par-

(S X,Y,Bint, Bext; A, T) allel composition of all the sub-models. A priori, each sub-

whereSis a set of sequentiatates model in a coupled model is assumed to be an independent
X is a set of allowedhput events process, concurrent to the rest. There is no explicit method
Y is a set of allowedutput events of synchronization between processes. Blocking does not oc
There are two types of transitions between states: cur except if it is explicitly modelled by the output funatio
dint : S— Sis theinternal transition function and of a sender, and the external transition function of a rereiv
dext : Q x X — Sis theexternal transition function. There is however aerializationwhenever there are multi-
Associated with each state areS— Ry, thetime-advance ple sub-models that have an internal transition schedaled t
function and\ : S— Y, theoutput function. be performed at the same time. The modeler controls which
In this definition,Q = {(s,e)[s€ SO<e<T1(s)} is called of the conflicting sub-models undergoes its transition figst
thetotal state space means of theselectfunction.
For each(s,e) € Q, eis called theelapsed timg the time the \We have developed our own DEVS simulator called
system has spent in a sequential sgsénce the last transi- pyt honDEVS [11], grafted onto the object-oriented script-
tion. R™ denotes the positive reals (with zero included). ing language Python. We upg't honDEVS for the work de-

Informally, the operational semantics of an atomic modelscribed in this paper.
is as follows: the model starts in its initial state. It wiimain
in any given state for as long as the time-advance of that sta3- DEVS MODEL MODELICA SYNTAX
specifies or until input is received on some port. If no input3.1. Why use Modelica?
is received, after the time-advance of the state expires, th Modelica is an object-oriented model description lan-
model first (before changing state) produces an output evermguage[12]. It provides a structured, computer-supporiayg w
as specified by the output function. Then, it instantangouslof doing mathematical and equation-based modeling.
jumps to a new state specified by the internal transitionfuncThe design goal dflodelica is to build a modeling language
tion. However, if an input event is received before the timebased orthe Differential Algebraic Equation (DAE) for-
for the next internal transition, then it is tleternal transi- malism[13] with discrete-event features to handle disconti-
tion which is applied. The external transition depends on thenuities and sampled systems. It has been successfullyoised t
current state, the time elapsed since the last transitidrtren specify models of systems in many physical domains. Though
input event. Modelica is originally designed for describing physicalano

els, it has enough constructs to describe models in other fothe parameter declarations part of a model, parametergdeed
malism, including discrete-event ones. for instantiating a model are specified (with their defaalt v
This insight leads us to uddodelica as the description lan- ues).

guage forDEVS models [14]. The reasons for this choice Sequential states are represented using thedelica

are as follows. FirstiyModelica has been developed and enuner ati on type. The model state is declared as a
applied in modeling for several years, it is a relatively ma-normal Modelica class instance variable. Input and out-
ture language. SecondlyJodelica comes with theModel- put ports are declared usingnput and out put key-

ica Standard Library(MSL), a large model repository for words and are instances of a predefined cl2EgSPort .
different domains which has accumulated a large group oAll the DEVS functions are defined &godelica functions.
users. Thirdly,DEVS has been shown to be a formalism Thet i neAdvance function requires an output parameter
that is suitable for hybrid system modeling. Lasiodelica ti mespan, through which the value of the time interval for
constructs such as (computationally) non-causal parametea sequential state is returned.

coupling equations may be used to increase the (re-)usabili Similar to atomic models, A coupledEVS model has pa-

of DEVS models. rameters, input and output ports, sub-models, and port con-
nections. Ports and parameters are declared in the same way
as for atomic models. Sub-models are declared as normal
Modelica class instances.

Port connections are defined Bdodelica’s connect op-
erator. In plainModelica, connect is used to connect two
Modelica connectors, and here we use it to connect B
Sports.

3.2. Elements of Representation

3.2.1. Basic Elements itModelica

The basic structural element Modelica is a class, as in
other object-oriented languages. A classModelica uses
equations to describe model behavior. Class compositidn a

inheritance are used to mimic the hierarchy and ComposmorAdditionally DEVS' Z (transfer) an@electfunctions are de-

of real-world entities. !

. fined usingModelica functions in the coupled model. There
There are at least seven restricted classes used to repreS(renna be several functions in a counled model. It is worth-
DEVS models. They are introduced below: Y P :

model: The only restriction of a model class is that it may while to note that th& function is combined with the ports

. . . - . in the connect function, as will be shown in the example
not be used in connections. Its semantics are identicaleto t P

. . ater. TheSel ect tie-breaking function to resolve conflicts
general class constructiiodelica, and it is most commonly . ; o N
used. between simultaneous internal transitions in differerii-su

record: The record class is used to describe structured datmOdGIS is defined using the input and output parameters of

No equations are allowed in the definition or in any of its?\/lodehca and returns the selected sub-model.

components.

type: A type is a class that is an alias or extension of an exist3.3. Example

ing class. A type restricted class may only be an extension to We use a DEVS model of logical gates to demonstrate the
a predefined typegnuner ati on, record, orarray of atomic and coupled DEVS model representatiomiodel-
type. The purpose of using type is to identify a data strctur ica. The atomic and coupled DEVS model are listed below.

by a meaningful name.
cl ass Not Gat e

connector: The restrictions of connector classes are identical
to those of store classes[12], except that connector dasse
designed to be used in connections.

block: The block restricted class is used to model causal (in-
put/output) block diagrams. In Modelica, the two keywords,
i nput andout put , are used as component prefixes to pos-
tulate the data flow direction.

Function: The body of aMlodelica function is an algorithm
that specifies the execution behavior when the function is
called. The parameters for a function are specified by the key
wordi nput , and results are saved to variables marked by the
keywordout put .

3.2.2. Modelica representation of DEVS models
The atomic model consists of parameters, sequential states
model state, input and output ports, and behavior functions

ext ends Atom cDEVS
paraneter String Nane='Not';
i nput DevsPort Not Gat el nput;
out put DevsPort Not Gat eCut put;
Not GateSt ate state();
function intTransition
%urrent state not changed;
end intTransition;
function extTransition
state.input := peek(NotCGatelnput);
end ext Transition;
functi on out put Func
if state.input == 1 then
poke(0, Not Gat eQut put);
el se
poke(1, Not GateQutput);
end if;
end out put Func;
function timeAdvance
out put Real tinespan

ti mespan: =0. 0000005;
end ti meAdvance;
end Not Gat e;

class Circuit
ext ends Coupl edDEVS
paraneter String Nanme='Circuit’;
i nput DevsPort |nput;
out put DevsPort Qutput;
Not Gat e Not 1();
Not Gat e Not 2();
equati on
connect (I nput, Not 1. Not Gat el nput, Z1) ;
connect (Nol. Not Gat eQut put,
connect (Not 2. Not Gat eCut put,
end
function Z1
input Integer in
out put I nteger out
if in>1then
out :=1
end if;
end Z1
function Sel ect
I nput BaseDevsLi st inmLi st
out put BaseDEVS i nm
imm:= imlist[0];
end Sel ect
end Circuit;

Qut put) ;

4. FLATTENING DEVS MODELS

As mentioned in [1], it is possible to constructesultant
atomic DEVS model for each coupled DEVS. Thiesure
under couplinl5] of atomic DEVS models makesycou-
pled DEVS behaviorally equivalent to the resultant atomic
DEVS. Supported by this property of closure, flattening
of DEVS is implemented in two stepBirect Connectiorand
Flattening

4.1. Closure of DEVS under coupling

As mentioned before, anlyierarchically coupled DEVS
can thus be flattened to an atomic DEVS by induction. As
result, the requirement that each of the components of a co
pled DEVS be an atomic DEVS can be relaxed to be atomi

lent atomic DEVS.

The core of the closure procedure is the selection of th
mostimminent(i.e. soonest to occur) event from all the com-
ponents’ scheduled events [1]. In case of simultaneoud&ven
the selectfunction is used. In the sequel, the resultant con-
struction is described.

From the coupled DEVS

<XSE|faYSE|f7D7{Mi}7{|i}v{zi,j}7selecka

with all component$/; atomic DEVS models

Mi = (S, ta;, Bint,i, Xi, Oexti, Yi, Ai), Vi € D

Not 2. Not Gat el nput) ;

a

c
or coupled as the latter can always be replaced by an equivz—?—

the atomic DEVSS;ta, dint, X, Oext, Y, A) iS constructed.
The resultant set of sequential states is the product of the
total state sets of all the componeBts x;pQ;, where

Q ={(s.,8)|s€S,0<e <ta(s)},VieD.

The time advance functiala ta: S— Ra . is constructed

by selecting thenost imminengévent time, of all the compo-
nents. This means, finding the smallest tiramaininguntil
internal transition, of all the components

ta(s) = min{o; =tai(s) —&li € D}.

A number ofimminentcomponents may be scheduled for a
simultaneousnternal transition. These components are col-
lected in a setMM(s) = {i € D|oj =ta(s)}. FromIMM, a
set of elements ob, onecomponent* is chosen by means
of theselect tie-breakindunction of the coupled model

2D
IMM(s)

— D

Pk
|

select :

—

Output of the selected componentis generatfdreit makes

its internal transition. Note also how, as in a Moore machine
input does not directly influence output. In DEVS models,
onlyan internal transition produces output. An input can only
influence/generate output via an internal transition sinti

the presence ahemoryin the form of integrating elements
in continuous models. Allowing an external transition to-pr
duce output could lead to infinite instantaneous loops. iBhis
equivalent to algebraic loops in continuous systems. Tlte ou
put of the component is translated into coupled model output
by means of the coupling information

A(S) = Zi+ sert(Ni= (), if self € ljx.

If the output ofi* is not connected to the output of the coupled
model, the non-evemican be generated as output of the cou-
pled model. Agp literally stands for no event, the output can

u-

also be ignored without changing the meaning (but incregsin
erformance of simulator implementations).
The internal transition function transforms the different

garts of the total state as follows:

dint(s) = (..., (S}, €)),-..), where
(Sj,€}) = (Bint,j(si),0) forj=i*,
= (Bext(sj, € +ta(s), Zi-j(Ai(s+))),0) forjelis,
= (sj,ej+ta(s)) ,otherwise.

The selected imminent componeéhimakes an internal tran-
sition to sequential stat@ - (S+). Its elapsed time is reset
to 0. All the influencees of* change their state due to an
external transition prompted by an input which is the output
to-input translated output @f, with an elapsed time adjusted

0 Orginal

direct_connect

1 1
1 1
i A [a1 H a2] { ¢] i input:Root model rm, coupled model cm in rm
i I I i output:rm with the cm direct connected
i i 1 for each submodel m in cm:
i [b1] B2 i 2 if m is atomic:
! B22[b221Hb222]||| ! 3 add_model(rm,m) lladd the atomic of cm to the rm
b21 B22 | i 4 ifmis coupled:
b221 4222 i B i 5 direct_connect(cm,m) /frecursive invoke to direct connect all atomics
U ——————————————————————————— ! 6 for each subconnection c in cm:
fmmmmmm e Y, 7 ifcis between atomics in cm:
1 Direct Connected f] ! 8 copy_connection(rm,c) /lcopy the connection ¢ to rm
i [a1 H a'2| [b1] [b21] |b2|21| |b2|22| [b3 4 b|4| [c] i 9 if ¢ is between atomics and rm:
1 1

10 adjust_ports(rm,c) /ladjust the ports in ¢ and copy it to rm

Figure 1. Transformation from Original Model to Direct Connected Mbd Figure 2. Direct ConnectiorAlgorithm

. . IS otk
for the time advancea(s). The influencees’ elapsed time is | Original B
reset to 0. Note how" is not allowed to be an influencee of | A B2 B22

i* in DEVS. The state of all other components is not affected| —Pazout| Prout PBin| PB2in | PB22in | Pb221in -
and their elapsed time is merely adjusted for the time advanc Atomic [p—m —0 '
ta() a2 uga‘zﬁ PAin PBout| PBzout | PB2zout| P22 et b221

The external transition function transforms the different
parts of the total state as follows:

| R I I
Direct Connected 1 Flatten
dext(s,6,X) = (..., (5,€),...), where ! a0 Lo Te —1 ! I
© _ If Atomicky——] Atomic :é:a2_X[Pa2in]=Z_Functions(b221_Y[Pb221out]):
(5,€) = (Bexi(s,&+€Zseiri(x)),0) ,fori€lser, | a2 [E—dan b221 {7121 X(Po221in]=Z Funcions(e? Y{Padoul)
= (s,e+e ,otherwise e L - |

An incoming external event is routed, with an adjustment for ~ Figure 3. Ports Elimination in the Transformation
elapsed time, to each of the components connected to the colli- the hierarchy tree using thigirect Connectiorfunction.

pled model input (after the appropriate input-to-inpubtia- Each node is checked whether it is a coupled model. The
tion). For all those components, the elapsed time is reset 3tomic models and connections between them are copied to
0. All other components are not affected and only the elapsefhe root node first.

time is adjusted. The connections that contain the ports from coupled mod-
els are replaced in the following three phases: Find the port
4.2. Direct Connection which is connected to the coupled model’'s port; Construct

Muzy and Nutaro [16] have presented a simulation algo-a new connection to connect the target port with the atomic

rithm for Dynamic Structure DEVS. The algorithm trans- port; Delete the former connection and coupled ports, then

. . move the new one to the root node. If the sub-model is still
fers messages directly from one atomic model to another

. a coupled one, invoke tHeirect Connectiorfunction again.
without passing via a coordinator. In our papeirect Con- L - -
. . The recursion is guaranteed to terminate thanks to the finite
nectiondoes not work at the simulator level, but rather we

: . . . depth of the model tree.
symbolicallytransform a hierarchical coupled model into a _. . Lo .
. Figures 3 and 4 describe the port elimination and connection
coupled model with depth one.

As shown in Figure 1, the original model's hierarchy treeevolutlon during the connecting process. Figure 3 also show

describes the connection and containment relationships béhat messages transferred between ports are transformed to

. . ata passing in the ports dictionary in thiattened Atomic
tween the atomic and coupled sub-models. It is transforme L2 ; . .

. . . odel This will be discussed in detail later.
to a two-level hierarchy modebirect Connections used to
simplify the complexity and lower the redundancyDiVS
models. Without the overhead of passing messages through
ports and coordinators, message transfering becomeg dir
and efficient.

4.2.2. Zand Select Functions in Direct Connection

o Though theDirect Connectionfunction eliminates cou-

rﬁed models, the coupled modeFsFunctions and theSe-

lect Function have to be taken into account to guarantee
4.2.1. Algorithm that the transformation preserves behavior. Eothe first
TheDirect Connectioralgorithm is shown in Figure 2. The step is to rename the functions befdd&ect Connection

algorithm starts from the root node and traverses all thesod This is because the ports information Bf Functions will

be lost when the connection is eliminated. So we have to restruct a newFlattened Atomic Moddb reconstruct the mes-
name the functions to record the ports and model informationsage transfer, scheduling and time advance mechanism; Inte

The new name formati&_[Qut put Model

and Port

Nane] [| nput Model Port Nane]. When the ports
of atomic models are direct connected, there will likely be 4 3 5 \odification of Atomic Models

more than on& Function. The problemis how to handle mul-
tiple Z Functions in one connection. The solution is shown

in Figure 4. As mentioned before, the name&dfunctions

have been modified to add the extra information. For the cou-

pled ports that have been eliminatedDirect Connection

the names oZ Functions have to be changed accordingly.
The new name is composed of the names from new outlelt
and input ports. When a name conflict occurs, a postfix is apy
pended to make the names unique. The content of the postf
is the order of the function, ranked by the position from otitp m
port to input port. As shown in the figure, the function clos- .
est to the output port gets the highest order, and vice vers
This is somewhat arbitrary but guarantees unigueness.rAs f
the Select the function is directly copied to the root model

because there is only orgelectFunction in every coupled

model. The name of th8electFunction has to be changed

grate theZ and SelectFunctions into thd-lattened Atomic
Model

The atomic models have to be modified to meet the require-
ments ofFlattening As all ports are eliminated, the messages
can not be sent and received through ports. Dictionafies
andY are added to store the messages. The keys used to
index the dictionaries are the names of ports while the val-
ues are the messages. Likewise, éx¢ Tr ansi ti on and
nt Tr ansi ti on andout put functions are adapted to the
ictionaries too. In the specific case of PythonDEVS, this en
Hils updating thepeek andpoke functions which encode
essage reception@xt Tr ansi t i on and message output
in out put respectively. Thgpeek functions are replaced
‘By X[por t Nanme] and thepoke functions are replaced by
q{[port Nane] . The atomic models have the responsibility
to inform their context whether there are messages to be sent
The symboll sSendMsg is used to encode this in our flat-
tened model.

in order to avoid name conflicts in the root model. The name
of the coupled model is used to prefix tBelectFunction’s

name as in ‘BB2_Select()'.

e - 1
1Z_Pa2out PAout() Z_PBin_PB2in() Z_PB22in_Pb22tin() !
1

Atomic
a2

Paan PAout PEm\ PB2in PBZ?\n\\(bﬂW in
— { ot} Atomic
b221

Atomic

a2 ;I

Atomic
b221

Peel off
the A

Pa2in / PAin PBout PBny 1ot
i i
I

L

Z_PAin_Pa2in) Z_PB220ut_PB20ut() 1
--- ==='"| Peeloff

the B22

12_Pa2out_PBin() Z_PBin_PB2in() Z_PB2in_Pb22tin() |
L |

Pa2in PBout Pb227Tou

P F L4 i
: Z_PBout_Pa2in() Z_Pb221out_PBout()

Peel of

4.3.3. Flattened Atomic Model Construction
The Flattened Atomic Modeis a special atomic model
which encodes the coupled simulation mechanism. It opti-

theewBonizes inter-model message transfer and improves the effi-

ciency of event list scheduling. As this model encodes the
functionality of a coordinator, it requires some helper-dic
tionaries and functions. Th¥, Y andi sSendMsg are still
needed at the highest level to communicate with the out-

{2 prvoa ror i petos_Prza i 2. azoo itz lmside. States UpdateModels OutputModels and Connec-

Atomic
a2

Pa2out PBin PB2in Pb221in
Atomic

b221
Pa2in PBout PB2out PbZZ;I

[A I 4 H
12_PBout_Pazin() Z_Pb22lout PB2outl) 1
- |

Atomic > |
a2 1§
Pa2in Pb221out

Atomic
b221

! Foo | S
17_b2210ut_Pa2in*() 2_Pb22out_Pazin()

Figure 4. TheZ Functions in Ports Elimination

4.3. Flattening

After the Direct Connection Flattening is much easier X :
since the hierarchy of original model has been simplifiee Th These are the names of sub-models witbtate’ appended.
goal of Flatteningis to turn a coupled model into an atomic Models is the dictionary which stores all the atomic sub-

one. It means that all the connections between atomic mod

are transformed to computation inside fRattened Atomic)
Model This implies that the simulation mechanisms tradi-UPdateModels collects all the sub-models’ received mes-
tionally encoded in a simulation engine’s coordinator sash S29€s. The keys are again the keywords of sub-models be-
message transfer, event scheduling, and time advancedhave/@nging toState By means oUpdateModels it is possibly

be explicitly inserted in th&lattened Atomic Modeb main-

tain the consistency in the model transformation. Addition

tions are newly created dictionaries to be inserted into the
Flattened Atomic ModelCollectModels(), MapConnection
and MapY2X are the new functions whilextTransition,
outputFunc(), intTransition() and timeAdvance() are the
modified functionsStatesand Models: Statesis the set of
states in thd~lattened Atomic ModelThe set is encoded as
a dictionary indexed by the unique identifiers of sub-maodels

efgodels inside th&lattened Atomic Modelhe keys oMod-
elsareStates

to directly access only those models which have received a
message.

ally, theZ and SelectFunctions have to be re-implemented OUtPutModels: collects all the sub-models sending mes-

too.

4.3.1. Algorithm

sages after their internal transitions SendMsg is used to
check whether a sub-model sent a messages. If true, the sub-
model is added to the dictionary.

TheFlatteningalgorithm consists of three phases: Modify Connections replaces the connect function of the direct con-
atomic DEVS models connected in the coupled model; Connected coupled model. It stores the connection information

between the sub-models. As every connection is composeghd the current time is set tQ. Otherwise the time span is

of the object producing output and that receiving input,skey zero. The time span here is used to control the time advanc-
of Connectionsare the outputting features which are gen-ing of Flattened Atomic ModeAs each sub-model shares the
erated from the output sub-model and port name. Since oneamdimeAdvance(), the time can only be advanced when alll
outputting object may be connected to several receivees, ththe sub-models have already advanced.

values stored in the diCtional‘y are collections of reCdGaF MapYZXO rep|aces the message transfer mechanism in
tures generated from the input sub-model and port name. Ushe coordinator of coupled models. It traversasiateMod-

ing Connections all the receivers can be determined wheng|s and sends messages to connected sub-models. During
some sub-models output messages. _ the traversal, the outputting objects are retrieved thncthe
CollectModels(} extracts the sub-models of a direct con- syp-model and port information frobipdateModels Then,
nected coupled model to construct tMedels with States Connectionsprovides the receiving objects corresponding to
The function is invoked du”ng the initialization Efattened the outputting Objects_ Based on the connected Objectsy the
Atomic Model messages are passed from Yhef output sub-model to thx

MapConnection(): transforms the connect function in a di- of the receiving sub-model. Tt Functions are executed.
rect connected coupled model il@@nnections It is invoked

during the initialization oflattened Atomic ModeéxtTran-
sition(): is the same as the atomic model’s function. It should
be emphasized however that the us& @ndX is reversed as
messages are passed frohto X. For this reason, the mes-

immList

sages from outside the model grekeed to theY of the . A selocted:

Flattened Atomic ModeMessages are subsequently passed : B

to sub-models bylapY2X. return b221

outputFunc(): The original out put Func is modified to Figure 5. The Principle of-latten.Select Function

poke messages from dictionag¥ to the outsideX has to

be cleared after poking.

intTransition() : is exactly the same as the original one. The 4.3.4. Z Functions and FlattenSelect Function
sub-model is indexed by the current state and executes-the in As mentioned before' all th2 Functions have been trans-

ternal transition and output of the current sub-model. ~ formed to the direct connected model. In order to reuse them
timeAdvance(} is modified to do the event list scheduling in the flattened model, they are copiedFtattened Atomic
and time advancing in thélattened Atomic Model Model In theMapY2X, they are invoked in th& Functions.

When the Flattened Atomic Modelis initialized, the The invoking order is decided by the postfix of the function’s
Ti meLi st is constructed by traversing all the initi ate times name.
of sub-models. The keys dfi neLi st are the keywords of Figure 5 describes the principleBlatten Select Function
sub-models while the relevant valuetis During the con- |f the sub-model meets a time advance conflict, the common
struction of Ti meLi st , the ordered time dictionary is built select function is need. But not all the sub-models belong to
by SetModelAtTime()The sub-models are arranged by thethe same coupled model. So, it is necessary to find the com-
time stamp in therdered time dictionary. Sub-models with mon parent coupled model of the sub-models. This means
identicalt, are collected in an array at every time stamp. that the coupled model must contain all the sub-models. From

TheUpdateModelsis traversed to execuextTransition() ~ the bottom of the hierarchy, the select function of the first
of sub-models receiving messaggsof every sub-model is common coupled model is the one used in the original model.
calculated and therdered time dictionary is updated im- The algorithm is depicted below:
mediately so that the ordered sub-model array is maintained First, the top two sub-models are popped to do the selec-
synchronously. tion. According to the coupled information saved in the name

Thanks to therdered time dictionary, event list schedul- Of sub-models, the common coupled parent model is found.
ing can be done easily as the first array of the dictionaryAS shown in the figure, the common coupled parent of sub-
is i mrLi st. Then, the immediate sub-model is selectedModela2 andb221 is Root . So theRoot _Sel ect is cho-
by Flatten Selectand the current state dflattened Atomic ~ Sen to do the selection. Thus, the inputiandB.

Modelis fixed.ty of the current sub-model is calculated by Second, ifAis selected, the sub-mode? is selected, oth-
timeAdvance(plust, and it is inserted into therdered time erwiseb221 is selected. The next sub-modellimmLi st
dictionary. The time span is calculated by the current timeis popped to do the selection with the former selected sub-
andty of current sub-model. Ify is greater than the current model again. Finally, the immediate sub-model can be output
time, the time span is the time stamp minus the current timevhile traversing thé nmrLi st .

ircui 2nd Level Coupled Circuit ircui
1st Level Coupled Circuit Goupled Circult o Brd Level Coupled Circuit]
Adder(1Bit) cin [AOGETEET)
R wifen [WtEposerad Controller
82} o7
Adder(1Bit) Adder(18i
Wl o | a4 .
Q;‘E‘F et i mAdderﬁBlt]E -
1Bit) dder(18i)
L
VoxZ8) u| Sel0 Selt Sel2 15233545556 57 S8 Cout ALU
SelmirNa>) M Mux(8Bit)
e
B o s - fra £ Mursi) fo -
— [asi o Mux(281) -
> e o H Mux281) o -
[aa) Mu(2Bi) o "
Or(8Bit) Xor(8Bit) | |Splitten(8Bit)| Memory
And(8Bit) | | Not(8Bit) | | Join(8Bit)
\—/ \—/ \—/ Sra(8Bit) Sri(8Bit)

Figure 6. Case Study: Circuit from gate to ALU

5. CASE STUDY
5.1. Compiling a DEVS Model

Obviously, aDEVS model represented in Modelica can
not be simulated directly as it is just a textual represémat
Thus, a compiler is needed to transformBeVS model into
a form suitable for simulation. We use ouiModelica com-
piler [14] which by default generates input for oRython-
DEVS simulator. The compiler was extended with a flatten-
ing phase which is invoked before generating simulatabie ou
put.

5.2. Benchmark Model

As mentioned in the introductio@EVS Flattening may
improve simulation performance ¢figh Interaction and
Low Computation(HILC) models. We choose hogical
Circuit to be our benchmark model. It is well known that
gates are the basic units abgical Circuits. EvenVery-
large-scale integration (VLSI) systems are composed of
simple gates such asnd, Or, Not and Xor. The time de-

When the number of the sub-models in the coupled model is
going to exceed 10, another coupled model is created to con-
tain the new sub-model. By increasing the number of gates,
the hierarchy of the test model becomes a structure like a
pyramid. This is what is commonly found in real circuit mod-
els.

The simulations are tested on an Intel Core 2 Extreme X6800
processor at 2.66GHz with 8Gb of memory. All the results are
obtained from multiple repeated experiments. First, thie ou
liers are removed and subsequently, the average is computed

5.3. Analysis

In Figure 7, the left part shows the improvement of di-
rect connected models compared to original models, while th
right part shows the improvement of flattened models with re-
spect to the original models. The direct connected moded doe
not improve performance much as shown in the figure. The
curve only goes up a bit and then down quickly. On the con-
trary, the curve of flatten/original goes up all the time. sThi
means that the more complex a model is, the higher the im-
provement achieved.

Let us first investigate the performance of the direct con-
nected model as compared to that of the original model.
Port elimination improves the performance slightly whea th
model is not complex. This, because the messages can be
transferred directly between atomic models, doing awak wit
port overhead. As the model becomes more and more com-
plex, all the atomic models are managed by a single coordina-
tor. The reasons for bad performance are summarized below:

e When the model becomes complex, the sorting process
gradually occupied most of the time. The size of the

lay between input and output of basic gates is in the order
of a few nanosenconds which is an indication that the inter-
nal computation is low. Hence, logical circuit models are a
typical example oHILC .

We build two kinds of circuit: the real circuit and the
test circuit. RealVLSI circuits are shown in Figure 6.
Starting from basic gates, First Level Coupled Circuits can
be constructed: the Adder(1Bit), Mux(2Bit), Or(8Bit) and
so forth. The First Level Coupled Circuits can be com-
bined to form Second Level Coupled Circuits: Adder(8Bit),
Mux(8Bit),Sra(8Bit) and so forth. Lastly, Second Level Cou

pled Circuits can be combined to form an Arithmetic andThe two causes cut off the improvement brought by port
Logic Unit (ALU,)' L|keW|se,Cont_ro_I andMemory €OMpPO- gjimination. And the performance improvement decrease to
nents of a CPU’s datapath (realizing a given Instruction Seb when the model complexity reaches that ofdrtJ

,IArcthjecture) canhbe mo?eled. . btained bThe results in the figure show that the flattened model leads
n order to test the performance improvement obtained by, significantly improved simulation performance compared

Flattening we build a test circuit which is qomp_osed of Not \with the original model. The reasons are summarized below:
gates. The number of gates and connections in the test cir-

cuit can be changed for the purpose of our experiments. The e Messages are transferred inside tattened Atomic
circuit is created according to the rules below: the coupled Model Time used to send and receive messages between
models are not allowed to contain more than 10 sub-models. the ports and atomic models is saved.

event list grows with the complexity of the model (as-
suming that all components are active most of the time).
The larger the the event list, the lower the performance
of the sorting process.

e According to the coordinator protocol, sub-models are
traversed to check whether there are some messages to
be transferred. The traversing is time consuming if the
number of sub-models is high. However, it is very well
possible that most of the sub-models traversed did not

receive any messages.

Table 1. Simulation Performance for the Real Circuit: Original, &t Connected, Flattened
Circuit GateAmount Original(s) Connected(s) Flattengd(s

NotGate 1 0.000678 0.000679 0.000633
Adder(2Bit) 17 0.021018 0.020978 0.009163
Adder(2Bit) + Mux(2Bit) *2 25 0.070707 0.092659 0.032808
Adder(4Bit) 33 0.048223 0.087518 0.017283
Adder(4Bit)+Mux(2Bit)*3 54 0.364086 0.837083 0.136674
Adder(8Bit) 54 0.465491 1.401712 0.161146
Adder(8Bit)+Mux(8Bit) 183 3.215183 20.686988 0.913302
Adder(8Bit)*2+Mux(8Bit)*3 439 12.846081 109.308622 35658
ALU 641 29.153758 371.523992 6.380175
Improvement of Direct Connected Model Improvement of Flattened Model |ng of gates. The combination U& and the improvement of
' 5 4| performance inFlatten DEVScan help find the optimized
— point where the improvement and efficiency are all consid-
iz, /H/’"" ered. The performance of the test circuit are shown in Figure
. ; || [Flattenforiginal [nprovenent of Flattened Testing Circuit ‘J+0x)g1nal+F1n(ened Gate Speed Ve of Original and Flattened
1 17 25 33 54 54 183 439 641 1 17 25 33 54 54 183 439 641 s w0
Gate Amount Gate Amount . . A...‘M - Y
Figure 7. Improvement thanks to Flattening in Real Circuit Mo« Mg.fw“fw w \\
e The eventlist data structure is optimized to help improy- . . \M
the efficiency of the sorting process. All the sub-mode|, B T T R esereTone.
are ordered by time stamps. The complexity Of the eve] | 7 o o b o o T o o o e e st om0

list is related to the number of events, not to the iNCreq Eereminmm — e o el Optinal ot of Flattening s ate Speed
ing number of sub-models. In the case of a digital ci - <
cuit, the time stamps of gates are always the same. Th® [~
the size of the event list is so small that the speed of t — e Gt P800 e
sorting process is improved drastically. " ST o 3 o

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 FH00 G500 4100 4300 4500 4700 4900 5100 5300 5500 5TOO 5300

R

8

Gate fnownt

e The dictionaryUpdateModels is used to collect thgq,re '8 Flatten Improvement and Optimal Point of Gate Number
sub-models that receive the messages. Therefore, on

the sub-model receiving messages is traversed to d
ext Transition().

Ig/. Thevg curves of original and flattened model are shown in
the top-left. The top-right is the improvement curve whish i
still rising, though there are negligible oscillations.eThot-

e The dictionaryOutputModels is used to collect the sub- tom curve shows that the optimal point is 5600 gates with
models that send the messagesMapY2X, only the improvement factos. 4 over the original model. The cir-
sub-model sent messages is traversed to pass the mesit scale at the optimal point is relatively smaller thags th
sage to relevant sub-models. circuit simulation mentioned in [17]. There are two main-rea

sons: First, the experiments here are implement@>rhon
These four causes help improve the simulation performancgsge. Though it is an easy to use object oriented language,
of a flattened model. Theoretically, the improvement will beihe efficiency is lower, especially compared wk+. Sec-
proportional with the increasing complexity of the model. onq, we used the ClassREVS formalism without any op-
This is especially so when the limitations of the simulatortmizations in the simulation framework. We emphasized the
hardware are reached. This is because the complexity of thesrformance increase I8ymbolic Flatteningn the modeling
original model is higher than that of the flattened one. Thusgomain instead of working on the simulation itself.
simulation of the original model will reach the limitation
(usually memory) first. 6. CONCLUSION
The runtime becomes extreme long at that point, whereas the In this paper we first introduced th2EVS formalism and
runtime for the flattened model still increases linearly, So subsequently presented its textual representation intéime s
the improvement is close to infinity at this point. We use thedard modelling languag®odelica. The closure o DEVS
speed of gates/g) as another performance metric in the caseunder coupling was discussed. We present our contribution:
of the test circuitvy is the reciprocal of time used per gate. optimization at the modeling level (as opposed to simutatio
It descends when the improvement ascends by the increakevel optimizations), first bydirect Connectiorand then by

Flattening Compared to [9], transformation algorithms are [6]
introduced and the automatiymbolic Flatteningf DEVS

model is described in detail. The transformations are imple
mented inside our own compilgModelica.

Digital circuits are modeled to illustrate the performaince

our flattening procedure. We notice that flattening greatly i [7]
proves simulation performance. Actuallymbolic Flatten-

ing is perfectly complementary to the formalisms and run-
time optimization mentioned in section 1.. From our perfor-
mance studies, we conclude ti&tmbolic Flattenings most
effective in theHigh Interaction, Low Computation do-

main. Moreover, flattening scattered sub-models can ingrov 8]
the utilization of memory.

It is worthwhile to point out that the optimization brought b
flattening is compositional. This means that it can be agplie

to models generated from other formalisms (such as State-
charts or Differential Equations). The approach is indepen [9]
dent of the simulation framework used.

Thanks to the compositionality, we envision flattening othe
formalisms in future. Examples aRarallel & Distributed

DEVS andDynamic Structure DEVS. In the case oPar-

allel & Distributed DEVS, the models can be completely [10]
analyzed before the simulation. The high interaction medel

are flattened before partitioning to minimize the size of the
simulation. Thus, the final simulation will benefit from both [11]
modeling and simulation-time optimization in two aspects.

The remaining bottleneck in our approach is still the event
list management in &lattened Atomic ModelThis is how-

ever a known problem for which solutions have been devise(l2]
in the simulation literature. We plan to apply and evaluate o
techniques on very large scale problems.

REFERENCES
[1] P.B. Zeigler, P. Herbert, and K. T. Goifheory of Mod- [13]
eling and Simulation, Second EditiorAcademic Press,
2000.

[2] G. A. Wainer, “Applying cell-devs methodology for
modeling the environment SIMULATION vol. 82, [14]
no. 10, pp. 635-660, October 2006.

[3] F. J. Barros, “Modeling formalisms for dynamic struc- [15]
ture systems,”ACM Trans. Model. Comput. Simul.
vol. 7, no. 4, pp. 501-515, 1997.

16
[4] T. G. K. Ki Hyung Kim, Yeong Rak Seong and K. H. [16]

Park, “Distributed simulation of hierarchy devs models:
Hierarchical scheduling locally and time warp globally,”
Trans. Soc. Comput. Simul. Intol. 13, no. 4, pp. 135—

154, 1997. [17]

[5] S. Cheon, C. Seo, and B. P. Z. Sunwoo Park, “Design
and implementation of distributed devs simulation in a
peer to peer network system,” 2004 Military, Govern-
ment, and Aerospace Simulati@004.

J. Himmelspach and A. M. Uhrmacher, “Sequetial pro-
cessing of pdevs models,” iBrd EUROPEAN MOD-
ELING AND SIMULATION. SYMPOSIUNBarcelona,
Spain, 2006, pp. 239-244.

J. Himmelspach, R. Ewald, S. Leye, and A. M. Uhrma-
cher, “Parallel and distributed simulation of parallel
devs models,” inSpringSim '07: Proceedings of the
2007 spring simulation multiconference San Diego,
CA, USA: Society for Computer Simulation Interna-
tional, 2007, pp. 249-256.

H. Shang and G. A. Wainer, “Dynamic structure devs:
Improving the real-time embedded systems simulation
and design.” inAnnual Simulation Symposium IEEE
Computer Society, 2008, pp. 271-278.

W. B. Lee and T. G. Kim, “Simulation speedup for devs
models by composition-based compilation,’ Sammer
Computer Simulation Conference, SCSC2Q083, pp.
395-400.

P. B. ZeiglerMultifacetted modelling and discrete event
simulation San Diego, CA, USA: Academic Press
Professional, Inc., 1984.

J.-S. Bolduc and H. Vangheluwe, “The modelling and
simulation package pythondevs for classical hierarchi-
cal devs,” Tech. Rep., 2001.

P. Fritzson and P. Bunus, “Modelica, a general object-
oriented language for continuous and discrete-event sys-
tem modeling and simulation,” im Proceedings of the
35th Annual Simulation Symposiug902, pp. 14-18.

H. Elmqvist and S. E. Mattsson, “An introduction to the
physical modeling language modelica,®noc. 9th Eu-
ropean Simulation Sympossium ESS97, SCSL847,
pp.110-114.

H. Song, “Infrastructure for devs modelling and experi
mentation,"Master Thesis2006.

H. Vangheluwe, “Lecture notes for cousre of modeling
and simulation,” Montreal, Canada, Tech. Rep., 2002.

A. Muzy and J. Nutaro, “Algorithms for efficient imple-
mentations of the devs & dsdevs abstract simulators,” in
1st Open International Conference on Modeling & Sim-
ulation, OICMS20052005, pp. 273-279.

Q. Xu and C. Tropper, “Towards large scale optimistic
visi simulation,” Simulation Modelling Practice and
Theory vol. 14, no. 6, pp. 695-711, 2006.

