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Abstract

Based on multiDEVS formalism, we introduce multi-
PDEVS, a parallel and non-modular formalism for dis-
crete event system specification. This formalism pro-
vides combined advantages of PDEVS and multiDEVS
approaches, such as excellent simulation capabilities
for simultaneously scheduled events, and components
able to influence at each other using exclusively their
state transitions. We next show the soundness of the
formalism by giving a construction showing that any
multiPDEVS model is equivalent to a PDEVS atomic
model. We then present the simulation procedure as-
sociated, usually called abstract simulator. As a well-
adapted formalism to express cellular automata, we fi-
nally propose to compare an implementation of mul-
tiPDEVS formalism with a more classical Cell-DEVS
implementation through a fire spread application.

Index terms— System specification, PDEVS, dis-
crete event simulation, multicomponent, multiDEVS,
non-modular systems.

1 Introduction

An important concept of general system theory is that
of decomposition, which allows a system to be broken
down into smaller sub-systems to tackle its complex-
ity, following a top-down approach. Conversely, in-
teracting components may be coupled together result-
ing in a larger system following a bottom-up approach
(Vangheluwe, 2008).

Zeigler et al. (2000) introduced the Theory of Mod-
eling and Simulation (TMS), based on general system
theory. Besides a framework which offers a precise
description of the various entities involved in the mod-
eling and simulation process, TMS provides a spec-
ification language for the modelling step called Dis-

crete Event System Specification commonly known as
DEVS. DEVS handles well modular and non-modular
composition. With DEVS, modular systems interacts
through I/O ports, whereas non-modular ones influ-
ences each other directly. While the former yields
higher level of specification since it allows hierarchical
construction, the latter remains interesting when mod-
elling complex systems from bottom-up.

In order to facilitate even more the modeling pro-
cess TMS has saw emergence of multiple DEVS based
formalism. Most of them have been established for a
modular and hierarchical approach, such as FD-DEVS
for model with finite state space (Hwang and Zeigler,
2009), Cell-DEVS for cellular automata (Wainer and
Giambiasi, 2001), RT-DEVS for real-time modelling
(Cho and Kim, 1998), ST-DEVS for stochastic mod-
elling (Kofman and Castro, 2006). For non-modular
approach, B.P. Zeigler introduced another DEVS based
formalism, named multiDEVS (Zeigler et al., 2000).

Despite good extensibility properties, classic DEVS
formalism has its own limitations. As with all other
event scheduling approaches, it is up to the modeler
to understand interactions between models and man-
age collisions that can occurs between events. Conse-
quently, the behavior of the model can easily deviate
from the expected one if such collisions are not prop-
erly managed (Chow and Zeigler, 1994). This issue
prompted A.C.-H. Chow to propose PDEVS, which
includes entities dedicated to event collision handling,
but only for the modular approach.

In this context, we propose a new formalism bring-
ing effective management of event conflicts as was
initially proposed within PDEVS, combined with the
multiDEVS modeling approach. We propose a con-
struction of equivalence with the PDEVS formalism
and provide the associated abstract simulator. We call
this formalism multiPDEVS.
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multiPDEVS was initially created for a specific
work, where an existing set of PDEVS models had to
be coupled with non-modular approach. However, this
paper is fully dedicated to the formalism itself, and a
simple example to help each knowledge level, from be-
ginner to the expert in DEVS formalisms. This formal-
ism is well adapted to problem classes similar to cellu-
lar automata (Al-Habashna and Wainer, 2016; Wainer
and Castro, 2010), and could be used in problems such
as circulation management, robot path planning, physi-
cal propagation or crowd modeling. Unlike specialized
formalisms such as Cell-DEVS (Wainer and Giambi-
asi, 2001) where functions and structures are integrated
to facilitate the specification process (e.g. the delay
function of Cell-DEVS formalism), multiPDEVS does
not integrate such specificities, which means that mul-
tiPDEVS is intended to be more generic and could be
adapted to other classes of problems.

The next section gives a review of the PDEVS and
multiDEVS formalisms where limitations and advan-
tages of such formalisms are discussed. Section 2
presents recent applications of the multicomponent ap-
proach. Then, a third section gives a detailed descrip-
tion of the multiPDEVS formalism. Section 4 de-
scribes an example to illustrate the use of the formal-
ism. Section 5 gives a clear overview of pros and cons
of multiPDEVS from a modelling perspective, but also
from a simulation perspective. The last section gives
conclusions and perspectives.

2 Related works

As far as we know, there are few works which explic-
itly use the multiDEVS formalism despite decades of
existence (Zeigler et al., 2000).

We can cite Innocenti et al. (2004) and Muzy et al.
(2003) where the non-modular multicomponent is ex-
plicitly used. Based on multiDTSS (multicomponent
Discrete Time System Specification) (Zeigler et al.,
2000), the authors extend this formalism with the Ac-
tive function (AmultiDTSS) to focus on activated cells
of cellular forest fire propagation models in order to
increase simulation performances. They agree that a
non-modular multicomponent based approach helps to
reduce modeling and simulation complexity for cellu-
lar systems compared to a conventional modular ap-
proach as proposed by the DEVS formalism. Indeed,
the feature of influencer/influencee offered by the mul-
ticomponent approach allow to avoid many messages
exchanges, which permit to increase the simulation
speed.

We can observe an equivalent message reduction

principle within the flattening process of DEVS mod-
els where simulation speed improvement have been
studied (Bae et al., 2016; Jafer and Wainer, 2009;
Zacharewicz et al., 2010). However, the flattening pro-
cess must to be clearly distinguished from multicom-
ponent modeling. The flattening process of PDEVS
model can be considered as a modelling transforma-
tion, where multicomponent approach must be con-
sidered as a modelling process. As given by Chen
and Vangheluwe (2010), the flattening of DEVS model
consist of two steps: direct connection step where the
coupled model is transformed to a coupled model of
depth one, and flattening step where the coupled model
of depth one is transformed in an atomic model, for
the sole purpose of improving simulation performance.
As we will see in details subsequently, multiPDEVS is
dedicated to non-modular modelling process.

As introduced in the previous section, we believe
that the multiDEVS formalism as initially proposed
does not allow proper management of conflicts. Re-
cent works of Shiginah and Zeigler (2011) confirms
our idea that the multicomponent approach is an inter-
esting modeling approach but somewhat neglected due
to lack of efficient conflict management system. The
authors offer a new specification for cellular DEVS
models to increase performances of cell space simu-
lations (Shiginah and Zeigler, 2011). As a perspective,
the authors recall an alternative consisting in the modi-
fication of multiDEVS, such that it becomes equivalent
to the PDEVS formalism.

In this section, we make a review of necessary back-
ground, namely multiDEVS formalism and PDEVS
formalism as introduced by Zeigler et al. (2000). We
also briefly introduce the new version of CellSpace
DEVS formalism as proposed by Shiginah and Zeigler
(2011) to give the opportunity to the reader to under-
stand the advantages of both formalisms.

2.1 The original multicomponent DEVS for-
malism

There are two types of DEVS models, atomic and cou-
pled. An atomic model describes the behavior of a sys-
tem, while a coupled model describes a system as a
network of components coupled together. These mod-
els are in the modular form, which means their in-
teractions are restricted to happen through identified
ports whose connection is pre-established. The mul-
tiDEVS formalism, which is based on classic DEVS,
introduce a non-modular way to couple components to-
gether where components can interact with each other
by accessing and influence other components states di-
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rectly via state transition functions. As an illustration,
we can take the cellular automaton example as pro-
posed by Muzy et al. (2003):

In a non-modular cellular automaton, simple neigh-
boring rules can be implemented for every cell as: If
my neighboring cell is alive, then I become alive. In
a modular cellular automaton, the specification is dif-
ferent. It would be: If the message received from my
neighboring cell indicates that it is alive, then I be-
come alive.

For readers already acquainted with classic DEVS
mechanism (but not necessarily with multicomponent
approach), we should warn that the multiDEVS for-
malism can look forbidding at a first look.

In a multicomponent system, a component has its
own set of states and state transition functions. Each
component also has a set of influencers components
from which it may be influenced and a set of influ-
encees that it may influence through its state transi-
tion functions. Those interacting components form the
overall system. An input to the system may influence
all components and each component may contribute to
the output of the system. Components are not consid-
ered stand-alone system specifications since they are
devoid of an input and output interface.

In the hierarchy of system specifications, the mul-
ticomponent system specification lies in a lower level
than a modular coupled network of systems such as
a DEVS coupled model. Although both specifica-
tions allows the composition of interacting compo-
nents to form a new system, components in the for-
mer are coupled non-modularly since they influence
each other directly while in a coupled network of sys-
tems, components modularly interacts only through
their I/O interfaces. If a modular approach is con-
sidered a more abstract level of specification, partic-
ular models of systems may be more suitable to be de-
scribed in a non-modular way. Systems such as cellu-
lar automata, individual-based models or some kinds
of multi-agent systems environments (cellular models)
might be good examples. In contrast, systems with
structural constraints that may be encountered in sys-
tems engineering will be best modelled using a mod-
ular compositional approach. We should emphasize
that both approaches may exist within the same mod-
elled system. Indeed, a multicomponent DEVS sys-
tem can be coupled together with other DEVS mod-
els. Another advantage using multicomponent DEVS
is that since components do not interacts through I/O
interfaces, the implementation cost of message routing
is reduced leading to better performances (Bae et al.,
2016; Jafer and Wainer, 2009).

multiComp

port i

port j

port k

Comp A
influencers: A, B
influencees: A, B, C

influencers: A, B
influencees: B, C

Comp B

influencers: A, B, C
influencees: C

Comp C

Figure 1: A multiDEVS model: components can inter-
act through state transition functions.

Figure 1 illustrates this principle with a simple case
using three components: CompA,CompB,CompC. In
this example, CompA, CompB and CompC will have
the opportunity to directly change the state of CompC
through its own state transition functions (CompA,
CompB, CompC are considered as the set of influ-
encers of CompC). Notice that there is no reciprocity
between influencers and influencees. That means it is
essential to make the distinction between them. Let’s
consider the relation between CompA and CompB
(Figure 1). CompA declares CompB as an influencer
whereas CompB do not mention CompA as one of
these possible influencees. This means that CompA can
consult CompB states to take decisions, but CompB is
not able to directly change the state of CompA. Note
that components could have direct interactions with in-
terfaces of the system (port i, port j, port k) through
specific functions (see δext and λ in following para-
graph).

A multicomponent DEVS is a structure:

multiDEV S = (X ,Y,D,{Md},Select)

where X and Y are the input and output event sets such
as:

X = {(p,v) | p ∈ IPorts,v ∈ Xp}
Y = {(p,v) | p ∈ OPorts,v ∈ Yp}

with Xp the set of all possible values for the input port
p and Yp the set of all possible values for the output
port p.

D is the set of component references and Select is a
tie-breaking function employed to arbitrate in case of
simultaneous events:

Select : 2D→ D.

For each d ∈ D, component Md is defined by

Md = (Sd , Id ,Ed ,δext,d ,δint,d ,λd , tad)

where Sd is the set of sequential states of d, Id ⊆ D is
the set of components influencing d, Ed ⊆ D is the set
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of influenced components by d. A pair (s,e) represents
a total state that includes e the time elapsed since the
last transition and Qd is the set of total states:

Qd = {(s,ed) | s ∈ Sd ,ed ∈ R+
0 ,0≤ e≤ ta(s)}.

Each component d ∈ D of a multiDEVS schedule the
time of its next internal event based on total states of
its influencers using the time advance function:

tad : ×
i∈Id

Qi→ R+
0 ∪{∞}.

When an internal event occurs in one of the compo-
nents, state changes occurs through the internal tran-
sition function that takes the total state set of the in-
fluencers and maps them into new total states for the
influencees:

δint,d : ×
i∈Id

Qi→ ×
j∈Ed

Q j.

That means that an internal event occurring in d is able
to change states of other components and may result in
rescheduling their events. If this behavior is not desired
because a component should only be allowed to change
its own state, then Ed should be defined as a unit set
whose unique element is d.

Eventually, output events may be generated for the
multiDEVS through the output function:

λd : ×
i∈Id

Qi→ Y .

The output of the multiDEVS is defined by the output
event of the component selected over imminent com-
ponents. When events in different components are im-
minent, the Select function is used to arbitrate among
them. External events at the multiDEVS’s input inter-
face can be handled by any of the external state transi-
tion function δext,d of the component d:

δext,d : ×
i∈Id

Qi×X → ×
j∈Ed

Q j.

However, a component may not react to external inputs
if its external state transition function is not defined
and, similarly, λd can be left undefined if the compo-
nent is not expected to produce output events.

As Chow and Zeigler (1994) stated, when a DEVS
model is constructed by coupling components together,
such model behavior may deviate from the expected
one since multiple state transitions can happen at the
same simulation time. Two kind of such transition col-
lisions are distinguished:

• collisions, which occur when a scheduled internal
event overlaps with one or more external events;

• and simultaneous events, which occur when sev-
eral external events occur at the same time.

The Classic DEVS and multicomponent DEVS so-
lutions to transition collisions are not satisfactory since
the behavior of a coupled model is established through
the tie-breaker Select function. Concerning collisions
as defined above, the priority of internal versus external
events depends on the priority imposed by the Select
function over imminent components (components with
simultaneous scheduled internal events). Among those
imminent components, the internal event is always pre-
ferred to the external ones for the first favored compo-
nent. For the remaining components, external events
might occur before the internal one since the output
event of a first activated component always take over
the internal event of another imminent component. Re-
garding simultaneous events, the order at which one
arrive is also a result of the priority given by Select.
For the same simulation time, the external transition
is sequentially activated each time an external event
arrives. Consequently, if a state depends on two ex-
ternal events, the modeler must consider a transitory
state. DEVS imposed serialization solution to transi-
tion collisions we just described is a weakness because
it can be extremely difficult for the modeler to choose
the sequence of internal events corresponding to the
overall expected behavior of the model, especially if
there is a lot of mutually influencing components. Fur-
thermore, it prevents taking advantage of event simul-
taneity by parallelizing their process. For those rea-
sons, Chow and Zeigler (1994) introduced the Paral-
lel DEVS (PDEVS) specification which facilitate han-
dling both kind of transition collisions.

2.2 Parallel DEVS

In contrast to the classical DEVS formalism, the par-
allel form, namely PDEVS (Chow and Zeigler, 1994),
allows the modeler to properly handle collisions and
simultaneous events at the component level. PDEVS
makes several changes to the structures of atomic mod-
els and coupled models, as well as the abstract simula-
tors. A demonstration that PDEVS preserves the clo-
sure under coupling property is given in Chow and Zei-
gler (1994) by constructing the resultant of a coupled
model as a well-defined PDEVS atomic model.

In order to provide a solution to transition collisions
that might occur during a simulation (cf. section 2.1),
PDEVS suggest the following structure for an atomic
model:

PDEV S = (X ,Y,S,δint ,δext ,δcon,λ , ta)
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where X and Y are the input and output event sets, and
S is the set of sequential states as defined in the mul-
tiDEVS specification. The pair (s,e) form a total state
where e represent the time elapsed since the last tran-
sition and Q is the set of total states:

Q = {(s,e) | s ∈ S,e ∈ R+
0 ,0≤ e≤ ta(s)}.

The time advance function ta(s) determines the in-
terval during which the current state remains valid, un-
less an external event occurs:

ta : S→ R+
0,∞.

When the time elapsed e = ta(s), the current state ex-
pires. Before calculating its new state, the model may
produce a set of outputs for the current state through
the output function:

λ : S→ Y b.

A new state is then calculated using the internal transi-
tion function:

δint : S→ S.

However, an external event that occurs on any input
port will beget a new state calculated using the external
transition function:

δext : Q×Xb→ S.

In contrast to DEVS, the δext function is given a bag of
input events instead of a single input event. This mod-
ification allows the modeler to properly handle simul-
taneous events we discussed in section 2.1, since all
simultaneous inputs intended for this model are avail-
able in a single transition.

In order to handle collisions (cf. section 2.1),
PDEVS introduce the confluent transition function
δcon, allowing to explicitly manage them rather than
serializing model behavior at collision times:

δcon : S×Xb→ S.

The modeler has complete control if any collision is to
occur. He can choose what serialization to use (either
the sequential activation of δint and of δext or the other
way around) or a specific behavior.

The DEVS and PDEVS formalisms allows to de-
scribe systems in a modular and hierarchical way as
a network of coupled components, where components
are atomic or coupled models. PDEVS defines such
network as:

N = (X ,Y,D,{Md},{Id},{Zi, j})

where X and Y are the input and output event sets, D is
the set of component references and for each d ∈D, Md
is a PDEVS atomic model as defined above or another
coupled model as defined here.

Couplings between components are represented
with the help of a set Id , where for each d ∈D∪{N}, Id
represent the set of components influencing d, formally
defined as:

Id ⊆ D∪{N} with d /∈ Id

Along with Id , couplings are given by the output to in-
put function Zi,d . Thus, for each d ∈ D∪{N} and for
each i ∈ Id :

Zi,d : XN → Xd if i = N

Zi,d : Yi→ YN if d = N

Zi,d : Yi→ Xd if i 6= N and d 6= N

The PDEVS coupled model structure is near identi-
cal to a DEVS coupled model. Only the tie-breaker
Select function which originally allows the modeler
to prioritize an atomic model among the set of im-
minent components (min{tai(si | i ∈ D)}) disappears.
In PDEVS semantics, the activation of components
scheduled at the same simulation time is not serialized
as in DEVS, so Select becomes unnecessary. Instead, a
two-phase approach is employed: (1) collect all immi-
nent components outputs; and (2), perform appropriate
transitions which are internal transitions for all immi-
nent components, external transitions for components
about to receive inputs given the collected outputs in
the first phase and confluent transitions for imminent
components which also receives inputs.

In addition to providing a specification which facili-
tate handling transition collisions, PDEVS semantics
benefits from the intrinsic parallelism that imminent
components in a network of models offers. Each time
an internal event occur, each phase of the simulation
protocol as described above can be easily parallelized
among components, with a sync barrier between the
two phases.

2.3 CellSpace DEVS specification

As introduced previously, Shiginah and Zeigler (2011)
present a new cell space DEVS specification for faster
model development and simulation efficiency based on
their previous work (Shiginah, 2006). This new spec-
ification offers a significant improvement in simula-
tion speed by providing effective management of active
cells and a strong limitation of the number of inter-cell
messages.
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Usually, a cellular system is described using an
atomic DEVS model for each cell (cell-DEVS (Wainer
and Giambiasi, 2001)). To reduce inter-cell messages,
authors integrate all the cells in a single atomic model
called atomic CellSpace. To get there, and it is here
where our works meet, authors transform the modu-
lar description of the system to a non-modular version
using a restricted version of the influencer/influencee
principle described in multiDEVS (cf. section 2.1). In
contrast to multiDEVS, they decide to protect the cell
integrity and do not allow to write the state variables
of other cells (read only). This is expressed in our for-
malism as a restriction of all influenced components
(Ed) of a component d to the component itself. For-
mally, Ed is restricted to the singleton {d}, Ed = {d}.
Perfectly acceptable for their application to cellular au-
tomata, this restriction allows authors to easily manage
state changes in cells with a classical storage of the cur-
rent state of all cells. In our case, the proposed formal-
ism aims to be more generic and this restriction is no
longer suitable. This will force us to integrate a new
state collision management mechanism, as presented
in the next section.

3 A parallel multicomponent DEVS
formalism

To our knowledge, the multicomponent approach as
defined by Zeigler et al. (2000) never benefited from
the refinements provided by the PDEVS formalism
concerning transition collisions management. We pro-
pose an attempt to bring those refinements to the mul-
ticomponent approach along with a way to handle an-
other kind of collisions, specific to the non-modular
approach, which we call state collisions. Such state
collisions simply happen when multiple transitions oc-
cur at the same simulation time. They are related to the
way components interacts in multicomponent systems
(directly changing state variables of other components
through state transitions).

Because components are allowed to access and write
on each other’s state, we can consider each transition
as a violation of other components autonomy in the
sense that they don’t evolve having full control over
their states and thus, their behavior. In contrast, a
PDEVS atomic model ensures autonomy through mod-
ularity because the only way to influence it externally
is through an external event. We believe this property
is essential for proper modelling of a given system and
should be taken in consideration for the multicompo-
nent approach.

In the multiDEVS abstract simulator (Zeigler et al.,
2000), as we explained in section 2.1, all imminent
components scheduled for the next simulation time are
serialized and prioritized via the Select function. As
with DEVS, for the same simulation time, the order at
which components are activated may produce a behav-
ior that is not the intended one in the first place and that
is difficult to tackle down. As an example, consider
a multicomponent system composed of three compo-
nents A, B and C as illustrated in Figure 1. Figure 2
illustrate a particular scenario where the ta of compo-
nents A and B is equal to 0, which means an internal
event is due for both of them at the same simulation
time (step (a)). It means that the internal transition of
both components (1) and (2) will sequentially be ac-
tivated following the priority given at the multicom-
ponent level by the Select function (step (b)). Here,
priority is first given to component A, which means it
may write directly on the state of component C. Conse-
quences of this particular choice may result in different
possible scenarios from here. The state change made
in C could result in another internal event due for the
same simulation time (in that case the two imminent
components remaining are B and C). Another possibil-
ity is that B remains the only imminent component and
its internal transition is finally activated (which also
may write on the state of C, and could lead B to over-
write changes made by A on C state). In our opinion,
there is two kind of difficulties modelling such system:
the behavior becomes quickly difficult to anticipate and
direct changes on components states are conceptually
arguable.

Recall semantics of PDEVS, which carries outputs
of all imminent components, and then all appropri-
ate transitions for the same simulation time. In order
to apply PDEVS semantics to the multicomponent ap-
proach, we have to apply the same solutions concern-
ing collisions and simultaneous events as long as a so-
lution to state collisions. Simultaneous transitions in
a multicomponent system may imply multiple states
generated for a given component at the same simula-
tion time. Rather than serializing those states, we take
the same path as PDEVS that is leaving the decision
to the modeler. This way, one can decide which state
change to apply in a particular order or how to com-
pose those multiple states into a new one. Not only it
allows to solve state collisions but also provides a way
to introduce component autonomy in non-modular sys-
tems: the component is fully responsible for its state at
any moment.

In this section, we present our proposal of a formal
multicomponent approach using PDEVS semantics as
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multiDEVS formalism
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CompC

multiComp

CompB

CompA

qC2A

Figure 2: Illustration of state collision serialization using multiDEVS.

introduced above, called multiPDEVS. We also present
the construction of equivalence of multiPDEVS with a
PDEVS atomic model and finally, the abstract simula-
tor following PDEVS protocol is given.

3.1 multiPDEVS

In order to propose a parallel multicomponent sys-
tem specification, we argued in the above discussion
that we need to apply PDEVS semantics to the non-
modular approach alongside a way to manage state col-
lisions.

In the multicomponent DEVS specification, compo-
nents are not provided with their own I/O interface.
Still, they remain able to communicate with other mod-
ular components via the interface of their parent, the
multiPDEVS itself. When an external event occurs at
the multiPDEVS level, all components that defined an
external transition function receive this event. Simi-
larly, all components that defined an output function
are able to produce outputs at the multiPDEVS level.
To be equivalent with PDEVS, we introduce in the
component structure the set of bags of inputs Xb over
elements in X allowing the modeler to handle simulta-

neous events and also introduce the confluent transition
function δcon, allowing the modeler to explicitly define
the collision behavior. To manage state collisions, we
propose the reaction transition function, δreac, which
gives the modeler a chance to explicitly define state
collisions behavior. That implies to modify others state
transition functions, so that δint , δext and δcon do not
give new states to influencees, but suggest them in-
stead. The reaction transition is given as an argument a
bag whose elements includes all states suggested by
components able to influence this particular compo-
nent for the same simulation time. Each suggested
state is accompanied with the identity of the compo-
nent that produced it. We note Kb the set of bag of
proposed partial states over elements in K.

The structure of the multicomponent parallel DEVS
is:

multiPDEV S = (X ,Y,D,{Md})

where X , Y , and D are defined as in multiDEVS. Note
that the Select function, as in PDEVS, disappears from
the multiPDEVS definition. It becomes useless since
all imminent components are handled simultaneously
rather than being serialized.

For each d ∈ D, a component Md is defined by the
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structure:

Md = (Sd , Id ,Ed ,δext,d ,δint,d ,δcon,d ,δreac,d ,λd , tad)

where Sd is the set of sequential states of d, Qd =
{(s,ed) | s∈ Sd ,ed ∈R+

0 ,0≤ ed ≤ tad(sd)} is the set of
total states with e the time elapsed since the last tran-
sition, Id ⊆ D is the set of influencing components and
Ed ⊆ D is the set of influenced components. Com-
ponents schedule the time of their next internal event
based on total states of their influencers using the time
advance function:

tad : ×
i∈Id

Qi→ R+
0 ∪{∞}.

When ed = tad(s), the component may generate a
set of outputs for the multiPDEVS output interface via
the output function (which can be left undefined):

λd : ×
i∈Id

Qi→ Y b.

Then, the internal event being due, its internal transi-
tion function is activated. It takes the total state set of
the influencers and maps them into suggested states for
the set of influencees:

δint,d : ×
i∈Id

Qi→ ×
j∈Ed

S j

If one or several new states are produced through
state transitions of components able to influence d,
then the d reaction transition function is activated in
order to let the modeler explicitly define the state colli-
sion behavior. For instance, if two components suggest
each a new state for component d where a particular
variable is incremented, then d should be able to pro-
duce a new state where the variable value depends on
the two suggested suggested states and the current state
of d. To allow this, the function is given the bag of sug-
gested states Kb

d and the current state of the component:

δreac,d : Kb
d ×Qd → Sd

where
Kd = {(sd ,c) | sd ∈ Sd ,d ∈ Ec}.

The tuple (sd ,c) is a suggested state for d produced
by component c, where d ∈ Ec, and the set of bag of
suggested states for d over elements in Kd is noted Kb

d .
This function takes the bag of states produced by

other components including d in their set of influ-
encees alongside its current total state in order to pro-
duce its new valid total state. The reason we use only
Qd instead of the cross-product of all influencers states
( ×
i∈Id

Qi) is to ensure coherence of states. If we allow

this, we have to ensure that all reads on Id −{d} are
performed on current states and not on new ones pro-
duced by their own δreac function, which can happen if
proposed states have been produced at the same simu-
lation time by components for components included in
Id−{d}.

When external events occur at the multiPDEVS
level, its components may receive them if they define
their corresponding external transition function:

δext,d : ×
i∈Id

Qi×Xb→ ×
j∈Ed

S j.

As in PDEVS (in contrast to DEVS and multi-
DEVS), δext,d is given a bag of inputs that contains all
simultaneous external events instead of a single input
event. If an internal event is due simultaneously with
one or several external events, a collision is to be man-
aged. The confluent transition function, originally in-
troduced in PDEVS, allows to explicitly manage the
collision behavior:

δcon,d : ×
i∈Id

Qi×Xb→ ×
j∈Ed

S j.

Note that, similarly to the internal transition func-
tion, δext,d and δcon,d generate a set of proposed states
(S) for the influencees instead of directly update their
states.

The semantics of multiPDEVS are illustrated in Fig-
ure 3 using the same scenario we presented in section
3 with Figure 2. Components A and B are imminent.
Both of them perform their internal state transition ((1)
and (2)) generating simultaneously new states for com-
ponent C, which is a state collision (step (a)). C is given
complete control over its future state via the δreac func-
tion, whose behavior may consist in choosing what
state to apply or composing a new one (step (b)).

A multiPDEVS works in the following way. As
in PDEVS, the activation of imminent components is
done simultaneously using a two-phase approach. In
the first phase, the outputs of all components that de-
fined a λ function are collected. We divide the second
phase in three other micro-steps: in the first micro-step,
appropriate state transitions are performed and their
outputs (the state bags) are temporarily saved for the
second micro-step. For components that defined δext ,
external transitions are activated when external events
occur on the input interface of the multiPDEVS. For all
imminent components, when there is also inputs avail-
able at the multiPDEVS level, confluent transitions are
activated for components who defined δext , otherwise
their δint is activated. If there are no inputs, internal
transitions are activated for all imminent components.
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Figure 3: Illustration of state collision management using multiPDEVS.

The second micro-step consists of activating the reac-
tion transition function for all components that have
a bag of states generated during the first micro-step.
Finally, the third micro-step consist in calculating the
time of next events of each influenced component us-
ing the time advance function. Such semantics can be
integrated in a PDEVS atomic model, which allow to
integrate multiPDEVS in a larger PDEVS simulation.

3.2 Construction of equivalence with PDEVS

In this section, we give proof of multiPDEVS equiv-
alence with PDEVS by constructing the multiPDEVS
resultant as a well-defined atomic PDEVS. This con-
struction ensures that a multiPDEVS model may be
coupled with other PDEVS models within a coupled
model.

A multiPDEVS defines a PDEVS as follows.
Given a multiPDEVS as defined earlier, we asso-

ciate :

PDEV S = (X ,Y,S,δext ,δint ,δcon,λ , ta)

where S = ×
d∈D

Qd .

We define

ta(s) = min{σd | d ∈ D}

with σd = tad(. . . ,(si,ei), . . .)− ed as the remaining
time until the next scheduled event in d.

We define the set of imminent components as:

IMM(s) = {d] | d] ∈ D,σd] = ta(s)}.

We define for each d ∈D, Sd = {sd | d ∈Ed]}, the set
of suggested states produced by d] and Kd = {(sd ,d]) |
d] ∈ IMM(s),d ∈ Ed]}, the set of suggested states and
their producers for each influenced component d.

Given that d] ∈ IMM(s) and

δint(q1,q2, . . . ,qn) = (q′1,q
′
2, . . . ,q

′
n)

with

(s′j,e
′
j)=

{
(s j,e j + ta(s)) if kb

j =∅
(δreac, j(kb

j ,(s j,e j + ta(s))),0) otherwise
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where

kb
j = {(δint,d](. . . ,(si,ei + ta(s)), . . .)• j,d])

| d] ∈ IMM(s), j ∈ Ed] , i ∈ I j}

The resultant internal transition function contains
two kinds of component transitions. For components
influenced by imminent ones, δreac, j(kb

j ,(s j,e j)) func-
tion is called. The state transition function δint,d]
of each imminent d] is executed, where (. . . ,(si,ei +
ta(s)), . . .) is the state vector of the influencing com-
ponents i∈ Id] , which produces a set of proposed states
for all influenced components j ∈ Ed] . In order to
fill the incoming bag of proposed states (kb

j ) of each
j ∈ Ed] , each suggested state produced for j will result
in a tuple composed of the state and its correspond-
ing producer. For components having their bag of pro-
posed states empty (kb

j =∅), the elapsed time is simply
updated.

The output of the system is defined by

λ (s) = {λd](. . . ,(si,ei + ta(s)), . . .) |
d] ∈ IMM(s), i ∈ Id]}

The external transition function δext upon occur-
rence of an input bag of events xb is defined by the
cross product of the external state transition functions
of all components d ∈D. We define the overall external
transition function by

δext((q1,q2, . . . ,qn),e,xb) = (q′1,q
′
2, . . . ,q

′
n)

with

(s′j,e
′
j) =

{
(s j,e j + e) if kb

j =∅
(δreac, j(kb

j ,(s j,e j + e)),0) otherwise

where

kb
j = {(δext,d((. . . ,(si,ei + e), . . .),xb)• j,d)

| d ∈ D, i ∈ Id , j ∈ Ed ,∃δext,d}

With a similar mechanism, the incoming bag of
proposed states (kb

j ) of each influenced component
is built using δext,d function. As previously, other
components where the bag of proposed states is an
empty set (kb

j =∅), the elapsed time is simply updated.

The confluent transition function δcon is defined by:

δcon((q1,q2, . . . ,qn),xb) = (q′1,q
′
2, . . . ,q

′
n)

with

(s′j,e
′
j)=

{
(s j,e j + ta(s)) if kb

j =∅
(δreac, j(kb

j ,(s j,e j + ta(s))),0) otherwise

where

kb
j =



{(δint,d(. . . ,(si,ei + ta(s)), . . .)• j,d)

| d ∈ IMM(s), i ∈ Id , j ∈ Ed}
if @δext,d ,d ∈ IMM(s)

{(δcon,d((. . . ,(si,ei + ta(s)), . . .),xb)• j,d)

| d ∈ IMM(s), i ∈ Id , j ∈ Ed}
if ∃δext,d ,d ∈ IMM(s)

{(δext,d((. . . ,(si,ei + ta(s)), . . .),xb)• j,d)

| d /∈ IMM(s), i ∈ Id , j ∈ Ed}
if ∃δext,d ,d /∈ IMM(s)

Finally, the incoming bag of proposed states (kb
j )

dedicated to the resultant confluent transition func-
tion is composed using three different contributions:
from imminent components where δext,d function is
undefined (influence comes from δint,d), from immi-
nent components where a δext,d function is defined
(influence comes from δcon,d), and finally from non-
imminent components where a δext,d function is de-
fined (influence comes from δext,d).

Note that such proof ensures that multiPDEVS mod-
els can be transformed to atomic PDEVS models and
used as-is with a PDEVS simulator. A preferable solu-
tion is to avoid any transformation of the multiPDEVS
model, using the DEVS bus principle to simulate the
multiPDEVS in its original form, which we detail in
the following section.

3.3 multiPDEVS abstract simulator

Among the benefits of DEVS formalisms, model/sim-
ulator distinction is one of the key elements. This leads
to a clear separation of concerns. It helps to dissociate
what is related to the model, from what is related to
how it is executed. This makes DEVS models easier to
reuse and exchange (Zeigler and Sarjoughian, 2013).

In order to integrate the multiPDEVS approach into
a PDEVS-based simulation environment, we use the
DEVS bus concept by wrapping multiPDEVS into a
PDEVS form along with its own dedicated simulator.
This allows multiPDEVS models to be modularly cou-
pled with other models and executed through a PDEVS
coordinator. The multiPDEVS formalism presented in
section 3.1 is compatible as-is with a PDEVS since
we provide an I/O interface (ports at the multiPDEVS
level) and associated functions (δext , δcon and λ at the
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component level). The simulator we define here sticks
to the simulation mechanism of PDEVS by following
its communication protocol as defined in Chow et al.
(1994) as illustrated in Figure 4.

PDEVS Root coordinator

PDEVS Coordinator

Simulateur 
ou coordinateur

PDEVS Simulator or Coordinator 
/

multiPDEVS Simulator

(i,t)

(i,t) (x,t) (*,t) (y,t)

(*,t)(@,t)

(@,t) (d,t)

(d,t)

Figure 4: multiPDEVS abstract simulator integrated
within PDEVS simulation protocol.

Abstract simulators, or simulation processors, asso-
ciated with PDEVS models comes in two forms, sim-
ulator and coordinator. While a simulator role is to
execute the atomic model functions, a coordinator role
is to carry out and manage output events of its children
as long as their scheduling.

We intentionally omit the root coordinator, but we
note that it oversees the whole simulation process and
initializes the simulation time (t) with the min tn of its
children.

The simulator we present in the following assumes
both simulator and coordinator roles since it realizes its
own event handling for the model components. Listing
1 gives the variables declaration block along with the
initialization procedure of all components (i message).

0 v a r i a b l e s m u l t i p d e v s−s i m u l a t o r
p a r e n t
t l
t n
multiPDEVS = (X, Y, D,{Md } )
w i th components Md = ( Sd , Id ,Ed ,δext,d

,δint,d ,δcon,d ,δreac,d ,λd , tad )
w i th s t a t e s qd = ( sd ,ed )
a bag o f s t a t e s kb

d
t ime of l a s t e v e n t tld and t ime

of n e x t e v e n t tnd

and l o c a l o u t p u t s yb
d

10 even t− l i s t = l i s t o f components
d ∈ D s o r t e d by tnd

end v a r i a b l e s

when r e c e i v e i−message ( i , t ) a t
t ime t

f o r each component d ∈ D
tld ← t− ed
tnd ← tld + tad((...,qi, ...))

end f o r
f o r each component d ∈ D

s o r t d i n t o even t− l i s t u s i n g tnd
20 end f o r

tl← max{tld | d ∈ D}
tn← min{tnd | d ∈ D}

end when

Listing 1: Variable declaration and initialization
procedure of the multiPDEVS abstract simulator.

As shown in Listing 1, we keep track of the time of
last event tl and time of next event tn for the multi-
PDEVS but also for all its components (tnd and tld).
Upon receipt of an initialization message ( i , t ), last
and next event times tld and tnd of each component are
set before sorting them into the event list. Then, the
global tl and tn of the multiPDEVS are respectively
set to the maximum tld and to the minimum tnd .

Since multiPDEVS allows for external and output
events, we give the procedures associated with the
corresponding messages in Listing 2. x-messages
come from the parent coordinator and carries inputs
for the multiPDEVS, and @-messages also come from
the parent coordinator to collect outputs of the multi-
PDEVS.

when r e c e i v e x−message ( x , t ) a t
t ime t wi th i n p u t v a l u e xb

e
add sub−bag xb

e t o t h e bag xb

end when

when r e c e i v e @−message (@, t ) a t
t ime t

30 i f t 6= tn t h e n
e r r o r : bad s y n c h r o n i z a t i o n

end i f
f o r each imminent component d

wi th tnd = tn and d e f i n e d λd

yb
d ← λd(. . . ,(si, t− tli), . . .)

add sub−bag yb
d t o t h e o u t p u t bag

yb

end f o r
send ( y , t ) t o p a r e n t c o o r d i n a t o r

wi th o u t p u t bag yb

end when

Listing 2: Output (@-message) and input (x-
message) procedures of the multiPDEVS abstract
simulator.
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Upon receipt of an external input message (x, t ), the
simulator does nothing more than filling the input bag,
as a PDEVS simulator does. Upon arrival of a col-
lect message (@,t), the simulator collects all outputs
from components that defined the output function λd
and sends them back to the parent coordinator.

Finally, the procedure associated with the receipt of
an internal message (*) is given in Listing 3.

40 when r e c e i v e ∗−message (∗ , t ) a t
t ime t

i f n o t ( tl ≤ t ≤ tn ) t h e n
e r r o r : bad s y n c h r o n i z a t i o n

end i f

i f t = tn and xb =∅ t h e n
f o r each imminent component d]

wi th tnd] = tn
ps ← δint,d](. . . ,(si, t− tli), . . .)
f o r each s j i n ps where j ∈ Ed]

add (s j,d]) t o t h e bag of
s u g g e s t e d s t a t e s kb

j
50 end f o r

end f o r
e l s e i f xb 6=∅ t h e n

f o r each component d ∈ D
i f t = tn and tnd = tn t h e n

i f d e f i n e d δext,d t h e n
ps ← δcon,d((. . . ,(si, t− tli), . . .),xb)

e l s e
ps ← δint,d(. . . ,(si, t− tli), . . .)

end i f
60 e l s e

i f d e f i n e d δext,d t h e n
ps ← δext,d((. . . ,(si, t− tli), . . .),xb)

end i f
end i f
f o r each s j i n ps where j ∈ Ed

add (s j,d) t o t h e bag of
s u g g e s t e d s t a t e s kb

j
end f o r

end f o r
end i f

70

f o r each kb
j where j ∈ D and kb

j 6=∅
q j← (δreac, j(kb

j ,(s j, t− tl j)),0)
tl j← t

end f o r
f o r each j ∈ D where kb

j 6=∅
tn j← tl j + ta j(. . . ,(si, t− tli), . . .)
r e s c h e d u l e j i n t o even t− l i s t

end f o r

80 tl← t
tn← min{ tnd | d ∈ D }

end when

Listing 3: Internal transition handling procedure of
the multiPDEVS abstract simulator.

The procedure associated with the receipt of an
internal event (∗, t ) consist in three sequential steps
(Listing 3). The first step (lines 45–69) activates ap-
propriate state transitions for components of the mul-
tiPDEVS depending on their tnd , if there is incom-
ing input from the overall system and if δext,d is de-
fined. When the input bag xb is empty, we employ the
event list and retrieve the imminent components with
tnd] = t.

The state transition function δint,d](. . . ,(si, t −
tli), . . .) of each imminent d] is executed (where
(. . . ,(si, t− tli), . . .) is the state vector of the influenc-
ing components i ∈ Id]) and produce a set of proposed
states (ps) for all influenced components j ∈ Ed] . The
incoming bag of proposed states is filled by adding to
each suggested state the identity of its producer.

When the input bag xb is not empty and that t = tn,
the external transition function δext,d is applied for all
components d ∈D with tnd > tn that defined δext,d . For
each imminent components (tnd = tn = t), we activate
the confluent transition function δcon,d if the external
transition function δext,d is defined, otherwise we acti-
vate the internal transition function δint,d . Note that all
three state transition functions all produce an outgoing
set of proposed states for all its influenced components
which is then translated in order to fill their incoming
bag.

The second step (lines 71–74) consist in activating
the reaction transition function for all components hav-
ing a non-empty bag of incoming proposed states gen-
erated by imminent components during the first step.
Each component being influenced will produce a new
state given all proposed states and its current total state.

The third step (lines 75-81) role is to update the time
of next events for each influenced component. As a
result of the second step, which update states of in-
fluenced components, a chance is given to those com-
ponents to update their time advance values. This re-
quires the tn j to be updated as well as a rescheduling
of the component in the event list. Finally, the global
event times tl and tn are updated appropriately.

Note that the abstract simulator we present in this
section is fully sequential. Another version that par-
allelize processing of components during each micro-
step of the *-message procedure with a sync barrier
between the two steps can be considered. However,
locks associated with influencers states of a given com-
ponent should be owned by this component each time
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it is susceptible of reading them. This is a potential
source of deadlocks that we do not explore in this pa-
per. Similarly, a distributed version may be considered.
Same comments apply with an additional constraint: a
mechanism should be provided to allow a component
to access its influencers states that may be located on a
different node (e.g. through the proxy design pattern).

In discrete event simulation, the dynamics of a
model can be represented by different ”world views”,
namely the event scheduling world view, the activity
scanning world view, the three phase approach world
view and the process interaction world view. The ab-
stract simulator we present here belongs to the first ap-
proach, where components preschedule their time of
execution in the future via the tad function. Zeigler
et al. (2000) do provide two abstract simulators for
the original multiDEVS formalism, one for the event
scheduling world view, and another both for the activ-
ity scanning and the process interaction world views.
For multiPDEVS, those alternative abstract simulators
can be considered for further research but we do not
present them in this paper.

This last subsection, which defines the abstract sim-
ulator, provides behavioral semantics to the structural
definition of multiPDEVS given in section 3.1. Added
to the proof that a multiPDEVS may exist within a
larger PDEVS simulation (cf. section 3.2), all neces-
sary information are given in order to realize a proper
implementation of the multiPDEVS formalism.

4 Case study : application to fire
spread modelling

Based on a fire spreading model (Balbi et al., 1999),
this section propose to illustrate the modeling process
using a multicomponent approach. First subsection in-
troduces the semi-physical fire spread model. Then,
second subsection presents the related multiPDEVS
specification. Finally, last subsection gives compar-
ison with a modular formalism, namely Cell-DEVS
(Wainer and Giambiasi, 2001).

4.1 Semi-physical fire spread model

Among the variety of mathematical models that grasps
fire propagation, we focus on a semi-physical model
(Balbi et al., 1999). According to Weber (1991), fire
spread models can be classified in three categories
depending on their properties : statistical models,
which do not include any physical phenomena; semi-
empirical models, which consider the principle of en-
ergy conservation and finally, physical models, being

the most detailed models. The model we use is a com-
bination of the last two categories, and is described as
a non-stationary two-dimensional semi-physical model
(Balbi et al., 1999). It is a semi-empirical model trans-
posed to integrate two dimensions and which consider
physical properties such as heat transfer for propaga-
tion.

The model is spatialized through elementary cells
holding plant mass, where each cell is described by the
following partial differential equation:

δT
δ t

=−k(T −Ta)+K∆T −Q
δσv

δ t
(1)

where

σv =

{
σv0 if T < Tig

σv0e−α(t−tig) if T ≥ Tig
(2)

and

Tx,y = Ta at the boundary (3)

Tx,y ≥ Tig for the burning cells (4)

Tx,y = Ta for the non-burning cells at t = 0 (5)

Parameter Description

Ta (27 ◦C) ambient temperature
Tig (300 ◦C) ignition temperature
T (◦C) temperature
K (m2 s−1) thermal diffusivity
Q (m2 ◦Ckg−1) reduced combustion enthalpy

∆

Laplacian operator in two-
dimensional Cartesian coordi-
nates

α (s−1) combustion time constant
σv (kgm−2) vegetable surface mass

σv0 (kgm−2) initial vegetable surface mass
(before combustion)

tig (s) ignition time

Table 1: Nomenclature of fire spread model parameters
(Balbi et al., 1999).

Table 1 gives the nomenclature of model parame-
ters. The model parameters are identified by Balbi et
al. (1999) from experimental data of temperature ver-
sus time.

This particular model has been discretized in Muzy
et al. (2005) using the Finite Difference Method
(FDM), which leads to the following algebraic equa-
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tion:

T k+1
i, j = a(T k

i−1, j +T k
i+1, j)+b(T k

i, j−1 +T k
i, j+1)

+ cQ(
δσv

δ t
)k

i, j +dT k
i, j (6)

where Ti, j represent the cell temperature, and where a,
b, c and d are coefficients that depends on the time
step and mesh size considered. For our example, as in
Muzy et al. (2005), we consider a discrete time step of
0.01 s and uniform cells of 1 cm2.

Such discretized model is well and easily expressed
using a multicomponent approach since a cell can be
represented by a component and its neighbors can be
represented using the set of influencing components
Id and the set of influenced components Ed . To
illustrate how such system can be modelled using
multiPDEVS, we propose a detailed specification in
the next sub-section.

4.2 multiPDEVS specification

In this subsection, we propose a specification of the
semi-physical fire spread model using multiPDEVS to
represent a cellular automaton, where each cell holds
its temperature. When the automaton evolves, each cell
updates its temperature according to ones of its Moore
neighborhood. The multiPDEVS model represents the
whole surface, which is composed of homogeneous
components with identical behavior influencing each
other uniformly.

The multiPDEVS can be specified as follows:

multiPDEV S = (X ,Y,D,{Mx,y})

X and Y are empty sets since there is no input or output
to the model. D = {(x,y) | x ∈ I,y ∈ I} is the index set
composed of two-dimensional coordinates. For each
(x,y) ∈ D, the component, which represents a cell, is
specified as:

Mx,y = (Sx,y, Ix,y,Ex,y,δint,x,y,δreac,x,y, tax,y)

The state Sx,y of a component cell is represented by
the following quintuple:

Sx,y = {(phase,T,Tprev,Tneigh, tig)}

where phase ∈ {inactive,warming,burning}, T ∈ R+
0

is the current temperature of the cell, Tprev ∈ R+
0 is the

previous temperature of the cell, Tneigh = (. . . ,Ti, . . .)
with i ∈ Ei is the temperature vector of all neighbors
and finally, tig ∈R+

0 holds the simulation time at which
the cell is ignited.

The set of influencers is defined by the Moore neigh-
borhood and the cell itself: Ix,y = { (x,y), (x,y+ 1),
(x+1,y), (x,y−1), (x−1,y), (x+1,y+1), (x+1,y−
1), (x−1,y+1), (x−1,y−1)}. Reciprocally, a cell is
able to influence itself and its neighbors. Thus, the set
of influencees Ex,y = Ix,y.

δext,x,y, δcon,x,y or λx,y are not specified since there is
no overall input or overall output.

Basically, for a given cell (x,y), when Tx,y−Tprev,x,y

reaches a threshold, (x,y) updates for all its influencees
(i, j) ∈ Ex,y its corresponding temperature in the tem-
perature vector Tneigh,(i, j) with its current temperature
Tx,y. At each step, the cell (x,y) also produces a new
state for itself ((x,y) ∈ Ed). It means that each cell
may be given nine potential states to its δreac,x,y func-
tion (eight proposed states from its neighbors plus one
suggested for itself). In this particular case, the re-
action transition function composes a new state us-
ing primarily the proposed one produced by itself, but
constructs the Tneigh temperature vector using proposed
states from other components.

Note that in order to simplify transitions functions
specification of the fire spread model, we will use the
”dot-notation”, conventionally used in object-oriented
programming languages (e.g. the element qx.T must
be understood as the temperature element of the global
state qx of component x).

Since each cell holds a vector of nearby tempera-
tures that is updated by neighbors themselves, it is pos-
sible to keep some cells inactive, that is inactive cells
(phase = inactive, Tx,y = Ta). This results in the fol-
lowing time advance function:

tax,y(s) =

{
∞ if s.phase = inactive
0.01 otherwise

Given that the definition of δint,x,y and δreac,x,y are
much less concise to write, we specify these functions
in the following pseudo-code:

0 v a r i a b l e s :
a , c , d , α / / e q u a t i o n c o e f f i c i e n t s
t

f u n c t i o n δreac,x,y(kb
x,y,sx,y,ex,y) do

s′x,y← sx,y

T ′neigh← sx,y . Tneigh

∀(s,(i, j)) ∈ kb
x,y do

i f (i, j) = (x,y) t h e n / / s e l f
i n f l u e n c e

s′x,y← s
e l s e

10 T ′neigh . Ti, j← s . Tneigh . Ti, j

i f sx,y.phase = inactive t h e n
s′x,y . phase← warming
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end i f
end i f

end
s′x,y . Tneigh← T ′neigh
r e t u r n s′x,y

end f u n c t i o n

20 f u n c t i o n δint,x,y((sx,y,ex,y), . . . ,(si, j,ei, j), . . .) do
sum ← ∑(i, j)∈Ix,y\{(x,y)} sx,y . Tneigh . Ti, j

s′x,y← sx,y

s′x,y.Tprev← sx,y.T
∀(i, j) ∈ Ix,y \{(x,y)} do

s′i, j← si, j

s′i, j . Tneigh . Tx,y← sx,y . T
end
i f sx,y . phase = warming

s′x,y.T ← d ∗ T +a ∗ sum+ c
30 e l s e i f sx,y . phase = burning

s′x,y.T ← d ∗ T +a ∗ sum+ c ∗ exp(−α ∗
( t − tig ) )

end i f
s′x,y . phase← newphase(sx,y.phase,s′x,y.T )
i f sx,y . phase = warming∧ s′x,y.phase = burning

s′x,y . tig← t
end i f
r e t u r n (s′x,y, . . . ,s

′
i, j, . . .)

end f u n c t i o n

40 f u n c t i o n newphase ( phase ,T ) do
i f T ≥ Tig t h e n

r e t u r n burning
e l s e i f T > Ta

r e t u r n warming
end i f

end f u n c t i o n

Listing 4: Specification of δint,x,y and δreac,x,y

functions in pseudo-code for the multiPDEVS fire
spread model example.

The δreac,x,y function defined in Listing 4 allows a
(x,y) cell to decide its new state given its current state
qx,y and all suggested ones in kb

x,y. When iterating over
suggested states (line 6), if a suggested state was pro-
duced by (x,y) for itself through the δint,x,y function
((i, j) = (x,y), line 7), the next state is primarily con-
structed based on this suggested state. If there is no
suggested state produced by (x,y) (cell is inactive), the
state is primarily based on the current one (line 4). For
other producers of suggested states ((i, j) 6= (x,y)), the
cell (x,y) is only interested in the temperature vector
that was updated by the producer, so it constructs its
new temperature vector according to all these contri-
butions (line 10). If the cell is currently inactive while
receiving nearby temperatures, the cell will pass in the
warming phase (line 11–13).

The δint,x,y function suggests new states for all its
influencees. Two parts can be identified. The first
(lines 21–27) corresponds to the construction of new
states for neighbors. Those states are simply a copy of
their current states with an update to the temperature
vector so that the current temperature corresponding
to ((x,y)) is updated. The second phase (lines 28–36)
corresponds to the calculation of the new temperature
for this cell, according to equations given in subsection
4.1. The conditional statement allows to compute the
σv value depending on the macro state of the cell, ac-
cording to (2). Regarding (6), coefficients a and b cor-
respondong to the thermal conductivity of neighbors
cells are merged into a since we use the same value.
This coefficient is applied to the sum of neighbors tem-
peratures, which is computed line 21. A new phase is
then calculated using the newphase function depend-
ing on the new temperature and the current phase. Fi-
nally, if the cell phase pass from warming to burning,
the ignition time is set.

We should emphasize that we modelled component
cells this way as a proof of concept of state collisions
handling, but such a model could be modelled the other
way around using only the set of influencers Ix,y to read
neighbors states temperatures and restrict Ex,y to the
unit set {(x,y)} so that each cell generate a state only
for itself. However, this alternative approach would re-
quire to change the time advance functions in order to
keep all cells active so that they are able to poll neigh-
bors temperatures even if they are inactive. In practice,
the former approach prevent inactive cells to be acti-
vated until they are warmed up by neighbors while the
latter approach keeps all cells active.

4.3 Comparison with a modular formalism

We discuss here the benefits of specifying a system
such as the fire spread model described earlier using
multiPDEVS in comparison with a modular formalism
such as PDEVS or Cell-DEVS.

From a modelling perspective, the same fire spread
model specified through a network of components such
as a PDEVS coupled model instead of a multiPDEVS
is much more verbose to specify because all cou-
plings between cells have to be addressed since cells
are represented by atomic models. The Cell-DEVS
(Wainer and Giambiasi, 2001) extension, on the other
hand, ease the specification of cellular automata by
abstracting the definition of couplings between neigh-
bor cells while preserving modularity, these last still
being atomic models. As of multiPDEVS, it is well
suited for the specification of cellular automata as-is
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for two reasons: neighborhood is easily represented
through the influencer/influencee principle; and com-
ponents are able to access their neighbors states with-
out having to anticipate variables of interest and having
to send these through dedicated functions as this is the
case for PDEVS or Cell-DEVS.

From a simulation perspective, using a modular ap-
proach may be less advantageous depending on the im-
plementation since event routing is a potential source
of overhead (Muzy and Nutaro, 2005), although sev-
eral techniques (Chen and Vangheluwe, 2010; Him-
melspach and Uhrmacher, 2006) allow to manage this
issue. In contrast, multiPDEVS has no communication
overhead between components influencing each other
since it avoids traditional event routing.

We realized an implementation of multiPDEVS us-
ing Quartz1, a Crystal port of DEVS-Ruby (Frances-
chini et al., 2014), which is a simulation tool that al-
lows specification of PDEVS models. It provides sev-
eral extensions such as Cell-DEVS (Wainer and Gi-
ambiasi, 2001) or DSDE (Barros, 1995), and we ex-
tended it to integrate multiPDEVS and its simulator.
To define new multiPDEVS models, Quartz provides
a class MultiComponent::Model which can be modularly
coupled to other models and to which may be added
component models. Component models can be de-
fined using the provided abstract class MultiComponent
::Component that the modeler has to extend via inheri-
tance. Our tool then use the appropriate simulator ac-
cording to the model type during simulation.

Figure 5 illustrates execution of the firespread model
using multiPDEVS (as given in section 4.2) on a 25x25
grid at different simulation times. Regarding parame-

(a) t = 0 (b) t = 150 (c) t = 400

Figure 5: Execution of a simple fire spreading model
on a 25x25 grid of cells at times 0 (5a), 150 (5b) and
400 (5c).

ters values, we used the constant temperature values
described in Table 1. Also, the reduced combustion
enthalpy Q was set to 2.74, and the combustion time
constant α was set to 0.19. Coefficients a and b from
(6), which corresponds to the thermal conductivity of
neighbors cells were both set to 0.0031. Coefficient d,

1Code available at https://github.com/rumenzu/quartz.

which corresponds to the thermal conductivity of the
actual cell was set to 0.98689. Finally, coefficient c
was set to 0.213.

An initial hotbed exists at the center of the grid
where one cell is ignited and surrounding cells are
warmed (Fig. 5a). Temperature in the rest of the
cell space is homogeneous and represent the ambient
temperature. This simple model allows us to test our
implementation using highly interacting low computa-
tional components that remains active during the whole
simulation.

In order to verify our intuition that we may obtain
best execution times using multiPDEVS due to the
absence of event routing, we implemented the same
model using the Cell-DEVS extension of Quartz in
order to compare both results. For this performance
analysis, we ran ten simulations for each approach
(multiPDEVS and Cell-DEVS) using the same model,
the same initial conditions and the same environment
(Quartz) and measured the elapsed real time. The
test environment is based on a Intel(R) Core(TM) i5-
3210M CPU @ 2.50GHz (3MB L2 cache), 8GB (2x
DDR3L - 1600Mhz) of RAM, an Apple SSD SM128E
hard drive, running on OSX 10.11.4. Software used
is Quartz. Figure 6 shows the results of running those
simulations with error bars showing average, min and
max measured times for each batch of repeated sim-
ulations and Table 2 shows average elapsed real time
results and the relative standard deviation for each ex-
periment.
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Figure 6: Performance comparison of multiPDEVS
and Cell-DEVS showing elapsed real time in seconds
of a fire spread simulation for a grid of 25x25 and a
grid of 50x50 with a fixed simulation duration of 1200
and across 10 runs.

Event routing and message passing overhead in
Quartz is reduced using techniques similar to Him-
melspach and Uhrmacher (2006) and Vicino et al.
(2015). Despite that, as we can appreciate on the
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Approach Grid Avg. ela. time (s) Rel. std. dev.

Cell-DEVS
25x25 3.5707911 ± 6.43%
50x50 11.4745384 ± 3.54%

MultiPDEVS
25x25 1.9359938 ± 6.69%
50x50 6.9516354 ± 6.59%

Table 2: Performance comparison results of multi-
PDEVS and Cell-DEVS showing average elapsed real
time and relative standard deviation for each approach.

graph, multiPDEVS yields better results than its modu-
lar counterpart for the same simulated model as we ob-
tain an average speedup of 1.75x. Those results com-
fort us in multiPDEVS relevance, especially for these
kind of highly communicative models with tight cou-
pling. However, in order to extract better conclusions
relative to performances, a new benchmark is neces-
sary using a framework that performs complete flatten-
ing (as mentioned in section 2), ie transformation of
the Cell-DEVS in a coupled model of depth one (which
Quartz does) and the transformation of this coupled to
an atomic model.

In this section we presented a fire spreading model
cellular automaton. Cellular automata is a modelling
paradigm that is well expressed using the multiPDEVS
formalism and it was also the opportunity to compare
its performances against a Cell-DEVS implementation.
The next section discuss benefits and drawbacks of the
proposed approach from modelling and simulation per-
spectives.

5 Discussion

The fire spread example shows that multiPDEVS can
be used to fully specify a system. However, it is quite
legitimate for the modeler to ask the following ques-
tion: ”When should I, or should I not use this for-
malism ?”. MultiPDEVS can improve the modelling
process in a multi-formalism context, where modular
and non-modular system specification are used at the
same time. We believe that the modular approach pro-
posed by PDEVS, and the non-modular one have to
be seen as complementary approaches, and in no way
as competing approaches. Regularly, systems offers
a clear hierarchical description coupled with elements
where the system behavior will be harder to describe
using modular specification formalism. In those cases,
it can be more comfortable to describe the overall inter-
action through direct influence mechanism rather than
describe the system at a higher level of specification.

The modular approach will allow to bring a good in-
telligibility of the model, while the non-modular mul-
ticomponent approach will allow to simplify the de-
scription of some phenomenons by improving the for-
malism expressiveness.

One can ask the question of the reusability of a non-
modular model, and more particularly of these var-
ious components. If with the fire spread example,
such question does not really arise (components are the
same), it becomes legitimate for models where com-
ponents differ. By nature, the influencer/influencee
principle used with non-modular approach makes com-
ponents strongly dependants. Obviously it is possi-
ble to reuse or replace components of a multicompo-
nent model, however, this must be done with caution.
The modeler needs to perfectly understand interac-
tions with influencee components and influenced com-
ponents of the targeted component. Without making
reusability as a trivial process, the modular approach
will help since more effort was previously given to ex-
press interactions between components. Reusability at
the multicomponent level is equivalent to the modular
approach, since a multiPDEVS model is strictly equiv-
alent to a PDEVS atomic model.

As defined in 3.3, a multiPDEVS model can be inte-
grated within a PDEVS-based simulation environment
using its own dedicated simulator and can be simulated
through an abstract mechanism, as originally defined
in Zeigler et al. (2000). The whole simulation is driven
by several processors (cf. Figure 4), where coordina-
tors are responsible for managing event routing and
scheduling their children and simulators are responsi-
ble for the activation of their associated model. The
multiPDEVS simulator we provide perfectly conforms
to this mechanism, and thus, allows multiPDEVS to be
modularly coupled with other PDEVS models and ex-
ecuted by the same PDEVS coordinator. This allows to
reduce the difficulty of integrating multiPDEVS within
a simulation environment while enriching the set of
formalisms available for the user of such platform.
Due to the multiPDEVS simulation protocol nature,
we observe traffic messages reduction in relation to
PDEVS. Such observations suggests increased simu-
lation performances. Since an appropriate benchmark
has not been done yet, and that some work (Muzy
and Nutaro, 2005) shows that proper management of
messages can significantly increase performances of
PDEVS, we will remain cautious in the final perfor-
mance of multiPDEVS.

Regarding performances, multiPDEVS may be af-
fected by the nature of interactions between compo-
nents. In the fire spread example we used, components
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states have small memory requirements, but we can
ask how well the formalism scales with larger mem-
ory needs. Since the sets of suggested states for each
components are temporarily kept during each simula-
tion cycle, memory allocation can be a concern. We
should note that PDEVS has a similar issue at a lower
extent with input messages, instead of suggested states.
For example, with PDEVS, messages sent between two
components can be sized according to the needs of
the model. Contrariwise, to change a single value of
the state of an influencee, a multiPDEVS component
should construct a whole new state for its influencee.
In practice, pointers techniques could help reduce this
overhead, but this particular issue should be further
studied to have a better idea of multiPDEVS perfor-
mances.

Another element of performance improvement may
appear with some types of models. If we focus in com-
munications between components, a multiPDEVS may
require fewer simulation cycles than PDEVS in some
cases. Lets take two components, A and B, where B
needs informations provided by A. Here is PDEVS and
multiPDEVS way to modelize it: Using PDEVS: B can
ask A for data. Then A send data to B (see figure 7).
Following PDEVS simulation protocol, this will there-
fore require at least two simulation cycles. Using mul-
tiPDEVS: B can directly read data from A (A is an
influencer of B). Following the multiPDEVS protocol,
a single simulation cycle will therefore be necessary.
Note that such example consider only the case where B
is explicitly requesting informations known by A com-
ponent. We intentionally forget cases where A is a data
generator, of where A needs computation time to pro-
vide data. An alternative to multiPDEVS and PDEVS
is HFSS (Barros, 2003), which allows components to
sample inputs from their influencers through couplings
in a one-step process, similarly to multiPDEVS. Since
HFSS preserves modularity through couplings, it lies
at a higher level of specification than multiPDEVS.
However, multiPDEVS is pertinent for cases where
component states need to be directly accessible.

Comp A Comp B

Figure 7: Communication between two components

Further studies would be needed to target the classes
of problems for which this type of property would be
an added value. We are thinking for the moment of the
domains where agent and cellular automata are used

jointly (e.g. Agent interrogating its environment mod-
eled by several cells).

Regarding some design choices about multiPDEVS,
we decided to stay as close as possible to the orig-
inal multiDEVS. However, an interesting alternative
regarding multiPDEVS semantics may be considered.
As multiPDEVS is defined, only components that have
been influenced (i.e. that updated their state via their
reaction function δreac) have a chance to update their
time of next event. Since the time advance function
of a component depends on all influencers states, we
could also give the opportunity to all components hav-
ing at least one influencer with a new state to update its
tn. This would open new modeling perspectives. As
for example, the case study we propose in section 4.2,
could be simplified. Basically, an inactive cell could
decide if it is the appropriate moment to enter a burn-
ing state each time one of its neighbors is updated.

Generally speaking, DEVS-based formalisms where
components are allowed to communicate at the same
simulation time, such as PDEVS or multiPDEVS, do
not offer direct mechanisms to confirm to other com-
ponents the use of an information/resource which was
provided to them. This can raise issues of inconsis-
tency unique to such formalisms. To illustrate this,
imagine particles that can move from one cell to a
neighbor as shown Figure 8.

-1 -1+1 +1

A B C

Figure 8: Particles example: two particles proposed to
cell B.

The state of the model is in {0,1}. Suppose particles
in the A and C cells want to move in to the center cell B
at the same time. A and C send their proposed states.
Since decision is based on proposed states, the cen-
ter can choose a +1 (if it empty) but that leaves open
which neighbor is the sender. If it chooses one (by
some rules), it must inform the neighbors so they will
adjust their states accordingly. Currently, this feedback
to maintain consistency will require a second complete
simulation phase. Now, multiPDEVS introduced the K
set (whose elements are tuples composed of suggested
states and of the identity of the component that sent
it), specifically for this purpose, so that a component
can choose its new state depending on the identity of
the sender (which is not necessarily present in its set
of influencers I). In the particle example described us-
ing multiPDEVS, each component would be respon-
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sible to adjust its neighbours’ states to ensure that no
particle is lost in the system. This also means that a
state described by S = {0,1} is not sufficient, since the
component has to store information about particles to
be sent back through the classical δint function and a
ta(s) = 0. At this moment, it seems that such an is-
sue is best tackled using a modelling approach (which
involves use of ta(s)=0 loops) rather than expand the
formalism itself. Nevertheless, an extension of multi-
PDEVS formalism might be to allow some kind of built
in reverse propagation of selection information and this
can be considered as a source of further research.

6 Conclusion

TMS provides a DEVS specialisation dedicated to non-
modular modelling, named multiDEVS. As DEVS,
multiDEVS formalism comes with a lack of expres-
siveness to properly manage collisions between events.
PDEVS formalism has been proposed to fill this gap
for the modular approach. Hence, we propose mul-
tiPDEVS, who furnish an effective management of
events conflicts as proposed in PDEVS, to multiDEVS.
The multiPDEVS formalism supports concepts as in-
troduced by PDEVS, such as the bag concept to com-
bine simultaneous event into a single one, and the con-
fluent transition function to combine internal and ex-
ternal transition function when they occur at the same
simulation time. In contrast to PDEVS, multiPDEVS
handles an additional kind of conflict dictated by the
non-modular approach, which we call state collisions.
Such state collisions appear when multiple compo-
nents execute state transitions function at the same
simulation time, resulting in a possible violation of
other components autonomy. We are convinced that
autonomy of components is a necessary property for
a proper modeling process. To keep such property,
multiPDEVS provides new concepts around δreac func-
tion. These new concepts give modelers the possibil-
ity to collect state collisions in a bag of states (Kb)
and then manage them explicitly at component level
through the reaction function (δreac). The multiPDEVS
formalism offers to facilitate the modeling process for
non-modular approaches without increasing message
exchanges. The multiPDEVS formalism is proved to
be equivalent to a well-defined atomic PDEVS model.
Such property involve the possibility to integrate mul-
tiPDEVS in a larger PDEVS simulation.

The multiPDEVS formalism has been compared to
others non-modular formalisms such as CellSpace. We
show that CellSpace can be considered as a restric-
tion of multiPDEVS. Finally, the multiPDEVS formal-

ism has been implemented using Quartz and allowed
us to test its performances against a Cell-DEVS ap-
proach using a cellular automaton. This performance
speedup added to good modelling abilities comforted
us in its significance for highly communicative models
with tight coupling but also for modelling paradigms
falling under bottom-up approaches.

Definition of the multiPDEVS formalism opens
many perspectives, from both an utility and an ex-
tensibility point of view. Future works includes
use of the multiPDEVS formalism to describe MAS
environments as cellular models since multiPDEVS
is well-suited to represent spatially explicit models.
Individual-based models (IBM) are also good candi-
dates to be defined using multiPDEVS, where individ-
uals are represented with components interacting with
each other. Besides, we predict a simulation speedup
using multiPDEVS rather than PDEVS both for repre-
senting MAS environments and IBM for the same rea-
son we obtained better results representing a cellular
automaton using multiPDEVS, which is the reduction
of message exchange between models during simula-
tion.

Finally, the 5 attempts to dissociate the simulation
aspect from the modelling aspect to provide a clear vi-
sion of pros and cons of using multiPDEVS formalism.

Currently in full-scale testing in a fisheries man-
agement project, the multiPDEVS formalism should
allow efficient modeling of fishing areas and interac-
tions between them. As for the future of the multi-
PDEVS formalism we consider many perspectives of
evolution. We plan to define alternative abstract simu-
lators following other simulation strategies, known as
world views (cf. section 3.3). We also consider as
a further research the definition of a parallel and dis-
tributed version of the abstract simulator. Another in-
teresting property applied to multiPDEVS would be
that of dynamic structure, which DEVS and PDEVS
benefits from via DS-DEVS (Barros, 1995) or dyn-
DEVS (Uhrmacher, 2001) extensions. For complete-
ness, we also consider definition of a multicomponent
parallel discrete time system, multiPDTSS, along with
its abstract simulator. Given that discrete time is a spe-
cial case of discrete event systems, multiPDTSS would
allow to explicitly combine discrete time systems with
discrete event systems within the same framework.

As mentioned previously, there are other possible
approaches, especially HFSS (Barros, 2003). It would
be very interesting to make a deeper comparison with
it, especially on the ergonomic aspect of modeling and
performance.
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