
NoC-DEVS Simulator 
 

Hoda Ahmadinejad1, Fatemeh Refan2, Hessam S. Sarjoughian3 

 
1Computer Architecture Research Group, ECE Department, University of Tehran, Tehran 14399, Iran 

h.ahmadinejad@ece.ut.ac.ir,  
2CAD Research Group, ECE Department, University of Tehran, Tehran 14399, Iran 

refan@cad.ece.ut.ac.ir,  
3School of Computing, Informatics, and Decision Systems Engineering, Computer Science and Engineering Faculty, 

Arizona State University, Tempe, Arizona, USA 
ECE Department, University of Tehran, Tehran 14399, Iran 

sarjoughian@asu.edu,  
 

Keywords: DEVS, NoC, NoC-DEVS, Noxim, SystemC 
 
Abstract 
Study of Network-on-Chip (NoC) systems requires 
simulators capable of handling their unique characteristics. 
Toward this objective, a set of simulation models are 
developed based on NoC first principles and the DEVS 
framework. The components necessary to build simulation 
models for NoC are developed using Parallel DEVS and 
implemented in NoC-DEVS which extends the general-
purpose DEVS-Suite simulator. An example mesh-based 
NoC model synthesized from processing elements, network 
interfaces, switches, and links is experimented with and 
analyzed. The same example is also studied in Noxim which 
is an extension of the SystemC simulator. The NoC-DEVS 
simulator is evaluated and compared against the Noxim 
simulator. The comparison focuses on their modeling 
capabilities and considers delay and throughput 
performance metrics as well as capabilities expected from 
advanced simulation tools. Related and future research 
directions are briefly discussed.  

1 Introduction 
Developing design specifications for System-on-Chip (SoC) 
is known to be challenging  [1]. Similar to other complex 
networked systems, design solutions must account for 
operations and communications among different 
components. SoCs and in particular Network-on-Chip 
(NoC) systems  [2] have some unique characteristics – e.g., 
their physical structures and interactions are constrained as 
compared with common computer network systems. Such 
distinct features have prompted development of new 
concepts, methods, and tools (e.g., simulators) to aid in the 
design and experimentation of Network-on-Chips. 

Given the importance of early exploration of NoC 
design solutions, specialized modeling and simulation 
approaches and tools have been proposed. General-purpose 
counterparts are difficult to use. Indeed, there are numerous 
cases (e.g., computer network simulators) where specialized 
modeling concepts, theories, and methods have been shown 
to be very useful in the modeling and simulation life-cycle. 
It is also worth noting that real-world experimentation for 

complex systems, especially in the early stages of system 
development, remain limited and often impractical  [3]. 

Recently, a few NoC simulators have been developed. 
Among formal models, Petri Net is used to model NoC 
performance characteristics under alternative 
communication schemes  [3]  [4]. These models are based on 
Colored Petri Net and Deterministic Stochastic Petri Net. 
Noxim   [5] use concepts and constructs provided by 
SystemC [11] and programming languages. 

This paper presents an NoC model developed based on 
NoC first-principles and the general-purpose Discrete Event 
System Specification (DEVS) modeling formalism  [6]. The 
NoC model types are Processing Element (PE), Switch 
(SW), and Network Interface (NI). The Network Interface is 
a composite model as it has packetizing and de-packetizing 
model components. The logical structure and behavior of 
these models are derived from the NoC description. The 
NoC model is implemented in DEVS-Suite  [7]. To 
experiment with the NoC models, an experimentation model 
is devised. Its responsibility is to define the conditions for 
conducting experiments.  The NoC model can be externally 
controlled and observed via start and stop signals provided 
by the experimentation model. 

The rest of paper is organized as follows: In Section 2 
the basic concepts and characteristics of NoC are presented. 
In Section 3, related work and tools are briefly described. In 
Section 4, the approach and developed NoC simulation 
models are described. The experimentation testbed, results 
and a comparison with Noxim simulator is presented in 
Section 5. Finally Section 6 concludes the paper and 
highlights future work. 

2 Background 
As shown in Figure 1, Processing Elements, Network 
Interfaces, Switches, and Communication channels can be 
synthesized to create arbitrary mesh-structured NoCs. 
Processing elements (or cores) are the computational 
building blocks. They are the sources and destinations of 
data. In the NoC depicted in Figure 1, nine processing 
elements are uniformly connected to one another through a 
collection of network interfaces, switches, and 
communication links. 



 
 

Figure 1: A typical mesh-based NoC architecture 
 
A network interface, as the name suggests, is the 

gateway between a PE and a Switch. I.e. its main 
responsibility is to translate the PE’s data into network data 
and vice versa using packetization, and depacketization 
schemes. Based on the NoC characteristics and PE 
requirements, the packet reordering and retransmission 
control need to be managed by NI  [8]. 

A switch is responsible for routing data among PEs 
usually using other intermediary switches. It is comprised of 
input ports and buffers, router state, routing logic, 
allocators, and a crossbar. More detailed functionality of 
switches is highly dependent on the choice of other factors 
such as routing algorithm, flow control, and network 
topology. E.g. given the NoC in Figure 1, the switches may 
have three (e.g., Switch 1), four (e.g., Switch 2), or five 
(e.g., Switch 5) ports. Since the traverse of data in NoC is 
through switches and generally there are more than one 
switch in an NoC, the design of switches has a profound 
impact on the performance metrics such as latency, power 
consumption, and specially hardware cost  [9].  

The communication channels can be categorized in two 
types. Conventional type supports primitive communication 
– e.g., packets are sent and received between a PE and a 
switch. Buffering type uses ports for some NoC elements – 
e.g., switch-to-switch communication uses queuing. 

Other elements and aspects of NoCs including 
topology, routing, and flow control also need to be modeled. 
The physical layout and connections between nodes (PEs, 
Switches, NIs) and channels (communication links) in the 
network are determined by network topology. For example, 
the connectivity pattern among PEs can significantly impact 
NoC performance measures. The total number of alternate 
paths between nodes directly affects how traffic spreads in 
relation to available network bandwidth. NoC can have one 
of several kinds of topologies (direct, indirect, regular, and 
irregular  [9]). Given the NoC’s topology, the routing 
algorithm determines the paths through the network that a 
message can traverse to reach its destination. It affects the 
latency, power consumption, and traffic distribution in 

addition to network topology. A routing algorithm, in 
addition to being deadlock free, should support features like 
contention minimization and hot spot avoidance, and at the 
same time does not require much hardware overhead in 
switches or additional fields in packets. Among routing 
algorithm categories, minimal vs. non-minimal and 
oblivious vs. adaptive routing can be named  [9].  

Flow control determines how resources are allocated to 
messages as they pass through the system. It allocates (and 
de-allocates) buffers and channel bandwidth to packets. 
Furthermore, it needs to determine the granularity of data to 
be traversed. Given time and area constraints, flow control 
is handled at the flit level  [9]. The flow control affects the 
latency and throughput. Flit is a Flow Control unit, a part of 
a packet. Flits are usually defined in constant size in a NoC, 
and are commonly categorized into head, normal, and tail 
types. Head flit includes addressing information needed for 
routing a packet. Typically it is constructed from the header 
part of packet. Tail flits have an indicator in order to show 
that they are the last flit of packets. Normal flits are data 
flits which are sandwiched between head and tail flits.  

Metrics such as network latency and accepted traffic are 
defined for evaluating NoC designs. The lower bound on 
average message latency is measured as zero-load latency 
which is the latency experienced by a packet when there are 
no other packets in the network. Another important metric is 
throughput which is calculated from latency, but provides 
more detailed information. The primary costs defined in 
NoCs are area and power. Area is mostly traded-off with 
design complexity, while total power consumption is 
affected by paths that packets traverse  [9]. 

3 Related work 
A number of NoC simulators have been proposed in 
literature. An earlier work uses SystemC and the ns-2 
network simulator to efficiently simulate embedded systems 
 [10]. A design is developed to accurately represent hardware 
and network interactions. Use of ns-2 makes the use of this 
kind of simulation modeling difficult for NoC. Most 
recently, Generalized Stochastic Petri Nets and Colored 
Petri Nets are used for NoC performance evaluations such 
as CPU memory throughput and average clock cycles 
required for establishing connections between a data source 
node and data sink source  [3]. A basic model consisting of 
two processors, local RAM and dedicated serial ports 
compete for a share memory using a common 
communication structure has been developed. This 
Deterministic and Stochastic Petri Net (DSPN) model has 
19 places and 20 transitions. It has been validated using an 
emulated FPGA-based testbed. To more accurately model 
this system, the basic model is extended with an additional 
26 places and 28 transitions. Another model that has a 
regular mesh structure is also developed. The model which 
has 500 places and 600 transitions represents a system 



having a regular mesh-structure with eight clients and four 
nodes. The results reported are incomplete and hierarchical 
modeling is proposed as future work.  

A more recent study uses Colored Petri Nets for 
modeling mesh-based and k-ary NoC  [4]. The models 
capture detailed structure and dynamics of NoCs. The 
models similar to the DSPN models require very large 
number of places, arcs, and transitions and exhibit high 
visual complexity. In this study a 44 mesh is studied under 
different scenarios. Using a variety of supporting tools and 
considering diverse operational settings, it is observed that 
the model is deadlock free.  Performance metrics (percent 
switch loading) are discussed. Study of alternative network 
communication and role of switch fabric types are proposed.   

Among NoC simulators, the Noxim simulator  [5] has 
attracted interest. It is studied and examined in detail as part 
of this research. This mesh-based simulator is developed 
using the SystemC discrete event simulator  [11]. Figure 2 
depicts the model components needed for NoC. The 
processing element and switch are SystemC modules with 
send and receive methods. A reset signal and positive edge 
of clock are used by each method. The switch has a buffer 
monitor method to manage the information exchange with 
neighboring switches. All functionalities in Noxim occur at 
the positive edge of a clock signal and a reset signal for the 
start of simulation. A NoC model can be configured in 
terms of network size, switch channel depth, routing 
algorithm, traffic time, and packet injection distribution 
using a command line interface. The total number of 
received packets/flits, global average delay, throughput, 
min/max global delay, total energy, and per-communication 
delay/throughput/energy can be measured.  

 

 
 

Figure 2: Model Components for Noxim 

4 Model development 
To model NoC, a bottom-up approach is chosen; i.e. we use 
the real physical NoC architecture (shown in Figure 1) and 
the coupled DEVS IO system level of abstractions  [6]. 
Structural and behavioral abstractions representing the core  
functionality of the NoC are developed. The elements of the 
NoC for a segment of the NoC is shown in Figure 3 The 
operations for every model component can have their own 
independent timing as conceptualized with clocks. In the 
following, each of these models is detailed with emphasis 
on their dynamics with timing specification.  

4.1 Processing element 
As mentioned before, processing element (PE) is 
responsible for generating and consuming data. It is a 
simple atomic model which injects data to the network and 
receives data from its counterparts. It does not consider 
application-specific operations. Only the hardware aspect is 
taken into account since the goal is to accurately account for 
traffic generation mechanism.  The work presented in  [12] 
also uses the PE as traffic generator. In fact it collects 
execution traces of all PEs and then uses the results to 
model their behavior with a reduced set of instructions. The 
model has two basic phases (passive and busy). In the busy 
state the model generates and sends out data every 
sendOutInterval. Three patterns are used to generate 
sendOutInterval value. The time distribution of the 
generated data is Poisson, Gaussian, or Random. The size of 
the generated data can be set. The I/O specification of this 
model can be found in Section 5.1. 
 

 
Figure 3: A conceptual snippet of a NoC model 

4.2 Network interface 
A Network Interface (NI) does both packetizing and de-
packetizing. These two atomic models are defined as shown 
in Figure 4. NI receives data from PE and network via 
“fromPE” and “fromSW”, respectively. The dynamics of the 
packetize model is controlled through “statusFromSW” 
port; the de-packetize model is uncontrolled (i.e., data can 
be sent to PE without any limitation). The packetize model 
can send data only by receiving notification of free slots in 
NoC switch incoming buffer. 

 
Figure 4: PE_NI and NI coupled model structures 

Switch

flit

Processing 
Element

flit

discrete 
time signals

Network 
Interface

flits

Switch

flits

Packetize
(queue of 
bytes)

Link
Processing 
Element

data
De‐Packetize

fr
o
m
SW

PE

start

out

recDatastop

Packetize

fromPE

toSW

statu
sFro

m
SW

De‐Packetize

toPE

fromSW

NI

PE_NI

stop

statusFromSW

to
SW

st
ar
t



4.2.1 Packetize 
The basic functionality of this atomic model is to receive 
data from PE and convert the data to flits. The model states 
and transitions are shown in Figure 5. The model starts in 
“passive” phase. It can receive input via both input ports in 
this phase. While receiving data through “statusFromSW” 
port, the model sets the state variable “outQStatus” 
according to the obtained value which can be either “ok” or 
“nok”. On the other hand, data received on port “fromPE”, 
is split into 8-bits (1 byte) data and then inserted in a queue. 
Now if the number of elements in the queue is greater than 
or equal to the (user-defined) packet size in bytes (e.g. when 
the packet size is 64 bit the size of the queue must be greater 
than or equals to 8), the external transition changes the 
model phase to “packetize”. Otherwise  the queue size 
changes with no change in phase. 

In the “packetize” phase, a packet is converted to flits. 
The flit is a complex data type containing the source PE id, 
the destination PE id, flit sequence number, and the flit type 
fields. As before, data can be received from both input ports. 
However, external events occurrence only changes the 
“outQStatus” and the queue size state variables and not the 
state itself. After packetingTime, an internal transition will 
occur. Depending on “outQStatus” value, two cases exist: 

 
 “nok”: the phase of the model changes to “wait4OK” 

and it remains there for infinity unless it receives an 
“ok” value on the “statusFromSW” port. 

 “ok”: the model's phase changes into “sendOutFlit”. 
 
During the packetingTime the model splits a packet into 

flits, which means filling an array of flits by the packet 
information. The type of the first, the last and other 
elements of the array is set to head, tail and normal 
respectively. The source id of the flits is set according to the 
corresponding PE id which is defined in the model. The 
destination id of the packet is set randomly, which means 
the traffic spatial distribution is random. And finally the 
sequence number of the flits is set using a counter which 
counts the number of packets sent out till now. 

In the “sendOutFlit” phase, the model reacts to the 
reception of data on the “fromPE” port. While receiving 
data on “statusFromSW” port, depending on its content the 
model's phase may remain unchanged or changed to 
“wait4OK”. After senidngTime units of time four internal 
transitions are possible: 

 
 Number of sent flits is smaller than the maximum 

number of flits within a packet and also the 
“outQStatus” is “ok”. the model remains in the 
“sendOutFlit” phase. 

 The same as the previous scenario except for the 
“outQStatus” is “nok”. The model enters the 

“wait4OK” phase and until the phase becomes 
“outQStatus”. 

 Number of the sent flits is greater than the maximum 
number of flits in a packet and the size of the queue 
holding the incoming data is greater than the size of a 
packet. In this case the phase changes to “packetize”. 

 The same as the previous case however the size of the 
queue is smaller than the size of a packet in bytes. So 
the phase of the model will change to “passive”.  
 

If the model receives data on the “statusFromSW” port 
while it is in “wait4OK” and the content is “ok”, it will go 
to the “sendOutFlit” phase and starts sending out flits. Since 
flits are stored in an array in the “packetize” phase the order 
of flits and consequently the packets are preserved. The 
model generates flits at the end of the “sendOutFlit” phase. 

 

 
 

Figure 5: Packetize atomic model 

4.2.2 De-Packetize 
This atomic model receives data from switch, collects them 
in packets and partitions them to data size units before 
sending them to a designated PE. We assumed that the PE 
only receives data without processing them. Accordingly the 
PE doesn't need input queues and there is no need for 
interrupt. The model states and details of the transition, 
output, and time advance functions of this are similar to the 
Packetize atomic model are excluded due to lack of space.  

4.3 Switch  
All communications in NoC are handled with this model. It 
receives incoming flits which are then routed according to a 
predefined network topology and a routing strategy. In order 
to avoid losing incoming flits, each input port has a 
dedicated queue. The flits stored in these queues are 
checked based on a round robin scheduling policy; i.e. 



starting from an initial input port, each input port is checked 
(this is conceptualized in Figure 6). When there exists un-
routed flits, a complete set of flits starting from head to tail 
flit is chosen. As the tail flit is routed (sent), the queue of 
next input port is checked for un-routed flits, and continues 
in the same way. After reading the first flit (the head flit), 
the ID of destination processing element is obtained from 
flit. The ID is used as the input for the routing algorithm 
which determines to which destination port this set of flits is 
to be sent. Finally, the head flit, and its consequent normal 
flits are sent to the determined destination port. This process 
terminates, when the tail flit is sent.  

Since the available buffer for each input queue is 
limited, before sending a flit to the next switch, the sender 
switch should ensure that the next switch has enough 
capacity at least for one flit. Therefore, each switch informs 
its neighboring switches, whenever one of its input queues 
are full. On the other hand, as one flit of the full queue is 
routed, it again informs its neighbors about the freed buffer. 
This scheme guarantees that no flits will be lost. Deadlock 
between switches can occur the buffer size is small or the 
network is highly congested. It can be avoided using the 
Chandy/Misra/Bryant algorithm  [13]. 

The NoC switch atomic model has two sets of input and 
output ports (“INi” and “OUTi” given the n neighboring 
switches defined as 0  i < n). The “extSTi” and “intSTi” 
input and output ports are responsible for getting available 
buffer information of neighboring switches and announcing 
the available buffer information of the input queues.  

 

 
Figure 6: NoC switch atomic model 

 
The phases and transitions for this atomic model are 

shown in Figure 6. The model starts in the “check” phase in 
which each input queue is checked for incoming flits 
periodically (through internal transition with period of 
checkTime to “check” phase). The “currentIndex” holds the 

index of currently examined input queue and “inputQi” for i 
in [0, “portNum”-1] represents the input queue associated to 
each input port (“INi”). If “inputQcurrentIndex” is not empty, 
the phase of the switch changes to “route” phase using its 
internal transition at the end of routeTime time. 

In the “route” phase, the first flit of the 
“inputQcurrentIndex” is read and “dstID” field is extracted. The 
routing algorithm is implemented as a “routeTable”, which 
is an array of integers of size “totalID” (the total number of 
processing elements in the whole NoC). The “routeTablei” 
is equal to the selected output port for the flits of packet 
when the destination processing element ID of packet is 
equal to i. When the index of destination port 
(“routeTabledstID”) stored in “dstPort”, the phase is 
determined and the “extStatusdstPort” is checked to determine 
whether it is possible to send flits through this port 
according to the received status from destination switch. If it 
is true, the model changes phase to “sendOut” after outTime 
time. Else, the next phase is set to “check”, after checkTime, 
through an internal transition. Note that each neighboring 
switch announces its status (full or not full) using 
“ok”/“nok” through its “intST” output ports. These statuses 
are stored in “extStatus” variable, an array of Boolean of 
size “portNum”. The “extStatusi” of switch is true if the 
“inputQ” of “INj” port of the neighboring switch connected 
to the “OUTi” port of this switch is not full and vice versa.  

The model remains in “sendOut” phase, using internal 
transitions with the delay of outTime until the tail flit is read 
from the “inputQcurrentIndex” and is sent to the “dstPort”, or 
the “extStatusdstPort” becomes false (i.e., the receiving switch 
buffer becomes full). In the former and latter cases, the 
model changes phase using internal transitions to “check” 
and “wait4Ok” with the delay of checkTime and infinity, 
respectively. Note that the Boolean “sendTail” variable is 
set whenever the tail flit is reached to determine that the 
next phase is “check”. This variable is added due to the fact 
that the tail flit is sent to “dstPort” during the output 
function at the end of internal transition, and therefore the 
flit is not available to check whether it is tail or not. In the 
transition from the “sendOut” phase to the “check” phase, 
the “currentIndex” variable is increased.  

The “wait4OK” phase has no internal transition. This 
phase may change due to external transition function (i.e., 
an “ok” is received on the “extSTdstPort” input port).   

Finally, the “setStatus” phase is responsible for setting 
the values of “intST” output ports if there is any change in 
the status of “inputQs”. This phase disturbs all other phases 
when a status set is needed. I.e., the current phase, sigma, 
and the index of the changed status queue are stored and an 
internal transition to the “setStatus” phase occurs in zero 
time. After setting the new status, the model transits back to 
its previous phase and sigma. This phase change is 
necessary for producing status outputs on “intST” output 
ports in two cases: (i) when the “inputQ” becomes full after 



receiving a flit, and (ii) when a flit is en-queued from 
“inputQ” which had been full. In the first case, where the 
phase change occurs due to an external transition, may 
happen in each phase except for the “setStatus”. The latter 
case occurs in the “sendOut” phase when a flit from a full 
“inputQ” is de-queued and sent to “dstPort”.  

In order to prevent loosing concurrent incoming, the 
external transition function has two steps. First, all incoming 
messages are saved in their corresponding state variables 
and then a phase change happens if needed. When receiving 
data on the “INi” input ports, a change in the internal status 
of “inputQ” state variable can occur. This is saved by 
changing the content of “intStatusConsistent” and 
“intStatus” state variables. The “intStatusConsistent” is an 
array of Boolean of size “portNum”. The true value of the 
“intStatusConsistenti” shows that the status of the “inputQi” 
is consistent with the announced status through the “intSTi” 
port and the “intStatusi” variable, and vice versa. The 
“intStatus” variable is an array of Boolean of size 
“portNum”. The true value of “intStatusConsistenti” shows 
that the “inputQi” is not full, and vice versa. These 
inconsistencies are saved in the first step and are handled in 
the second step by changing phase to “setStatus”. 

Only two phases of “setStatus” and “sendOut” can 
produce output. The “setStatus” produces “ok” or “nok” 
message for the “intSTcurAddedQ” output port while in the 
“sendOut” phase a flit is removed from the top of 
inputQcurrentIndex and send on the “OUTdstPort” output port. 

4.4 Unidirectional Link 
The remaining model needed is a unidirectional link. This 
component is responsible for transferring flits between 
switches. It represents the communication channel with 
delay in a real digital system. So it requires a period of time 
(as defined by user) for flits to be transmitted between 
switches. Two switches are connected via a pair of 
unidirectional links (a bidirectional coupled link model). 

4.5 Data collector 
This model collects and analyzes the data generated by PEs 
data and consumed by other components. It has input ports 
“toNIi” and “fromNIi” which gather data entering and 
leaving every NI. The data is used to track network load. 
The model also has two output ports: “stop” and “start”. The 
signals generated on these ports control the operation of the 
network. The number of the generated packets is tracked 
and average global, minimum, maximum, and maximum 
global delays as well as global throughput are computed. 
The inputs of the model are inserted in an array of 
PacketInfo which is a complex data type. This type has the 
following fields: sequence number, source id, destination id, 
start time, and stop time. Start time holds the time a packet 
leaves its source PE and stop time holds the time a packet 

enters its destination PE. The remaining details are left out 
due to lack of space. 

5 Experimentation setup and results 
A 33 NoC model is developed and simulated in the DEVS-
Suite simulator  [7]. Figure 7 shows a segment of the NoC 
spanning from Data Collector to Switch 3. The coupling 
details between switches are shown in Figure 3.  
Experimental results are collected, evaluated, and compared 
to the results obtained for the NoC model developed in 
Noxim simulator.  

 
 

Figure 7: A NoC model module  
 

 
 

Figure 8: Bi-directional couplings between switches  

5.1 Experimental setup 
The execution process of NoC model can be divided into 
initialization, simulation, and result report parts. Since the 
simulation and report result are already described in Section 
4, below a detailed description of the initialization part is 
provided. In the initialization part, the configuration 
parameters are read from an input file and the NoC model is 
constructed. The input file includes simulation setup, NoC 
size, routing table, and interconnection pattern; each starting 
by a special character. The order and syntax for determining 
each part is as follows: 

 
Simulation setup: simulation timing and data size 
information are determined using  

 
 simulation time (simTime): The time between start and 

stop commands, 
 data size information, including size of packet 

(packSize), size of flit (flitSize), and the capacity of 
input queue buffers (inputQ) of  switches, 

SW 2 SW 4



 NI timing information, including packetizing time 
(pPackTime), depacketizing time (dPackTime), flit 
send time from de-packetizing model (dSendTime), flit 
send time in the packetizing model (pSendTime), and 

 Switch timing parameters including the delay between 
checking two consequent input queues (sCheckTime), 
the switch routing table access time (sRouteTime), and 
send time for each flit (sSendTime). 

 
NoC size: the input file determines the number of PEs 
(PENum) and switches (SWNum) in NoC model.    

 
Routing table: the routing table for each switch is 
specified. It includes SWNum×PENum triples, each 
determining one entry of the routing table for each switch. 
The triples are of the form (Switch ID (curID), PE 
destination ID (dstID), Destination port (dstPort)). If a 
packet arrives in curID intending to go to dstID, it will go 
to the dstPort. 

 
Interconnection pattern: this part determines the way 
switches are connect to one another or to NIs; there are 
SWNum entries each has a switch id (swID), swID 
input/output ports (pNum), and to which element 
(unconnected, PE through NI, or another switch) each of 
these ports are connected to. A 22 NoC model in DEVS-
Suite is shown in Figure 9. The 33 NoC model has the 
same structure pattern as the 22 NoC model. 

 

 
 

Figure 9: A 22 NoC model in DEVS-Suite Animation View 
 
After reading all the parameters from the input file, the 

corresponding NoC structure is created by calling the 
constructors of NoC elements and performing the defined 
couplings. Thereafter, the simulation starts and data 

collector sends the start message to the processing elements. 
After a specified time period a stop message is sent to the 
processing elements. Finally, the simulation continues until 
all the sent packets are delivered to their destination (i.e., 
PEs) and the report of packet logging information and the 
overall NoC performance metrics are complete. 

5.2 Results 
The simulation experiment results are used as a means of 
validating the NoC-DEVS model abstractions and their 
dynamics. The intent has not been to show Noxim and NoC-
DEVS produce results that are very close to each other.  
Instead, Noxim is used as a baseline for gaining confidence 
in the NoC-DEVS model specifications. Table 1 shows the 
parameters used for running the NoC-DEVS simulation. To 
the extent feasible, the same values are configured C++ in 
Noxim. Here, the comparative results of global average 
delay are reported (see Figure 10). Other data is excluded 
due to lack of space. By increasing the ratio of packet to flit 
size, congestion in NoC increases and therefore global 
average delay can also increase. Both simulations show the 
same type of behavior. The difference between the results 
can be attributed to several factors. Two basic factors are 
timing and different levels of model abstraction. NoC-
DEVS defines more components to more closely represent 
NoCs (see Figures 2 and 3). In NoC-DEVS every transition 
function is defined in terms of time period it takes to 
execute some operation. Noxim uses simpler abstractions 
and acts as a functional simulator (uses execution cycle 
instead of a time variable). The implementation of NoC 
switch in Noxim uses reservation table for output ports; i.e. 
if an output port is not used for sending a packet and there is 
a packet to be sent through this port, the process of routing 
flits will be started even though another output port is busy 
sending another set of flits. This increases the global 
average delay in Noxim. The random distributions and the 
rate of feeding packets to the system are not the same for 
Noxim and NoC-DEVS. 

 
Table 1: Configuration parameters of the model 

Configuration Parameters 

sendOutInterval random 
packetingTime 10 

sendingTime (packetize) 5 
depacketingTime 12 

sendingTime (depacketize) 5 
route Time 10 
check time 3 

sendingTime (switch) 5 
link delay 2 
buffer size 1000 

execution time 10000 
Topology mesh 3×3 
Routing X-Y 



 
In addition to the trend of results, some other important 

modeling and simulation aspects should be considered when 
comparing the two NoC simulators. NoC-DEVS is designed 
using the formal modeling approach. Noxim is faster than 
NoC-DEVS. In the experiments conducted in this research, 
Noxim simulation outperforms NoC-DEVS by 1 to 2 orders 
of magnitude. This can be attributed to the C++ 
implementations of SystemC and use of simple model 
abstractions. NoC-DEVS simulation execution time can be 
reduced by flattening hierarchical models and/or use of 
distributed simulation platforms [6]  [12]. Noxim lack of 
support for flexible modeling of time is important for 
detailed design tradeoff studies. NoC-DEVS provides 
multiple visualizations which can be useful throughout 
modeling and simulation lifecycle and also for educational 
purposes.  

There are other differences between these two 
simulators. NoC-DEVS supports all NoC topologies while 
the Noxim supports only mesh-based topologies. Noxim 
provides different spatial distribution patterns while NoC-
DEVS distributes packets randomly. NoC-DEVS supports 
static and distributed routing algorithms while Noxim has 
several conventional routing algorithms. Noxim supports 
total and local energy measurements. The NoC-DEVS 
model can be extended to support such capabilities. It is 
worth noting that DEVS supports cellular automata and 
variable structure modeling.  DEVS models implements in 
Java and C++ can be executed with ease in parallel and 
distributed modes. It is also noted that NoC-DEVS models 
more closely represent NoC physical structure as compared 
with Petri-net approaches (see Section 2). 

 

 
 

Figure 10: Global average delay  

6 Conclusion 
In this paper a discrete event model for Network-on-Chip is 
proposed and developed. The NoC-DEVS model is 
implemented in the DEVS-Suite simulator. The NoC-DEVS 

model is configurable and directly accounts for timing for 
the NoC Processing Element, Network Interface, Switch, 
and Link components. Some of the common metrics for 
evaluating digital systems are included in the model; the 
other metrics can also be incorporated in a straightforward 
manner. Important configuration parameters such as 
adaptive and localized routing algorithms and some 
essential performance metrics such as power and energy 
consumption are proposed for future work. With these 
capabilities, the simulator can support detailed, yet flexible 
NoC modeling and simulation. 
 
References 
[1] R. Tamhankar, S. Murali, S. Stergiou, A. Pullini, F. Angiolini, 

L. Benini, and G. D. Micheli, “Timing Error Tolerant 
Network-on-Chip Design Methodology,”  IEEE Transactions 
on Computer Aided Design, vol. 26, no. 7,  pp. 1297–1310, 
2007. 

[2] L. Benini and G. De Micheli, “Networks on Chips: A New 
SoC Paradigm,” Computer, vol. 35, no. 1, pp.70-78, 2002. 

[3] H. Blume, T. von Sydow, D. Becker, and T. G. Noll, 
“Application of deterministic and stochastic Petri-Nets for 
performance modeling of NoC architectures,” Journal of 
System Architecture, vol 53, no. 8, pp. 466–476, 2007. 

[4] H. Bazzaz, M. Sirjani, R. Khosravi, S. Taheri, “Modeling 
networking issues of network-on-chip: a coloured petri nets 
approach”, Proceedings of the 2nd International Conference 
on Simulation Tools and Techniques, March, 2009. 

[5] Noxim – NoC Simulator, 2007, http://noxim.sourceforge.net/   
[6] B. Zeigler, H. Praehofer, and T.G. Kim, “Theory of Modeling 

and Simulation”, 2nd Ed., Academic Press, New York, 2000. 
[7] DEVS-Suite, 2009, “DEVS-Suite Simulator”, Arizona Center 

for Integrative M&S, http://devs-suitesim.sourceforge.net/ 
[8] E. Salminen, A. Kulmala, and T. Hamalainen, "On network-

on-chip comparison," Euromicro DSD, 2007, pp. 503–510. 
[9] N. Enright-Jerger and L-S Peh, “On-Chip Networks”, 

Synthesis Lecture in Computer Architecture, Editor: Mark 
Hill, Morgan Claypool, 2009.  

[10] F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino, 
and F. Ricciato, “A timing-accurate modeling and simulation 
environment for networked embedded systems,” Proceedings 
of the 42nd Design Automation Conference, pp. 42–47, 2003. 

[11] Open SystemC Initiative, SystemC Version 2.0, User’s Guide, 
www.systemc.org, 2001. 

[12] S. Mahadevan et al. “A network traffic generator model for 
fast network on-chip simulation,” Proc. of the Design, 
Automation and Test in Europe Conference and Exhibition 
(DATE’05), vol. II, pp. 780–785, March 2005. 

[13] R. Fujimoto, Parallel and Distributed Simulation Systems, 
Wiley Interscience, 2000. 

[14] O. Dalle, B. Zeigler, G. Wainer, “Extending DEVS to support 
multiple occurrence in component-based simulation,” 
Proceedings of the 40th Winter Simulation Conference, pp. 
933-941, Dec., 2008. 

 
 


