2009 13th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

DEVS/SOA: Towards DEVS interoperability in distributed M&S

Alejandro Moreno*, José L. Risco-Martl’nT, Eva Besadai, Saurabh Mittal® and Joaquin Aranda*
*Departamento de Informdtica y Automdtica
E.T.S.I. Informdtica (UNED)

Email: amoreno@bec.uned.es, jaranda@dia.uned.es
TDepartamento de Arquitectura de Computadores y Automdtica
Facultad de Informdtica (UCM)

Email: jlrisco@dacya.ucm.es
iDepczrtment of Computer Science
University of New Mexico
evabes @cs.unm.edu
§Dunip Technologies
P.O. Box 26218, Tempe, AZ 85285, USA
Email: saurabh.mittal @duniptechnologies.com

Abstract—DEVS Modeling and Simulation (M&S) has mul-
tiple implementations with several computer languages such as
Java, C# or C++. Therefore emerges the need of a distributed
platform to provide interoperability mechanics for simulation
and encourage reusability of legacy simulations and integration
of diversified DEVS models. In this paper, we apply a recently
proposed interoperability standard for DEVS M&S throughout
a renewed version of DEVS/SOA. The main goal of this
web oriented framework is to connect heterogeneous DEVS
simulation elements in a transparent, open, and scalable way.
We define a DEVS/SOA implementation that embodies Service
Oriented Architecture (SOA) within WSDL standard to describe
the simulator and coordinator interfaces and SOAP standard
to support communication operations between them. This ar-
rangement allows frontend user applications to lead simulations
without local access to modeling components. Furthermore, we
illustrate a real military based example of DEVS simulation
interoperability among Java and .NET based DEVS models.
Experiments in two different examples show that when the
simulation is distributed using DEVS/SOA, we obtain a speed-
up of 22% in average.

Keywords-Distributed Simulation, Interoperability, DEVS,
Service Oriented Architecture.

I. INTRODUCTION AND RELATED WORK

The simulation field in computing, attempts to simulate an
abstract model of a particular system. Computer simulation
is a useful part of mathematical modeling of many natural
systems in physics, chemistry and biology, human systems
in economics, psychology, and social science and in the
process of engineering new technology, to gain insight into
the operation of those systems, or to observe their behavior
[1]. Computer simulations vary from computer programs that
run a few minutes, to network-based groups of computers
running for hours, to ongoing simulations that run for
days. The human capacity required for modeling complex
systems has far exceeded anything feasible for independant
research labs and the scale of simulated events for computer

1550-6525/09 $26.00 © 2009 IEEE
DOI 10.1109/DS-RT.2009.18

144

simulations lack of computational resources. For this reason,
ambitious and challenging tasks in the simulation society
claim for global support. In this context, there are various
arguments to back up the need of a “universal” tool or frame-
work that embraces simulation of heterogeneous models:
reusability of legacy simulation; access to remote modeling
components; limited human and computational resources;
integration of models with regards to software platforms;
and the avoidance of superfluous or redundant work. In
order to fulfil these requirements, first of all, we propose the
Internet as the global data communication infrastructure to
provide connectivity between computers due to it’s ubiquity,
as well as the World Wide Web (WWW) to supply simulation
services via the Internet. In addition to this, we employ
the Service-Oriented Architecture (SOA) to provide methods
for systems development and integration where systems
package functionality as interoperable services. Moreover,
these services satisfy uniform technical criteria established
by standards to tackle any interoperability difficulties. Con-
sequently, we apply the Web Service Description Language
(WSDL) standard to describe the services interface and the
Simple Object Access Protocol (SOAP) standard to support
communication between them. The application of these stan-
dards over the proposed architecture enables the platform-
independent deployment of simulation services through the
Internet.

The DEVS M&S formalism [2] provides several advan-
tages to analyze and design complex systems: completeness,
verifiability, extensibility, and maintainability. DEVS can re-
produce the other major Discrete Time System Specification
(DTSS) and approximate continuous modeling paradigms
(Differential Equation System Specification (DESS)), i.e.,
DEVS is able to describe discrete event, discrete and con-
tinuous systems. Furthermore, DEVS separates conceptually
models from the simulator what makes possible to simu-

@) CO‘ pute
1(!) I
& SOCIety

Single DEVS

N Simulation
Procesor ~ ’
S Protocol /-
Distributed | _ _ = i
Simulator ’ X s
LA XFD-DEVS
¢ ,DEvs N DEVS \::\
/g ~
Real-Time ’ Simulator® Model | \\ DEVS/SCXML
Simulator /I Interface \\ Interface? *,
’ AN Y DEVSML
virtual Time |, Non \‘
Simulator DEVS Other
Representation
Figure 1. Conceptual Architecture of Standard

late the same model using different simulators working in
centralized, parallel or distributed execution modes. Finally,
there are several DEVS M&S implementations based on
various computer languages such as Java, C++ or C#.

Our initial framework [3], DEVS/SOA, is a distributed
M&S tool that provides distributed DEVS simulation ser-
vices using the aforementioned standards and architecture.
The present framework in this paper has been developed
within two software platforms: Java and .NET framework
that let us work with any type of language taking advantage
of the Common Intermediate Language (CIL). Moreover,
DEVS/SOA is capable of running a simulation that em-
braces interoperation of diversified DEVS models encoded
in different programming environments such as xDEVS[4],
DEVSJAVA[S] or CD++[6] models, and consequently pro-
vide multiple DEVS modeling environments to specify
different components of the whole system using existing
models or creating new ones.

Recently, within a working group of the Simulation In-
teroperability Standards Organization, a standard [7] has
been under development to support interoperability of DEVS
models implemented in different platforms as well as with
legacy simulations. Figure 1 illustrates an architectural ap-
proach proposed to accommodate the various combinations
and permutations of possible applications, both currently
known, as well as those that will emerge in the future.
The basic idea is to define two sets of interfaces; the
DEVS model Interface and the DEVS Simulator Interface, as
well as a DEVS Simulation Protocol that operates between
the two. The interfaces protocols are based on those in
GenDEVS, an implementation at the heart of the DEVJAVA
M&S environment [5]. As a direct consequence of the
model-simulator separation there can be multiple ways in
which the same model can be simulated - all adhering to
the abstract simulator specification.

There are several current DEVS implementations provid-
ing distribution and interoperability employed at different
levels. JAMES constitutes a framework which is aimed
at supporting experiments with agents under temporal and
resource constraints. Its core libraries provide the means for
the description of variable structure models and their dis-

145

tributed, parallel execution [8]. Even though this study pro-
vides insteresting formal aspects of parallelization, JAMES
does not support interoperability. Regarding interoperability,
the DEVS/CORBA [9] distributed simulation environment
offers an alternative implementation of discrete event sys-
tem specification (DEVS) modeling and simulation theory
based on CORBA communication middleware. Moreover,
the DEVS/HLA [10] simulation environment supports high
level model building using DEVS methodology as well as
supplying heterogeneous simulation models interoperability
based on HLA concepts. While DEVS/CORBA and DE-
VS/HLA are parallelized frameworks based on middleware
technologies, the framework proposed in this paper achieves
the distributed simulation by the use of standardized web ser-
vices and implicitly assume the interfacing and coordination
DEVS Simulation Protocol Standard proposed in [11]. In
addition to this, recently a CD++ [6] simulation framework
that provides Web Services according to the REST principles
RESTful-CD++ [12] has been presented. However SOA
based Web Services overtakes REST based Web Services
due to several reasons: SOA is transport agnostic, is designed
to handle distributed computing environments, is the prevail-
ing standard for web services, has built-in error handling
and provides extensibility; REST assumes a point-to-point
communication model that is not usable for distributed
computing environment where message may go through one
or more intermediaries, lack of standards support, and is
tied to the Hypertext Transfer Protocol (HTTP) transport
model. Furthermore, there are other distributed simulation
approaches that employ SOA as the communication pattern
design framework that enhance their performance [13] or
discuss the motivation for developing such a framework
[14], but they do not enclose DEVS M&S formalism. The
advantages of our approach are the following. First, the orig-
inal models, using native DEVS libraries, can be distributed
without middleware. Second, the models of several DEVS
platforms such as xDEVs, DEVSJAVA or CD++ can be com-
bined to define the whole system providing interoperability.
Third, different simulation services implemented in different
programming languages for the different modeling platforms
can be distributed through the Internet and connected using
the WSDL and SOAP standards, allowing a friendly-user
deployment of the simulation of the whole system through
the Internet. Finally, this approach, which achieves the
design pattern of DEVS separation between modeling and
simulation, could incorporate other modeling paradigms and
simulation services, extending the interoperability of DEVS
to other techniques [15].

This work is encouraged to satisfy and promote the
formerly stated interoperability standard for DEVS M&S.
Unfortunately, the standard lacks of a formal detailed partic-
ularization of DEVS simulator and model interface. There-
fore we make use of our DEVS/SOA common interfaces
framework as a point of union among distinct DEVS mod-

eling and simulation platforms. In addition, we demonstrate
the application of DEVS/SOA net-centric modeling and
simulation environment with a real military based case study.

II. BACKGROUND
A. DEVS

DEVS formalism consists of models, the simulator and
the experimental frame. We will focus our attention to
the specified two types of models i.e. atomic and coupled
models. The atomic model is the irreducible model definition
that specifies the behavior for any modeled entity. The
coupled model is the aggregation/composition of two or
more atomic and coupled models connected by explicit
couplings. The formal definition of parallel DEVS is given in
[2], chapter 4. An atomic model is defined by the following
equation:

M

= <X, S?K5i7Lt75ewt76COn7>\> (1

where,
o X is the set of input values
o S is the state space
o Y is the set of output values
e O;nt : S — S is the internal transition function
o Oext : Q X X® — S is the external transition function
- Q = {(s,e):s€85,0<e<ta(s)} is the total
state set, where e is the time elapsed since last
transition
- X" is a set of bags over elements in X

dcon, 1s the confluent transition function, subject to
6con (S, ®) = 6int(s) [2]

e A: S — Y is the output function

e ta(s): S — N§ U oo is the time advance function.

The formal definition of a coupled model is described as:

N (X,Y,D,EIC, EOC,IC))

where,

o X is the set of external input events

« Y is the set of output events

e D is a set of DEVS component models

o EIC is the external input coupling relation

e EOC is the external output coupling relation

e IC is the internal coupling relation.

The coupled model N can itself be a part of component in
a larger coupled model system giving rise to a hierarchical
DEVS model construction.

Figure 2 shows a coupled DEVS model. M1 and M2 are
DEVS models. M1 has two input ports: “inl” and “in2”,
and one output port: “out”. The M2 has one input port:
“inl1”, and two output ports: “outl” and “out2”. They are
connected by input and output ports internally (this is the
set of internal couplings, IC). M1 is connected by external

146

in o finl o out! . fout o
T M Nyl M2 7
N2 ot out?
>
Coupled Mockl

Figure 2. Coupled DEVS model

input “in” of Coupled Model to “inl” port, which is an
external input coupling (EIC). Finally, M2 is connected to
output port “out” of Coupled Model, which is an external
output coupling (EOC).

There are varied libraries for expressing DEVS models
across the globe, such as DEVSJAVA [5], DEVS/C++ [5],
CD++ [6], xDEVS [4], etc., and all of them have efficient
implementations for executing the DEVS protocol. Provid-
ing the advantages of Object Oriented frameworks such as
encapsulation, inheritance, and polymorphism. Plus, they all
manage the simulation time, coordinates event schedules,
and supply a library for simulation, a graphical user interface
to view the results, and other utilities.

Detailed descriptions about DEVS Simulator, Experimen-
tal Frame and of both atomic and coupled models can be
found in [2].

III. APPROACH

A. Introduction

Web applications are typically described as cross-platform
because, ideally, they are accessible from any of various
web clients on different operating systems. However, such
applications diversify widely in complexity and functional-
ity. This wide variability inhibits the goal of multi-platform
interoperation capacity. In order to address DEVS Web
oriented applications interoperability weakness, we applied
the newly proposed interoperability standard for DEVS
Modeling and Simulation [7]. Unfortunately, the standard
lacks of a formal detailed particularization of DEVS sim-
ulator and model interfaces. To tackle this inconvenience,
the approach described on this paper implements our DE-
VS/SOA common interfaces framework as a point of union
among distinct DEVS modeling and simulation platforms.
Besides, the standard omits a third degree of interoperabil-
ity, the interaction among a third party component, DEVS
Coordinators along with DEVS Simulator engines. As shown
in Figure 3 we adopt the same structure and behavior as for
DEVS Modeling and Simulation standard to include DEVS
simulators coordination as another level of interoperability.

Figure 3 illustrates standard distributed simulation among
different DEVS simulation and coordination engines sup-
ported by DEVS/SOA. A multi-platform simulation that

XML Object
Data Type
Mapping

/
: ’
DEVS/SOA DEVS/SOA ‘ ,
Simulator Model ‘e
Interface DEVS/SOA Interface /; 4
Simulation Protocol T

\J\
N TS
\

XDEVS

<Hlesaription>

DEVSJIAVA

DEVS/SOA JAVA Java Based

1]

-
NET

DEVS/SOA .NET S N

DEVS/SOA

Coordinator -NET Based

-
-
4

Protocol DEVS/SOA \

Coordinator \

Y Interface Other Representation
N (E.g Matlab)
. N
. ~
£ LN
DEVS/SOA JAVA ‘ ‘ DEVS/SOA .NET
Figure 3. Application of the Standard

comprehends a Java sustained simulation environment to-
gether with a .NET based simulation framework. Since
both simulation platforms are based on web services, they
can be considered platform-independent simulation engines,
i.e., a standard communication between both simulation
platforms can be performed without any kind of middleware.
Furthermore, Figure 3 depicts the use of WSDL to provide
DEVS Simulator Service operation description as DEVS
Simulator Interface. The Simulator Interface specification
is independent of the specific technological platform used
to implement it. As a consecuence of Web Services imple-
mentation, Figure 3 remarks the usage of SOAP standard
technology as the communication protocol among simula-
tors and coordinators. Moreover, as seen on Figure 3, we
incorporated Extensible Markup Language (XML) object
data type mapping as message exchange format for DEVS/-
SOA Simulation protocol among simulators. To conclude
the analysis of the overall approach enclosed in the SISO
DEVS M&S standard [7], we center our focus towards
DEVS modeling interface pictured in Figure 3. Although
rigorously speaking, there is not a formal standard DEVS
model interface, in this work, we propose our DEVS/SOA
Modeling interface as a railway junction between different
simulation modeling frameworks. The DEVS/SOA Model
interface describes DEVS model operations encoded both in
Java for xXDEVS[4], DEVSJAVA[5], and Java based DEVS
models, and in .NET for DEVS.NET and .NET based
models.

B. Architecture

In this work, we developed an application of the standard
within the Service Oriented Architecture (SOA) providing
DEVS modeling and simulation services over the World
Wide Web. The major advantage of this architecture for
interoperability upon systems, is the unawareness of simula-
tors and coordinators platform among themselves and other
Web Service Clients. Furthermore, the DEVS/SOA simulator
provides a model interface and XML object mapping for

147

Web Service Client

SOAP SOAP

Server Server

DEVS/SOA

Coordinator Service
(Java Based)

SOAP

DEVS/SOA
Coordinator Service
(.NET Based)

SOAP

SOAP

Server Server Server Server Server

DEVS/SOA
Simulator Service

DEVS/SOA
Simulator Service Simulator Service
(Java Based) (Java Based) (.NET Based)

(JavaBased)

Figure 4. DEVS/SOA Distributed Architecture

DEVS/SOA DEVS/SOA

Simulator Service

DEVS/SOA
Simulator Service
(.NET Based)

DEVSJAVA
Model Impl.

Java Based
Model Impl.

DEVS.NET
Model Impl.

.NET Based

XDEVS
Model Impl.

Model Impl.

WEB SERVICE FRONTEND

Remote Atomic DEVSML Model(s) and
MiddleWare (SOAP)
Net-CentricInfraestructure |

MiddleWare (SOAP)
Net-CentricInfraestructure

DEVS/SOA Simulator Service I DEVS/SOA Simulator Service

Remote Coupled DEVSML Model(s)

(JavaBased) (.NET Based)

xDEVS DEVSJIAVA DEVS/* Model DEVS.NET DEVS/* Model
Model Model (Java Based) Model (.NET Based)
Figure 5. DEVS/SOA Architecture

message exchange that enables the integration of models
expressed in distinct DEVS M&S libraries (DEVSJAVA,
xDEVS, and Java based models in parallel with DEVS.NET
and .NET based models).

In a distributed simulation accomplished within DEVS/-
SOA simulation framework a DEVS coupled model is split
up into models simulators that run on multiple computers
communicating over a network. A DEVS/SOA coordina-
tor deals with simulators hosted anywhere over the web.
The main goal of this achievement is to connect DEVS
simulation elements in a transparent, open, and scalable
way. Ideally this arrangement is drastically more powerful
than many combinations of stand-alone computer simula-
tions primarly because frontend user applications may lead
distributed simulations without local access to modeling
components. DEVS/SOA distributed computing nature is
depicted at Figure 4.

The proposed DEVS/SOA architecture embraces essen-
tially three levels of interoperability upon DEVS M&S ele-
ments. The outer level comprehends the interaction among
the application layer and DEVS coordination service within
SOAP communication protocol and the Coordinator WSDL
description file. Beyond this, we encounter a similar inter-
operation level, intercommunication between DEVS coor-
dination service and DEVS simulation service. Again, we

apply SOAP protocol specification for exchanging structured
information between DEVS coordinators and simulators.
The operations offered by the Simulator service are written
in the Web Services Description Language. Even more
deeply across DEVS/SOA architecture we come upon a third
level of interoperability, the junction of a DEVS simulator
and the associate DEVS model. This union is bounded by
the DEVS/SOA modeling interface and messages between
DEVS models are expressed in XML. The basics of DE-
VS/SOA architecture is captured in Figure 5.

The top of the layered architecture is the application layer
that contains remote models specification in DEVSML[16].
These models encoded in XML language provide a detailed
remote characterization of a DEVS compound model. Figure
6 describes throughout DEVSML a simple Experimental
Frame (Generator-Transducer) - Processor (EFP) DEVS
model implementation. The root coupled element determines
the identification and host of the coupled model. This
host must provide a DEVS coordination service accordant
with our DEVS/SOA WSDL operations. The root coupled
element children may identify a DEVS atomic model, a
connection among DEVS models, input and outptu ports, or
in a recurrent manner, another DEVS coupled model. Each
atomic model item must denote a series of characteristics:
the name of the atomic model; the platform where the
model is able to perform; the class that implements the
model and must be instantiate; the host which determines
the localization of the server that provides the simulation
service accordant with our DEVS/SOA WSDL operations
and enjoys access to the model implementation class repos-
itory; and finally as internal elements, the model provides
input and output ports specification along with their class
type messages. Each connection element designates a link
between a model output port and a model input port.
The message types among connections need to be fully
compatible (involving different platforms), otherwise, the
overall simulation might fail.

However, as illustrated at Figure 5 the client application
requires a Web Service frontend to provide access to the
Coordination Service layer throughout the standard SOAP
protocol, in regard of software platforms. Assembled with
a Web Service framework, the client application acquires
the capacity to search over the World Wide Web for the
coordinator service hosted at a remote location stated at the
DEVSML root model. If the connection is established, the
web client application may activate the remote coordina-
tor by suppling a DEVSML based model description and
subsequently command the simulation accordant to specific
client parameters. As soon as the simulation culminates,
the client application receives in exchange a summarize
of the overall simulation performance. The aforementioned
operations are understood inside (Listing 1) the coordination
interface for the DEVS/SOA Coordinator in concordance
with the DEVS/SOA Coordinator Service WSDL.

<?xml version="1.0" encoding="UTF—8" 7>
<coupled name="efp” host="http://192.168.1.2:8080/axis2/services/Coordinator™
<coupled name="ef” platform="xdevs” class="Ef” host="http://...™>
<atomic name="gen” platform="xdevs” class="Generator” host="http: //...™>
<inport name="stop” class="Job"/>
<outport name="out” class="Job” />
</atomic>
<atomic name="tran” platform="xdevs” class="Transducer”
<inport name="solved” class="Job” />
<inport name="arrived” class="Job”/>
<outport name="out” class="Job” />
</atomic>
<inport name="in" class="Job" />
<outport name="out” cla "Job” />
<connection atomicFrom= portFrom="in" atomicTo="trans” portTo="solved” />
<connection atomicFrom="gen” portFrom="out” atomicTo="ef” portTo="out”/>
<connection portFrom="out” atomicTo="trans” portTo="arrived”/>
<connection atomicFrom="trans”
</coupled>
<atomic name="processor” platform="devs.net”
<inport name="in" class="Job” />
<outport name="out” class="Job”/>
</atomic>
<connection atomicFrom="ef” portFrom="out” atomicTo="processor” portTo="in"/>
<connection atomicFrom="processor” portFrom="out” atomicTo="ef” portTo="in"/>
</coupled>

host="http: //...">

atomicFrom="gen”
portFrom="out” atomicTo="gen” portTo="stop” />

class="Processor” host="http: //...">

Figure 6. ef-p DEVS/SOA model

Listing 1. DEVS/SOA Coordindator Interface

public interface Coordinator{
public void setModel(String XmlModel);
public String[] simulate(int numlterations);

}

Likewise, as pictured in Figure 5, the Coordinator service
layer assembled with a Web Service Frontend gains the
capacity to invoke DEVS simulation operations against the
Simulator Service layer. The communication is driven by
the standard SOAP protocol, once again independently of
software frameworks. Moreover, assuming that a coordinator
is already provided with the root DEVS model, the initial
coordination task comprehends parsing the DEVSML Doc-
ument searching for DEVS models and connections among
themselves. Each XML encoded model of the DEVSML
document supplies the coordinator with the associate remote
simulator location in order to enable a communication
among them. What’s more, the connections between mod-
els capacitates the coordinator to be aware of the whole
distributed circuit so as to carry out a proper execution.
Whenever the web linkage among layers is set up, the
coordinator proceeds to activate all simulators by feeding
them with the corresponding DEVSML model description.
Afterwards, the coordinator continues with the simulation
ignition within the DEVS/SOA simulation protocol. Techni-
cally, these procedures are expressed in the simulation inter-
face of DEVS/SOA illustrated at Listing 2 that stands for the
Web Service Description Language file of the DEVS/SOA
Simulator Service. These operations wrap DEVS simulation
protocol with the purpose of achieving a qualified DEVS
simulation.

Listing 2. DEVS/SOA Simulator Interface

public interface Simulator{
public void setModel(String XmlIModel):
void initialize (double t);
double getTN ();
void deltfcn (double t):
void lambda(double t):
String [] getOutput(String portName);
void receive(String portTo, String[] xmlMessage);

148

Furthermore, the DEVS/SOA simulator integrates a com-
mon DEVS model interface pictured at Listing 2 to support
multi-framework interoperability. This modeling interface
plus a customized adapter if needed allows the aggregation
of Java based models (xDEVS and DEVSJAVA) in paral-
lel with .NET based models (DEVS.NET). A noteworthy
achievement of our DEVS modeling common interface is the
presence of an embedded “translator”, a module in charge
of mapping incoming messages to XML and outcoming
messages the other way around.

SUSC . ;

public interface AtomicInterface{
void initialize ();
//DEVS time advanced function
double ta();

//DEVS internal transition function
void deltint ();
//DEVS external transition function

void deltext(double e);

//DEVS confluence funtion

void deltcon(double e);

//DEVS output function

void lambda ();

//maps the arriving XML formated Messages to object

//Messages and loads it in port ‘portTo’
~——void_receive (String-portTo,~String []-xmIMessage);
——w//maps_the_outcoming.Messages_at_port_‘portName’ to XML

String [] getOutput(String portName);

In distinction from DEVS mathematical formalism for dis-
crete event systems, our DEVS model interface exemplified
at Listing 2 gathers the basic function definitions of DEVS
system specification except for the external transition and
confluence function. Our definition of the external transition
and confluence function differs from the classic DEVS
resolution in the absence of a parameter as a representative
of an input message. That is just because the external
message is already loaded at some inport of the concrete
DEVS model (see function receive at Listing 2) and there
is no need to add reiterative parameters to any function
skeleton.

In other respects, the essential duty of the aforemen-
tioned DEVS multi-framework modeling interface translator
is binding XML data types along with message objects
between the DEVS/SOA simulator and the DEVS models in
regard of their platform. This procedure converts a DEVS
message (DEVS model input or output) built from class
objects into an XML based document (marshall), and vice
versa (unmarshall). Meanwhile, Figure 7 illustrates how the
XML message binding process affects the global simulation
process. Due to this XML serialization, DEVS models inputs
and outputs are sent within an standardized context through-
out the SOAP protocol. Nevertheless, the major drawback of
our architecture is the quest for a wrapper library that allows
storing and retrieving data in memory in any XML format,
without the need to implement a specific set of XML loading
and saving routines for the program’s class structure. Since
the purpose of our architecture is the interoperation among
different platforms, the XML data types mapping of each
framework must correlate, e.g. a String written whether in
Java or .NET needs to be mapped to the same XML Schema

DEVS/SOASimulator DEVS Model Adapter

N

DEVS/SOA
Simulator

DEVS/SOA
Simulator

Unmarshall

o

Figure 7. DEVS/SOA XML message Binding in the overall Simulation

Type xsd:string. In this work, we employed Java Architec-
ture for XML Binding (JAXB) that allows Java developers to
map Java classes to XML representations together with the
XmlSerializer, i.e. a NET Framework class that serializes
and deserializes objects into and from XML documents and
enables you to control how objects are encoded into XML.
Fortunately, Both Application Programming Interfaces (API)
that provide XML data type binding are highly compatible
for standard data types.

Whenever a distributed simulation is carried within DE-
VS/SOA, the coordinator is in charge of launching each
simulator sending them the XML model specified by DE-
VSML. Afterwards, the coordinator and simulators begin the
typical message passing process defined in DEVS. Figure
8 illustrates a use case of DEVS/SOA Simulation platform
from a global perspective. Firstly, the Coordinator Services
receives the whole XML model specification. Next, the Co-
ordinator extracts each DEVSML child model description,
transfers it to the associated simulator service, and stores
the connections among models. As soon as the Simulator
receives the model description, it creates an instance of the
identified DEVS model stored at an accessible repository in
order to begin the simulation. As highlighted in Figure 8, the
simulation ignition holds back until the Coordinator provides
the corresponding DEVSML model description for each
Simulator Service. Afterwards, the simulation functionality
basics are carried.

DEVS/SOA is a simulation framework founded on SOA
that offers DEVS-based simulations as Web Services, which
are based on standard technologies (SOAP and WSDL).
As a result of the employment of these standards, we
obtain formal documents that establish uniform Web Service
description of DEVS simulation and coordination service.
In fact, the simulation procedures translated to standard
description language for Web Services provides the essential
guidance for the final implementation of DEVS service
oriented simulators and coordinators internal behavior. Tech-
nically, as shown in Figure 9, we applied two different plat-
form dependant tools to generate the code skeletons of our
implementations: Axis2/Java core engine for Java based Web
Services and the Web Service Enhancement (WSE) tool for
.NET based Web Services. Although these procedures might

DEVS/SOA DEVS/SOA - -
Coordinator Simulator DEVS Model
T Repository
. (.
setRootXmIModel
setXmIModel

Instance of Model

setXmIModel

Instance of Model

setXmiModel

Instance of Model
Simulate

DEVS Simulation Protocol

Figure 8. DEVS/SOA Use Case

Service

Port [«

Binding style

Adress
Operation

PortType Transport

InputMessage OutputMessage Fault

Simple Element

String
Complex

=

Java Simulator Skeleton

—

-NET Simulator Skeleton

DEVS/SOA Java
Simulator Service

DEVS/SOA .NET
Simulator Service

Figure 9.
Interface

DEVS/SOA Simulator WSDL provides DEVS Simulator

seem to move against interoperability principles, both tools
depart from the same service description language document
and therefore the outcome performance is homogeneous.

C. Integration of non-DEVS models

In other respects, because of the abstract or unexplicit
nature of DEVS/SOA model interface, arises the possibility
of integration of non-DEVS models by the means of an
adapter, i.e. the Matlab simulation environment as a non-
DEVS model[15] can be applied over DEVS/SOA modeling
interface. Likewise, for example the interoperation with an
unrelated Web Service may be as a non-DEVS coupled
model[17].

150

IV. EXAMPLE

DEVS/SOA has been designed not only to allow us
interoperability, but also to improve the performance of
complex simulation models when they are distributed. Next,
we show such characteristics in the simulation of Unmanned
Aerial Vehicles (UAVs) in hostile environments.

Unmanned Aerial Vehicles are aircrafts without onboard
pilots that can be remotely controlled or fly autonomously
based on pre-programmed flight plans [18]. They can be
used in a wide variety of fields, both civil and military,
such as surveillance, reconnaissance, geophysical survey,
environmental and meteorological monitoring, aerial pho-
tography, and search-and-rescue tasks. In military missions
they work in dangerous environments, where it is vital to fly
along routes which keep the UAVs away from any type of
threat and prohibited zones. The best routes are those which
minimize the risk of destruction of the UAV and optimize
some planning criteria (such as flying time and path length)
while fulfilling all the physical constraints of the UAVs and
its environment, plus the restrictions imposed by the selected
mission.

In [19], authors present a novel path planner for this kind
of systems. Based on evolutionary computation, it is able
to find a list of 3D points, also called WayPoints (WPs),
which are used to compute (offline) a spline curve [20]
that constitutes the solution of the problem: the 3D path
of the UAV. Such path is validated against a simulator.
However, the planner must be able to also work online in
order to propose a new path during the mission of the UAV
when a pop-up (unknown threat) appears. In the current
research work, we study the performance of such simulator
when it is implemented using DEVS (in a classic manner)
and DEVS/SOA in an heterogeneous model. It means that
every component of the DEVS/SOA system is implemented
using different DEVS simulation platforms. In addition, we
integrate an online path-planner in the UAV model (i.e.,
the UAV model includes an embedded radar). Thus, when
a pop-up is detected, the UAV must compute a new path
to avoid the risk. It takes several seconds before the UAV
can modify its original trajectory, adding extra computational
effort at simulation time. However, such extra effort makes
the system more realistic and it can be reduced when the
simulation is distributed. To test interoperability between
several simulation engines we developed the same original
models in [19] using DEVSJAVA (Java) and DEVS.NET
(NET/C#). After that, we distributed the simulation over
several computers to check the performance of paralleliza-
tion.

Next, we describe our DEVS model and how it is dis-
tributed using DEVS/SOA. Finally we present the results.

A. DEVS/SOA model for UAVs simulation

Figure 10 depicts the DEVS simulation model. It is
formed by two coupled models: the UAV and the Air Defense

UAV targetToMissile - largetToMissile AD
192.168.1.2 targetToRadar »- largetToRadar 192.1664.3
targetToMissile
targeiToRadar DERZ;E?”
Missiles
Tracking
Radars
ervironm 1o |
Figure 10. DEVS root coupled model for UAVs simulation. Boxes are

models, arrows are couplings and labels are input and output port names.
Every atomic or coupled model can be placed at different computers.

Unit (ADU). We can include as many UAVs and ADUs as
needed, and all of them follows the structure shown in Figure
10.

On the one hand, at every integration step a UAV must
send to every ADU in the example some parameters to check
if a radar has detected the corresponding target or a missile
has hit upon it. Such parameters includes position, velocity,
and Euler angles. On the other hand the ADU must send
to every UAV some information regarding the state of the
missiles (if they have been exploded or not, for example).

When integrating the DEVS model into our DEVS/SOA
framework, the original root coupled model must be de-
scribed in terms of DEVSML to perform the distributed
simulation (see Section III-B). At this level, every atomic
model can be developed using any of the simulation plat-
forms supported by DEVS/SOA (DEVSJAVA, xDEVS, Mi-
croSim/Java or DEVS.NET are allowed). In our case we
are evaluating the distribution of several scenarios using
xDEVS, DEVSJAVA and DEVS.NET, as we show in our
case study. To prove the interoperability of DEVS/SOA we
are performing simulations of 3 UAVs (using DEVSJAVA,
xDEVS and DEVS.NET respectively) and several ADUs
(using xDEVS) depending on the mission under study.

We have set up a suite of experiments to analyze perfor-
mance aspects of DEVS/SOA for this particular application.
Three different scenarios are considered. In the Baseline
scenario all components (3 UAVs and several ADUs, de-
pending on the experiment) are simulated using xDEVS
in a single operating system. In the Local scenario, all
components are simulated using DEVS/SOA in a single
operating system, in such a way that each UAV is simulated
using xXDEVS, DEVSJAVA and DEVS.NET, respectively. In
the Heterogeneous configuration, there exist 3 computers,
one using a Linux OS and the other two under Windows
0.S. Every computer simulates one single UAV. On the other
hand, ADUs are spread among computers involved. In the
set of experiments shown, all the ADUs are configured as

pop-ups.

151

Next we show the configuration of the two evaluated ex-
amples. After that, we show the performance obtained when
the system is distributed using DEVS/SOA. We see that
distributed simulations outperform baseline simulations. In
addition, heterogeneous simulations reach the same results
in terms of mission success.

B. Experiments

We have configured two different examples to test our dis-
tributed simulations. Fig. 11 depicts these examples (called
A and B).

Every big blue dashed circles mark the maximum distance
of detection for each ADU, while the small red solid ones
enclose the zones where the Probability of Kill (Pk) is
greater than 0.

Every trajectory is labeled by its corresponding UAV
(UAV1, UAV2, and UAV3 in our case). The dashed trajec-
tory shows the original one computed by the offline path-
planner, whereas the continuous one shows the trajectory
computed in simulation time when the UAV’s embedded
radar detects a pop-up. Thus, each of the two examples in
Fig. 11 shows one of the simulations when all the UAVs
reach the Goal point.

In our experiments all the ADUs are configured as pop-
ups. In addition we have checked in our simulations that
no UAV survives when the embedded radar is switched off.
When activated, the simulator will compute an alternative
trajectory, as soon as the UAV’s embedded radar detects a
pop-up. In addition we have reduced the maximum range of
the embedded radar for Example B.

In Example A (Fig. 11), the embedded radar has been set
to its maximum range (50 Km). When one UAV detects
a pop-up, there exist a little corridor to escape from it.
The same happens in Example B (right side of Fig. 11),
where two No Flight Zones (NFZ) have been included
and represented as rectangular shaded zones. In Example
B the range of the embedded radar is not big enough
to escape from the pop-ups, so the percentage of success
is considerably reduced. Example B also includes a more
sofisticated trajectory, in presence of NFZs and where there
exist two WPs near of the pop-ups.

C. Results

Figure 12 depicts speed-ups with respect to the Baseline
scenario. On the other hand, Figure 12a) depicts speed-ups
when there are no pop-ups in both examples, i.e., positions
of all the ADUs are known at planning time. On the contrary,
Figure 12b) shows speed-ups when pop-ups are activated.
It shows that parallelization is specially useful when there
exist pop-ups, since every UAV must recompute its original
trajectory at simulation time.

First, we analyze results when pop-ups are acting as
regular ADUs. It should be note that in the Local con-
figuration every UAV can be placed in a separated thread

UAY Trajectory

300
x[Km]

Figure 11.
1.2 ETime(B) OTime(l) B Time(H)
1 -
=
5
T o8-
E
o
g
= 06
=
2
-
E
£ 04 4
]
0.2 +
o -
A B
a) Experiment (without PopUps)
14 ETime(B) OTime(l) B Time(H)
1.2
g1
=
@
s
p 08
£
-
g o065 |
-
]
g
- 04 ~
02 +
o -
A B
b) Experiment (with PopUps)

Figure 12. Results.

(due to distributed nature of DEVS/SOA). However, such
characteristic has been disabled in order to perform a fair
comparison. We can appreciate from Figure 12a) that the
worst configuration is given when DEVS/SOA is used in a
single machine (Local configuration). In particular, as Figure
12a) depicts, it is 16% slower than the Baseline configuration
in the case of Example A, and 18% in B (17% slower in
average). It is logical because, as it has been mentioned

152

UAY Trajectory

3
X [Km)

450

Eagle eye view of the Examples A (left) and B (right).

before, a lot of communication is needed between UAVs and
ADUs. DEVS/SOA is transforming every message from a
Platform Specific Model (PSM) to XML and vice versa and it
requires an extra computational effort. The best performance
is reached by the Heterogeneous configuration in all the
examples. In average, it is 20% faster than the Local
configuration and 3.30% faster than the Baseline scenario:
3% faster in Example A, and the same in B. Once again,
even although the system is distributed, the reason of having
a small speed-up with respect to the Baseline configuration
is the intensive communication between all the UAVs and
ADUs.

Next, we analyze results when pop-ups are activated. In
this case every UAV must compute an alternative route to
escape from the pop-ups when they are detected by the
UAV’s embedded radar. If every UAV detects one pop-up,
the distributed system will divide this extra simulation time
by three (in the worst case). Thus, summarizing the data
depicted in Figure 12b), we can conclude that the Local
configuration is still the slowest one (18.3% on average
when compared with the Baseline configuration). However,
in this case we can appreciate a good speed-up when the
Heterogeneous configuration is used: the simulator is 22%
faster in average: 21% for Example A, and 23% in C. Thus,
the DEVS/SOA simulator, when distributed among several
machines, is quite better than a classical DEVS simulation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described a distributed interoperable
DEVS simulator framework DEVS/SOA that deploys sim-
ulation and coordination services over the Internet taking
advantage of the Web capacity. We applied the service-
oriented architecture within the standards: WSDL for the
service description and SOAP for ground level protocol com-
munication between the application frontend, simulator and
coordinator. This framework is designed and implemented
in Java and .NET environments to embody interoperation
among DEVS models encoded on the widely-used Java
programming language and .NET native languages and due

to .NET’s special design, we are able to work with any type
of languages by the means of an intermmediate language.
Moreover, we implemented an XML data type binding for
message passing between simulators that maps objects to
XML(marshall) and vice versa(unmarshall). The renewed
design of DEVS/SOA is inspired on the recently proposed
interoperability standard for DEVS M&S. Finally, we illus-
trated a real simulation case study in the military field to
demonstrate the integration of models framed on distinct
DEVS M&S simulation environments. As an extension of
the work done, we are looking forward to add on our
approach the automatic generation of external Web Services
as coupled models [17] and to improve our DEVSML
specification language to embrace advanced behavior and
data type namespace to define messages between simulators.
Besides, as complementary work and a parallel task to
our distributed platform, our future work pursuits building
a DEVS models and experimental frame repository based
on ontologies such as the Web Ontology Language (OWL)
that is considered one of the fundamental technologies
underpinning the Semantic Web [21].

ACKNOWLEDGEMENT

We would like to thank Dr. Jestis M. Cruz and Dr. Boni-
facio Andrés-Toro at Universidad Complutense de Madrid,
Spain for their support. The contributions of authors José L.
Risco-Martin, Alejandro Moreno and Joaquin Aranda in this
paper are sustained by the Spanish Ministry of Education
and Science projects DPI2006-15661-C02-01 and DPI2006-
15661-C02-02, while Dr. Eva Besada-Portas is supported by
the Spanish post-doctoral grant EX-2007-0915.

REFERENCES

[1] S. H. Strogatz, “The end of insight,” What is Your Dangerous
Idea?, 2006.

[2] B. P. Zeigler, T. Kim, and H. Prachofer, Theory of Modeling

and Simulation: Integrating Discrete Event and Continuous

Complex Dynamic Systems. Academic Press, 2000.

[3] S. Mittal, J. L. Risco-Martin, and B. P. Zeigler, “DEVS/SOA:

A cross-platform framework for net-centric modeling and

simulation in DEVS unified process,” SIMULATION: Trans-

actions of SCS, vol. 85, no. 7, pp. 419-450, 2009.

[4] J. L. Risco-Martin and J. M. Cruz, “xDEVS: DEVS java APL,”

http://www.dacya.ucm.es/jlrisco.

[5] Arizona Center of Integrative M&S (ACIMS), “Arizona Cen-

ter of Integrative M&S (ACIMS),”

http://www.acims.arizona.edu, 2008.

[6] G. Wainer, “CD++: a toolkit to develop devs models,” Softw.

Pract. Exper., vol. 32, no. 13, pp. 1261-1306, 2002.

[7] B. P. Zeigler, S. Mittal, and X. Hu, “Towards a formal

standard for interoperability in M&S/System of Systems

integration,” GMU-AFCEA Symposium on Critical Issues in

C41, 2008.

153

(8]

(91

[10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

A. Uhrmacher and K. Gugler, “Distributed, parallel simulation
of multiple, deliberative agents,” in PADS, 2000, pp. 101-108.

Y. K. Cho, X. Hu, and B. P. Zeigler, “The RTDEVS/CORBA
environment for simulation-based design of distributed real-
time systems,” Simulation, vol. 79, pp. 197-210, 2003.

B. P. Zeigler, S. B. Hall, and H. S. Sarjoughian, “Exploiting
HLA and DEVS to promote interoperability and reuse in
lockheed’s corporate environment,” SIMULATION, vol. 73,
no. 5, pp. 288-295, 1999.

K. Al-Zoubi and G. Wainer, “Interfacing and coordination
for a devs simulation protocol standard,” IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time
Applications, 2008.

, “Using REST Web-Services Architecture for Dis-
tributed Simulation,” in PADS’09: Workshop on Parallel and
Distributed Simulation, vol. 0. Los Alamitos, CA, USA:
IEEE Computer Society, 2009, pp. 114-121.

A. Park and R. M. Fujimoto, “Aurora: An approach to high
throughput parallel simulation,” Principles of Advanced and
Distributed Simulation, 2006.

X. Chen, W. Cai, S. J. Turner, and Y. Wang, “Soar-dsgrid:
Service-oriented architecture for distributed simulation on the
grid,” Principles of Advanced and Distributed Simulation,
2006.

J. L. Risco-Martin, A. Moreno, J. M. Cruz, and J. Aranda,
“Interoperability between DEVS and non-DEVS models us-
ing DEVS/SOA,” Spring Simulation Multiconference, 2009.

S. Mittal, J. L. Risco-Martin, and B. P. Zeigler, “DEVSML.:
Automating DEVS execution over SOA towards transpar-
ent simulators,” in Special Session on DEVS Collaborative
Execution and Systems Modeling over SOA, DEVS Integra-
tive M&S Symposium DEVS’ 07, Spring Simulation Multi-
Conference, 2007.

C. Seo and B. P. Zeigler, “Automating the DEVS modeling
and simulation interface to web services,” Spring Simulation
Multiconference, 2009.

B. L. Stevens and E L. Lewis, Aircraft Control and
Simulation, 2nd ed. Wiley, 2004. [Online]. Available:
http://www.loc.gov/catdir/toc/onix03/91013413.html

J. M. Cruz, E. Besada-Portas, L. Torre-Cubillo, B. Andrés-
Toro, and J. A. Lépez-Orozco, “Evolutionary path planner for
UAVs in realistic environments,” in GECCO ’08: Proceedings
of the 10th annual conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2008, pp. 1477-
1484.

G. E. Farin, Curves and Surfaces for Computer-Aided Ge-
ometric Design: A Practical Code. Orlando, FL, USA:
Academic Press, Inc., 1996.

F. V. Harmelen and D. McGuinness. (2004, February) Owl
web ontology language overview. W3C. W3C recommenda-
tion. [Online]. Available: http://tibor.w3.org/TR/owl-features/

