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Abstract
In this paper, we present a formal and operational framework
for multiscale modeling and simulation. We focus on scale
transfer viewed as the coupling between two models of the
same system, one at the microscopic scale and the other at the
macroscopic scale. We consider that some parameters of the
macroscopic model are the result of microscopic processes
described in the microscopic model. The main idea is to use
an ”experimenter model” which performs experiments on the
microscopic model during the simulation and compute these
parameters in line. To formalize the experimental design of
the experimenter model, we define an experimental frame of
transfer based on Discret Event System Specification. As an
example, we present a multi scale model in epidemiology. We
specify it using our framework, and we implement and simu-
late it within the Virtual Laboratory Environment. Finally, we
discus some of the scale transfer issues and how we want to
use the developed framework to address them.

1. INTRODUCTION
1.1. Multiscale modelling and simulation

Multiscale modeling and simulation consists in the model-
ing of a single source system with several models, each one
considering a particular time and/or spatial resolution of the
source system [4]. The need for multiscale modeling comes
from issues related to the understanding of complex systems
dynamics, where the microscopic levels of a particular sys-
tem interact with the macroscopic levels and vis versa. For
example, in epidemiology we are interested in understanding
the role of humans and animals individual behaviors in the
spread of a disease. For disease like flu, for instance, one way
to study the influence of individual behaviors is to model and
to simulate an epidemiological system where individuals be-
have and spread the disease trough proximity contacts. One
of the difficulties in such an Individual Based Model (IBM)

remains in the size of the system. Indeed, the number of indi-
viduals implied in a disease spread can be huge and the time
and spatial resolution of behaviors (movements, contact dura-
tions, etc.) compared with the evolution of the disease within
the whole population can be very different. We can argue that
if we simulate all the individuals, then we have implicitly the
population. Unfortunately, even if we run models on more and
more powerful computers, the problem remains the same as
we are prone to add more and more individuals and complex
behaviors in models (the scalability issue). Furthermore, the
simulation duration of IBMs must be as short as possible to
use them in the never ended modeling cycle.

1.2. Related works in ecology and epidemiol-
ogy

A first approach commonly used in ecology and epidemi-
ology to consider the interactions between two scales, is to
parametrize macroscopic models using microscopic models
[7, 18]. In [15, 6] for example, the authors first define a model
at a lower scale [15], and then build a parametric meta-model
of this model which is used in a second model defined at
an upper scale [6]. Such parameterization can have a less
straightforward purposes like the determination of the level of
details required to reproduce specific functions of an ecosys-
tem [12]. Hence, several methods coming from other research
fields are already used in ecology, such as linear regression,
non-linear methods based on least square principle, or mean
field approximation, which are the ones used in the papers
quoted. As a closer example, in [2] an interesting hybrid epi-
demic model is built. The formalism changes from individual
based to equation based model during a simulation depending
of the size of the population to simulate which evolves along
the simulation.

1.3. Recursive simulation and experimental
frame for multiscale modelling

In agreement with [9], we think that complex systems
modeling, and more particularly ecological modeling, needs



new methodologies and tools. In this paper we want to cou-
ple models at different scales including up and down scal-
ing within simulations. Our work is inspired from [4] and
from discussions taking place within the Virtual Laboratory
Environment (VLE) development team1. Starting from these
works, we propose a general method for mutliscale simula-
tion based on recursive simulation [8] (see figure 1.3.).

Figure 1. Recursive simulation principle (adapted from [8]). Em-
bedded simulations (or sub-simulations) are launched while a base
simulation is running. Sub-simulations can then be used to compute
values useful for the base simulation.

To perform multiscale simulations, recursive simulation is
not sufficient. Indeed, the dichotomy between scales not only
implies to couple models with different time and space res-
olution. It also implies to exchange microscopic and macro-
scopic properties between models. To do that, we embed the
concept of experimental frame [19] within the recursive sim-
ulation method. Indeed, the experimental frame defines the
context of using a model (experimental design) and, at the
same time, the way the model is observed and synthesized
through observation variables. Then, as the recursive simula-
tion technique realizes the control of simulators by another
one, the sub-simulations can be embedded in an experimental
frame.

In this paper we propose a way of using recursive simula-
tion and experimental frame concepts for scale transfer and
we illustrate the effectiveness of the method by an example
in the field of epidemiology.

2. METHOD
2.1. Principle

A first step for multiscale modeling is to know how to link
one scale to another. The work presented here is limited to
this problem. Therefore, this method shows the coupling be-
tween two models defined at two different spatio-temporal
scales. Furthermore, we restrict our study to the case where
the first scale characterizes slow processes occurring at the

1Simple models using recursive simulations are available on VLE web
site: http://vle.univ-littoral.fr/fr/index.php/Simulation recursive

macroscopic level and the second scale characterizes fast pro-
cesses occurring at the microscopic level.

For the coupling of these two levels of study, we interpret
the interactions between the two levels in the following way:

• The processes described at the macroscopic level deter-
mine the context for the processes described at the mi-
croscopic level.

• Some properties viewed as simple functions at the
macroscopic level are the consequences of complex pro-
cesses occurring at the microscopic level

Considering these interactions, we use recursive simulation
to couple the models and perform the scale transfer. To do
this we will use the experimental frame concept developed
by Ziegler [19]. The experimental frame defines the use to be
done of the model in the experimental design and at the same
time the circumstances under which the source system is to
be observed.

Ziegler distinguishes two different views of the experimen-
tal frame which either can be viewed as ”a definition of the
type of data elements that will go into the database”, or as
”a system that interacts with the system of interest to ob-
tain the data of interest under specific conditions”. In this last
case, the frame is characterized by its implementation as a
measurement system or observer, and must contain three el-
ements: the generator, which generate input segments of the
system; the acceptor, which monitors experiment to see if the
desired experimental conditions are meet; and the transducer,
which observes and analyses the system output segments.
In [16], Traore and Muzy consider that these two views are
the representation of an experimental frame at two differ-
ent levels of specification. Here, we consider a simulation
which simulate the macroscopic models and another simu-
lation which simulate the microscopic models. These simu-
lations are independent (simulations times are totally discon-
nected) and the experimental frame is the link between them.
We need to define it at different levels of specification. We
will use the term ”experimental frame of transfer” to refer to
the frame viewed as a set of data and ”experimenter model”
to refer to the frame viewed as an active observer. In fact, the
experimenter model will evolve in the base simulation (where
the macroscopic model is simulated) and maintain the link
between the macroscopic level and the microscopic level by
triggering simulations of the microscopic model within the
experimental frame of transfer and update some values of the
macroscopic model (see figure 2).

2.2. The experimental frame of transfer and
the experimenter model

Traore and Muzy, in [16], propose a formal definition build
from Zeigler’s description of an experimental frame viewed

http://vle.univ-littoral.fr/fr/index.php/Simulation_recursive


Figure 2. Recursive simulation for scale-transfer

as an observer. Furthermore, they propose several levels of
specification for this experimental frame. In order to explain
how we use experimental frame concept for scale transfer, we
will adapt the definitions given in [16] and explain, for each
specification level the role it has in our work.

The reason why we must modify the frames’ definition
proposed by Traore and Muzy is that they designed it to be
computed in the same simulation as the model it frames,
meaning that in Traore and Muzy, frame ”experimenters” and
model simulators are indistinguishable from superior coordi-
nator that manages the simulation. For that reason, they share
the same simulation time and time base. In our work, the ex-
perimenter model and the microscopic model have to be sim-
ulated in different simulations managed by different coordi-
nators. In practice the experimenter model must be included
in the base simulation because some variables of the macro-
scopic model have to be evaluated at run time. As an answer
to this evaluation, sub-simulations can be triggered to feed the
base simulation with new values. Hence, two different time
base are necessary (see figures 1.3. and 3).

The lowest level of specification of the experimental frame
of transfer (which corresponds to ”frame Interface” in [16]),is
defined as a structure: 〈T1,T2, IM, IE ,OM,OE〉 where: T1 and
T2 are time bases; IM and OM are respectively the sets of in-
put and output variables of the model; IE and OE are respec-
tively the sets of input and output variables of the experimen-
tal frame. Here, the elements of this structure have specific
meanings. T1 and T2 are respectively the microscopic and
macroscopic simulations’ time bases. The IE set is the con-
text given by the macroscopic model. The IM set is the list of
initial conditions of the microscopic model. The OM set is the
list of outputs of the microscopic model for these conditions.
Finally, the OE set is the list of macroscopic level aggregated
variables representative of microscopic behaviours.

At an upper level of specification, we still are very
close from the ”frame behaviour” proposed by Traore and
Muzy. We define the experimental frame of transfer as
the structure: 〈T1,T2, IM, IE ,OM,OE ,ΩE ,ΩM,ΩC,SU〉 where
T1,T2, IM, IE ,OM,OE are the same as defined earlier, ΩE ⊂
T2× IE is the set of Timed possible inputs for the experimen-

Figure 3. Management of recursive simulations by the experi-
menter model through the experimental frame of transfer. The ex-
perimental frame of transfer (light gray) is embedded in the experi-
menter model (dark grey)

tal frame of transfer, ΩM ⊂ T1× IM×ℵ is the set of triplets:
iM ∈ IM the initial conditions, t ⊂ T1 the time segment to sim-
ulate ([initial time, simulation end duration]), and n∈ℵ the
number of replicas of the same experiment. ΩC ⊂ T ×OM is
the set of pairs time segments over the cross-product of OM
variables, telling when and what to observe during the sub-
simulations, and SU ⊂ T1× IM×OM is the summary mapping
of sub-simulations results.

Finally, the experimenter model, which corresponds to
the highest level of specification of the experimental frame
of transfer, is very different from the ”frame system” de-
scribed in Traore and Muzy and is defined as a particular
DEVS model. This DEVS model is specified by a parallel
DEVS model as follows: 〈T,X ,Y,S,δext ,δint ,δcon,λ, ta〉 (Zei-
gler [19]) and implements the experimental frame of transfer.
T corresponds to the macroscopic simulation time base T2, X
corresponds to the frame inputs set IE and Y to the frame out-
puts set OE . Then the realisation of the experimental design is
situated in the transition functions δext and δint . They are com-
posed of four functions Trig, Gen, Eval and Trans which are
used within the experimental frame of transfer structure (see
figure 3) and defined as follows:

• Trig : I2
E × T2 → {true, f alse} is the trigger condi-

tion function where we can test if sub-simulations are
needed, knowing the new value of the macroscopic state,
the value at the last estimation, and time spent between
both

• Gen : IE → ΩM is the generator function which gener-
ate the microscopic initial states from the macroscopic
context

• Eval : ΩM → SU is the evaluation function that com-
putes ωC ∈ ΩC from any ωM ∈ ΩM and computes su ∈
SU .



• Trans : SU → OE is the transducer function which uses
simulation results to calculate the value of the macro-
scopic variable to update

Figure 4. Experimenter model DEVS state machine: phases dy-
namics

The dynamics of the experimenter model is illustrated Fig-
ure 4, by a DEVS state machine diagram and formally de-
scribed as follows:

• T , the time base, corresponds to the macroscopic simu-
lation time base (T2 in the above text)

• S, the set of sequential states,

S = {(state, phase)|state ∈ state set and
phase ∈ phase set}

with:

state set = {(iold
E , iact

E ,oE)|(iold
E , iact

E ) ∈ I2
E and oE ∈ OE}

and
phase set = {INIT,OBS,EST}

Where iold
E and iact

E are used to store respectively the
macroscopic state at the last estimation and at the actual
time, and the phases OBS and EST stand for observation
phase and estimation phase.

• The set of admissible input events is: X = IE

• The set of admissible outputs events is: Y = OE

• The external transition is:

δext : IE × state set× phase set×T →
state set× phase set

∀phase 6= OBS

(iE ,state, phase, t) 7→ ({iold
E , iE ,oE}, phase)

for phase = OBS

If Trig(iE , iold
E , t) = true

(iE ,state,OBS, t) 7→
({iE , iE ,Trans(Eval(Gen(iE)))},EST )

Else

(iE ,state,OBS, t) 7→ ({iold
E , iE ,oE},OBS)

• The time advance function is:

ta : phase set→ℜ
+
0 ∪∞

∀phase 6= OBS, phase 7→ 0

OBS 7→ T0

where T0 is the maximum period without control.

• The internal transition is:

δint : state set× phase set→ state set× phase set

(state, INIT ) 7→
({iinit

E , iinit
E ,Trans(Eval(Gen(iact

E )))},EST )

∀state,(state,EST ) 7→ (state,OBS)

if Trig(iold
E , iact

E , ta) = true

(state,OBS) 7→
({iact

E , iact
E ,Trans(Eval(Gen(iact

E )))},EST )

else
(state,OBS) 7→ (state,OBS)

Where iinit
E is the initial state of the coupled model given

at macroscopic scale.

• The output function is:

λ : state set× phase set→ OE

∀phase 6= EST,(state, phase) 7→ /0

({iE ,oE},EST ) 7→ {oE}

• The confluent transition is:

δcon = δint ◦δext

With this formal definition of the experimenter model, we
specify how recursive simulations are performed by the ex-
perimenter model using the experimental frame of transfer. In
the next section, we illustrate the effectiveness of the method
through an example in epidemiology.



3. APPLICATION
Our application consists in the coupling of two epidemio-

logical models. The microscopic model is defined at the indi-
vidual level and the macroscopic model is defined at the pop-
ulation level. We call them the IBM model (Individual Based
Model) and the SIR model (Susceptible, Infectious and Re-
covered) respectively. Originally, the aim of this coupling is
to measure the impact of different individual behaviors on
the global dynamic of the population. In this work, we do not
insist on such a study rather than on the method we use to
achieve the modeling and simulation of the scale transfer.

3.1. Macroscopic model: SIR
The SIR model is formally described by the following sys-

tem of differential equations defining the dynamics of three
state’s variables (equations 1, 2 and 3).

dS
dt

= −βIS (1)

dI
dt

= βIS− γI (2)

dR
dt

= γI (3)

Where:

• S is density of individuals susceptible to infection.

• I is the density of infectious individuals.

• R is the density of recovered (or removed).

• β is a constant parameter reflecting the combined effect
of all the processes affecting the transmission rate.

• γ is the recovering rate.

The SIR model is one of the simplest model used in epi-
demiology. It has been widely developed and is still of a
high interest of study and use in more complex forms [3].
In this model, the number of individuals is stationary. The
individuals are supposed to be uniformly distributed and to
move and interact within a continuous toroidal space. Let
c and t be respectively arbitrary surface unit and time unit.
Then the unit of S, I and R is individual.c−1, the unit of β is
individual−1.c.t−1, and the unit of γ is t−1.

3.2. Microscopic model: IBM
The IBM is specified within the DEVS formalism [19] and

associated extension as proposed by [5]. It is composed of:

• An explicit space (a lattice of cells) formalized as a Cell-
DEVS [17]

Table 1. scale transfer summary
proprieties IBM scale SIR model scale
time unit tu1 tu2

simulated duration t1 t2 (with t1 < t2)
space unit c c
space size a unde f ined

population density d d

• A set of individuals each one formalized as an atomic
DEVS model

• A model of individual movements on the space formal-
ized as a DS-DEVS [1].

We invite the reeder to refer to the literature we cite for
the definition of space and movement. Due to a lack of space
we will not present here the formal definition of individuals
DEVS models but we can give its main features. The state
of an individual model contains an ”infection state” (S, I or
R), an infectious period (corresponding to the time spent in
the infectious state ”I”, before switching to ”R”) and an in-
dividual time step. Its dynamics consists in moving at each
time step and to change its infectious state. Firstly, the infec-
tious state is switched from ”S” to ”I” (with a fixed proba-
bility ”infection probability”) if it is on the same cell as an
individual of state ”I”. Then, it is switched from ”I” to ”R” if
it has been infected since the duration of its infectious period.
The initial conditions are defined as the number of suscepti-
ble, infected and recovered individuals. At initialisation, the
individuals are randomly distributed over the space.

3.3. Coupling macro and micro levels
In order to illustrate the method, we choose a simple, but

expressive enough, scale transfer. To perform the scale trans-
fer, we consider the parameter β of the SIR model as a vari-
able computed at run time with the IBM. To do that, the IBM
is simulated according to an experimental frame described
in the experimenter model (see section 2.). The IBM has the
same density d = nbindividuals

sur f ace as the SIR model but the space
considered in the SIR model is not represented when the IBM
is simulated on an area a expressed in the unit cell (”c”). Dif-
ferent time units are used for both models. Table 1 summa-
rizes the scale transfer to perform.

We give here the complete specification of the experi-
menter model which perform this computation.

• IE = ℜ
+
0

3, corresponding to values of the S, I and R state
variables of the SIR model, expressed in individuals.c−1

• T1 = ℜ
+
0 ∪∞, the IBM time base expressed in tu1

• T2 = ℜ
+
0 ∪∞, the SIR model time base expressed in tu2



• OE = ℜ+
∗ : oE ∈ OE corresponds to the value of

the variable β of the SIR model, expressed in
individuals−1.tu−1

2

• IM = ℜ
+
0

3: iM ∈ IM corresponds to initial values of the S,
I and R variables of the IBM, expressed in individuals

• OM = ℜ
+
0

3: oM ∈ OM corresponds to values of the
S, I and R state variables of the IBM, expressed in
indivuduals

• ΩM = {([0, t1], IBM init,N)|IBM init ∈ IM and N ∈ℵ}:
ωM ∈ΩM corresponds to N simulations of same duration
t1 tu1, with the same initial conditions IBM init

• ΩC = {(t, IBM state)|t ∈ [|0, t1|] and IBM state ∈ OM}

• SU = {(t, iM,oM)|t ∈ [|0, t1|], iM ∈ IM and oM ∈ OM}

• The Trig, Gen, Eval and the Trans functions are defined
as follows:

Trig : I2
E ×T → true, f alse

{(sold ,sact)|sold− sact > ∆Smax} 7→ true

{(sold ,sact)|sold− sact ≤ ∆Smax} 7→ f alse

Gen : IE →ΩM

(s, i,r) 7→ ([0, t1],s×a, i×a,r×a,N)

Eval : ΩM → SU

ωM 7→ sim res

Trans : SU → OE

su ∈ SU 7→ − tu1

tu2
× a

N

k=N

∑
k=1

1
īk× s̄k

× ∆sk

t1

Where:

• sim res are the simulation results obtained from imple-
mented DEVS abstract simulators (see subsection 3.4.)
and organized as summary results.

• x̄k stands for the mean number of individuals in state x
over the duration of the sub-simulation ([0, t1]).

• ∆sk stands for the difference of the number of suscepti-
ble individuals between the beginning and the end of the
sub-simulation k

• sold and sact correspond to values stored in the exper-
imenter model state (see section 2.) and stand respec-
tively for the density of susceptible individuals in the
base simulation, at the last estimation time and at the
actual time

• The other notations are those described above in the
experimenter model formal definition and in the scale
transfer summary table (see table 1)

In the two following sections we present our implementa-
tion of this model and then some simulations of the coupled
model showing the values of the parameters we used.

3.4. Implementation
In this work, we have implemented all our models in a

DEVS framework. To do so we implemented the SIR inte-
grator as a Quantized State System [11] integrator. The ex-
perimenter model is a classical DEVS model. The complete
implementation is realized within the Virtual Laboratory En-
vironment (VLE) [13], a DEVS based set of tools and appli-
cation programming interfaces for multi-modeling and simu-
lation of complex systems. VLE proposes an XML represen-
tation for experimental frames structures which can be em-
bedded in the state of a model. Moreover, issue of using re-
cursive simulation for scale transfer were addressed within
the VLE development team. Thus, the VLE environment al-
lows recursive simulations, meaning that a DEVS simulator
can run stand alone simulations with the VLE kernel. Thus,
the experimenter model is a DEVS atomic model with two
particularities. Firstly, it contains in its state the experimental
frame of transfer coded with the VLE XML library. Secondly,
it is able to launch another VLE simulation and to get back
the associated simulation results.

Staying in a ”DEVS world” and using VLE facilitate the
implementation of our models. One very important feature of
VLE is the possibility to distribute simulations defined in an
experimental frame on several processors or computers. It is
of the most importance in our case, because several simula-
tions of the microscopic model are required to perform the
experimental frame of transfer.

3.5. Simulation
We perform two simulations with two different individual

behaviours for the IBM and observed the consequences at the
macroscopic level (the SIR model).

We use the same set of parameters for both simulations
except for the time step of individuals in the IBM that controls
individuals’ speed. Table 2 presents the values we used for all
the parameters.

The simulation’s curves of the two graphics of figure 5 are
classical for SIR models. At the beginning of the simulation,
there are many susceptible individuals that can be infected



Table 2. Parameters of models
parameter value 2

tu1 1 t
t1 20 t
a 80×80 c

infection probability 0.5
individual’s time step uniform distribution

between [0.8, 1] t (sim 1)
between [0.5, 0.7] t (sim 2)

mean infectious period 150 t
tu2 5 t
t2 150 t
γ 0.0033 t−1

d 0.015625 individuals.c−1

nb recursive simulations 40
∆Smax 15 individuals.c−1

T0 5 t

by infectious individuals. Hence, the number of infected in-
dividuals rises at the same time as the number of susceptible
individuals decreases. Then, at a point the number of suscep-
tible individuals to infect becoming too small, the recovering
becomes higher than the force of infection and the number of
infectious individuals start decreasing. The number of recov-
ered individuals always rises while the infected individuals
are recovering.

The interest of taking into account microscopic processes
in similar models has already been discussed in the literature
([14],[18],[10]) and is not the question we want to address
here. We rather want to illustrate that the dynamics of the
coupled model can be parametrized at a microscopic scale.
Therefore, the curves of the two charts have similar shapes
and one can notice easily that if one changes the value of
a parameter in the microscopic model (the speed of the in-
dividuals), the behaviour of the coupled model changes. In
the simulation with slower individuals (top chart) the whole
population has been infected after 25 time units (number of
susceptible individuals reaches 0), and in the simulation with
faster individuals (bottom chart), the whole population has
been infected after only 15 time units.

4. DISCUSSION
In our application, we use a scale invariance (the popula-

tion density) to link processes at lower scale with processes
at upper scale. Anyway, several questions raise here. First,
the hypothesis we make choosing this scale invariance can be
strong. For instance in our example, it is a strong hypothe-
sis to consider that the density is the same in any place of
the macroscopic model. However, it is the hypothesis that al-
lows us computing the value of β with the IBM. Secondly,
up-scaling and down-scaling issues are not resolved.
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Figure 5. Simulation results. The charts present the evolution of
the S, I and R, variables of the macroscopic model in the coupled
simulations. The top chart shows the results of simulation 1 (with
slower individuals) and the bottom chart shows the results of simu-
lation 2 (with faster individuals).

The transfer from macro to micro seems to be the most
problematic. We can consider it starting from our example.
An epidemic starts from one place and then spreads over the
whole space. Hence, the more it spreads, the more the in-
fectious individuals are surrounded by other infectious indi-
viduals and the less they will individually infect susceptible
individuals. Therefore, the IBM property of spatial autocor-
relation is important. Unfortunately, all spatial information is
lost during the transfer to the SIR model which does not have
any space representation. For that reason we have to randomly
distribute the individuals over the space at each simulation of
the IBM. It means that at the level of the coupled model we
loose the spatial autocorrelation property, which introduces
a bias in our simulation. More generally, down-scaling asks
to generate a distributed initial state at the microscopic scale
from aggregated variables. We think that for many models,
an intermediary statistical model can be necessary to capture
this distribution and predict its evolution. In our application,
this model could be for instance a statistic on the spatial dis-
tribution of the infected individuals over the space.

The transfer from micro to macro seems to be easier. On
one hand, it is important and sensitive to choose the right ob-
servations and the right expressions to be used by the trans-
ducer to compute the new aggregated variables. But on the
other hand we can use all previous work already done in sam-

2c and t are respectively surface and time arbitrary units (”c” corresponds
to the surface of one cell of the IBM space).



pling methods and parameter estimation in our field of inter-
est. For our application for instance, we use a simple method
to compute β because we did not want to address epidemi-
ological questions here, but methods have already been de-
veloped and discussed to link population variables (such as
β and γ) to some indicators measured in population samples,
such as the mean age of infection[3, 10].

Another issue in up-scaling is to evaluate the sub-
simulations’ durations. The aim of up scaling is to capture the
behaviour of the system in a given context, hence it is neces-
sary: either to study the microscopic model to know a priori
the duration of the sub-simulations (solution adopted here),
or to add a control function in the experimenter model, which
would limit sub-simulations’ duration according to system’s
evolution. The coupling coherence is then insured by both
the trigger function which tells when to compute aggregated
variables, and this control function which tells when the ob-
servations at the microscopic scale are valuable or not.

Thus our future work in scale transfer, apart from up-
scaling and down-scaling issues, will deal with estimating the
sensitivity of the experimenter model definition.

5. CONCLUSION
The aim of this paper was to explore the original idea of us-

ing recursive simulation for scale transfer in multiscale mod-
eling. To do that, we have built a formal framework for recur-
sive simulation, we have shown how it can be used for scale
transfer, and how to implement it in an example. The objec-
tive was not to enrich scale transfer theory, but to develop an
operational framework allowing to build multi-scale models.

The formal framework we propose for recursive simula-
tion comes from previous work in modeling and simulation,
mainly the Experimental Frame concept and Discrete Event
System Specification formalism. Our researches on this sub-
ject are not limited to the question of scale transfer but con-
sider more generally the use of recursive simulation for other
issues such as anticipation or optimisation for instance. Using
this framework for scale transfer is a first step and still raises a
lot of questions as mentioned in our ”discussion” part. How-
ever, our definition of an ”experimenter model” is destined to
be independent of scale transfer issues.
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