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With Systems Biology, a promising new application area for modelling and simulation emerges. Today’s biologists are
facing huge amounts of data delivered at different levels of detail by a multitude of advanced experimentation
techniques. The Systems Biology approach copes with this information by cycling through phases of forming
hypotheses, constructing models, experimenting with or analysing these models, and validating the findings by wet-lab
experiments. A crucial point is therefore the way in which the knowledge about a system is formalized, that is, how a
biological system is described, as this constrains the perception of the system as well as the scope of possible answers the
model might provide. In this article, we compare different discrete event modelling formalisms (PETRI NETS, Stochastic
p-CALCULUS, STATECHARTS, and DEVS) regarding their applicability to a cell biological system of current research
interest, the Wnt signalling pathway. We then introduce the popular Gillespie algorithm, which is the foundation of
many discrete event simulators for molecular-biological systems, and elaborate on some interesting extensions.
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1. Introduction

The goal of Systems Biology is to analyse the behaviour and

interrelationships of functional biological systems (Kitano,

2002). Systems Biology is characterized by combining wet-

and dry-lab experiments. As Systems Biology progresses,

modelling and simulation is on its way to be established as

one of the core tools in cell biological studies, which also

inspires the development and use of different modelling and

simulation methods.

Continuous systems models still prevail in Systems

Biology (de Jong, 2002). This holds true for the sub-

molecular scale, which relies on natural laws and is typically

modelled based on partial differential equations, and it is

also true for the level beyond molecules, for example, when

focusing on concentrations of molecules. In the latter case, a

continuous description by differential equations naturally

supports a macro-view on the system of interest. The focus is

on concentrations and their changes over time. Differential

equations are particularly suitable for dynamics that occur

continuously, evolve in a deterministic manner, progress at

more or less the same speed, and can be easily described by

real-valued variables. Extensions can relax these constraints,

for example, by introducing delays, stochasticity or discrete-

ness. All in all, continuous formalisms are suitable to

describe the concentration dynamics of homogeneous

cellular compartments that contain large numbers of

involved entities.

Nevertheless, stochastic discrete event modelling and

simulation is recently gaining ground as well. The discrete

event view combines a continuous-time base with describing

the dynamics of a system by distinguished state changes, that

is, events that are triggered by the flow of time or the

situation (Zeigler et al, 2000). Discrete event approaches

address specific constraints of continuous and deterministic

models: concentrations do not necessarily change continu-

ously, particularly if the dynamics of a small amount of

entities, like DNA molecules and plasmids, are modelled

(Kuo and Keasling, 1996). In addition, the dynamics of some

biological systems can be best approached in a stochastic

manner, for example, if the gene regulation is to be described

(Puchulka and Kierzek, 2004), where stochastic fluctuations

are abundant (Cowan, 2003). Therefore, many state-of-the-

art simulation systems in Systems Biology, for example (Van

Gend and Kummer, 2001; Takahashi et al, 2002; Ramsey

et al, 2005; http://www.mathworks.com/products/simbiol-

ogy/, accessed 27 February 2007), offer to execute reaction

networks by numerical integration or by stochastic discrete

event simulation on demand. For the latter, the reaction

rates are turned into reaction probabilities, following the

approach suggested by Gillespie (1976) or its many variants

that have been developed since the end of the 1990s (Gibson

and Bruck, 2000; Gillespie and Petzold, 2004).

Rather than to implicitly transform a set of reaction

equations into a stochastic model, as done by the Gillespie
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approach, other approaches use an explicit discrete event

representation of their system as a basis for execution.

Discrete event modelling directs our view to individual

entities and their discrete, often stochastic, dynamics.

Variables can be arbitrarily scaled. Sub-systems advance

over a continuous-time scale, but in steps of variable size.

Discrete event models forgo assumptions about homoge-

neous structure or behaviour and support an in-detail

‘micro’ inspection of the modelled system, a view that is

increasingly supported by newly available wet-lab techni-

ques. For example, light microscopy of single-cell dynamics

has become a reality and enables a researcher to track

individual proteins or the concentration of a small number

of proteins in real time (Sauro et al, 2006).

Unlike continuous systems modelling, discrete modelling

lacks a common denominator for model description. Even

though general approaches exist, for example, PETRI NETS,

STATECHARTS, DEVS, and stochastic p-CALCULUS, these
formalisms are less known, differ significantly, and are

seldom supported by off-the-shelf software. Biologists have

to be explicitly introduced to them—an introduction that is

typically reserved to the steadily increasing number of

research projects in which computer scientists and biologists

work closely together (Priami, 2006). As none of these

approaches have been originally developed to describe cell

biological systems, the benefit of using them depends on the

system under study and the questions to be answered.

Revealed deficiencies spurred the development of various

extensions, some of which will be shortly discussed within

this paper. Starting with a biological example, we will discuss

some of the specific requirements in modelling and simulat-

ing cell biological systems.

2. Example—the Wnt pathway

In biology, signal transduction pathways are essential

processes for converting a signal or stimulus into another.

For example, they are involved in gene activation, metabo-

lism, and cell locomotion in all kinds of biological

organisms. The canonical Wnt pathway plays a key role in

embryogenesis and homoeostatic processes, as well as in the

context of some diseases like colorectal cancer (Wodarz and

Nusse, 1998; He, 2003; van Es et al, 2003; Zheng, 2003;

Logan and Nusse, 2004). The pathway is highly conserved in

a wide range of different animal species, which additionally

underlines its importance.

Many details of the Wnt pathway are still not completely

understood. This is especially true for aspects like cell

specificity, kind and manner of activation of the different

parts of the signalling pathway, as well as time dependence

of the activation. In addition to the canonical one, there are

also non-canonical variants of Wnt protein-activated signal-

ling pathways. These pathways are still poorly understood.

In contrast to them, the main interactions and events of the

canonical Wnt pathway are already well known. Under

stimulated conditions, a cascade of several biochemical

processes results in a cytoplasmic accumulation of b-catenin
and subsequent, activation of target genes. Because of its

enormous complexity we reduced the already simplified

pathway model from Lee et al (2003). Our example contains

only the basic components and interactions. These are

shown in Figure 1 and the corresponding reactions are given

in Figure 2.

The initial signal for this pathway is an extra-cellular

binding of a Wnt protein to the seven-pass transmembrane

receptor Frizzled (Fz). This causes an activation of the

cytosolic protein Dishevelled (Dsh), which now can induce

the release of glycogen synthase kinase 3b (GSK3) from the
b-catenin destruction complex. Besides GSK3, this complex
also contains the proteins adenomatous polyposis coli (APC)

Figure 1 The Wnt signalling pathway: Reactions and com-
plexations of proteins are shown as solid arrows. The double-
headed ones denote reversible reactions and the single-headed
arrows represent processes that take place only in one direction.
Dashed arrows indicate activation of reactions, but the
activating species do not participate stoichiometrically in this
reactions. Phosphorylated b-catenin is marked by an encircled
P. The interacting processes of this system take place in different
compartments that are separated by the cell membrane and the
nucleus.
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and the scaffolding Axin. In absence of a Wnt signal, the

complex leads to a continuous reduction of the b-catenin
concentration to a very low level. The b-catenin proteolysis
is a consequence of its phosphorylation by GSK3 within the

destruction complex. The degradation of b-catenin inhibits
its translocation into the nucleus and therefore, also the

binding to the T-cell-specific transcription factor (TCF).

Summarizing this part of the signalling process, without a

Wnt signal the gene activity is downregulated, because b-
catenin is continuously degraded by the destruction com-

plex. In the presence of Wnt protein, the destruction

complex is degraded itself, and so the cytoplasmic concen-

tration of b-catenin increases. The more b-catenin exists in
the cytoplasm, the more of it can diffuse into the nucleus and

can activate the gene transcription by binding to TCF.

2.1. Different aspects for the modelling of biological
systems

During the modelling process of biological systems, various

aspects have to be considered, because there are many

different ways how the individual components can be

modified or interact with each other. For example, proteins

can be activated or inactivated by phosphorylation and

dephosphorylation, respectively, there are binding equilibria

for formations of protein complexes, and in addition to

reversible reactions we have also irreversible ones. Another

very important aspect of signalling pathways is signal

amplification. For example, the activated Dishevelled

protein in the canonical Wnt pathway can induce the release

of GSK3 from more than one b-catenin destruction complex
(Axin/APC/GSK3). So, a single activated Dsh protein leads

to a higher amount of destructed Axin/APC/GSK3 com-

plexes and subsequently to a once more higher accumulation

of b-catenin in the cytoplasm. Because of stochastic effects in
such amplification cascades, an unambiguously stoichio-

metric relationship is not given. Stochastic effects might also

play an important role if only a few entities of one species

exist. For example, the Axin concentration in the Wnt

signalling pathway is very low in comparison to other

players of this pathway (Lee et al, 2003). It is one hundred to

thousand times lower than the overall b-catenin concentra-
tion.

In such cases, continuous models using differential

equations do not map the real system very precisely. Here,

a discrete event approach could be more feasible for

modelling such aspects. Spatial separations of different

processes are also very important aspects of biological

systems. In the Wnt pathway, for example, the binding of

b-catenin to TCF takes place in the nucleus, which
distinguishes this compartment from the cytoplasm. So,

the concentration of b-catenin in the nucleus is strongly
influenced by its diffusion rate through the nuclear pores.

Although we do not yet have sufficient spatial data to

describe such aspects precisely, current research in different

research groups is under way to collect these data and to

develop models in which spatial information is included.

3. Discrete event modelling

DEVS (Zeigler, 1984), PETRI NETS (Murata, 1989), STATE-

CHARTS (Harel, 1987), and stochastic p-CALCULUS (Priami,
1995) (in the following also stochastic p) are formal and
generally applicable approaches towards discrete event

systems modelling. Their use has been explored in Systems

Biology, and depending on their success inspired a broader

exploitation and the refinement of methods. The latter

becomes particularly obvious in the area of process algebras,

which have received an increasing attention over the last

years.

The formalisms have been developed with a rather

different objective in mind. For example, the goal of DEVS

has been to combine the functional, network, and hierarch-

ical perspectives in describing systems, and stands in the

tradition of general systems theory. In contrast, PETRI NETS

and p-CALCULUS have been developed for describing
concurrent processes and are best known in the context of

Computer Science. Whereas PETRI NETS are particularly

used for concurrent systems that are competing for

resources, the focus of process algebras is on the continua-

tion and communication of processes. STATECHARTS are

also very prominent in Computer Science, albeit in the

domain of software development.

Figure 2 Reaction schemes: Irreversible Reactions are written
with a single-headed arrow and reversible reactions with a
double-headed arrow. Molecular species above arrows activate
these reactions, but do not take part stoichiometrically in the
reaction scheme (dashed arrows in Figure 1). Dots between two
or more species means that this is a complex of these molecules.
Phosphorylated b-catenin is marked by an asterisk. b-catenin
synthesis/degradation reactions define an empty set (|) as a
reactant/product.
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3.1. Modelling a biological system

PETRI NETS. PETRI NETS are a visual modelling
formalism that offers a natural description of reaction

networks. Unlike the usual depiction of reaction networks,

PETRI NETS combine the graphical representation with a

rigorous formal semantics which, due to the comparatively

long tradition of PETRI NETS research in Computer

Science, comes along with a huge set of different simulation

and analysis tools.

PETRI NETS are directed, bipartite graphs in which nodes

are either ‘places’ (circles) or ‘transitions’ (rectangles). Circles

are only connected to transitions and vice versa. A PETRI

NET is marked by placing ‘tokens’ on places. A transition is

enabled if the input places of a transition provide the

required number of tokens and the output places have the

required capacity for the transition to fire. If a transition

fires, the required tokens are removed from the input places

and new ones are generated at the output places.

In stochastic PETRI NETS (SPN), exponentially distributed

stochastic delays are associated with the transitions (Wilk-

inson, 2006) and provide the means to describe stochastic

processes from molecular biology in a discrete event manner

(Goss and Peccoud, 1998). This allows to define a place for

each kind of entity in the model, and to describe the

reactions between them as transitions (see Figure 3).

p-CALCULUS. The p-CALCULUS was created as a theore-
tical framework for the study of concurrent computation.

Its primitives are interactions and processes. Similar to

PETRI NETS, it has undergone profound theoretical studies.

It was first applied in the domain of concurrent program-

ming languages. Although it has been suggested for

molecular modelling only recently (Regev and Shapiro,

2002), it meanwhile finds a widespread use in the area of

computational biology.

The p-CALCULUS can be understood as a minimal
programming language. It is based on names and uses a

small set of operators to create terms that are referred to as

processes. The syntax is accompanied by a semantics that

specifies the interpretation of processes. There is only one

rule of action in the p-CALCULUS. It allows two concurrent
processes to interact using a name they share the knowledge

of. This name denotes a channel, over which one process acts

as a sender, while the other acts as a receiver. The

transmitted message is again a name, which the receiver

henceforth knows and may use in further interactions. Such

message-passing allows to describe networks with evolving

connectivity. Congruence laws define equality of processes.

In an extension, exponentially distributed stochastic delays

have been assigned to the interactions, which constituted the

stochastic p-CALCULUS (Priami, 1995). Thus, similar to
original PETRI NETS, the original p-CALCULUS has not
foreseen a stochastic and thus quantitative interpretation,

but focused on a qualitative perception of the system.

Channels have stochastic firing rates with exponential

distribution, so that the non-deterministic choice of the

original p-CALCULUS becomes a stochastic race. Some
channels are globally known and introduce a macro-

perspective. Interaction over a channel may therefore

represent a reaction between molecules (ie processes), as

thousands of processes might concurrently wish to interact

over one channel (ie a binding site).

Processes in stochastic p-CALCULUS might occur in
parallel (denoted by the | operator) or in a sequence (denoted

by a comma). Additionally, theþ operator allows to express
non-deterministic choice or a stochastic race in p-CALCULUS
and stochastic p-CALCULUS, respectively. Figure 4 shows a
stochastic p-CALCULUS model of the Wnt pathway example.
All process names start with capital letters and all

channel names with a lower case. Each of these rules defines

the ‘behaviour’ of one kind of process. For example,

the definition of Wnt as (new w@delwnt) (!wntChannel(w),

Figure 3 PETRI NET of the Wnt signalling pathway.
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?w, Wnt) tells us the following: first, a Wnt process tries to

send a newly created private channel w over the global

channel wntChannel. This is expressed by ‘(new w@delwnt)

(!wntChannel(w), [y])’, where w@delwnt means that the

newly generated channel is initialized with a specific rate

(delwnt). After sending the channel w, theWnt process waits

until it receives something over it (?w). When this happens, it

goes back to its original state (Wnt).

The only kind of process that listens to the global

wntChannel, and thus can interact with a Wnt process, is

Fz, representing the Frizzled receptor on the cell membrane.

An Fz process is defined as ?wntChannel(f), WntFz. This

means, it firstly waits for an input on the wntChannel,

and names the channel it receives f. Then, the process is

defined by ‘WntFz-(!dshChannel,WntFz)þ (!f, Fz).’, which
describes a stochastic race between activating Dsh (by

sending over the global dshChannel) and releasing the

binding to the ‘docked’ Wnt process by sending over f

and going back to Fz. Executing !f will make the associated

Wnt channel receive over its private channel, and so it

can proceed from ?w to Wnt. The rest of the model

works similarly. Note that the b-catenin process (Beta)
sends two channels over the betaChannel, namely b and bp.

These are received by an instance of AxinApcGsk3 and

will then be used by AxinApcGsk3Beta, to signal the Beta

process if it gets released (channel b) or phosphorylated

(channel bp).

STATECHARTS. STATECHARTS have been developed to
describe the internal workings of software objects, inspired

by finite state machines. Due to their intuitive graphical

representation and their powerful yet easy to grasp

semantics, STATECHARTS are extremely prominent in the

domain of model-based software development, namely as

an integral part of the Unified Modelling Language (UML).

In STATECHARTS, active entities are distinguished from

passive ones. The latter are properties or behaviour

attributed to a STATECHART, becoming part of its state

and transition functions. A state reflects a situation in the life

of an object during which this object satisfies some

condition, performs some action, or waits for some event.

Whether this object refers to a molecular species, a reactant,

a product, or even a reaction, is a decision of the modeller.

Similarly, each of these biological components can be

described as part of a state or as a state transition. Thus,

STATECHARTS allow to structure our knowledge into

different abstraction levels. They can be easily animated

and intuitively show what happens in a reactive machine.

An exemplary STATECHART for the Axin/APC complex

in the Wnt pathway is depicted in Figure 5. It comprises

several states that indicate whether a GSK3 or b-catenin
molecule is docking. Other species could be modelled in a

similar manner, and the individual entities could then be

executed concurrently. A b-catenin entity may either dock or
undock from an Axin/APC complex, which is done by

sending and receiving messages (see state transitions in

Figure 5). Such cases are problematic, since the reaction

time of b-catenin depends on the amount of Axin/APC
entities in the correct state (which is ‘Axin/APC/GSK3’).

Therefore, the required random selection from all indivi-

duals in the right state is assumed to be provided by some

internal functions (eg ‘getAllActDsh()’ in Figure 5). To

avoid artefacts like this, one could also use STATECHARTS to

describe a more abstract model of the Wnt pathway, in

which single molecules are represented by messages (see

Figure 6).

Note that not all molecules have been modelled as

individual entities, some of them are only represented as

aspects of another molecule’s internal states (eg GSK3,

Figure 5). This decreases the complexity of the model, but it

also decreases the reusability of such models, for example, in

Wnt → (new w@delwnt) (!wntChannel(w) , ?w , Wnt) .

Fz → ?wntChannel(f) , WntFz .

WntFz → (!dshChannel , WntFz) + (!f , Fz) .

Dsh_i → ?dshChannel , Dsh_a.

Dsh_a → (@delay , Dsh_i) + (!dshActiveChannel , Dsh_a).

Gsk3 → (new g@delgsk) (new go@zerodelay) (!gsk3channel(g,go), 
(?g+?go), Gsk3).

AxinApc → ?gsk3Channel(g,go) , AxinApcGsk3 .

AxinApcGsk3 → (?dshActiveChannel , !go, AxinApc) + (!g, AxinApc) + 

(?betaChannel(b , bp) , AxinApcGsk3Beta) .

AxinApcGsk3Beta → (!b , AxinApcGsk3) + (!bp , AxinApcGsk3BetaP) .

AxinApcGsk3BetaP → @delay , AxinApcGsk3 .

Beta → (new b@delbc) (new bp@delph)(new bt@delbt) (!betaChannel(b, bp) ,
 (?b , Beta) + (?bp, @delay))+(@delay)+(!betaTcfchannel(bt), ?bt, Beta) .

BetaSynth → @delay , (BetaSynth | Beta) .

TcfNoBeta → ?betaTcfChannel(bt),TcfBeta .

TcfBeta → (!bt,TcfNoBeta)+(@delay,(mRNA | TcfBeta)) .

Figure 4 Stochastic p model of the Wnt signalling pathway.

[t=getComplexationT()] 

[t=getDecayT() || t=getDshDecayT(getAllActDsh()))] Axin/APC

Axin/APC/GSK3

Axin/APC/GSK3/b-Catenin

Axin/APC/GSK3/b-Catenin(p)

Axin/APC

[recv(betaCat)] 

[recv(bCatpUndocks)]

[t = getPhosphorylationT()] / send(phosphorylation)

[t = getBCUndockT()] / send(bCatUndocks)

Figure 5 STATECHART of the Axin/APC complex from the
Wnt signalling pathway: While this STATECHART represents a
complex of two molecules, namely Axin and APC, other
STATECHARTS might describe individual molecular entities. On
the other hand, the presence of molecules may also be encoded
in the state. For example, the presence of GSK3 is apparent in
all states but the one in the upper right corner, namely ‘Axin/
APC’.
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case that GSK3 would require an additional state and

therefore a representation as a STATECHART on its own.

However, a reuse of the reactive machine Axin/APC

would follow a different argumentation line. From a more

general view, we defined a reactive machine that is based on

a component whose velocity of unbinding or binding with

another one depends on a signal. A third component can

bind, and this component might fall off or might get

phosphorylated. This reactive machine could be reused to

describe similar reaction patterns by simply using different

parameters, for example, for the reaction rates and the type

of components that can bind to it.

DEVS. We wish to conclude our exploration on discrete
event modelling formalisms with DEVS, which is rooted in

systems theory. It has been developed as a general

framework for modelling and simulating dynamic systems

and is supported by a large number of simulation engines.

Like STATECHARTS, it focuses on states and transitions

between those.

DEVS models are either coupled, that is, consisting of

different sub-models, or they are atomic. The formalism

supports the hierarchical modular composition of models.

Each model communicates with its environment via its

input and output ports. Coupled models are defined by

their components and the couplings that exist between

those. Coupled models do not have a behaviour of their

own. As the formalism shares several similarities to

STATECHARTS, DEVS models are often visualized by them,

particularly at atomic level. Similarly to STATECHARTS,

state transitions of atomic models are either triggered by

the arrival of external events or by the flow of time. If an

external event arrives, the elapsed time since the last

transition has happened is taken into account. To trigger

events by the flow of time, each state is associated with a

lifetime. The interactions between models are timeless and

constrained at the level of the coupled model (by the

defined couplings between output and input ports). If an

output port is connected to several input ports, messages

will be sent simultaneously to all recipients. What happens

with the produced output is of no concern to the sending

model, its knowledge about its environment ends at its

output ports. The DEVS example of the Wnt pathway is

shown in Figure 7.

Figure 6 Macro-view STATECHART of the Wnt signalling
pathway: To avoid modelling artefacts, one could also regard
molecules as messages that are exchanged between different
parts of the cell.

Figure 7 Macro-view Devs model of the Wnt signalling
pathway: Similarly to STATECHARTS, one can easily use Devs
to describe the macro-view of the signalling pathway. Input and
output ports are depicted by white and black boxes. Note that
the I/O ports of the coupled model ‘Cell’ are connected to I/O
ports of its sub-models. On the level of the coupled model, input
ports are connected to output ports. The internal functions
(‘ta¼y’) hint at the formal definition of atomic Devs models
(see Zeigler et al, 2000).
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3.2. Biological aspects

Reactions. Since all biological systems base on chemical
reactions, it is essential that these can be modelled

intuitively.

Of the presented formalisms, PETRI NETS surely provide

the most intuitive way of modelling a reaction network in a

discrete event manner at first sight. However, certain

phenomena that are most common in biological systems,

for example, reversible reactions (see Figure 3), require

additional effort, and the circumscription renders describing

larger systems by PETRI NETS cumbersome.

In stochastic p, the reacting and interacting entities of the
system move into the focus of interest. Reactions are

modelled as synchronous communication between individual

processes via global channels. Thus, the structure of the

reaction network is still visible, but due to the micro-

perspective on the involved reactants less so than in PETRI

NETS.

Like stochastic p models, STATECHARTS offer a micro-
perception rather than reactions, so the involved reactants

and products become the focus of interest. In combination

with an asynchronous interaction via events, this does not

facilitate the representation of chemical reactions that

involve several components at once. Although reactants

and products can be considered as independent entities, they

have to react in synchrony. As can be seen in our Wnt

example, this is not straightforward as it contradicts the

underlying modelling metaphor. Thus, for a 1:1 interpreta-

tion of chemical reactions, STATECHARTS are less suitable

than other formalisms like PETRI NETS or process algebras.

The same applies to modelling chemical reactions in DEVS.

Biochemical components. If biochemical components like
proteins are the focus of interest and shall be perceived as

autonomous entities, STATECHARTS offer an intuitive,

visual representation that is easy to be understood by

biologists and supports a straightforward animation during

execution. The same is true for DEVS. Each protein is

perceived as a sub-system that reacts to ‘environmental

perturbations’ according to its own state and behaviour

rules. In DEVS, the interaction structure between those sub-

systems is explicitly defined at the level of the coupled

model.

In stochastic p, a protein is a process that moves through
different states. States that are associated with a temporal

delay are either communicating states or introduced by an

explicit delay. Individual biological components can be

tracked as in STATECHARTS or DEVS. By being able to

generate new channels and to communicate those, stochastic

p supports dynamic interfaces of the processes. Thus, the
boundary between the system itself and its environment is

not as clearly defined as in STATECHARTS and DEVS.

However, the dynamics facilitate describing phenomena in

biochemical systems, like complexation and polymerization.

In PETRI NETS, the individual components are passive

tokens that are consumed and produced by the reactions.

Tokens in a place account for the number of molecules in a

certain state. The view that PETRI NETS offer is a discrete

macro-view rather than a micro-view. However, perceiving

the active components with their different states and

interactions is one of the attractions of introducing discrete

event modelling formalisms into the biological realm, as it

allows an in-detail inspection and to trace individual actors.

Another important advantage of micro-view models is their

ability to cope with molecules that have a large state space.

Proteins might have numerous phosphorylation sites, each

of which can be activated or not. The state of all

phosphorylation sites can be regarded as the state the

protein is in: when a protein has n phosphorylation sites,

these define a state space of up to 2n states. Adding a place

for all of the various states is clearly inefficient and could

lead to huge models (Tolle and Le Novére, 2006).

Signalling. Compared to metabolic pathways, the me-
chanisms of signalling pathways are more complex. In

addition to catalytic reactions, there are also many of

complex formation and transportation processes. In con-

trast to metabolic networks, there is less substance flow in

signalling pathways. However, there is much more signal

flow instead. This flow can be performed, for example, by a

single protein, and signal cascades are often amplified by

several magnitudes. In such cascades, a stoichiometric

reaction equation is not well defined, but the stochastic

effects can be described by all discrete event modelling

formalisms. So, all of them are able to manage significantly

varying molecule concentrations well.

Signals are often performed by modifications of proteins

like phosphorylation or methylation of them, which results

in functionally different forms of these proteins. So, here we

have the same problem as in the previous section. In PETRI

NET and stochastic p models, we need an individual place or
process respectively for every state of a protein. This leads to

a combinatorial explosion in larger networks. In STATE-

CHARTS and DEVS, this aspect can be modelled more clearly

and intuitively.

Spatial information. We distinguish between quantitative
and qualitative spatial information. With the latter, we

refer to compartmental structures of the cell. For the Wnt

pathway, for example, this means distinguishing between

the membrane of the cell, the cytoplasm, and the nucleus.

Coupled models in DEVS capture this structuring of a cell,

and also in STATECHARTS compartments can be easily

reflected. Cellular automata, which are typically used for

modelling spatial phenomena, are naturally supported in

DEVS (Wainer and Giambiasi, 2001): not only the individual

automata, but also the individual neighbourhood has a 1:1

counterpart, due to the explicit couplings in DEVS.
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Structuring the space is less obvious in stochastic p. By
generating and communicating channels, the name of

channels is only locally known. Thereby, a locality of

proteins enabling certain processes can be described in

stochastic p.
PETRI NETS do not support a representation of space.

Spatial effects can be implicitly modelled by introducing

delays—a solution also continuous models resort to and

which is of course possible in all other discrete event

formalisms as well. For example, we could add some places

and transitions to model the migration of b-catenin into the
nucleus.

None of the formalisms really supports locating proteins

or reactions in a cell quantitatively. Rather, they provide an

explicit means for structuring the model.

3.3. Extensions and discussion

PETRI NETS. PETRI NETS have been used to qualitatively
describe biochemical reaction networks since more than

two decades (Fuss, 1987; Schuster et al, 2000). Their focus

is on structural analysis, for example, identifying biochem-

ical pathways as done in the Krebs cycle (Oliveira et al,

2003), or topological analysis, which revealed the central

role of specific enzymes in the Glycolysis pathway (Zevedei-

Oancea and Schuster, 2003). Higher-level PETRI NETS have

also been applied, for example, in Chen and Hofestädt

(2003). High-level PETRI NETS extend regular PETRI NETS

with respect to hierarchy, time, and data. Our focus has

been on stochastic PETRI NETS, which associate transitions

with exponentially distributed delays.

PETRI NETS put the emphasis on reactions and their

interconnections, rather than on the components of the

system to be described. This macro-view translates nicely to

continuous formalisms like differential equations, which

partly explains their attraction when describing biological

systems in a hybrid manner (Chen and Hofestädt, 2003;

Matsuno et al, 2003). Only few extensions of PETRI NETS,

for example, stochastic activity networks (Sanders and

Meyer, 2002), support a micro-perception on systems, where

individual nets interact via places that represent common

resources. Instead, PETRI NETS appear as a straightforward

translation of, for example, metabolic reaction networks as

they are commonly used to describe biological systems. In

PETRI NETS, individual enzymes or the DNA are reduced to

passive tokens that are consumed and produced. Popula-

tions are modelled by multiple tokens (see section 3.1, PETRI

NETS) and arc weights, for example, in TimeNet (http://

pdv.cs.tu-berlin.de/~timenet/, accessed 14 February 2007)

and Design/CPN (http://www.daimi.au.dk/designCPN/, ac-

cessed 14 February 2007).

Most PETRI NETS extensions deviate from the leanness of

the original formalism, and hence forgo the analytical

benefits that come with a simpler approach. These analytical

methods are of central interest (Peleg et al, 2005) and it is not

surprising that PETRI NETS in Systems Biology sometimes

only serve as an intermediate representation, so that the

existing PETRI NETS tools and methods can be applied

(Peleg et al, 2005; Talcott, 2006). For example, the set of

input and output places represents all reactants and products

being in specific states, the equivalent of a PETRI NET’s

incidence matrix is the stoichiometric matrix of the

corresponding reaction network, and the structure of a

PETRI NET reflects largely the biochemical topology. All

metabolic or signalling routes that are both stoichiometri-

cally and thermodynamically feasible can therefore be

identified by analysing a PETRI NET’s structure. Steady

state analysis (Voss et al, 2003) is supported, as well as

comparing reaction networks from different databases

(Küffner et al, 2000), since discrete event simulation is not

the only way to evaluate a model.

p-CALCULUS. As a consequence of focusing on interac-
tions between individual processes, the default perception

of stochastic p-CALCULUS is at micro-level. Each individual
component can be traced. The calculus is based on the

notion of names, which are used to represent both

communication channels and data. This property allows

the interconnection topology of the interacting processes to

vary over time. The most prominent advantages of

stochastic p-CALCULUS are its simple structure, combined
with a strong theoretical foundation and the notion of

compositionality. This makes stochastic p-CALCULUS an
elegant, minimalistic, and compelling approach to describe

cell biological systems. The models can be presented as

user-friendly automata (Phillips et al, 2006), thereby

addressing critiques about the inaccessibility of the

formalism.

However, as the formalism has not been designed to

describe chemical and biological systems, we also find

constructs that appear artificial. The distinction between

sender and receiver is not always meaningful (eg in

homodimerization, which is the binding process of two

identical molecules). Furthermore, one might wish to model

more than two molecules forming an active unit, which is

possible in other process calculi, for example, PEPA (Calder

et al, 2006). In addition, means for structuring and reuse are

required, so that more complex, spatial models can be

described. Inheritance is also not supported, although

common behaviour patterns might exist.

Diverse developments, for example, Brane Calculi (Car-

delli, 2005), membrane systems (Busi and Zandron, 2006),

Bioambients (Regev et al, 2004), beta binders (Priami and

Quaglia, 2005), or object-oriented extensions (Duchier and

Kuttler, 2006) are aimed at addressing these problems. Beta

binders provide additional structure to the model, as it is

allowed to group processes into binders. It merges the basic

features of classical process calculi with the intuition that, in

order to model biological entities more closely, simple

concurrent processes can be wrapped by borders with
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explicit interaction sites. A process in Beta-binders is defined

as a box with a proper border and an internal machinery.

Boxes make cell compartments explicit, but cannot be

nested. The enclosing borders mimic biological membranes

and are equipped with typed sites that resemble the motifs of

molecules. Biological membranes also inspired the develop-

ment of other process calculi like Brane Calculi and

Bioambients. Again, membranes and compartments are

explicitly modelled.

Like PETRI NETS, an important advantage of using

process calculi is that, in addition to conventional analysis

by simulation, they admit automated verification and

falsification of models in the non-stochastic case. Stochastic

p models can also be analysed with techniques such as
probabilistic model checking (Rutten et al, 2004), but the

complexity of systems to which these new methods can be

applied is still rather limited. Consequently, one of the

central challenges for analysis approaches is to support

compositionality, independent of whether the models have

been defined as SPN or stochastic p processes. Although
process calculi are inherently compositional, composition-

ality is usually only exploited for model description and

construction, not analysis. Thus, a replacement of a module

with a smaller but provably equivalent one is possible, but

there is limited support for compositional quantitative

analysis, which enables the derivation of the composed

system’s properties based on the analysis of individual

components (Sauro et al, 2006).

STATECHARTS. The view of STATECHARTS seems even
more individual-oriented than the perspective of process

algebras, because much of the activities are private to an

individual STATECHART, and even reactions are indivi-

dualized. Communication and exchanging events with

other STATECHARTS come as a second thought, since

activities within a STATECHART are the focus of interest,

and less so the interaction with others. The focus on

individual STATECHARTS alleviates modelling with respect

to questions regarding single entities, for example, in what

states an enzyme is observed, and how it reacts to certain

events and the flow of time. This perception, together with

the asynchronous communication, supports a modular

construction of models, and for many systems it seems

highly adequate. Whether an individual STATECHART

describes a population of molecules or a single one is

not determined, because by extending the phases of

STATECHARTS by an arbitrary number of arbitrarily

scaled variables, different abstraction levels can be

modelled easily.

On the other hand, STATECHARTS do not employ an

underlying stochastic semantics like stochastic PETRI NETS

or the stochastic p-CALCULUS. This leaves the modeller with
the responsibility to explicitly define stochastic interactions

between STATECHARTS, which introduces artefacts and

makes the model more complex. Moreover, communication

between STATECHARTS is asynchronous by default. There

are operators that synchronize state transitions of two

STATECHARTS, but these add additional complexity to the

model at hand.

To shift the focus from a single STATECHART to

STATECHARTS interaction, life sequence charts have been

introduced and combined with STATECHARTS. Life se-

quence charts form an extension of sequence charts that is

aimed at describing the interaction of processes and objects.

Life sequence charts distinguish between possible and

necessary behaviour, conditions, and progress over time

within a chart. Behaviour can be defined both globally, that

is, on the level of an entire chart, and locally, that is, when

specifying events. This specification can be used as a

requirement to check the simulated behaviour, or for

animations (a paced type of simulation) in the Play Engine

tool (Harel and Marelly, 2003).

DEVS. Much of what has been said about STATECHARTS
applies to DEVS as well. Its lack of an implicit stochastic

semantics, its focus on individual entities, and an asynchro-

nous communication pattern hamper the modelling of

biological systems (see section 3.2, Reactions). In contrast

to STATECHARTS, the interaction between individual

components is explicitly modelled and the interfaces between

systems are clearly described by input and output ports,

rather similar to the real-world object-oriented modelling

approach. DEVS supports a parallel composition of models

via coupling. However, no sequential composition is

supported. The general structure of DEVS models is static,

a problem that it shares with STATECHARTS and PETRI

NETS. The generation of new reactions, new interactions, or

new components is therefore not supported by default.

However, since the 1980s, several approaches have been

developed to support these variable structure models in

DEVS. Recently, also the DEVS extension r-DEVS has been
proposed, which was motivated by the requirements of

molecular biological applications (Uhrmacher et al, 2006).

r-DEVS is based on DYNDEVS, a reflective variant of DEVS
that supports dynamic behaviour, composition, and inter-

action patterns. In r-DEVS, dynamic ports and multi-
couplings are introduced, whose combination allows models

to reflect significant state changes to the outside world and

enabling or disabling certain interactions at the same time.

In addition, a coupled model could be equipped with a high-

level model that allows to hold the macro-state of the system

and generates the corresponding events, for example, to

initiate reactions between individual molecules (Ewald et al,

2006).

3.4. Summary: Modelling

Typically, different players in a biological system are

translated into models based on the different formalisms as

described in Table 1. Whereas in PETRI NETS and Stochastic
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p we find a clear correspondence between entities in the
biological system and the modelling formalism, modelling is

not as straightforward in STATECHARTS and DEVS. For

example, individual molecules can be described as entire

STATECHARTS, thereby they are perceived as reactive

machines. They can also be encoded within the states,

thereby they are interpreted as the subject of manipulation.

Thus, STATECHARTS and DEVS allow us to weight the

importance of the individual players. However, this has to be

decided on a case-by-case basis, and the combination of

different views does not necessarily lead to an intuitive

model, as the Axin/APC example shows (see Figure 5).

4. Discrete event simulation in systems biology

As biological systems are governed by the laws of chemistry

and physics, simulation approaches from these domains are

also viable for the simulation of Systems Biology models.

Nevertheless, the sheer size of these models often limits their

application. This led to numerous abstractions: from the

actual physical processes as we know them, described by

quantum mechanics etc, over approaches that abstract to

entire atoms (molecular dynamics), towards approaches that

only consider molecules, compartments, or cells (Vaidehi

and Goddard III, 2001).

Simulation algorithms for a sub-molecular scale rely on

natural laws that are of continuous nature, so these

approaches are executed using techniques for continuous

simulation (Takahashi et al, 2004). On the abstraction level

of molecules, one can use approaches that abstract from the

natural laws by assuming that the molecules move randomly

(ie Brownian Motion). It is quite common to even abstract

from single molecules to concentrations of molecules, since

one can then describe a system using ODEs, which are

relatively simple to compute. However, this deterministic

continuous simulation is inadequate for models with small

numbers of molecules, where stochastic effects play a role.

Consequently, some approaches divide the system into a

part that should be simulated with a discrete event approach,

and another one that can be simulated continuously (eg

Takahashi et al, 2004).

The stochastic effects that occur can be expressed by the

Chemical Master Equation (CME), which accurately models

the system behaviour as a probability distribution of a

chemical system’s state, depending on the current time. To

compute this formula is a fundamental problem when

simulating chemical systems, since it is extremely hard to

solve analytically in practice.

4.1. Gillespie’s exact stochastic simulation

Gillespie (1976, 1977) introduced a stochastic algorithm that

simulates a single trajectory of a chemical system. He

proofed that this algorithm’s outcome exactly samples the

chemical master equation, that is, one can arbitrarily

approximate the CME by computing more and more

trajectories with Gillespie’s algorithm.

To compute a trajectory, the algorithm makes a strong

assumption: the system under study has to be in thermal

equilibrium, that is, all molecules are randomly distributed

in a uniform manner. This assumption makes it possible to

calculate the so-called propensity of each reaction, which is

the parameter l of an exponential distribution. The
exponential distribution is then used to model the occurrence

of each reaction. The propensity is computed using

elementary combinatorics: first, the number of all possible

combinations of reaction partners in the solution is

calculated. This number is then multiplied with the stochastic

rate of the reaction, which results from converting the

deterministic rate constant, taking into account the volume

of the solution and other physical parameters, such as

pressure or temperature. The calculation of propensities is

common to all variants of Gillespie algorithms.

As an example, the stochastic rate calculation of the

reaction ‘Axin/APC/GSK3/b-catenin-Axin/APC/GSK3/b-
catenin*’ (see Figure 2) will be given. The protein complex

‘Axin/APC/GSK3’ will be abbreviated with C for more

clarity. The concentration of ‘Axin/APC/GSK3/b-catenin’,

Table 1 Representation of biological components in the different modelling formalisms

Biological component Stochastic PETRI NETS Stochastic p STATECHARTS DEVS

Molecular species Place Set of parallel processes STATECHART, state Atomic model, state
Individual molecule Token Process STATECHART, state Atomic model, state
Reaction Transition Channel name STATECHART, state

transition
Atomic model, state,
coupling

Reactant of reaction Input place Process STATECHART, state Atomic model, state
Product of reaction Output place Process STATECHART, state Atomic model, state
Rate of reaction Weight of transition Channel rate Time delay of state

transitions
Time-advance function (ta)

Reaction taken place Transition fires Synchronous interaction
on channel

Event triggers state
trans./output

Asynchronous interaction
over coupling

State Markings of places Inferred by syntax after
each reduction step

Global state Global state
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as well as the deterministic rate constant of the reaction, k,

were taken from Lee et al (2003). As a volume V, a cube with

100mm edge length is chosen. The concentration has to be
multiplied with the Avogadro number nA and the volume V.

This yields the total amount of this type’s molecules within

the volume.

C � b�catenin ¼ 2:02�10�3nM

k ¼ 206min
�1

V ¼ 100mm�100mm�100mm
¼ 106�10�18m3 ¼ 10�12m3

¼ 10�9L

NC�b�catenin ¼ nA�2:02�10�3nM�10�9L
¼ ð6:022�1023mol�1Þ
�ð2:02�10�12MÞ�10�9L � 1217

The formula that converts the deterministic rate k into a

stochastic rate c depends on the order of the reaction (ie the

number of reactants). Having only one reactant, c¼ k holds,
that is, the stochastic rate constant equals the deterministic

one. Finally, the propensity a of a reaction is calculated by

multiplying c with the number of all possible combinations

of reactants, which is simply the number of existing

complexes, NC � b-catenin, in this case. For higher-order

reactions, the number of all possible reactions can be

deduced using combinatorics. See Wilkinson (2006) for

further details.

c ¼ k ¼ 206min
�1

¼ 3; 4�3s�1

a ¼ NC�b�catenin � c ¼ 4178; 36s�1

Gillespie (1976) introduced two different variants to

compute a trajectory based on his approach, namely the

Direct Method and the First Reaction Method. Following

the direct method, one sums up the propensities of all

reactions and uses this sum as the parameter to generate an

exponentially distributed random variable, which determines

when any of the reactions will occur next. Now that the time

of the next (reaction) event is known, the reaction that

occurs at that time is chosen randomly again. The

probability of each reaction to be selected is proportional

to its propensity. Finally, the chosen reaction is executed,

that is, the number of species in the volume is updated

accordingly, and afterwards the propensities have to be

updated as well.

The First Reaction Method, on the other hand, generates

the exponentially distributed time of next event for each

reaction individually. Then, the reaction with the minimal

time of next event, that is, the first reaction to be executed, is

chosen. The reaction is executed and the algorithm continues

with updating the propensities and generating new random

times of next event for each reaction.

Although both methods are equivalent, their performance

may differ strongly. This is caused by the use of different

operations, which might be costly (note that there might be

numerous reactions, and the computation of a single

trajectory may take millions of iterations): For example,

the Direct Reaction method needs to generate only two

random numbers per iteration, whereas the First Reaction

variant generates rþ 1 random numbers per iteration, r
being the number of reactions.

Gibson and Bruck propose some enhancements to

Gillespie’s original algorithms in Gibson and Bruck (2000),

which they integrate in a new (yet equivalent) variant, the

Next Reaction Method. Most notably, the new method

reduces the time-consuming recalculation of reaction pro-

pensities. This is achieved by constructing a directed

dependency graph on initialization. When a reaction is

executed, not necessarily all of the species’ populations have

been changed. The dependency graph is used to identify the

reactions whose propensity requires an update, and only

those propensities are recalculated. The idea bases on the

fact that the propensity of a reaction changes if and only if

one of its reactants is also a product of the executed reaction

(see Figure 8). Furthermore, Gibson and Bruck’s approach

linearly interpolates the reaction times of all updated

reactions, so that the generation of additional random

numbers is avoided. The approach does indeed generate only

one random number per iteration, to calculate the next

reaction time of the executed reaction.

4.2. Tau Leaping

Although the aforementioned approaches are very helpful

for small systems and provide an exact stochastic simulation,

their performance prohibits an application to systems of a

larger scale. This is especially true for systems with

concurrent reactions of differing speed (eg gene expression

and metabolic reactions): if populations of the metabolites

are sufficiently high, many iterations (and propensity

updates) are needed without any significant changes in any

reaction propensity. This problem is equivalent to the

r1 : Axin•APC + GSK3 → Axin•APC•GSK3

r2 : Axin•APC•GSK3 → Axin•APC + GSK3

r3 : Axin•APC•GSK3·β-catenin* → Axin•APC•GSK3 +β-catenin*

r1 r2 r3

Figure 8 Dependency Graph: While reactions r1 and r2 may
influence each other, r3 does only influence r2. This is because its
occurrence does not change the amount of Axin/APC or GSK3
molecules (which influence the propensity of r1), but that of
Axin/APC/GSK3 molecules.
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challenge of numerically integrating stiff ordinary differen-

tial equation (ODE) systems.

To overcome this problem in the discrete event domain, a

technique called Tau Leaping has been introduced by Gillespie

et al (2001). Tau Leaping approximates the execution of

Gillespie’s exact approach by leaping forward a time step t, in
which the propensities of all reactions are approximately

constant. How often each reaction has occurred during this

leap can be determined by a Poisson distribution. All reaction

occurrences are then executed at once, their propensities are

updated, and the algorithm continues by determining the size

of the t leap for the next iteration.
To implement a suitable Tau Leaping method, one has to

solve several problems, as outlined in Cao et al (2006). When

Tau Leaping is applied to systems with small species

populations, it might happen that a t leap results in negative
molecule numbers. Theoretically, reactions might occur

more often than it would actually be possible, which might

render the entire simulation result invalid. This problem can

be solved in different ways, for example by replacing the

Poisson distribution with a binomial distribution (Tian and

Burrage, 2004). Another problem stems from the t selection
mechanism itself. When computing the size of the next leap,

the algorithm has to make sure that the assumption of

‘nearly constant’ propensities holds for all reactions. In the

original approach, t is calculated so that the sum of all
propensities is nearly constant, but it is not ensured that

smaller propensities remain constant as well. This can

introduce a serious error to the simulation result (Cao

et al, 2006). On the other hand, it is not easy to take the

fluctuations of smaller propensities into account, especially

without sacrificing the performance by choosing a very

small t. Basically, this trade-off is due to the approximate
nature of Tau Leaping: the larger the t, the faster is the
simulation, but the less exact are the results. Quite similar to

numerical integration, the research in this area focuses on

ways to make Tau Leaping more adaptive, that is, it should

choose an appropriate t, depending on the model at hand.
Cao et al (2006) tackled this problem with a sophisticated t
selection procedure, but the overall algorithm still includes a

fall-back to Gillespie’s original approach and a kind of step-

size control (cf. step-size control in numerical integration).

4.3. Next sub-volume method

Besides some optimizations regarding the performance, it

has also been tried to extend the applicability of Gillespie’s

approach in the biological domain. In biological systems,

gradients of substance concentrations, molecular crowding,

and diffusion play important roles in many cases. Addition-

ally, compartmentalization, that is, the isolation of different

conditions by membranes, makes these systems also more

complex. For example, the Wnt pathway comprises reac-

tions not only near the cell membrane, but also inside the

nucleus. Furthermore, the signalling mechanism relies on the

diffusion of b-catenin into the nucleus. This effect cannot be
easily simulated using Gillespie’s original approach, since it

presumes a well-mixed solution, that is, uniformly distrib-

uted molecules. This assumption is clearly invalid in the

cases mentioned above.

Elf and Ehrenberg (2004) propose the Next Sub-volume

Method, which introduces spatial information to the

Gillespie approach. The original volume is replaced by a

number of sub-volumes, and diffusion reactions between

those sub-volumes are allowed. The algorithm itself is

straightforward: a basic version of the Gillespie algorithm

simulates each sub-volume, while a very similar algorithm is

used to synchronize the sub-volumes with each other. At

first, the time of next event is calculated for each sub-volume,

similarly to the First Reaction Method. Then, the sub-

volume with the smallest time of next event may execute its

next reaction. If this reaction is not a diffusion reaction, it

can be executed within the sub-volume and the algorithm re-

iterates, after generating a new time of next event for the

activated sub-volume. If the executed reaction is a diffusion,

a target sub-volume is picked randomly from the activated

sub-volume’s neighbours and has to update its state. This is

illustrated in Figure 9. The Wnt pathway model could, for

example, be enhanced with a more detailed model of

signalling near the cell membrane: Wnt molecules (black)

may diffuse to other extra-cellular sub-volumes, but may

also react with a Fz receptor (grey) to form an activated

receptor Wnt/Fz (white). Models of the Next Sub-volume

Method may comprise thousands of sub-volumes, depending

on the required spatial precision.

4.4. Other approaches

In the remainder of this section, we want to discuss the

relations of Gillespie’s approach to other discrete event

A
B

Figure 9 The Next Sub-volume Method: In the sub-volume
that was selected to execute the next reaction, there may either
be a diffusion into another sub-volume (‘A’), or an internal
reaction (‘B’). If a diffusion occurs, state and reaction
propensities of the target sub-volume have to be updated as
well.
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simulation engines in the domain of Systems Biology. In

fact, most of them base on the notion of a continuous-time

Markov process. Basically, this is a stochastic process whose

behaviour can be determined by its current state (ie it is

memoryless) and a matrix of transition probabilities into

new states. In the domain of Gillespie algorithms, the state is

a tuple containing the population sizes for all species. The

relevant part of the (usually huge) probability matrix is then

computed using the propensities. In other words, the

Gillespie algorithm is an exact computation of the Markov

process that underlies the CME (cf. Gillespie, 1976).

But not only the Gillespie algorithm simulates this

Markov process; also, other valid, quantitative, and discrete

event simulations of a biochemical system approximate the

CME in this or in a very similar manner. For example,

stochastic process algebras can also be interpreted as

specifications for Markov processes, with their state being

the current expression, while the channels with their rates as

well as the structure of the expression (ie sequences, etc)

determine the transition probabilities to the next state (see

section 3.1, p-CALCULUS). In modelling and simulation tools
like (Priami et al, 2001; Phillips and Cardelli, 2004),

interactions are scheduled with exponential delays and

counting the senders and receivers at one channel. Thereby,

they realize the same simulation of the CME as Gillespie’s

algorithm does. Likewise, stochastic PETRI NETS specify a

Markov process, if one regards the assignment of tokens to

places as the state, and the transition rates as determinants

for the transition probabilities to the next state. Barbuti et al

(2005) propose a discrete time algorithm that approximates

Gillespie’s approach, that is, they compute a Markov chain

instead of a continuous-time Markov process. This allows

the application of existing verification tools, for example,

probabilistic model checkers.

The situation is a bit different when simulating DEVS

models or STATECHARTS. Both approaches employ a micro-

level view on the molecules in the system, instead of simply

representing species populations by discrete numbers. That

is, they allow a detailed, complex description of molecules,

which may even contain additional structure for internal

processes (eg the indole channel in the Tryptophan synthase

(Degenring et al, 2004)). Here, stochasticity can be easily

added to describe the behaviour of single model entities, that

is, the state transitions of an atomic DEVS model or a

STATECHART. Stochastic effects cannot be expressed as

easily when it comes to describing the interaction of model

entities. This is a serious problem for the simulation of both

approaches, as it forces the modeller to circumvent these

restrictions by adding artefacts to the model (eg a bulk

solution). These artefacts may strongly hamper a simulator’s

performance, as they often exhibit ’unusual’ behaviour

towards which the simulator is not optimized (eg they might

rely extensively on very expensive operations). This leads us

to the conclusion that existing simulators for DEVS and

STATECHARTS have to be re-evaluated and possibly

redesigned to fit to the needs of Systems Biology applica-

tions. Clearly, it is even more advisable to enhance the

underlying modelling formalism in this direction, so that the

introduction of artefacts is not necessary anymore. First

steps towards enhancing DEVS have already been taken

(Hunt et al, 2005; Uhrmacher et al, 2006). Other approaches,

the so-called single-particle simulations, aim at combining

the micro-view with stochasticity on the simulation level (eg

MCell (http://www.mcell.cnl.salk.edu/, accessed 14 February

2007) or StochSim (Le Novére and Shimizu, 2001)). A

brief overview and motivation for these methods is given in

Tolle and Le Novére (2006). Another survey addressing

simulators for spatial models is given in Takahashi et al

(2005).

5. Conclusion

One has to note that none of the presented approaches was

developed with biological systems in mind. Consequently,

description languages that are specifically developed for cell

biological systems (Kitano et al, 2005) are currently under

development. Different discrete event modelling formalisms

emphasize different aspects of the biological system to be

modelled: PETRI NETS emphasize the nature of biochemical

reactions, whereas STATECHARTS and DEVS direct the focus

of interest towards the involved biological components.

Process algebras somehow lie in between, as the global

channels refer to the reactions but the processes allow an

individual micro-perception of the involved biological

components. The view of PETRI NETS is relatively close to

the macro-view, as molecular species are typically reduced to

passive tokens that are consumed and produced by the

transitions. The number of tokens in one place represents the

number of molecules being in a specific state. As this global

information is also required to calculate the reaction

propensities, such networks compute the Gillespie algorithm

implicitly. In stochastic p, the counting of molecules being in
the required state is done by counting the processes that may

send or receive over global channels. The time of reaction

events is determined by the stochastic channel rates. In

contrast, STATECHARTS focus on individual biological

species rather than their interaction. Together with an

asynchronous communication via events, their metaphor in

modelling seems better suited for describing the activities of

entire cells than of chemical or biochemical reactions. Since

they support not only parallel but also sequential composi-

tion and a modular design of models at different levels of

abstraction, STATECHARTS can be a good choice to generate

cellular systems.

All in all, each of the presented modelling formalisms has

its advantages and drawbacks, and we have to conclude that

the right choice for a modelling method largely depends on

the focus of the study: What is more important, to model

reactions easily and efficiently, or to trace individual
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molecular entities with complex states? What tools are

available for analysis and simulation? Which formalism

provides the best possibilities for reuse when enhancing the

model in possible future directions? Which one is the easiest

to handle for non-computer scientists? What data are

available (eg concerning spatial effects)?

These and many other questions have to be considered,

and it is still very much in the hand of the user to make the

right choice. To avoid wasting time and resources, it is

inevitable to know about the strengths and limitations of the

approaches presented here. Although simulators may

significantly vary with respect to speed and functionality,

the selection of a suitable simulator should not interfere the

selection of a suitable modelling formalism. As stated in

section 4.4, most discrete event simulators have to solve the

same computational problem (of computing a continuous-

time Markov process) either implicitly (ie built-in), or

explicitly (by simulating model artefacts, eg a bulk solution

entity). Hence, chances are that the potential performance of

discrete event simulators in Systems Biology is roughly

comparable, even for different formalisms. Modelling, on

the other hand, is crucial not only for running a simulation

in the first place, but also for understanding the underlying

biological processes. It should therefore be straightforward

and impose as little limits as possible on the modeller.

The interested reader is referred to de Jong (2002) for a

general overview of modelling formalisms in Systems

Biology, and to Matsuno et al (2006) for a survey on PETRI

NETS. Several process algebras are introduced in Prandi et al

(2005), while Priami et al (2001) gives an introduction of

using stochastic p in Systems Biology. Efroni et al (2003)
motivates and illuminates the use of STATECHARTS. Further

details on different simulation approaches are summarized

in Burrage et al (2005) and Takahashi et al (2005).
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