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RESEARCH ARTICLE

Cooperative solutions to exploration tasks under speed and budget 
constraints
Karishma and Shrisha Rao

International Institute of Information Technology - Bangalore, Bangalore, India

ABSTRACT
We present a multi-agent system where agents can cooperate to solve a system of dependent 
tasks, with agents having the capability to explore a solution space and make inferences, as 
well as query for information under a limited budget. Re-exploration of the solution space only 
happens when an older solution expires. We investigate the effects of task dependencies, 
increasing the speed of the agents, the complexity of the problem space, and the query 
budgets available to agents. Specifically, we evaluate trade-offs between the agent’s speed 
and query budget. We observe that increasing the speed of a single agent improves the system 
performance to a certain point only and increasing the number of faster agents may not 
improve the system performance due to task dependencies. Favouring faster agents during 
budget allocation enhances the system performance, in line with the “Matthew effect”.
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1. Introduction

Many applications like military concept development 
(Cares, 2002), battlefield intelligence (Hongwei et al., 
2010; Ismail et al., 2018), health care and medical diag-
nosis systems (Gupta & Pujari, 2009), etc. distribute 
tasks to achieve the goal(s). Tasks are distributed 
based on the agent’s capabilities, and not all the agents 
need to get tasks of the same complexity. In the case of a 
complex task, an agent may seek external help as well.

There are also fundamental trade-offs involved 
between computation and communication (Li et al., 
2018), as also seen in high-performance computing 
(HPC; Xiao & Peng, 2019), where in some contexts, 
it is better to compute a solution locally, and in others, 
to fetch a solution stored elsewhere. The same sort of 
trade-off can also be seen in cloud robotics (Salmerón- 
Garcı et al., 2015) and in 5 G mobile networks (Eramo 
et al., 2016).

The Matthew effect is also well known to exist in 
various forms in various settings (Rigney, 2010). 
However, until now, there has not been any satisfac-
tory simulation of the same in a broader context that 
transcends the specific features of particular domains 
although attempts have been made to simulate it in 
specific settings, such as scientific peer review 
(Squazzoni & Gandelli, 2012) and computational 
social systems (J. J. Zhang et al., 2021).

More generally, simulation is well known to be a useful 
technique to understand trade-offs and other aspects 
involved in resource utilisation strategies (Dear & 
Sherif, 2000; Wilsdorf et al., 2019) and to better under-
stand how ranking and selection may be made (Waeber 

et al., 2012). However, there has not, until now, been a 
study of the issues involved in how trade-offs between 
speed and budgets may affect the choices made.

Exploration by multiple agents has been known to 
particularly be important in the context of multi-robot 
exploration (Burgard, Moors, Stachniss & Schneider, 
2005), which continues to offer interesting problems 
for research (Viseras et al., 2020). However, the sorts 
of problems that are addressed in this work have not 
hitherto been addressed at all. Simulations of multi- 
robot systems have likewise not dealt with them (Choi 
et al., 2021; Dawson et al., 2010).

Network traffic flow evolution (Wang et al., 2019), 
waste collection management (Gruler et al., 2017), 
discrete event systems of wireless networking 
(Tavanpour et al., 2020), efficient disaster manage-
ment (S. Lee et al., 2022), etc. are domains where the 
impact of cooperation and collaboration is studied 
using simulation. In such applications, cooperation 
may be required among communities or individuals 
in the society, but collaboration may increase the 
complexity.

In this work, we identify the fundamental pro-
blem of solving a set of tasks cooperatively by a set 
of agents, which can directly explore a solution 
space (to represent local computation) or can 
query an oracle (to represent bandwidth usage or 
offloaded computation), subject to a query budget. 
The agents can also infer some new solutions in 
line with previously known solutions and can share 
their solutions with other agents. Tasks have 
dependencies and need to be worked in an order 
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specified by a program graph. In this setting, we 
formulate and answer the following types of 
questions:

(1) If there is a choice between agents with greater 
speed or more query budget, which should be pre-
ferred and why?

(2) In a system of dissimilar agents operating at dif-
ferent speeds, how should a fixed small budget be 
shared among them so that the overall system perfor-
mance is the best possible?

2. Related work

A multi-agent system (MAS) contains multiple agents 
to solve complex problems by subdividing them into 
smaller tasks. Agents act autonomously to make wise 
decisions based on their intelligence and experience 
(Dorri et al., 2018). In a MAS, where each agent is 
assigned a local task with requirements, an agent may 
require multiple agents’ collaboration with a coordi-
nation strategy, if needed (Guo & Dimarogonas, 
2017). Interactions between tightly coupled MASs 
are one of the effective means to gather the partially 
observable information, while coordination policies 
among loosely coupled agents are still a big challenge 
(M. Liu et al., 2020). Multi-agent cooperative beha-
viour can occur in a dynamic environment as well (Xu 
& Yang, 2009), where a multi-agent cooperative pro-
cessing model performs cooperative work to process 
tasks quickly and efficiently. MAS can control several 
aspects of smart grids like management of energy, 
scheduling energy, reliability, the security of the net-
work, fault handling capability and communication 
between agents (Mahela et al., 2020).

Many real-time complex systems contain task 
execution dependencies (Lu, Nolte, Kraft et al., 
2010), data dependencies (Ndoye & Sorel, 2013) 
and shared resources dependencies (Shi et al., 
2019). Dependencies among tasks also need to be 
noted in scheduling tasks on a system of machines 
where the total energy consumed by the system is to 
be reduced. Different heuristic approaches exist for 
this although the task of energy minimisation is 
known to be NP hard (Agrawal & Rao, 2014). 
Thus, scheduling the task sets needs to be aware of 
the dependencies (David et al., 2001). A dependency 
graph is one of the optimal approaches to represent 
task dependencies (Shi et al., 2019). Execution 
dependencies arise among an embedded program’s 
tasks due to task priority, task precedence and inter- 
task communication (Lu, Nolte, Bate et al., 2010; 
Yang et al., 2019).

Task dependency exists during the multi-task allo-
cation in various applications like complex mobile 
crowds (Yang et al., 2019) and distributed computing 
(Y. C. Lee & Zomaya, 2011). Unhandled dependency 

can cause high latency and allocation errors and even 
bring the system into a wrong state. Thus, a depen-
dency-aware task scheduling approach is required to 
obtain accuracy and efficiency.

The table scheduling algorithm and scheduling 
algorithm based on task replication can be used to 
schedule the dependent task in a distributed system 
(Qin et al., 2018). The table scheduling algorithm is 
simple in design and low in complexity, whereas sche-
duling algorithm based on task replication uses the 
backtracking methods for task scheduling. Due to that, 
the time complexity is high and the solution space is 
quite large.

The clustering scheduling algorithm usually divides 
the tasks into smaller clusters and merges the cluster 
after completion. Existing examples of clustering algo-
rithms are EZ, DSC, LC and MD (Topcuoglu et al., 
2002). We have used the priority-based scheduling 
algorithm with dependency constraints to eliminate 
the high time complexity.

A task scheduling algorithm with resource attribute 
selection utilises the resource efficiently by selecting 
the optimal node to execute a task (Y. Y. Zhao et al., 
2014). The same has not considered the choice 
between the resources.

Task allocation is a crucial problem for agents’ 
cooperation in multi-agent systems. A distributed 
and self-adaptable scheduling algorithm can adapt to 
the task arrival process on itself, considering the influ-
ence from task flows on other agents (Ghassemi et al., 
2019).

Dominant Resource with Bottlenecked Fairness 
(DRBF) is a multi-resource fair allocation mechanism 
to improve resource utilisation under well-studied 
fairness constraints (L. L. Zhao et al., 2018). We have 
evaluated the agent’s performance with and without 
fair allocation of the resources, which is useful when 
efficient system performance is required instead of 
fairness.

Multi-agent MDP is a popular method for solving 
sequential optimisation, decision-making, and learning 
problems in an uncertain environment where the out-
come depends on the previous actions (Mukhopadhyay 
& Jain, 2001). The presence of uncertainty regarding 
agent states and actions can lead to performance issues. 
Policy iteration (PI) and value iteration (VI) are the 
standard techniques to solve an MDP within large 
action spaces (Ashutosh et al., 2020), where the itera-
tion complexities increase with the number of controls 
(Fiscko et al., 2021; Littman et al., 2013).

A partially observable Markov decision process 
(POMDP) is an agent decision process for uncertain-
ties in the planning problem (Hubmann et al., 2018). 
A POMDP’s policy is a mapping from the observa-
tions (or belief states) to actions. However, the appli-
cation of POMDPs has been minimal for a long time 
because of the enormous dimensionality and history 
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(F. Liu & Liu, 2018). Point-based methods 
(Kurniawati et al., 2008; Shani et al., 2013) use heur-
istic methods to find the search space and improve 
computational efficiency (Z. Z. Zhang et al., 2014). 
Many point-based approximate value iteration algo-
rithms evaluate a value function to update the esti-
mated set of belief points (Vlassis & Spaan et al., 2004). 
Subsequently, the exploration proficiency remains to 
be improved, particularly when managing large-scale 
POMDP applications.

The method presented here does not have issues 
related to uncertainty regarding agent states similar to 
MDP because an agent’s current task exploration is 
independent of its previous exploration and does not 
bring about an increase in dimension and history. 
Likewise, it is advantageous in comparison with the 
POMDP, as it does not require any value function 
evaluation on account of being independent of any 
set of belief points. Thus, it is feasible for larger appli-
cations with longer run times.

3. Methodology

We present a model for a multi-agent system having 
cooperative agents where tasks have some dependency 
structure among them and are assigned to the system. 
We evaluate the solution exploration under speed and 
budget constraints.

3.1. System specification

Each task has a variable reward and a dependency 
list of other tasks on which it is dependent. A task 
cannot be scheduled for exploration until all the 
tasks in its dependency list get explored first. Thus, 
we form a subset of tasks whose dependency lists 
are empty (all tasks on which these tasks are 
dependent have already been completed). Second, 
we prioritise tasks from this subset based on their 
associated rewards where a task with a higher value 
of reward gets greater priority.

Later, the tasks are distributed among the available 
agents in the system. An agent can explore the solution 
space for an assigned task and also collect inference 
data for future reference, which are stored in its 
knowledge base. The advantage of the inference data 
is that if an agent gets a task that can be performed 
using prior inference data, then the solution space 
exploration is not required. A solution provided by 
an agent is validated, and a reward is given to an agent 
based on the validation outcome.

Our model has also considered complex tasks that 
an agent is not able to explore by itself, and in this 
scenario, it can ask for help from an oracle by making 
a query. Query utilisation is limited as per the 

allocated budget, which may be either shared or indi-
vidual. A budget available to an agent being greater 
than the number of unaccomplished tasks can elim-
inate the need for exploration.

When an agent gets a task assigned that belongs 
to its knowledge set, it can accomplish the same 
quickly; however, over a while, the same solution 
may no longer be valid, then an agent explores 
again and updates its knowledge set. Thus, the 
system is capable of adapting to dynamic changes 
in the environment.

Agents are cooperative by sharing their knowledge 
with others and can vary in terms of speed. A coop-
erative faster agent is capable of exploring the solution 
space and collecting inference data faster as well. 
Shared knowledge from a faster agent in the early 
phase can improve the performance of others as well.

For the experiments, we generated random mazes 
with random target locations. An agent traverses the 
maze for the assigned task, which corresponds to the 
exploration of the solution space. If an agent fails to 
reach the solution in the generated maze, then it may 
query an oracle if it has a budget available. The oracle 
provides a hint to explore the task in a maze instead of 
providing the exact solution. After receiving a hint 
from an oracle for the task, an agent explores the 
maze again and finds the solution.

Once an agent explores the solution, it also checks if 
the same target location may contain solutions for 
other possible tasks as well. If so, it stores this infor-
mation as inference data. Thus, with each current task 
solution found by exploration, an agent also collects 
inference data.

Solution exploration is performed on a maximum 
400� 400 maze size by multiple agents in parallel. The 
obtained results show that, as may be expected, over a 
while, agent’s knowledge increases and improves per-
formance by reducing the exploration time for a task.

We consider the dependencies between tasks by 
way of program graphs G40 and G18 (Zomaya & Lee, 
2012). For each task in the program graph, there is a 
target location defined in a maze. It is possible that 
multiple task solutions are available at the same maze 
location. If a task has a dependency on others as per 
the program graph, an agent can only attempt the task, 
by exploration, inference, or query, if the prior tasks 
are already completed.

We also evaluated the system exploration, by 
increasing the speed of a single agent where the 
faster agent explores the solution and collects infer-
ence data in less time. The knowledge shared by 
the faster agent can help other agents with their 
assigned tasks. However, the experimental results 
show that a faster agent improves the system per-
formance to a certain point only due to task depen-
dencies (see Figure 6(a)).
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For the experiments, we have considered two types 
of dependent systems: a less-dependent system given 
by program graph G18 (see, Figure 2) and a highly 
dependent one described by G40 (see Figure 1). For a 
highly dependent system, a few faster agents do not 
have a significant impact on the average system 
exploration time, but rather cause an increase in the 
waiting time (see, Table 3).

We evaluated a trade-off between the number of 
faster agents and query budget for highly dependent 
(G40) and less-dependent (G18) systems (see Table 4). 
Our results show that

(1) It is better to increase the budget for a faster agent 
instead of increasing the number of faster agents for a 
less-dependent system.

(2) It is better to increase the number of faster agents 
in the system instead of increasing the budget for a 
highly-dependent system.

The experimental findings cover these points for the 
advantageous utilisation of faster agents vs. high bud-
get. It is also seen that in the case of a limited total 
budget, favouring faster agents during budget alloca-
tion improves the performance of the system (see, 
Table 5) in line with the “Matthew effect” where the 
rich get richer and the poor get poorer (Merton, 1968).

3.2. Model specification

We consider a standard model of n agents in a system 
A that is required for m tasks. An agent ai 2 A. Tasks 
are formalised as a 3-tuple ðT;R;DÞ where

• T ¼ ft1; t2; t3; . . . ; tmg is a set of indivisible tasks,
• R ¼ fr1; r2; r3; . . . ; rmg is a set of respective 

rewards, and
• D ¼ fd1; d2; d3; . . . ; dmg is a set of respective 

dependencies, where di � Tnftig is the set of tasks 
on which ti is dependent.

Figure 1. Task dependency graph G40.

Figure 2. Task dependency graph G18.
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A task assignment λ is a function λ : A! 2T ,which 
indicates that a subset of tasks from T is assigned to 
each ai. We also require that λðaiÞ \ λðajÞ ¼ ;, if i�j, 
so task assignments to different agents are non- 
overlapping.

μðaiÞ is the set of tasks accomplished by ai, with 
μðaiÞ � λðaiÞ. If μðaiÞ ¼ λðaiÞ, then ai is successful 
with all tasks assigned; else, it leaves some undone.

ai can take help from an oracle by making a query. 
Each query to the oracle deducts a constant amount 
from the allocated budget B, which is a shared 
resource among the agents. The oracle’s help is 
restricted based on available budget, and exhaustion 
of available budget can lead to failure of solution space 
exploration.

There is a set Sj of possible solutions for task tj. An 
agent ai possesses a knowledge set KðaiÞ as key-value 
pairs, where tj is a key and some specific sj 2 Sj is a value. 
The same holds for inference data as well, so for each 
inferred solution sk, some task tk is a key, and the value is 
an element sk of Sk. After a successful solution explora-
tion for tj, ai adds the newly explored solution sj and 
possibly inference data for the task to its knowledge set 
KðaiÞ. KðaiÞ  KðaiÞ [ fðti; siÞg [ fðtk; skÞg. An agent 
ai re-explores the solution for a task tj if an available 
solution in KðaiÞ becomes invalid due to changes in the 
environment. An agent ai shares its knowledge with all 
the other agents.

4. Cooperative exploration strategy

This section presents the details of the exploration 
strategy. Algorithm 1 describes the task scheduling, 
solution validation, and update in a knowledge set 
among n agents. Algorithm 2 filters out a set of avail-
able tasks for the solution space exploration by con-
sidering respective dependencies and rewards. 
Algorithm 3 describes the solution space exploration 
process by an agent.

In the algorithms, ne is an integer having the count 
of available agents for solution space exploration, 
which is initially equal to n. The difference between 
n and ne gives the count of agents that are busy in 
solution space exploration. Te is the subset of T con-
taining the filtered tasks, which do not have any unac-
complished dependency. Te is used for task 
scheduling. Re is a set of rewards for Te. me is an 
integer giving the length of Te, and I is a set that 
contains the inference data in key-value pairs where 
the inferred solution (sk) is a value and task(tk) is a key.

Algorithm 1 Solution Space Exploration Algorithm
Input: T: A set of tasks, R: A set of respective 

rewards, D: A set of respective dependencies, n: 
Number of Agents

Output: Knowledge Sets computed for all the 
agents

1: ne  n
2: // Get the independent set of tasks for exploration
3: Te  getAvailTasksðT;R;D; neÞ

4: // Assign the tasks to available agents
5: taskAssignmentðTe; neÞ

6: while true do
7: // On receive event listener
8: onSolnCheckMessageðÞ
9: tj; sj  response from an agent ai
10: if validateSolnðtj; sjÞ then
11: allocateRewardðaiÞ

12: // Remove the dependencies from the 
dependent task on the current one

13: updateDependenciesðtjÞ

14: end if
15: // On receive event listener
16: onTaskDoneMessageðÞ
17: tj; sj; I  response from an agent ai
18: KðaiÞ  KðaiÞ [ fðti; siÞg

19: for each tk; sk 2 I do
20: KðaiÞ  KðaiÞ [ fðtk; skÞg

21: end for
22: ne  ne þ 1
23: go to 3
24: end while
Algorithm 2 Get available tasks for solution space 

exploration algorithm
Input: T: A set of tasks, R: A set of respective 

rewards, D: A set of respective dependencies, ne: 
Total number of available agents for solution space 
exploration

Output: Te

1: // Filter the tasks and respective reward by elim-
inating the tasks which have dependencies

2: Te;Re  getIndependentTasksðT;R;DÞ
3: me  lengthðTeÞ

4: for i 0 to me � 1 do
5: for j 0 to me � i � 1 do
6: if Re½j�<Re½jþ 1� then
7: Swap Re½j� and Re½jþ 1�
8: Swap Te½j� and Te½jþ 1�
9: end if
10: end for
11: end for
12: // Return a set of available tasks for exploration
13: if ne >me then
14: return Te
15: end if
16: return Te½0 : ne�

Algorithm 1 gets a total number of agents n, a set 
of tasks T with respective dependencies D, and 
reward R. In line 1 initially, all n agents are available 
for solution exploration. In line 3, we get a set of 
tasks from Te that is not dependent on any other 
task, having the highest reward. In line 5, each task 
tj 2 Te is assigned to an available agent ai. In line 8, 
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we wait for a response from an agent ai to validate 
the explored solution by ai. In line 9, collect the 
explored solution for a task tj. In lines 10–14, we do 
the validation for an explored solution and provide 
the respective reward rj to an agent ai based on the 
validation outcomes. The dependency of task tj from 
all the dependent tasks on tj is also removed. In line 
16, we wait for a response from an agent ai to get 
the explored solution and inference data. In line 17, 
we collect the explored solution (sj) for a task tj and 
inference data (I). In line 18, we update KðaiÞ with 
the newly explored solution (sj) as a value for a task 
tj as a key. In lines 19–21, we iterate through each 
entry in I , which contains inferred task (tk) and 
respective solution (sk) pairs and updates in KðaiÞ. 
In line 22, we continue this process of assignment 
and validation for the remaining tasks.

In Algorithm 1, line 3 uses the getAvailTasks 
module, which is computed in Algorithm 2. 
Algorithm 2 accepts a total number of available 
agents for solution space exploration ne, a set of 
tasks T with respective dependencies D and 
rewards set R, and as an output, it will return a 
set of tasks to be executed next. Algorithm 2, in 
line 2, it returns the available tasks Te with respec-
tive rewards Re, which does not have any depen-
dency. In lines 4–11, it sets all the tasks in Te in 
descending order based on rewards. In lines 13–16, 
it returns a task set Te when the count of available 
tasks without any dependency is less than the total 
number of available agents ne in the system. 
Otherwise, in line 14, it returns the top ne number 
of tasks from Te.

Algorithm 3 Knowledge gain at agent algorithm
Input: tj: task to implement, B: Budget to ask 

queries from the oracle (Global variable)
Output: tj, sj, I
1: // Initialise the variables to default value
2: String hint  null
3: boolean isRewarded ¼ false
4: sj; I  exploreSolnðtj; hintÞ
5: if sj then
6: // Check the reward status for the explored 

solution
7: isRewarded isRewardAllocatedðtj; sjÞ

8: if isRewarded then
9: // Return task, explored solution, and inference 

data
10: return tj; sj; I

11: end if
12: else if B> 0 then
13: B B � 1
14: hint  askHelpFromOracleðÞ
15: go to 4
16: end if
17: return null

Algorithm 3 describes the solution space explora-
tion by an agent (ai). In lines 2–3, we initialise the 
variables with default values. In line 4, the 
exploreSoln function returns the explored solution 
sj and inference data for a task tj based on the 
hint if provided by an oracle. Inference data contain 
the set of inferred task (tk) with respective solution 
(sk) in key-value pair. The exploreSoln function also 
checks that if the number of unaccomplished tasks is 
less than the allocated budget, then directly takes 
help from the oracle instead of solution exploration 
to reduce the exploration time. In line 7, an agent ai 
checks the status of the received reward by using the 
isRewardAllocatedðtj; sjÞ module. The 
isRewardAllocatedðtj; sjÞ module sends sj for the vali-
dation and returns a boolean value true=false based 
on the received reward as per the outcome of the 
validation. In lines 8–11, we return the explored 
solution (sj) and inference data (I) for a task (tj). 
In lines 12–16, an agent ai makes a query to an 
oracle if it has allocated budget greater then zero 
and continues with exploration. In line 17, it returns 
null if solution space exploration is failed.

5. Experimental results

The cooperative solutions to exploration tasks strategy 
are checked for multiple scenarios: even distribution 
of tasks across multiple agents, average solution 
exploration time at the agent level, average solution 
exploration time at a system level, even budget distri-
bution, uneven budget distribution, even speed alloca-
tion, variation in agents’ speeds, highly dependent 
system, and less-dependent system.

We generate a random maze with a random target 
location defined during each experiment. Maze sizes 
are varying. Solution exploration is performed on a 
maximum 400� 400 maze size by multiple agents in 
parallel. The designed model is capable of handling the 
task dependencies to simulate real-time scenarios. We 
have tested the same by using standard G40 (Figure 1) 
and G18 (Figure 2) dependency program graphs. An 
agent ai first explores the task on its own and may take 
help from the oracle by utilising the allocated query 
budget in the case of failure. Query budget utilisation 
is tested by providing the shared budget among the 
agents. During the experiments, available tasks as per 
G40 and G18 were distributed among 5 different coop-
erative agents. The tasks were split into multiple sets 
for the assignment. In all the results shown, explora-
tion and waiting time unit for time is seconds.

We have performed multiple experiments for a G40 
program graph with 5 agents on a 400� 400 maze and 
observed that the average solution exploration time 
taken is almost similar for all agents. The maze was 
created dynamically on each run with a random target 
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location. Further, the same test is performed for more 
complex tasks as well, where the agent is unable to 
explore the solution independently and takes help 
from an oracle, subject to a query budget remaining. 
Naturally, the average exploration time taken for a 
complex task is higher in comparison to an easy task 
because query help is required by agents for complex 
tasks . There is still a chance that a task may fail even 
after help from an oracle because the oracle only 
provides a hint to explore the solution, instead of the 
complete solution. Not all agents in the system get 
complex tasks due to randomisation and 
dependencies.

In order to test the scalability of our model, we 
ran an experiment varying the number of tasks 
keeping the number of agents constant and also 
tried another one where the number of agents is 
varied keeping the number of tasks constant. In 
both cases, the system graphs are of the highly 
dependent type similar to G40. The results clearly 
indicate that for a range of values, our approach 
shows nearly linear scaling.

Table 1 shows the system exploration time for a 
highly dependent system like G40 when varying the 
number of agents from 1 to 9 for a constant 200 tasks. 
The last column indicates that the total processing 
time of all the agents in the system is consistent as 
the number of agents is varied, indicating linear 
scaling.

Figure 7 shows the result of scalability experiments 
when the number of tasks is varied from 40 to 200 for 
5 agents. It also shows linear growth for the overall 
system exploration time.

In some cases where the number of complex tasks 
was higher than the allocated budget, the number of 
accomplished tasks (jμðiÞj) was less than the number 
of assigned tasks (jλðiÞj). An agent ai also collects 
inference data during explorations. Based on inference 
data, an agent’s performance in terms of time execu-
tion is shown in Figure 5.

ExplTðaiÞ stands for the average exploration time 
taken by an agent ai, and TWTðaiÞ stands for the total 
waiting time of an agent ai. Table 2 shows the total 
waiting time of an agent ai due to task dependencies 
on other tasks by the G40 program graph. With average 
exploration time in seconds, it also shows the total 
number of assigned tasks (jλðiÞj) to an agent ai out 
of 40 tasks. During this experiment, we have observed 

that jλðiÞj was equal to jμðiÞj for all agents. However, 
the higher value of the waiting time is seen to affect 
jλðiÞj. The total waiting time of individual agents 
impacts the system performance.

Figure 3 shows the average solution exploration 
time taken by an agent ai for a G18 program graph. 
It shows the average exploration time difference 
when agents are working individually or coopera-
tively. The experiment was performed on a 400�
400 size maze, including complex tasks. To explore 
the complex tasks, the query budget is utilised by ai 
to take help from an oracle. During the experiment, 
the allocated budget was insufficient to get help 
from an oracle for all the complex tasks. 
Therefore, a few complex tasks, and their depen-
dent ones, remain unaccomplished.

Figure 4 shows that a faster agent improves the 
performance where some tasks were related to others’ 
inference data and are completed due to said inference 

Table 1. Scalability testing while varying the number of agents 
to explore the 200 tasks.

Agents ExplTðHDÞ Total Processing Time

1 1032.17 1032.17
3 376.61 1129.83
5 225.10 1125.5
7 151.42 1059.94
9 120.32 1082.88

Table 2. Waiting time due to task dependencies for G40.
Agents ExplTðaiÞ jλðiÞj TWTðiÞ

1 30.102 8 4.17
2 28.614 9 0
3 29.912 7 15.01
4 28.015 8 9.36
5 29.721 9 4.91

Table 3. System performance when varying the count of faster 
agents for G18.
f ExplTðLDÞ WT

0 28.97 4.60
1 28.31 7.20
2 28.06 7.41
3 27.65 7.70
4 20.84 2.15
5 19.57 1.42

Table 4. System performance when varying the number of 
faster agents and budget for less-dependent and highly 
dependent systems.
f Budget ExplTðLDÞ ExplTðHDÞ

0 20 29.73 29.87
1 20 27.30 28.52
1 40 25.95 28.13
1 60 24.54 26.94
1 80 23.02 26.33
1 100 21.73 25.54
2 100 19.41 22.41
3 100 17.70 19.38
4 100 14.79 15.86
2 20 26.48 26.96
3 20 24.51 25.79
4 20 23.90 24.64

Table 5. System performance when varying the budget for 
dissimilar agents for less-dependent and highly dependent 
systems.

Scenarios ExplTðLDÞ ExplTðHDÞ

1 19.81 21.63
2 15.97 19.75
3 13.78 17.66
4 10.92 14.24
5 10.07 13.97
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data. Faster agents have shared the inference data with 
others and reduced the exploration times for other 
agents as well.

Figure 5 shows evaluations across several maze 
sizes. It shows two different agent behaviours out of 
5 where agent a1 gets new tasks and does the solution 
exploration, whereas agent a2 gets the tasks for which 
solutions are already available due to inference data. 
The inference data were either collected by agent a2 

during the task exploration or received from other 
agents in the system. Figure 5 clearly shows that an 
agent a2 takes less time for the solution space explora-
tion compared with exploration time taken by an 
agent a1. a2’s exploration time is approximately 70%

less in comparison with a1’s exploration time.
Table 3 shows the observations when we vary the 

number of faster agents f out of 5 in the system where 
a faster agent’s speed was 2� compared with others. 
ExplTðLDÞ stands for the average waiting time for a 
less-dependent system, and WT stands for a system’s 
average waiting time. We observe that system perfor-
mance improves when f � 4 for the G18 program 
dependency graph. This shows that the system perfor-
mance, which is dependent on available faster agents, 
varies based on the task dependencies. Fewer faster 
agents cannot improve the system performance due to 
pending exploration for parent tasks from slower 
agents; we just see an increase in the average waiting 
time of the system due to an increase in waiting times 
of the faster agents.

Figure 6(a) shows that increasing the speed of an 
agent ai in a highly dependent system like G40 initially 
improves the performance, but due to dependencies, 
the performance becomes constant after a specific 
speed increment. Varying the budget in increasing 
order for different speed agents improves the indivi-
dual agent’s performance consistently, as shown in 
Figure 6(b), where we have tested the performance 
with a budget of 20, 40, or 80 to 5 agents of different 
speeds.

We evaluated a trade-off between several faster 
agents vs. query budget for a highly dependent and 
less-dependent system, as shown in Table 4. 
ExplTðLDÞ stands for the average exploration time 
for the less-dependent system G18, and ExplTðHDÞ
stands for the average exploration time for the highly 
dependent system G40. We observe that a high budget 
(80) for a single faster agent reduces the exploration 
time to 23:02. In contrast, an increment in the number 
of faster agents reduces the exploration time to 23:90 
for a less-dependent system. Thus, it is better to 
increase the budget for a faster agent, instead of 
increasing the number of faster agents, in a less- 
dependent system. Similarly, an increment in the 
number of faster agents for a highly dependent system 
reduces the exploration time to 24:64. Thus, it is better 
to increase the number of faster agents in the system 
instead of increasing the budget for a highly depen-
dent system.

Table 5 shows the exploration times for less- 
dependent and highly dependent systems where 5 
different-speed agents are present. We also evaluate 
the average exploration time while allocating dis-
similar budgets to an individual agent. Speed and 
budget combination for Scenario 1 is (1� , 45), 
(2� , 25), (3� , 15), (4� , 10), (5� , 5), for 

Figure 3. Average exploration time for individual vs coopera-
tive agents for G18.

Figure 4. Cooperative faster agent improves the system per-
formance for G18.

Figure 5. Solution space exploration time comparison 
between two agents for G40.
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Scenario 2 is (1� , 30), (2� , 25), (3� , 20), (4� , 
15), (5� , 10), for Scenario 3 is (1� , 20), (2� , 
20), (3� , 20), (4� , 20), (5� , 20), for Scenario 4 
is (1� , 10), (2� , 15), (3� , 20), (4� , 25), (5� , 
30), and for Scenario 5 is (1� , 5), (2� , 10), (3� , 
15), (4� , 25), (5� , 45). The evaluation results of 
all scenarios show that the system exploration time 
reduces when favouring faster agents, in line with 
the “Matthew effect” (Merton, 1968), for both less- 
dependent and highly dependent systems.

In summary, the following are key findings of our 
work:

(1) Agents’ performance improves due to collection of 
inference data (Figure 5). This is in line with prior 
work that shows that using inference improves per-
formance in goal-oriented collaborative work (C. C. 
Liu et al., 2016).

(2) Cooperative behavior of agents improves the 
agents’ performance (Figure 3) as well as the system 
performance as a whole (Figure 4). It is well known 
that cooperation improves motivation (Carr & 
Walton, 2014), but our work suggests that it improves 
performance even when psychological aspects are not 
involved.

(3) Increasing speeds of agents improves the system 
performance up to a certain point only. Due to depen-
dency on other tasks it may not improve the perfor-
mance further (Figure 6a). In some cases it may 
increase the waiting time of an agent. Where an 
agent will wait for other task to be available for 
exploration (Table 3). This is in line with Amdahl’s 
Law for parallel processing (Hill & Marty, 2008) 
which also holds that increasing the speed of a single 
component in a multi-processor system does not 
improve system performance beyond a point.

(4) Increasing speed and budget for an agent, linearly 
improves the system performance (Figure 6b).

(5) Constraints evaluation for highly dependent and 
less dependent system shows that its better to increase 
number of faster agent in a highly dependent system, 
while it is better to increase budget in a less- 
dependent system (Table 4).

(6) Increasing budget for a faster agent gives the better 
system performance (Table 5). This is in line with the 
“Matthew Effect” Merton (1968) that also holds that it 
is better to reward the higher-performing, rather than 
to spread resources equitably.

6. Conclusions

In this paper, we have evaluated trade-offs between 
agents’ constraints of speed and query budget for a 
system where agents are dissimilar in speed but similar 
in function and can solve problems directly as well as 
by querying. As shown in our experimental results, 
favouring faster agents during budget allocation with a 
fixed total budget reduces the exploration time effi-
ciently, in line with the “Matthew effect”. The experi-
mental findings showed that allocating more budget to 
a faster agent offers better performance in a less- 
dependent system, while in a highly dependent sys-
tem, increasing the number of faster agents offers a 
better performance.

Given the large number of systems where solutions 
to complex problems can be computed cooperatively 
by several agents, or gained by query or inference 
subject to constraints, weaver that this work can be 

Figure 6. Varying speed and budget of an agent in a system G40.

Figure 7. Scalability testing while increasing the number of 
tasks for 5 agents.
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used to formulate a set of guidelines for improving the 
performances of such systems given necessary trade- 
offs.

Currently, a static reward value is used for task 
prioritisation. The limitation of the system is that the 
reward is not reducing or expiring over a period of 
time, which is not in line with the hard real-time 
applications like flight control systems, nuclear 
power plants, stock exchange, and medical and auto-
motive equipment (Anceaume et al., 1999). Future 
work concerns the adaption of the proposed solution 
for hard real-time application where time plays a cri-
tical role for the explored solution. One objective is to 
consider the varying reward, which is reducing over a 
period of time.
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