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Abstract
In this paper we develop a modular representa-
tion of Fluid Stochastic Petri Nets (FSPNs) using
the Hybrid Flow Systems Specification (HFSS, a
formalism that combines the concepts of sam-
pling and discrete events to describe hybrid sys-
tems. We show that HFSS provides a sound rep-
resentation of FSPNs supporting a direct map-
ping between FSPNs elements and HFSS com-
ponents. FSPNs can be modeled by a composi-
tion of HFSS components preserving the struc-
ture of the original FSPNs, removing the need
for a model transformation layer to simulate
FSPNs, or making it easy to develop such a map-
ping mechanism. We show that the continuous
flow representation used by HFSS enables an ef-
ficient simulation of FSPNs. Simulation results
are presented for a simple manufacturing sys-
tem with machines subjected to breakdowns.

1 Introduction
Petri Nets (PNs) have widely been used in mod-
eling and analysis of systems. Since their cre-
ation many extensions have been developed, in-
cluding, for example, Timed Petri Nets (TPNs),
and Fluid Stochastic Petri Nets (FSPNs) aimed to
model timed hybrid systems exhibiting both dis-
crete and continuous elements [9]. In this paper
we develop a modular representation of FSPNs
using the Hybrid Flow System Specification For-
malism (HFSS) [2]. HFSS combines both con-
tinuous [1], and discrete (event) flows [10], to
represent hybrid systems. We develop a library
of HFSS components to represent the elements
of a FSPN. These elements are described using
the HFSS-Groovy toolkit and include discrete
places, transitions and continuous places. We

introduce a conflict manager component to ex-
plicitly represent transition tie-breaking rules,
enabling the use of application dependent algo-
rithms to choose among conflicting transitions.
We use infinite server semantics enabling an
arbitrary number of transitions to fire simul-
taneously. The library of HFSS components
permits FSPNs to be represented by a struc-
tural equivalent HFSS network, that can be ob-
tained through composition using simple trans-
formation rules, in a direct mapping. Struc-
ture preserving makes this conversion a very
simple process that can be performed manually,
also making it easier to define conversion tools,
avoiding namely the (costly) compilers that are
common in Domain Specific Languages (DSLs)
approaches [6]. We present simulation results
for a simple manufacturing system with ma-
chines subjected to breakdowns. Our results
show that HFSS representation of continuous
systems by HFSS continuous flows enable an
efficient simulation of FSPNs.

The paper is organized as follows. Section 2
presents the semantics of FSPNs in an informal
manner. In Section 3 we present a library of
HFSS-Groovy components that provides a rep-
resentation of basic FSPNs elements. This sec-
tion describes also FSPNs as a composition of
HFSS components. Simulation results are pre-
sented in Section 4. Related work is discussed
in Section 5.

2 Fluid Stochastic Petri Nets
FSPNs introduce continuous marking for sup-
porting a representation of hybrid systems [9].
The continuous places of PNs are described
by constant rate differential equations enabling
a fluid approximation of systems with a large
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number of tokens. We present next an informal
description of FSPN semantics.

2.1 Discrete TPNs

Time was introduced in Petri Nets to model sys-
tem delays. The time to complete a task or a de-
lay in the system can usually be modeled by a
stochastic distribution. Timed Petri Nets (TPNs)
define a set of transitions, places and arcs. A
transition checks its preconditions that depend
on the marking of its input places. If precon-
ditions are satisfied, a set of tokens is removed
from the input places. After the transition, to-
kens are added to transition output places. In
this paper we assume that time elapses inside
transitions [8], departing from the more com-
mon TPNs where time elapses in places or arcs.
In this paper we also assume infinite server se-
mantics, that allows many transitions to start
simultaneously as long as their preconditions
are satisfied. The semantics of TPNs can be de-
scribed by Figure 1 that depicts the behavior
of a TPN with transition t0 and places p0, ..., p3.
The transition precondition requires two units
of p0, one unit of p1 and it imposes an inhibitor
arc of two units of p2. When the precondition is
satisfied a token representing an activity (tran-
sition instance) is created within the transition
to model a time advance (delay). After this time
interval, the transition finishes, and new tokens
are created in the corresponding output places.
Given the initial marking of Figure 1a, t0 can
start two activities, Figure 1b. Transition t0 re-
moves all tokens from t0 and t1 and creates two
time events to signal the end of the scheduled
activities.

Although transition marking is commonly
omitted in Petri net analysis, a PN simulator
needs to consider it. A standard marking rep-
resentation could also be used, since a time-
in-transition PN can be mapped into a time-
in-place PN [8]. The non-standard represen-
tation introduced here simplifies simulator de-
scription.

When an instance of t0 finishes the execution
it creates new tokens in its output places, Figure
1c, in this Petri net, 1 unit of p2 and 3 units of p4.
The final marking after the firing of the second
instance of t0 is depicted in Figure 1d. We have
assumed that each transitions instances were

assigned to a different time duration. Was the t0
associated with a fixed processing time and the
two instance would have finished at the same
time, jumping the intermediate step of Figure
1c.

2.2 Continuous Flows

Fluid Stochastic Petri Nets (FSPNs) were intro-
duced to enable the description of systems re-
quiring a large number of tokens, since an ex-
plicit representation of each token would make
the PN difficult to analyze and also time con-
suming to simulate. A fluid approximation is
used, instead, becoming tokens represent by a
real number whose value is governed by a piece-
wise constant rate.

Before detailing the semantics of FSPNs we
define |tk| as the number of instances of tran-
sition tk currently active. Similarly the quantity
(integer or real) of tokens in place pk if given by
|pk|.

In FSPNs, a transition tk is considered active
iff |tk| > 0. When a transition is active the cor-
responding flow is enabled and place content is
influenced by that flow. On the contrary, when
not active the corresponding flow is zero. An-
other constraint imposes that places can only
contain positive values, i.e., |pk| ≥ 0.

Figure 2 represents a FSPN with transitions
t0, t1, t2, place p0, constant flows a and b, and a
variable flow controlled by the number of tokens
in transition t2.

Figure 2: Continuous flow Petri net with vari-
able rate |t2| · c.

When the all transitions are enabled the content
of place p0 is described by:

d|p0|
dt

= a+ b− |t2| · c
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(a) initial marking (b) fire of transition t0 (c) end of processing of a
token in t0

(d) final marking

Figure 1: Discrete Petri net evolution.

When a transition is disable, the corresponding
flow is zero. For example, when |t0| = 0, then
d|p0|
dt

= b− |t2| · c

2.3 Hybrid Flows

FSPNs enable the representation of systems
with both discrete and continuous semantics.
The FSPN of Figure 3 models a manufacturing
system with N machines that process at an (ex-
ponential) rate µ and breakdown at an (expo-
nential) rate λ. Entities enter the system at rate
a and are processed at rate |t1| · d. The initial
number of entities to be produced is given by L
and all machines are initially available, |t1| = N .
Given the semantics defined before, |t1| repre-
sents the number of machines available for pro-
duction and |t2| is the number of machines be-
ing repaired (not working).

Figure 3: Petri net with hybrid flows (FSPN).

We have described the main elements of
FSPNs. In the next section we provide their rep-
resentation in the HFSS formalism.

3 Modular Representation of
FSPNs

The mapping of FSPNs into a deterministic mod-
eling and simulation formalisms has several ad-
vantages. It establishes FSPNs semantics, since
modeling formalism like HFSS have determinis-
tic semantics [3]. Modularity enable also the
composition of systems from simple elements.
Given a FSPN model library developed in HFSS,
we can create complex FSPNs by simple com-
position of basic elements without the need to
develop a compiler to generate new HFSS mod-
els from a FSPN specification, a requirement
usual in Domain Specific Languages for repre-
senting (non-timed) PNs [6]. Additionally, map-
ping FSPNs into a modeling formalism can also
exploit the advantages of existing and efficient
simulation kernels without the need to create a
specific solution for FSPNs.

The HFSS formalism combines several ab-
stractions, including adaptive sampling, contin-
uous flows, and discrete events. HFSS models
are modular communicating through a well de-
fined interface. A HFSS model can read and
produce continuous and discrete flows (events),
offering a framework for defining hybrid mod-
els [3]. The HFSS-Groovy toolkit is a Groovy
language implementation of the HFSS formal-
ism and it is used in the next sections to de-
scribe the HFSS components required to repre-
sent FSPNs.
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3.1 Discrete Places
We start by describing a HFSS model of FSPNs
discrete places. This model requires the abil-
ity to change its content supporting the basic
discrete event operations of adding and remov-
ing tokens, and to communicate changes in this
value. Since a key operation in a FSPN is to test
preconditions we provide the access to the place
current number of tokens through the com-
ponent continuous output flow function. The
HFSS Place is represented in Figure 4

Figure 4: HFSS discrete Place model.

HFSS-Groovy definition of the Place model is
given in Listing 2. Class Model provides the
basic support to HFSS and it defines variable
alpha and beta to set the time to read (sam-
ple), and the time to write (produce a discrete
flow). A Place is created with an initial number
of tokens and it becomes passive (alpha = beta

= ∞), waiting for an input.

1public class Place extends Model {

2private int tokens;

3public Place(String name, int tokens) {

4super(name);
5this.tokens = tokens;

6alpha = Double.POSITIVE_INFINITY;

7beta = Double.POSITIVE_INFINITY;

8}

9public void transition(double e, def xc, def xd) {

10beta = Double.POSITIVE_INFINITY;

11if (xd == null) return;
12int prev = tokens;

13xd.at("add").each {Port p-> tokens += p.value()}

14xd.at("remove").each {Port p-> tokens -= p.value()}

15if (prev != tokens) beta = 0;

16}

17public def outputC(double e) {return new Port("tokens", tokens)}

18public def outputD(double e) {return new Port("update", tokens)}

19}

Listing 1: HFSS-Groovy Place model.

A Place receives commands to change its con-
tent in ports add and remove. Since HFSS uses
a parallel semantics, an input is usually a list of
pairs in the form (port name, value). The tran-
sition function (line 9), specifies the behavior
of Place input arrival. Each add increases the

number of tokens, and each remove decreases
this value. When the number of tokens is mod-
ified the updated value is sent through the dis-
crete port update, as defined by function outputD

(discrete output). The current number of tokens
is always available through the continuous out-
put flow port tokens, as specified by the function
outputC (continuous output). This continuous
value plays a key role in simplifying the defini-
tion of the HFSS model of a FSPN as we show in
the next sections. Typical Place trajectories are
shown in Figure 5. While the input is discrete,
the output has a (piecewise constant) continu-
ous flow with the current number of tokens, and
a discrete flow trajectory, signaling a change in
this number.

Figure 5: HFSS Place trajectory.

3.2 Continuous/Fluid
Places(Reservoirs)

When the number of tokens in a FSPN is very
large a fluid approximation simplifies the analy-
ses and enables a more efficient simulation. In
this approximation transitions are continuous
and become characterized by the rate they mod-
ify reservoir (fluid places) contents. The HFSS
model of a reservoir in given in Figure 6.

Figure 6: HFSS Reservoir model.

The Reservoir samples the input flow and in-
tegrates this value, that is constrained to be
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positive. Given a negative input rate, reser-
voir level decreases until it reaches zero, and
keeps this value irrespective to a negative in-
put rate. Since, FSPNs constrain input rates to
be piecewise constant, fluid integration involves
only transition when these rates changes. In-
put port update receives a signal when the rate
is modified. The current rate is available at in-
put port flow. The reservoir defines also the
continuous output port level, to provide access
to the current reservoir level, and the discrete
port change to signal a modification in the reser-
voir flow rate. The HFSS-Groovy implementa-
tion is described in Listing 2. Where method
rate, line 10, computes the effective input rate,
and method level, line 34, computes reservoir
contents. When the rate is zero, line 28, the
model becomes passive.

1class Reservoir extends Model {

2private double level;

3private double rate = 0.0;

4public boolean isZERO(double x) {return Math.abs(x) <= 1.0e-12}

5public Tank(String name, double level) {

6super(name);
7this.level = level;

8alpha = 0.0;

9}

10private double rate(double r) {

11if (isZERO(r)) return 0;

12if (isZERO(level) && r < 0) {

13level = 0;

14return 0;

15}

16return r;

17}

18public void transition(double e, def xc, def xd) {

19this.passivate();
20level = level(e);

21double nextRate = rate(xc.value());

22if (! isZERO(nextRate - rate)) {

23rate = nextRate;

24beta = 0.0;

25return;
26}

27rate = nextRate;

28if (isZERO(rate)) return;
29if (rate < 0) {

30beta = -level / rate;

31return;
32}

33}

34private double level(double e) {return level + rate * e}

35public def outputC(double e) {return new Port("level", level(e)})

36public def outputD(double e) {return new Port("change",

level(e))}

37}

Listing 2: HFSS-Groovy Reservoir model.

Typical reservoir input and output trajectories

are depicted in Figure 7. The input flow changes
at instants t1, t2 and t4. This value is sampled
from the continuous input trajectory and im-
posed by the arrival of discrete flows. Tank flow
level is continuous, a piecewise linear flow, as a
consequence of the piecewise constant flow rate
constraint. A discrete flow signal is produced
each time the flow changes. In the interval [t3, t4]
the reservoir content is zero due to the negative
input rate.

Figure 7: HFSS reservoir trajectories.

3.3 Transitions

HFSS transition model is represented in Fig-
ure 8. A transition samples the precondition
from the continuous ports tokens[n], that are
connected to the input places the transition de-
pends upon. If the precondition is true the tran-
sition tries to seize the tokens from the Conflict

Manager component that manages place access
conflicts. When an acknowledged is received the
transition executive Transitionη creates a Delay

to signal transition end. We assume the infinite
server semantics and thus multiple copies of a
transitions (instances) can execute in parallel.
When a Delay finishes it signals the executive
that removes it from the network and releases
the corresponding tokens through the output
ports add[n]. A transition also checks for its
precondition when receives an update message
sent by a place that has changed its number of
tokens. The current number of Delay instances
can be sampled at the continuous output port
number. When this value changes a signal is sent
through the discrete output port number.
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3.4 Conflict Manager

Given the infinite server assumption, and since
HFSS has a parallel semantics, implying that all
transitions scheduled to the same time must be
fired simultaneously, conflicts can arise. Con-
flicts need to be solved in a deterministic man-
ner, and under the control of the modeler. These
requirements impose a centralized controller to
decide what transitions can be fired and those
that need to hold. The ConflictManager model is
represented in Figure 9. It receives requests in
port seize from transitions whose preconditions
are satisfied. The information about tokens
availability is sampled at input ports tokens[n].
At this point the conflict manager has full con-
trol on what transitions can proceed. Many
strategies to break ties are possible, including a
probabilistic rule, fairness considerations, wait-
ing time, priorities, etc. Since we have an ex-
plicit representation of conflicts it becomes pos-
sible to use any algorithm suitable for a partic-
ular goal.

When the manager decides to enabling a tran-
sition it removes the tokens from the corre-
sponding places using output port remove[n].
Transition acknowledgment is made through
output port ack[n].

We have described the basic HFSS compo-
nents that can be used to represent FSPNs ele-
ments. In the next sections we show how these
HFSS components can be combined to create
arbitrary FSPNs.

3.5 Continuous Flow HFSS Model

We start the HFSS representation of FSPNs by
considering the continuous FSPNs of Figure 2.
The mapping from the FSPN to the correspond-
ing HFSS network model is straightforward and
is depicted in Figure 10.

Reservoir P0 samples the input rate from
transitions T1, T2 and T3, and any change in
the number of tokens, forces a sampling opera-
tion in P0. Thus P0 input rate is updated when-
ever there is a change in any input transition.

3.6 Discrete Flow HFSS Model

The mapping of the FSPN of Figure 1 into a
HFSS model is represented in Figure 11. FSPN

Figure 8: HFSS transition model.

Figure 9: HFSS conflict manager model.

Figure 10: HFSS continuous flow network
model.
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places and transitions are mapped into the cor-
responding HFSS components described before.
The conflict manager completes the HFSS model
since it is required to handle the access to (com-
mon) places.

Figure 11: HFSS discrete flow network model.

We can observe that the structure of the origi-
nal PN is mainly preserved. Transition T0 reads
from places P0 and P1 and it produces tokens
to places P2 and P3. However, the arity of the
arcs is stored in ports input function and it
is not explicitly represented in the Figure 11.
The conflict manager is introduced to explic-
itly represent the algorithm for solving collisions
when transitions access to the same resources.
This element is not used in PN diagrams and
need to be specified by some textual annotation.
Our approach makes it possible to define differ-
ent strategies and making them reusable HFSS
components that can be chosen according to the
system requirements.

4 Simulation Results
For the validation of the HFSS representation
of FSPNs we use the petri net of Figure 3, with
parameters L = 90, N = 5, µ = 1/4.0, λ = 1/1.5,
a = 50, and d = 14. The input rate of p0 is set
by HFSS-Groovy method influencers defined by
Listing 3.

1influencers("P0", ["T0", "T1"],

2{List xc->

3def res = xc.filterByPort(["number"]);

4return res[0].value() * 50 - res[1].value() * 14;

5}, {List xd->

6def res = xd.filterByPort(["number"]);

7return res;

8});

Listing 3: P0 input function.

Simulation results for the contents of reservoir
p0 are depicted in Figure 12, where discrete
flows are represented by squares and the con-
tinuous flow is piecewise linear.

Figure 12: Marking of place p0.

As can be observed from the graphic, the num-
ber of transitions is very small since the HFSS
representation exploits the piecewise constraint
of input flows to achieve an efficient simula-
tion. Given that HFSS models can produce con-
tinuous output flows, reservoir continuous tra-
jectory can be calculated without involving any
transition, reducing the computation cost.

5 Related Work
To the best of our knowledge we have developed
the first modular description of FSPNs. The rep-
resentation of Petri Nets in discrete event for-
malisms, like DEVS, have been described [7].
However, these approaches relate only to non-
timed PNs with single server semantics hav-
ing simpler requirements when compared to the
FSPNs modeled in this paper. The discrete event
simulation of FSPNs has been described in [4].
This work, however, provides a description of an
ad hoc implementation not supported by a mod-
ular representation. Implementations based on
fixed sampling rates have been developed [5],
but results are dependent on the sampling rate,
and loosing accuracy when compared with the
exact results achieved by HFSS models. The
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use of HFSS sampling provides a simplification
in the messages required to retrieve informa-
tion. Taken for example the conflict manager
component, it requires one sampling operation
to retrieve token information from all connected
places. The alternative discrete event represen-
tation would require sending a message to each
place and then to wait for every answer to ar-
rive. HFSS sampling enables all this informa-
tion to be exchanged in a single atomic oper-
ation, being easier to represent, and levering
model reuse. Domain Specif languages (DSLs)
have been developed to create simulations from
(non-timed) PNs. However, these approaches re-
quire the development of specific compilers in
order to be applied [6]. On the contrary, our
approach based on a domain specific (FSPN) li-
brary makes the mapping between FSPNs and
simulations very simple, removing the need for
expensive compilers.

6 Conclusion and
Future Work

We have developed a modular representation of
FSPNs based on the HFSS formalism that en-
ables a direct map of net elements, like places
and transitions, into a HFSS components. The
HFSS representation preserves the structure of
the original FSPN, becoming very easy to de-
velop and amenable to a manual translation.
Our approach makes it also possible FSPNs
to be defined directly from a library of HFSS
components without requiring the support for
translation/generation tools. As future work we
plan to model Hybrid Petri Nets [5], an alter-
native to FSPNs with more powerful semantics,
namely the ability to describe inhibitor arcs as-
sociated with continuous places.
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