
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

Journal of Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsm20

Cooperative solutions to exploration tasks under
speed and budget constraints

Karishma & Shrisha Rao

To cite this article: Karishma & Shrisha Rao (2023) Cooperative solutions to exploration
tasks under speed and budget constraints, Journal of Simulation, 17:6, 676-687, DOI:
10.1080/17477778.2022.2043792

To link to this article: https://doi.org/10.1080/17477778.2022.2043792

Published online: 15 Mar 2022.

Submit your article to this journal

Article views: 72

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20
https://www.tandfonline.com/loi/tjsm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2022.2043792
https://doi.org/10.1080/17477778.2022.2043792
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2022.2043792
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2022.2043792
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2043792&domain=pdf&date_stamp=15 Mar 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2043792&domain=pdf&date_stamp=15 Mar 2022

RESEARCH ARTICLE

Cooperative solutions to exploration tasks under speed and budget
constraints
Karishma and Shrisha Rao

International Institute of Information Technology - Bangalore, Bangalore, India

ABSTRACT
We present a multi-agent system where agents can cooperate to solve a system of dependent
tasks, with agents having the capability to explore a solution space and make inferences, as
well as query for information under a limited budget. Re-exploration of the solution space only
happens when an older solution expires. We investigate the effects of task dependencies,
increasing the speed of the agents, the complexity of the problem space, and the query
budgets available to agents. Specifically, we evaluate trade-offs between the agent’s speed
and query budget. We observe that increasing the speed of a single agent improves the system
performance to a certain point only and increasing the number of faster agents may not
improve the system performance due to task dependencies. Favouring faster agents during
budget allocation enhances the system performance, in line with the “Matthew effect”.

ARTICLE HISTORY
Received 14 April 2021
Accepted 10 February 2022

KEYWORDS
Task exploration;
cooperative agents; resource
constraints; multi-agent
system

1. Introduction

Many applications like military concept development
(Cares, 2002), battlefield intelligence (Hongwei et al.,
2010; Ismail et al., 2018), health care and medical diag-
nosis systems (Gupta & Pujari, 2009), etc. distribute
tasks to achieve the goal(s). Tasks are distributed
based on the agent’s capabilities, and not all the agents
need to get tasks of the same complexity. In the case of a
complex task, an agent may seek external help as well.

There are also fundamental trade-offs involved
between computation and communication (Li et al.,
2018), as also seen in high-performance computing
(HPC; Xiao & Peng, 2019), where in some contexts,
it is better to compute a solution locally, and in others,
to fetch a solution stored elsewhere. The same sort of
trade-off can also be seen in cloud robotics (Salmerón-
Garcı et al., 2015) and in 5 G mobile networks (Eramo
et al., 2016).

The Matthew effect is also well known to exist in
various forms in various settings (Rigney, 2010).
However, until now, there has not been any satisfac-
tory simulation of the same in a broader context that
transcends the specific features of particular domains
although attempts have been made to simulate it in
specific settings, such as scientific peer review
(Squazzoni & Gandelli, 2012) and computational
social systems (J. J. Zhang et al., 2021).

More generally, simulation is well known to be a useful
technique to understand trade-offs and other aspects
involved in resource utilisation strategies (Dear &
Sherif, 2000; Wilsdorf et al., 2019) and to better under-
stand how ranking and selection may be made (Waeber

et al., 2012). However, there has not, until now, been a
study of the issues involved in how trade-offs between
speed and budgets may affect the choices made.

Exploration by multiple agents has been known to
particularly be important in the context of multi-robot
exploration (Burgard, Moors, Stachniss & Schneider,
2005), which continues to offer interesting problems
for research (Viseras et al., 2020). However, the sorts
of problems that are addressed in this work have not
hitherto been addressed at all. Simulations of multi-
robot systems have likewise not dealt with them (Choi
et al., 2021; Dawson et al., 2010).

Network traffic flow evolution (Wang et al., 2019),
waste collection management (Gruler et al., 2017),
discrete event systems of wireless networking
(Tavanpour et al., 2020), efficient disaster manage-
ment (S. Lee et al., 2022), etc. are domains where the
impact of cooperation and collaboration is studied
using simulation. In such applications, cooperation
may be required among communities or individuals
in the society, but collaboration may increase the
complexity.

In this work, we identify the fundamental pro-
blem of solving a set of tasks cooperatively by a set
of agents, which can directly explore a solution
space (to represent local computation) or can
query an oracle (to represent bandwidth usage or
offloaded computation), subject to a query budget.
The agents can also infer some new solutions in
line with previously known solutions and can share
their solutions with other agents. Tasks have
dependencies and need to be worked in an order

CONTACT Karishma karishma@iiitb.ac.in International Institute of Information Technology, 26/C Electronics City, Hosur Road, Bangalore 560003,
India

JOURNAL OF SIMULATION
2023, VOL. 17, NO. 6, 676–687
https://doi.org/10.1080/17477778.2022.2043792

© Operational Research Society 2022.

http://orcid.org/0000-0003-3842-7408
http://orcid.org/0000-0003-0625-5103
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2043792&domain=pdf&date_stamp=2023-11-15

specified by a program graph. In this setting, we
formulate and answer the following types of
questions:

(1) If there is a choice between agents with greater
speed or more query budget, which should be pre-
ferred and why?

(2) In a system of dissimilar agents operating at dif-
ferent speeds, how should a fixed small budget be
shared among them so that the overall system perfor-
mance is the best possible?

2. Related work

A multi-agent system (MAS) contains multiple agents
to solve complex problems by subdividing them into
smaller tasks. Agents act autonomously to make wise
decisions based on their intelligence and experience
(Dorri et al., 2018). In a MAS, where each agent is
assigned a local task with requirements, an agent may
require multiple agents’ collaboration with a coordi-
nation strategy, if needed (Guo & Dimarogonas,
2017). Interactions between tightly coupled MASs
are one of the effective means to gather the partially
observable information, while coordination policies
among loosely coupled agents are still a big challenge
(M. Liu et al., 2020). Multi-agent cooperative beha-
viour can occur in a dynamic environment as well (Xu
& Yang, 2009), where a multi-agent cooperative pro-
cessing model performs cooperative work to process
tasks quickly and efficiently. MAS can control several
aspects of smart grids like management of energy,
scheduling energy, reliability, the security of the net-
work, fault handling capability and communication
between agents (Mahela et al., 2020).

Many real-time complex systems contain task
execution dependencies (Lu, Nolte, Kraft et al.,
2010), data dependencies (Ndoye & Sorel, 2013)
and shared resources dependencies (Shi et al.,
2019). Dependencies among tasks also need to be
noted in scheduling tasks on a system of machines
where the total energy consumed by the system is to
be reduced. Different heuristic approaches exist for
this although the task of energy minimisation is
known to be NP hard (Agrawal & Rao, 2014).
Thus, scheduling the task sets needs to be aware of
the dependencies (David et al., 2001). A dependency
graph is one of the optimal approaches to represent
task dependencies (Shi et al., 2019). Execution
dependencies arise among an embedded program’s
tasks due to task priority, task precedence and inter-
task communication (Lu, Nolte, Bate et al., 2010;
Yang et al., 2019).

Task dependency exists during the multi-task allo-
cation in various applications like complex mobile
crowds (Yang et al., 2019) and distributed computing
(Y. C. Lee & Zomaya, 2011). Unhandled dependency

can cause high latency and allocation errors and even
bring the system into a wrong state. Thus, a depen-
dency-aware task scheduling approach is required to
obtain accuracy and efficiency.

The table scheduling algorithm and scheduling
algorithm based on task replication can be used to
schedule the dependent task in a distributed system
(Qin et al., 2018). The table scheduling algorithm is
simple in design and low in complexity, whereas sche-
duling algorithm based on task replication uses the
backtracking methods for task scheduling. Due to that,
the time complexity is high and the solution space is
quite large.

The clustering scheduling algorithm usually divides
the tasks into smaller clusters and merges the cluster
after completion. Existing examples of clustering algo-
rithms are EZ, DSC, LC and MD (Topcuoglu et al.,
2002). We have used the priority-based scheduling
algorithm with dependency constraints to eliminate
the high time complexity.

A task scheduling algorithm with resource attribute
selection utilises the resource efficiently by selecting
the optimal node to execute a task (Y. Y. Zhao et al.,
2014). The same has not considered the choice
between the resources.

Task allocation is a crucial problem for agents’
cooperation in multi-agent systems. A distributed
and self-adaptable scheduling algorithm can adapt to
the task arrival process on itself, considering the influ-
ence from task flows on other agents (Ghassemi et al.,
2019).

Dominant Resource with Bottlenecked Fairness
(DRBF) is a multi-resource fair allocation mechanism
to improve resource utilisation under well-studied
fairness constraints (L. L. Zhao et al., 2018). We have
evaluated the agent’s performance with and without
fair allocation of the resources, which is useful when
efficient system performance is required instead of
fairness.

Multi-agent MDP is a popular method for solving
sequential optimisation, decision-making, and learning
problems in an uncertain environment where the out-
come depends on the previous actions (Mukhopadhyay
& Jain, 2001). The presence of uncertainty regarding
agent states and actions can lead to performance issues.
Policy iteration (PI) and value iteration (VI) are the
standard techniques to solve an MDP within large
action spaces (Ashutosh et al., 2020), where the itera-
tion complexities increase with the number of controls
(Fiscko et al., 2021; Littman et al., 2013).

A partially observable Markov decision process
(POMDP) is an agent decision process for uncertain-
ties in the planning problem (Hubmann et al., 2018).
A POMDP’s policy is a mapping from the observa-
tions (or belief states) to actions. However, the appli-
cation of POMDPs has been minimal for a long time
because of the enormous dimensionality and history

JOURNAL OF SIMULATION 677

(F. Liu & Liu, 2018). Point-based methods
(Kurniawati et al., 2008; Shani et al., 2013) use heur-
istic methods to find the search space and improve
computational efficiency (Z. Z. Zhang et al., 2014).
Many point-based approximate value iteration algo-
rithms evaluate a value function to update the esti-
mated set of belief points (Vlassis & Spaan et al., 2004).
Subsequently, the exploration proficiency remains to
be improved, particularly when managing large-scale
POMDP applications.

The method presented here does not have issues
related to uncertainty regarding agent states similar to
MDP because an agent’s current task exploration is
independent of its previous exploration and does not
bring about an increase in dimension and history.
Likewise, it is advantageous in comparison with the
POMDP, as it does not require any value function
evaluation on account of being independent of any
set of belief points. Thus, it is feasible for larger appli-
cations with longer run times.

3. Methodology

We present a model for a multi-agent system having
cooperative agents where tasks have some dependency
structure among them and are assigned to the system.
We evaluate the solution exploration under speed and
budget constraints.

3.1. System specification

Each task has a variable reward and a dependency
list of other tasks on which it is dependent. A task
cannot be scheduled for exploration until all the
tasks in its dependency list get explored first. Thus,
we form a subset of tasks whose dependency lists
are empty (all tasks on which these tasks are
dependent have already been completed). Second,
we prioritise tasks from this subset based on their
associated rewards where a task with a higher value
of reward gets greater priority.

Later, the tasks are distributed among the available
agents in the system. An agent can explore the solution
space for an assigned task and also collect inference
data for future reference, which are stored in its
knowledge base. The advantage of the inference data
is that if an agent gets a task that can be performed
using prior inference data, then the solution space
exploration is not required. A solution provided by
an agent is validated, and a reward is given to an agent
based on the validation outcome.

Our model has also considered complex tasks that
an agent is not able to explore by itself, and in this
scenario, it can ask for help from an oracle by making
a query. Query utilisation is limited as per the

allocated budget, which may be either shared or indi-
vidual. A budget available to an agent being greater
than the number of unaccomplished tasks can elim-
inate the need for exploration.

When an agent gets a task assigned that belongs
to its knowledge set, it can accomplish the same
quickly; however, over a while, the same solution
may no longer be valid, then an agent explores
again and updates its knowledge set. Thus, the
system is capable of adapting to dynamic changes
in the environment.

Agents are cooperative by sharing their knowledge
with others and can vary in terms of speed. A coop-
erative faster agent is capable of exploring the solution
space and collecting inference data faster as well.
Shared knowledge from a faster agent in the early
phase can improve the performance of others as well.

For the experiments, we generated random mazes
with random target locations. An agent traverses the
maze for the assigned task, which corresponds to the
exploration of the solution space. If an agent fails to
reach the solution in the generated maze, then it may
query an oracle if it has a budget available. The oracle
provides a hint to explore the task in a maze instead of
providing the exact solution. After receiving a hint
from an oracle for the task, an agent explores the
maze again and finds the solution.

Once an agent explores the solution, it also checks if
the same target location may contain solutions for
other possible tasks as well. If so, it stores this infor-
mation as inference data. Thus, with each current task
solution found by exploration, an agent also collects
inference data.

Solution exploration is performed on a maximum
400� 400 maze size by multiple agents in parallel. The
obtained results show that, as may be expected, over a
while, agent’s knowledge increases and improves per-
formance by reducing the exploration time for a task.

We consider the dependencies between tasks by
way of program graphs G40 and G18 (Zomaya & Lee,
2012). For each task in the program graph, there is a
target location defined in a maze. It is possible that
multiple task solutions are available at the same maze
location. If a task has a dependency on others as per
the program graph, an agent can only attempt the task,
by exploration, inference, or query, if the prior tasks
are already completed.

We also evaluated the system exploration, by
increasing the speed of a single agent where the
faster agent explores the solution and collects infer-
ence data in less time. The knowledge shared by
the faster agent can help other agents with their
assigned tasks. However, the experimental results
show that a faster agent improves the system per-
formance to a certain point only due to task depen-
dencies (see Figure 6(a)).

678 KARISHMA AND S. RAO

For the experiments, we have considered two types
of dependent systems: a less-dependent system given
by program graph G18 (see, Figure 2) and a highly
dependent one described by G40 (see Figure 1). For a
highly dependent system, a few faster agents do not
have a significant impact on the average system
exploration time, but rather cause an increase in the
waiting time (see, Table 3).

We evaluated a trade-off between the number of
faster agents and query budget for highly dependent
(G40) and less-dependent (G18) systems (see Table 4).
Our results show that

(1) It is better to increase the budget for a faster agent
instead of increasing the number of faster agents for a
less-dependent system.

(2) It is better to increase the number of faster agents
in the system instead of increasing the budget for a
highly-dependent system.

The experimental findings cover these points for the
advantageous utilisation of faster agents vs. high bud-
get. It is also seen that in the case of a limited total
budget, favouring faster agents during budget alloca-
tion improves the performance of the system (see,
Table 5) in line with the “Matthew effect” where the
rich get richer and the poor get poorer (Merton, 1968).

3.2. Model specification

We consider a standard model of n agents in a system
A that is required for m tasks. An agent ai 2 A. Tasks
are formalised as a 3-tuple ðT;R;DÞ where

• T ¼ ft1; t2; t3; . . . ; tmg is a set of indivisible tasks,
• R ¼ fr1; r2; r3; . . . ; rmg is a set of respective

rewards, and
• D ¼ fd1; d2; d3; . . . ; dmg is a set of respective

dependencies, where di � Tnftig is the set of tasks
on which ti is dependent.

Figure 1. Task dependency graph G40.

Figure 2. Task dependency graph G18.

JOURNAL OF SIMULATION 679

A task assignment λ is a function λ : A! 2T ,which
indicates that a subset of tasks from T is assigned to
each ai. We also require that λðaiÞ \ λðajÞ ¼ ;, if i�j,
so task assignments to different agents are non-
overlapping.

μðaiÞ is the set of tasks accomplished by ai, with
μðaiÞ � λðaiÞ. If μðaiÞ ¼ λðaiÞ, then ai is successful
with all tasks assigned; else, it leaves some undone.

ai can take help from an oracle by making a query.
Each query to the oracle deducts a constant amount
from the allocated budget B, which is a shared
resource among the agents. The oracle’s help is
restricted based on available budget, and exhaustion
of available budget can lead to failure of solution space
exploration.

There is a set Sj of possible solutions for task tj. An
agent ai possesses a knowledge set KðaiÞ as key-value
pairs, where tj is a key and some specific sj 2 Sj is a value.
The same holds for inference data as well, so for each
inferred solution sk, some task tk is a key, and the value is
an element sk of Sk. After a successful solution explora-
tion for tj, ai adds the newly explored solution sj and
possibly inference data for the task to its knowledge set
KðaiÞ. KðaiÞ KðaiÞ [fðti; siÞg [fðtk; skÞg. An agent
ai re-explores the solution for a task tj if an available
solution in KðaiÞ becomes invalid due to changes in the
environment. An agent ai shares its knowledge with all
the other agents.

4. Cooperative exploration strategy

This section presents the details of the exploration
strategy. Algorithm 1 describes the task scheduling,
solution validation, and update in a knowledge set
among n agents. Algorithm 2 filters out a set of avail-
able tasks for the solution space exploration by con-
sidering respective dependencies and rewards.
Algorithm 3 describes the solution space exploration
process by an agent.

In the algorithms, ne is an integer having the count
of available agents for solution space exploration,
which is initially equal to n. The difference between
n and ne gives the count of agents that are busy in
solution space exploration. Te is the subset of T con-
taining the filtered tasks, which do not have any unac-
complished dependency. Te is used for task
scheduling. Re is a set of rewards for Te. me is an
integer giving the length of Te, and I is a set that
contains the inference data in key-value pairs where
the inferred solution (sk) is a value and task(tk) is a key.

Algorithm 1 Solution Space Exploration Algorithm
Input: T: A set of tasks, R: A set of respective

rewards, D: A set of respective dependencies, n:
Number of Agents

Output: Knowledge Sets computed for all the
agents

1: ne n
2: // Get the independent set of tasks for exploration
3: Te getAvailTasksðT;R;D; neÞ

4: // Assign the tasks to available agents
5: taskAssignmentðTe; neÞ

6: while true do
7: // On receive event listener
8: onSolnCheckMessageðÞ
9: tj; sj response from an agent ai
10: if validateSolnðtj; sjÞ then
11: allocateRewardðaiÞ

12: // Remove the dependencies from the
dependent task on the current one

13: updateDependenciesðtjÞ

14: end if
15: // On receive event listener
16: onTaskDoneMessageðÞ
17: tj; sj; I response from an agent ai
18: KðaiÞ KðaiÞ [fðti; siÞg

19: for each tk; sk 2 I do
20: KðaiÞ KðaiÞ [fðtk; skÞg

21: end for
22: ne ne þ 1
23: go to 3
24: end while
Algorithm 2 Get available tasks for solution space

exploration algorithm
Input: T: A set of tasks, R: A set of respective

rewards, D: A set of respective dependencies, ne:
Total number of available agents for solution space
exploration

Output: Te

1: // Filter the tasks and respective reward by elim-
inating the tasks which have dependencies

2: Te;Re getIndependentTasksðT;R;DÞ
3: me lengthðTeÞ

4: for i 0 to me � 1 do
5: for j 0 to me � i � 1 do
6: if Re½j�<Re½jþ 1� then
7: Swap Re½j� and Re½jþ 1�
8: Swap Te½j� and Te½jþ 1�
9: end if
10: end for
11: end for
12: // Return a set of available tasks for exploration
13: if ne >me then
14: return Te
15: end if
16: return Te½0 : ne�

Algorithm 1 gets a total number of agents n, a set
of tasks T with respective dependencies D, and
reward R. In line 1 initially, all n agents are available
for solution exploration. In line 3, we get a set of
tasks from Te that is not dependent on any other
task, having the highest reward. In line 5, each task
tj 2 Te is assigned to an available agent ai. In line 8,

680 KARISHMA AND S. RAO

we wait for a response from an agent ai to validate
the explored solution by ai. In line 9, collect the
explored solution for a task tj. In lines 10–14, we do
the validation for an explored solution and provide
the respective reward rj to an agent ai based on the
validation outcomes. The dependency of task tj from
all the dependent tasks on tj is also removed. In line
16, we wait for a response from an agent ai to get
the explored solution and inference data. In line 17,
we collect the explored solution (sj) for a task tj and
inference data (I). In line 18, we update KðaiÞ with
the newly explored solution (sj) as a value for a task
tj as a key. In lines 19–21, we iterate through each
entry in I , which contains inferred task (tk) and
respective solution (sk) pairs and updates in KðaiÞ.
In line 22, we continue this process of assignment
and validation for the remaining tasks.

In Algorithm 1, line 3 uses the getAvailTasks
module, which is computed in Algorithm 2.
Algorithm 2 accepts a total number of available
agents for solution space exploration ne, a set of
tasks T with respective dependencies D and
rewards set R, and as an output, it will return a
set of tasks to be executed next. Algorithm 2, in
line 2, it returns the available tasks Te with respec-
tive rewards Re, which does not have any depen-
dency. In lines 4–11, it sets all the tasks in Te in
descending order based on rewards. In lines 13–16,
it returns a task set Te when the count of available
tasks without any dependency is less than the total
number of available agents ne in the system.
Otherwise, in line 14, it returns the top ne number
of tasks from Te.

Algorithm 3 Knowledge gain at agent algorithm
Input: tj: task to implement, B: Budget to ask

queries from the oracle (Global variable)
Output: tj, sj, I
1: // Initialise the variables to default value
2: String hint null
3: boolean isRewarded ¼ false
4: sj; I exploreSolnðtj; hintÞ
5: if sj then
6: // Check the reward status for the explored

solution
7: isRewarded isRewardAllocatedðtj; sjÞ

8: if isRewarded then
9: // Return task, explored solution, and inference

data
10: return tj; sj; I

11: end if
12: else if B> 0 then
13: B B � 1
14: hint askHelpFromOracleðÞ
15: go to 4
16: end if
17: return null

Algorithm 3 describes the solution space explora-
tion by an agent (ai). In lines 2–3, we initialise the
variables with default values. In line 4, the
exploreSoln function returns the explored solution
sj and inference data for a task tj based on the
hint if provided by an oracle. Inference data contain
the set of inferred task (tk) with respective solution
(sk) in key-value pair. The exploreSoln function also
checks that if the number of unaccomplished tasks is
less than the allocated budget, then directly takes
help from the oracle instead of solution exploration
to reduce the exploration time. In line 7, an agent ai
checks the status of the received reward by using the
isRewardAllocatedðtj; sjÞ module. The
isRewardAllocatedðtj; sjÞ module sends sj for the vali-
dation and returns a boolean value true=false based
on the received reward as per the outcome of the
validation. In lines 8–11, we return the explored
solution (sj) and inference data (I) for a task (tj).
In lines 12–16, an agent ai makes a query to an
oracle if it has allocated budget greater then zero
and continues with exploration. In line 17, it returns
null if solution space exploration is failed.

5. Experimental results

The cooperative solutions to exploration tasks strategy
are checked for multiple scenarios: even distribution
of tasks across multiple agents, average solution
exploration time at the agent level, average solution
exploration time at a system level, even budget distri-
bution, uneven budget distribution, even speed alloca-
tion, variation in agents’ speeds, highly dependent
system, and less-dependent system.

We generate a random maze with a random target
location defined during each experiment. Maze sizes
are varying. Solution exploration is performed on a
maximum 400� 400 maze size by multiple agents in
parallel. The designed model is capable of handling the
task dependencies to simulate real-time scenarios. We
have tested the same by using standard G40 (Figure 1)
and G18 (Figure 2) dependency program graphs. An
agent ai first explores the task on its own and may take
help from the oracle by utilising the allocated query
budget in the case of failure. Query budget utilisation
is tested by providing the shared budget among the
agents. During the experiments, available tasks as per
G40 and G18 were distributed among 5 different coop-
erative agents. The tasks were split into multiple sets
for the assignment. In all the results shown, explora-
tion and waiting time unit for time is seconds.

We have performed multiple experiments for a G40
program graph with 5 agents on a 400� 400 maze and
observed that the average solution exploration time
taken is almost similar for all agents. The maze was
created dynamically on each run with a random target

JOURNAL OF SIMULATION 681

location. Further, the same test is performed for more
complex tasks as well, where the agent is unable to
explore the solution independently and takes help
from an oracle, subject to a query budget remaining.
Naturally, the average exploration time taken for a
complex task is higher in comparison to an easy task
because query help is required by agents for complex
tasks . There is still a chance that a task may fail even
after help from an oracle because the oracle only
provides a hint to explore the solution, instead of the
complete solution. Not all agents in the system get
complex tasks due to randomisation and
dependencies.

In order to test the scalability of our model, we
ran an experiment varying the number of tasks
keeping the number of agents constant and also
tried another one where the number of agents is
varied keeping the number of tasks constant. In
both cases, the system graphs are of the highly
dependent type similar to G40. The results clearly
indicate that for a range of values, our approach
shows nearly linear scaling.

Table 1 shows the system exploration time for a
highly dependent system like G40 when varying the
number of agents from 1 to 9 for a constant 200 tasks.
The last column indicates that the total processing
time of all the agents in the system is consistent as
the number of agents is varied, indicating linear
scaling.

Figure 7 shows the result of scalability experiments
when the number of tasks is varied from 40 to 200 for
5 agents. It also shows linear growth for the overall
system exploration time.

In some cases where the number of complex tasks
was higher than the allocated budget, the number of
accomplished tasks (jμðiÞj) was less than the number
of assigned tasks (jλðiÞj). An agent ai also collects
inference data during explorations. Based on inference
data, an agent’s performance in terms of time execu-
tion is shown in Figure 5.

ExplTðaiÞ stands for the average exploration time
taken by an agent ai, and TWTðaiÞ stands for the total
waiting time of an agent ai. Table 2 shows the total
waiting time of an agent ai due to task dependencies
on other tasks by the G40 program graph. With average
exploration time in seconds, it also shows the total
number of assigned tasks (jλðiÞj) to an agent ai out
of 40 tasks. During this experiment, we have observed

that jλðiÞj was equal to jμðiÞj for all agents. However,
the higher value of the waiting time is seen to affect
jλðiÞj. The total waiting time of individual agents
impacts the system performance.

Figure 3 shows the average solution exploration
time taken by an agent ai for a G18 program graph.
It shows the average exploration time difference
when agents are working individually or coopera-
tively. The experiment was performed on a 400�
400 size maze, including complex tasks. To explore
the complex tasks, the query budget is utilised by ai
to take help from an oracle. During the experiment,
the allocated budget was insufficient to get help
from an oracle for all the complex tasks.
Therefore, a few complex tasks, and their depen-
dent ones, remain unaccomplished.

Figure 4 shows that a faster agent improves the
performance where some tasks were related to others’
inference data and are completed due to said inference

Table 1. Scalability testing while varying the number of agents
to explore the 200 tasks.

Agents ExplTðHDÞ Total Processing Time

1 1032.17 1032.17
3 376.61 1129.83
5 225.10 1125.5
7 151.42 1059.94
9 120.32 1082.88

Table 2. Waiting time due to task dependencies for G40.
Agents ExplTðaiÞ jλðiÞj TWTðiÞ

1 30.102 8 4.17
2 28.614 9 0
3 29.912 7 15.01
4 28.015 8 9.36
5 29.721 9 4.91

Table 3. System performance when varying the count of faster
agents for G18.
f ExplTðLDÞ WT

0 28.97 4.60
1 28.31 7.20
2 28.06 7.41
3 27.65 7.70
4 20.84 2.15
5 19.57 1.42

Table 4. System performance when varying the number of
faster agents and budget for less-dependent and highly
dependent systems.
f Budget ExplTðLDÞ ExplTðHDÞ

0 20 29.73 29.87
1 20 27.30 28.52
1 40 25.95 28.13
1 60 24.54 26.94
1 80 23.02 26.33
1 100 21.73 25.54
2 100 19.41 22.41
3 100 17.70 19.38
4 100 14.79 15.86
2 20 26.48 26.96
3 20 24.51 25.79
4 20 23.90 24.64

Table 5. System performance when varying the budget for
dissimilar agents for less-dependent and highly dependent
systems.

Scenarios ExplTðLDÞ ExplTðHDÞ

1 19.81 21.63
2 15.97 19.75
3 13.78 17.66
4 10.92 14.24
5 10.07 13.97

682 KARISHMA AND S. RAO

data. Faster agents have shared the inference data with
others and reduced the exploration times for other
agents as well.

Figure 5 shows evaluations across several maze
sizes. It shows two different agent behaviours out of
5 where agent a1 gets new tasks and does the solution
exploration, whereas agent a2 gets the tasks for which
solutions are already available due to inference data.
The inference data were either collected by agent a2

during the task exploration or received from other
agents in the system. Figure 5 clearly shows that an
agent a2 takes less time for the solution space explora-
tion compared with exploration time taken by an
agent a1. a2’s exploration time is approximately 70%

less in comparison with a1’s exploration time.
Table 3 shows the observations when we vary the

number of faster agents f out of 5 in the system where
a faster agent’s speed was 2� compared with others.
ExplTðLDÞ stands for the average waiting time for a
less-dependent system, and WT stands for a system’s
average waiting time. We observe that system perfor-
mance improves when f � 4 for the G18 program
dependency graph. This shows that the system perfor-
mance, which is dependent on available faster agents,
varies based on the task dependencies. Fewer faster
agents cannot improve the system performance due to
pending exploration for parent tasks from slower
agents; we just see an increase in the average waiting
time of the system due to an increase in waiting times
of the faster agents.

Figure 6(a) shows that increasing the speed of an
agent ai in a highly dependent system like G40 initially
improves the performance, but due to dependencies,
the performance becomes constant after a specific
speed increment. Varying the budget in increasing
order for different speed agents improves the indivi-
dual agent’s performance consistently, as shown in
Figure 6(b), where we have tested the performance
with a budget of 20, 40, or 80 to 5 agents of different
speeds.

We evaluated a trade-off between several faster
agents vs. query budget for a highly dependent and
less-dependent system, as shown in Table 4.
ExplTðLDÞ stands for the average exploration time
for the less-dependent system G18, and ExplTðHDÞ
stands for the average exploration time for the highly
dependent system G40. We observe that a high budget
(80) for a single faster agent reduces the exploration
time to 23:02. In contrast, an increment in the number
of faster agents reduces the exploration time to 23:90
for a less-dependent system. Thus, it is better to
increase the budget for a faster agent, instead of
increasing the number of faster agents, in a less-
dependent system. Similarly, an increment in the
number of faster agents for a highly dependent system
reduces the exploration time to 24:64. Thus, it is better
to increase the number of faster agents in the system
instead of increasing the budget for a highly depen-
dent system.

Table 5 shows the exploration times for less-
dependent and highly dependent systems where 5
different-speed agents are present. We also evaluate
the average exploration time while allocating dis-
similar budgets to an individual agent. Speed and
budget combination for Scenario 1 is (1� , 45),
(2� , 25), (3� , 15), (4� , 10), (5� , 5), for

Figure 3. Average exploration time for individual vs coopera-
tive agents for G18.

Figure 4. Cooperative faster agent improves the system per-
formance for G18.

Figure 5. Solution space exploration time comparison
between two agents for G40.

JOURNAL OF SIMULATION 683

Scenario 2 is (1� , 30), (2� , 25), (3� , 20), (4� ,
15), (5� , 10), for Scenario 3 is (1� , 20), (2� ,
20), (3� , 20), (4� , 20), (5� , 20), for Scenario 4
is (1� , 10), (2� , 15), (3� , 20), (4� , 25), (5� ,
30), and for Scenario 5 is (1� , 5), (2� , 10), (3� ,
15), (4� , 25), (5� , 45). The evaluation results of
all scenarios show that the system exploration time
reduces when favouring faster agents, in line with
the “Matthew effect” (Merton, 1968), for both less-
dependent and highly dependent systems.

In summary, the following are key findings of our
work:

(1) Agents’ performance improves due to collection of
inference data (Figure 5). This is in line with prior
work that shows that using inference improves per-
formance in goal-oriented collaborative work (C. C.
Liu et al., 2016).

(2) Cooperative behavior of agents improves the
agents’ performance (Figure 3) as well as the system
performance as a whole (Figure 4). It is well known
that cooperation improves motivation (Carr &
Walton, 2014), but our work suggests that it improves
performance even when psychological aspects are not
involved.

(3) Increasing speeds of agents improves the system
performance up to a certain point only. Due to depen-
dency on other tasks it may not improve the perfor-
mance further (Figure 6a). In some cases it may
increase the waiting time of an agent. Where an
agent will wait for other task to be available for
exploration (Table 3). This is in line with Amdahl’s
Law for parallel processing (Hill & Marty, 2008)
which also holds that increasing the speed of a single
component in a multi-processor system does not
improve system performance beyond a point.

(4) Increasing speed and budget for an agent, linearly
improves the system performance (Figure 6b).

(5) Constraints evaluation for highly dependent and
less dependent system shows that its better to increase
number of faster agent in a highly dependent system,
while it is better to increase budget in a less-
dependent system (Table 4).

(6) Increasing budget for a faster agent gives the better
system performance (Table 5). This is in line with the
“Matthew Effect” Merton (1968) that also holds that it
is better to reward the higher-performing, rather than
to spread resources equitably.

6. Conclusions

In this paper, we have evaluated trade-offs between
agents’ constraints of speed and query budget for a
system where agents are dissimilar in speed but similar
in function and can solve problems directly as well as
by querying. As shown in our experimental results,
favouring faster agents during budget allocation with a
fixed total budget reduces the exploration time effi-
ciently, in line with the “Matthew effect”. The experi-
mental findings showed that allocating more budget to
a faster agent offers better performance in a less-
dependent system, while in a highly dependent sys-
tem, increasing the number of faster agents offers a
better performance.

Given the large number of systems where solutions
to complex problems can be computed cooperatively
by several agents, or gained by query or inference
subject to constraints, weaver that this work can be

Figure 6. Varying speed and budget of an agent in a system G40.

Figure 7. Scalability testing while increasing the number of
tasks for 5 agents.

684 KARISHMA AND S. RAO

used to formulate a set of guidelines for improving the
performances of such systems given necessary trade-
offs.

Currently, a static reward value is used for task
prioritisation. The limitation of the system is that the
reward is not reducing or expiring over a period of
time, which is not in line with the hard real-time
applications like flight control systems, nuclear
power plants, stock exchange, and medical and auto-
motive equipment (Anceaume et al., 1999). Future
work concerns the adaption of the proposed solution
for hard real-time application where time plays a cri-
tical role for the explored solution. One objective is to
consider the varying reward, which is reducing over a
period of time.

Disclosure statement

No potential conflict of interest was reported by the author
(s).

ORCID

Karishma http://orcid.org/0000-0003-3842-7408
Shrisha Rao http://orcid.org/0000-0003-0625-5103

References

Agrawal, P., & Rao, S. October 2014. Energy-aware schedul-
ing of distributed systems. IEEE, Trans. Autom. Sci. Eng.
11 (4): 1163–1175. https://doi.org/10.1109/TASE.2014.
2308955)

Anceaume, E., Cabillic, G., Chevochot, P., & Puaut, I.
(1999). A flexible run-time support for distributed
dependable hard real-time applications. In Proceedings
2nd ieee international symposium on object-oriented real-
time distributed computing (isorc’99)(cat. no. 99-61702)
(pp. 310–319).

Ashutosh, K., Consul, S., Dedhia, B., Khirwadkar, P., Shah,
S., & Kalyanakrishnan, S. (2020). Lower bounds for policy
iteration on multi-action mdps. In 2020 59th ieee confer-
ence on decision and control (cdc) (pp. 1744–1749).

Burgard, W., Moors, M., Stachniss, C., & Schneider, F.
(2005). Coordinated multi-robot exploration. IEEE
Transactions on Robotics, 21(3), 376–386. https://doi.
org/10.1109/TRO.2004.839232

Cares, J. R. (2002). The use of agent-based models in mili-
tary concept development. Proceedings of the winter simu-
lation conference. (Vol. 1 , pp. 935–939). IEEE.

Carr, P. B., & Walton, G. M. (2014). Cues of working
together fuel intrinsic motivation. Journal of
Experimental Social Psychology, 53(53), 169–184. https://
doi.org/10.1016/j.jesp.2014.03.015

Choi, H., Crump, C., Duriez, C., Elmquist, A., Hager, G.,
Han, D., Hearl, F., Hodgins, J., Jain, A., Leve, F., Li, C.,
Meier, F., Negrut, D., Righetti, L., Rodriguez, A., Tan, J.,
& Trinkle, J. (2021). On the use of simulation in robotics:
Opportunities, challenges, and suggestions for moving
forward. Proceedings of the National Academy of
Sciences, 118 (1), e1907856118. https://doi.org/10.1073/
pnas.1907856118 .

David, L., Cottet, F., & Nissanke, N. (2001). Jitter control in
on-line scheduling of dependent real-time tasks. In
Proceedings 22nd ieee real-time systems symposium (rtss
2001) (cat. no. 01pr1420) (pp. 49–58). IEEE.

Dawson, S., Wellman, B. L., & Anderson, M. (2010). Using
simulation to predict multi-robot performance on cover-
age tasks. 2010 ieee/rsj international conference on intelli-
gent robots and systems (pp. 202–208). IEEE.

Dear, R. G., & Sherif, J. S. Using simulation to evaluate
resource utilization strategies. (2000). SIMULATION,
7 4 (2) , 7 5 – 8 3 . h t t p s : / / d o i . o r g / 1 0 . 1 1 7 7 /
003754970007400202

Dorri, A., Kanhere, S. S., & Jurdak, R. (2018). Multi-agent
systems: A survey. IEEE Access, 6, 28573–28593. https://
doi.org/10.1109/ACCESS.2018.2831228

Eramo, V., Listanti, M., Lavacca, F. G., Iovanna, P., Bottari,
G., & Ponzini, F. (2016). Trade-off between power and
bandwidth consumption in a reconfigurable xhaul net-
work architecture. IEEE Access, 4, 9053–9065. https://doi.
org/10.1109/ACCESS.2016.2639578

Fiscko, C., Kar, S., & Sinopoli, B. (2021). Efficient solutions
for targeted control of multi-agent mdps. 2021 American
control conference (acc) (pp. 690–696). IEEE.

Ghassemi, P., DePauw, D., & Chowdhury, S. (2019).
Decentralized dynamic task allocation in swarm robotic
systems for disaster response: Extended abstract. 2019
international symposium on multi-robot and multi-agent
systems (mrs) (pp. 83–85). IEEE.

Gruler, A., Fikar, C., Juan, A. A., Hirsch, P., &
Contreras-Bolton, C. (2017). Supporting multi-depot
and stochastic waste collection management in clus-
tered urban areas via simulation–optimization. Journal
of Simulation, 11(1), 11–19. https://doi.org/10.1057/
s41273-016-0002-4

Guo, M., & Dimarogonas, D. V. (2017). Task and motion
coordination for heterogeneous multiagent systems with
loosely coupled local tasks. IEEE Transactions on
Automation Science and Engineering, 14(2), 797–808.
https://doi.org/10.1109/TASE.2016.2628389

Gupta, S., & Pujari, S. (2009). A multi-agent system (mas)
based scheme for health care and medical diagnosis sys-
tem. cinternational conference on intelligent agent multi-
agent systems (pp. 1–3). IEEE.

Hill, M. D., & Marty, M. R. (2008). Amdahl’s law in the
multicore era. Computer, 41(7), 33–38. https://doi.org/10.
1109/MC.2008.209

Hongwei, A., Xiong, L., & Xie, X. (2010). Multi-agent inter-
actions centric virtual battlefield simulation model. 2010
2nd international conference on advanced computer con-
trol (Vol. 3 , pp. 315–319). IEEE.

Hubmann, C., Schulz, J., Becker, M., Althoff, D., & Stiller,
C. (2018). Automated driving in uncertain environ-
ments: planning with interaction and uncertain maneu-
ver prediction. IEEE Transactions on Intelligent
Vehicles, 3(1), 5–17. https://doi.org/10.1109/TIV.2017.
2788208

Ismail, S., Shaikh Ali, S. H., & Abu Bakar, M. H. (2018).
Agent-based self-regulated learning simulation adopting
the concept of gusc model. 2018 international symposium
on agent, multi-agent systems and robotics (isamsr) (pp.
1–6). IEEE.

Jianqiang Wang, Wenjuan Zhou, Shiwei Li, Danlei Shan.
(2019). Impact of personalised route recommendation
in the cooperation vehicle-infrastructure systems on
the network traffic flow evolution. Journal of
Simulation, 13(4), 239–253. doi:10.1080/17477778.20
18.1515579

JOURNAL OF SIMULATION 685

https://doi.org/10.1109/TASE.2014.2308955
https://doi.org/10.1109/TASE.2014.2308955
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1016/j.jesp.2014.03.015
https://doi.org/10.1016/j.jesp.2014.03.015
https://doi.org/10.1073/pnas.1907856118
https://doi.org/10.1073/pnas.1907856118
https://doi.org/10.1177/003754970007400202
https://doi.org/10.1177/003754970007400202
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1109/ACCESS.2016.2639578
https://doi.org/10.1109/ACCESS.2016.2639578
https://doi.org/10.1057/s41273-016-0002-4
https://doi.org/10.1057/s41273-016-0002-4
https://doi.org/10.1109/TASE.2016.2628389
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/TIV.2017.2788208
https://doi.org/10.1109/TIV.2017.2788208
https://doi.org/10.1080/17477778.2018.1515579
https://doi.org/10.1080/17477778.2018.1515579

Kurniawati, H., Hsu, D., & Lee, W. S. (2008). Sarsop:
Efficient point-based pomdp planning by approximating
optimally reachable belief spaces. In In Robotics: Science
and systems (Vol. 2008).

Lee, S., Jain, S., & Son, Y.-J. (2022, January). A hierarchical
decision-making framework in social networks for effi-
cient disaster management. ACM Transactions on
Modeling and Computer Simulation, 32(1), 1–26. https://
doi.org/10.1145/3490027

Lee, Y. C., & Zomaya, A. Y. (2011, August). Energy con-
scious scheduling for distributed computing systems
under different operating conditions. IEEE Transactions
on Parallel and Distributed Systems, 22(8), 1374–1381.
https://doi.org/10.1109/TPDS.2010.208

Li, S., Maddah-Ali, M. A., Yu, Q., & Avestimehr, A. S. (2018,
January). A fundamental tradeoff between computation
and communication in distributed computing. IEEE
Transactions on Information Theory, 64(1), 109–128.
https://doi.org/10.1109/TIT.2017.2756959

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (2013).
On the complexity of solving markov decision pro-
blems. arXiv preprint arXiv, 1302.4971. https://arxiv.
org/abs/1302.4971

Liu, M., Chang, W., Li, C., Ji, Y., Li, R., & Feng, M. (2020).
Discrete interactions in decentralized multiagent coordi-
nation: A probabilistic perspective. IEEE Transactions on
Cognitive and Developmental Systems, 13(4), 1010–1022,
Dec. 2021. doi:10.1109/TCDS.2020.3040769

Liu, C., Hamrick, J. B., Fisac, J. F., Dragan, A. D., Hedrick, J.
K., Sastry, S. S., & Griffiths, T. L. (2016). Goal inference
improves objective and perceived performance in
human- robot collaboration. In C. M. Jonker, S.
Marsella, J. Thangarajah, & K. Tuyls (Eds.) Proceedings
of the 2016 international conference on autonomous
agents & multiagent systems. may 9-13, 2016. ACM.
940–948.

Liu, F., & Liu, Z. (2018). A neighborhood-based value itera-
tion algorithm for pomdp problems. 2018 ieee 30th inter-
national conference on tools with artificial intelligence
(ictai) (pp. 808–812). IEEE.

Lu, Y., Nolte, T., Bate, I., & Norström, C. (2010). Timing
analyzing for systems with task execution dependencies.
2010 ieee 34th annual computer software and applications
conference (pp. 515–524). IEEE.

Lu, Y., Nolte, T., Kraft, J., & Norstrom, C. (2010). Statistical-
based response-time analysis of systems with execution
dependencies between tasks. 2010 15th ieee international
conference on engineering of complex computer systems
(pp. 169–179). IEEE.

Mahela, O. P., Khosravy, M., Gupta, N., Khan, B.,
Alhelou, H. H., Mahla, R., & Siano, P. (2020).
Comprehensive overview of multi-agent systems for
controlling smart grids. CSEE Journal of Power and
Energy Systems, 8(1), 115–131, Jan. 2022. doi:10.17775/
CSEEJPES.2020.03390

Merton, R. K. (1968). The matthew effect in science: The
reward and communication systems of science are con-
sidered. Science, 159(3810), 56–63. https://doi.org/10.
1126/science.159.3810.56

Mukhopadhyay, S., & Jain, B. (2001). Multi-agent markov
decision processes with limited agent communication.
Proceeding of the 2001 ieee international symposium on
intelligent control (isic ’01) (cat. no. 01ch37206) (pp. 7–
12). IEEE.

Ndoye, F., & Sorel, Y. (2013). Monoprocessor real-time
scheduling of data dependent tasks with exact preemp-
tion cost for embedded systems. 2013 ieee 16th interna-
tional conference on computational science and
engineering (pp. 714–721). IEEE.

Qin, L., Ouyang, F., & Xiong, G. (2018). Dependent task
scheduling algorithm in distributed system. 2018 4th
international conference on computer and technology
applications (iccta) (pp. 91–95). IEEE.

Rigney, D. (2010). The matthew effect: how advantage begets
further advantage. Columbia University Press.

Salmerón-Garcı, J., Inigo-Blasco, P., Dı, F., Cagigas-Muniz,
D., et al. (2015). A tradeoff analysis of a cloud-based robot
navigation assistant using stereo image processing. IEEE
Transactions on Automation Science and Engineering, 12
(2), 444–454. https://doi.org/10.1109/TASE.2015.
2403593

Shani, G., Pineau, J., & Kaplow, R. (2013). A survey of point-
based pomdp solvers. Autonomous Agents and Multi-
Agent Systems, 27(1), 1–51. https://doi.org/10.1007/
s10458-012-9200-2

Shi, J., Ueter, N., von der Brüggen, G., & Chen, J.-J. (2019).
Multiprocessor synchronization of periodic real-time
tasks using dependency graphs. 2019 ieee real-time and
embedded technology and applications symposium (rtas)
(pp. 279–292). IEEE.

Squazzoni, F., & Gandelli, C. (2012). Saint matthew strikes
again: an agent-based model of peer review and the
scientific community structure. Journal of Informetrics, 6
(2), 265–275. https://doi.org/10.1016/j.joi.2011.12.005 .

Tavanpour, M., Kazi, B. U., & Wainer, G. (2020). Discrete
Event Systems Specifications Modelling and Simulation of
Wireless Networking Applications. Journal of Simulation,
16(1), 1–25. doi:10.1080/17477778.2020.1750313

Topcuoglu, H., Hariri, S., & Min-You, W. (2002).
Performance-effective and low-complexity task schedul-
ing for heterogeneous computing. IEEE Transactions on
Parallel and Distributed Systems, 13(3), 260–274. https://
doi.org/10.1109/71.993206

Viseras, A., Xu, Z., & Merino, L. (2020). Distributed multi-
robot information gathering under spatio-temporal inter-
robot constraints. Sensors, 20 (2), 484. https://doi.org/10.
3390/s20020484 .

Vlassis N, Nikos, Spaan, Matthijs .(2004). A fast point-based
algorithm for pomdps. In bene- learn 2004: proceedings of
the annual machine learning conference of Belgium and
the Netherlands (pp. 170–176).

Waeber, R., Frazier, P. I., & Henderson, S. G. (2012,
August). A framework for selecting a selection procedure.
ACM Transactions on Modeling and Computer
Simulation, 22(3), 1–23. https://doi.org/10.1145/
2331140.2331144

Wilsdorf, P., Pierce, M. E., Hillston, J., & Uhrmacher, A. M.
(2019). Round- based Super-Individuals—Balancing
Speed and Accuracy. In Proceedings of the 2019 ACM
SIGSIM Conference On Principles of Advanced
Discretesimulation(SIGSIM-PADS '19) (pp. 95–98). New
York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3316480.3322894

Xiao, J., & Peng, J. (2019, July). Trade-offs between compu-
tation, communication, and synchronization in stencil-
collective alternate update. CCF Transactions on High
Performance Computing, 1(2), 144–160. https://doi.org/
10.1007/s42514-019-00011-x

686 KARISHMA AND S. RAO

https://doi.org/10.1145/3490027
https://doi.org/10.1145/3490027
https://doi.org/10.1109/TPDS.2010.208
https://doi.org/10.1109/TIT.2017.2756959
https://arxiv.org/abs/1302.4971
https://arxiv.org/abs/1302.4971
https://doi.org/10.1109/TCDS.2020.3040769
https://doi.org/10.17775/CSEEJPES.2020.03390
https://doi.org/10.17775/CSEEJPES.2020.03390
https://doi.org/10.1126/science.159.3810.56
https://doi.org/10.1126/science.159.3810.56
https://doi.org/10.1109/TASE.2015.2403593
https://doi.org/10.1109/TASE.2015.2403593
https://doi.org/10.1007/s10458-012-9200-2
https://doi.org/10.1007/s10458-012-9200-2
https://doi.org/10.1016/j.joi.2011.12.005
https://doi.org/10.1080/17477778.2020.1750313
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.3390/s20020484
https://doi.org/10.3390/s20020484
https://doi.org/10.1145/2331140.2331144
https://doi.org/10.1145/2331140.2331144
https://doi.org/10.1145/3316480.3322894
https://doi.org/10.1007/s42514-019-00011-x
https://doi.org/10.1007/s42514-019-00011-x

Xu, H., & Yang, Y. (2009). Research and design on dynamic
multi-agent cooperative processing model. 2009 interna-
tional conference on web information systems and mining
(pp. 432–436). IEEE.

Yang, C., Yu, Z., Liu, Y., Wang, L., & Guo, B. (2019).
Dynamic allocation for complex mobile crowdsour-
cing task with internal dependencies. In 2019 ieee
smartworld, ubiquitous intelligence computing,
advanced trusted computing, scalable computing com-
munications, cloud big data computing, internet of
people and smart city innovation (smart- world/scal-
com/uic/atc/cbdcom/iop/sci) (pp. 818–825). IEEE.

Zhang, J., Wei, L., Liu, M., & Deng, Y. (2021). A competition
model for modeling and describing matthew effect in
computational social systems. 2021 11th international
conference on intelligent control and information proces-
sing (icicip) (pp. 438–443). IEEE.

Zhao, Y., Chen, L., Li, Y., & Tian, W. (2014). Efficient task
scheduling for many task computing with resource attri-
bute selection. China Communications, 11(12), 125–140.
https://doi.org/10.1109/CC.2014.7019847

Zhao, L., Du, M., & Chen, L. (2018). A new multi-resource
allocation mechanism: A tradeoff between fairness and
efficiency in cloud computing. China Communications,
15(3), 57–77. https://doi.org/10.1109/CC.2018.8331991

Zomaya, A. Y., & Lee, Y. C. (2012). Comparison and analy-
sis of greedy energy-efficient scheduling algorithms for
computational grids. Energy-efficient distributed comput-
ing systems (pp. 189–214). Wiley-IEEE Computer Society.

ZongZhang, Zhang, David Hsu, & d Wee Sun, Lee.
(2014). Covering number for efficient heuristic-based
pomdp planning. In Proceedings of the 31st
International Conference on Machine Learning, 32
(ICML'14). JMLR.org, I–28–I–36.

JOURNAL OF SIMULATION 687

https://doi.org/10.1109/CC.2014.7019847
https://doi.org/10.1109/CC.2018.8331991

	Abstract
	1. Introduction
	2. Related work
	3. Methodology
	3.1. System specification
	3.2. Model specification

	4. Cooperative exploration strategy
	5. Experimental results
	6. Conclusions
	Disclosure statement
	ORCID
	References

