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ABSTRACT
Discrete Event Simulation (DES) is an essential tool for network

practitioners. Unfortunately, existingDES simulators cannot achieve

satisfactory performance at the scale of modern networks. Recent

work has attempted to address these challenges by reducing the

traffic processed via novel approximation techniques; however, we

argue in this paper that much of the slowdown of existing DES

simulators is due to their underlying software architecture.

Using ideas from high-throughput simulation of virtual worlds in

gaming, this paper presents a fundamental redesign of DES network

simulator, DONS, that marries domain-specific aspects of packet-

level network simulation with recent advances in data-oriented

design. DONS can automatically parallelize simulation within and

across servers to achieve high core utilization, low cache miss

rate, and high memory efficiency. On a relatively weak ARM-based

laptop (MacBook Air (M1, 2020)),DONS can simulate one second of

a 100Gbps, 1024-server data center in 22 minutes (a speedup of 21×
compared to OMNeT++). On a cluster of CPU-based servers, DONS
can achieve a speedup of 65×, matching the order of magnitude of

recent GPU-accelerated deep learning performance estimators, but

without any loss of accuracy.

CCS CONCEPTS
• Networks → Network simulations; • Computing method-
ologies → Parallel computing methodologies;
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1 INTRODUCTION
Network simulation is critical for network planning, operations,

and innovations. Discrete Event Simulation (DES) [22, 29, 39, 51]

is the predominant paradigm for network simulations. In a DES

simulation, every event (e.g., send or receive packet) is treated as

a discrete event—a full simulation trace is simply the sequential
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execution of each event, ordered by timestamp. Unfortunately, ex-

isting DES simulators cannot provide satisfactory performance for

modern networks due to their scalability issues [55, 57], as we con-

firm using experiments (§2.2). Parallel and distributed simulation

frameworks exist, but as others [57] have noted, and we verify in

§2.2, existing parallel DES frameworks also scale poorly and can

sometimes perform worse than serial execution.

Improving the scalability of DES is difficult, but recent work

has made progress in two primary axes. First, for specific research

areas where flow-level analysis is useful and theoretically grounded,

e.g., congestion control or active queue management, researchers

have developed flow-level continuous-time simulators (CTS) [5, 12,

26, 30, 31, 35, 40]. CTS can achieve higher scalability because it

ignores packet-level events and works on a higher abstraction level

than DES. Second, for applications where quick estimates of end-to-

end performance metrics are sufficient, researchers have developed

AI-powered performance approximators (APAs) [24, 43, 55, 57],

which use ML to reduce the total amount of work done by the

simulator and leverage the power of GPU hardware acceleration.

Although both approaches offer substantial speedups for their

target use cases, network architects often still need full-fidelity

packet-level results [27, 28, 53, 58]. Furthermore, many of the above

techniques still rely on DES as a substrate (e.g., simulating flow-

level interactions [43] or collecting training data [57]). Thus, part

of their performance is still bottlenecked by DES.

Are all of these simulation frameworks doomed to poor scalabil-

ity by fundamental flaws in the DES paradigm? After a careful study

of existing DES simulators, we answer this question in the negative.

Specifically, we argue that the dismal performance of today’s DES

simulators is not due to the DES abstraction itself but, rather, the

underlying software architecture of today’s DES instantiations and

their methods of parallelization. We summarize the problems (P1–3)

of existing DES simulators:

P1 Poor multi-core and cache efficiency: Current DES simu-

lators are not optimized for performance and scalability even

on a single machine, which leads to poor multi-core utilization

and cache efficiency (§2.2).

P2 Poor memory efficiency: Existing DES simulators lack sup-

port for multi-threading. Process-based parallelization cannot

share data without incurring context-switching overhead. Thus,

data such as network topology and routing information are du-

plicated for each process, resulting in high memory consump-

tion, which restricts the size of networks that can be simulated

in a single machine.

P3 Manual and inefficient partitioning: For parallelization on

a single multi-core machine or a cluster of servers, users of
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Figure 1: Object-Oriented Design vs. Data-Oriented Design.

existing network simulators must manually partition the net-

work over available workers, which is coarse-grained and error-

prone. Bad partitions also result in poor parallel execution per-

formance, sometimes even worse than serial execution (§2.2).

To achieve scalable performance, we believe the DES simulation

engine must be fundamentally redesigned. In particular, when video

game developers met similar problems with cache efficiency and

poor scalability more than two decades ago, they turned toward a

paradigm called Data-Oriented-Design (DOD) [14], which is still

widely used in game development since the 2000s [6, 13, 48, 49]. This

paper presents the design and implementation of a Data-Oriented

Network Simulator (DONS), a DES network simulator using a novel

engine designed with DOD principles.

The key characteristic of DOD is putting data of the same type

together. This vastly differs from Object-Oriented Design (OOD),

which all existing DES simulators adopt. In OOD, data is encapsu-

lated in objects. We use an example (Figure 1) to showcase why

DOD is superior in terms of performance. Consider an output port

with three packets in its buffer. The dequeue scheduler must look

at their packet sizes and enqueue timestamps to determine which

packet to send. For OOD, these two pieces of information are stored

in different objects that are scattered in main memory at run-time,

and the CPU core running the dequeue scheduler must fetch them

one by one before making a decision. In contrast, DOD places the

data of the same type together: the timestamps of all packets are

placed contiguously, as well as the sizes. Thus, the dequeue sched-

uler can fetch the chunks containing the relevant information into

the cache at once before beginning processing. The dequeue net-

work function can directly access the packet’s information in the

chunk using the identifier (ID) of the packet. Doing so also enables

efficient multi-core parallelization and cross-core load balancing.

Once the data chunks are fetched into the L3 cache, the same net-

work function of all devices can run in a data-parallel manner,

because the L3 cache is shared by all cores. In addition, network

devices usually have similar network functions (e.g., forwarding
and dequeue in switches). Thus, DOD is particularly well-suited

for the software architecture of DES network simulator.

DONS features automatic parallelization at both server-scale

and cluster-scale, comprehensively addressing P1–3. With DONS,
we make the following contributions:

• We design a network-specific DES simulation engine using

DOD principles that breaks the coupling between different net-

work devices. This allows DONS to identify cross-device batch-

ing and parallelization opportunities that existing simulators

ignore. This greatly improves multi-core utilization and signif-

icantly reduces cache misses. DONS also uses a thread-pool-

based run-time environment, which enables thread-based par-

allelization and fine-grained automatic load-balancing on mul-

tiple cores. Taken together, DONS achieves up to 22× speedup

against ns-3 in large-scale simulations, with high CPU utiliza-

tion and efficient memory usage on a single machine (§6.1).

• Across multiple machines, we improve upon prior work by

introducing computation capacity and traffic pattern into a

time-cost model. Using this model, we develop a partitioning

algorithm that enables automatic and efficient parallelization

on a cluster. Using 8 servers to simulate a large-scale DCN,

DONS achieves a 65× speedup compared to OMNeT++ (§6.2).

• We prove the correctness of DONS’s DOD-based simulation en-

gine. Our experiments also confirm that the simulation results

of DONS are the same as that of ns-3 and OMNeT++.

• We release the source code of DONS1 to promote further re-

search in network performance evaluations. DONS is based

on the Unity framework [47], and thus, it works on consumer

laptops, CPU-based servers, and even mobile devices with ARM

cores. Using a MacBook Air (M1, 2020) and within 22 minutes,

DONS can finish simulating a 1024-server DCN with 100Gbps

interfaces running for 1000 milliseconds (a speedup of 21× com-

pared to OMNeT++).DONS enables networking practitioners to
simulate networks at today’s scale with available and affordable

hardware without loss of accuracy.

This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION
In this section, we overview existing network simulation archi-

tectures, including DES. We then examine the scalability issues

of existing DES simulators and motivate the design decisions of

DONS.

2.1 Existing Network Simulators
Existing network simulators fall into three paradigms: continuous-

time simulation (CTS), AI-powered performance approximation

(APA), and discrete-event simulation (DES).

CTS.CTS takes a holistic view of the network. CTS seeks to describe

the network state using sets of equations or models, estimating

performance metrics by computing the evolution of system states.

CTS can be further divided into control-theoretic CTS [5, 30, 31, 35],

network calculus [12, 26], and queueing-theoretic CTS [40]. When

the underlying theoretical foundation is clear for a networking

scenario, such as congestion control, CTS can be of great use, as

it works on a higher abstraction level than DES. However, high-

fidelity CTS also suffers from scalability issues and, in some cases,

cannot scale beyond a single device [55].

APA.Researchers have also recently explored the design of APAs [24,
43, 55, 57], which use deep neural networks to model end-to-end

1
https://github.com/dons2023/Data-Oriented-Network-Simulator
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network performance metrics. An APA recasts the network as a

DNN model that is trained using real traffic traces and the cor-

responding network performance metrics. Given an embedding

of facts about the simulation scenario, an APA can predict end-

to-end performance metrics such as RTT, flow completion time

(FCT), and packet drop rate. These models can then be option-

ally embedded into larger simulation architectures [57]. Because

APAs eliminate the need to simulate billions of packets and, instead,

leverage parallel execution using GPUs, APAs enjoy obvious perfor-

mance advantages in terms of simulation completion time. Given

the superior scalability of GPUs, APAs can be useful for quick end-

to-end performance estimates. However, it is not always desirable

to trade accuracy for performance, and even when it is, packet-level

network simulation can still be a bottleneck, e.g., when collecting

training data or using the models in a larger simulation [43, 57].

DES. In contrast to CTS and APA, DES simulators provide accurate

packet-by-packet traces in arbitrary networking scenarios. For this

reason, most of the networking community still relies on them for

performance evaluations [27, 28, 53, 58].

A DES simulator models the operation of a network as a discrete

sequence of events in time, e.g., packet enqueues and dequeues.

Each event occurs at a particular instant in the simulation timeline

and marks a state change in the network. As an example of their

success, as of January 2023, ns-2/3 [22, 39] has garnered more than

4300 citations.

However, with networks growing larger and larger, DES simu-

lators are failing to keep up with these hardware trends. Scalable

parallel simulation has been studied extensively since the 1970s, and

many parallel simulation synchronization algorithms have been

proposed [16]. Despite these efforts, the current DES simulators

still struggle to scale. For example, a simulation of a 65K-server

data center network (DCN) takes more than 9 days to complete

(§6.2) on a state-of-the-art DES simulator, OMNeT++ [51], even

when using an 8-machine cluster. This is insufficient for today’s

“hyper-scalers” like Google and Amazon, which are building data

centers containing tens of thousands of servers [37, 45].

For network researchers, the need to improve the scalability of

DES simulators is urgent. The unsatisfactory performance has led

to a curious inversion in networking experimentation: tradition-

ally, simulations are used for large-scale experiments, and testbed

evaluations are for small-scale prototyping. With the fast evolution

of cloud and container technology and the slow improvement of

simulators, nowadays, DES simulators are only fit for small-scale

experiments; thus, people are skipping prototyping on DES simula-

tors altogether and directly conducting real large-scale experiments

on the cloud [9, 19, 38, 56]. Running large-scale experiments on

the cloud is expensive, and this becomes a barrier to entry for net-

working practitioners with a small budget, especially in academia.

Without a scalable DES simulator that can work on common hard-

ware platforms, they are prevented from experimenting at the scale

of current networks and cannot provide convincing validation of

their ideas at scale.

2.2 Problems of Existing DES Simulators
Through extensive experiments, we identify that the fundamental

limitation of existing DES simulators is their OOD-based software

(a) Cache miss rate (b)Memory usage of ns-3

Figure 2: Poor cache and memory efficiency of ns-3.

architectures. The fundamental structure of these programs gives

rise to three primary problems (detailed below) that are difficult

to mitigate using just engineering effort. Note that we conduct

the experiments mostly on ns-3 but emphasize that other DES

simulators share similar performance characteristics, and are also

lacking in scalability [57].

1. High cache miss rate: We use the default ns-3 (i.e., with single

process) to simulate an ordinary FatTree [3] network with a full-

mesh dynamic flow pattern (§6), and record the miss rate of the

L3 cache. As shown in Figure 2a, the L3 cache miss rates of ns-

3 are always higher than 4% for different sizes of networks. We

believe this is because current OOD-based DES simulators forgo

data layout optimizations so that data of the same type may be

scattered in memory and encapsulated in different objects. Thus,

existing simulators fail to put relevant data into the cache at the

same time and must access them in an object-by-object manner,

resulting in a significant number of cache misses. As a comparison

and a preview, in Figure 2a, we plot the L3 cache miss rates of

DONS after optimizing the data layout, capping miss rates to less

than 0.15% for all simulation scenarios.

2. Poor memory efficiency: By default, popular simulation frame-

works like ns-3 and OMNeT++ are single-threaded
2,3

. To enable

the usage of multiple cores, both simulators require users to manu-

ally partition their simulation topology into sub-graphs and exe-

cute them in different processes on different cores, communicating

through protocols like MPI. In the parallel DES literature, each

parallel simulation process is called a Logical Process (LP).

Because the different simulation processes would need to pay

high IPC costs to share and maintain common data, the same data,

such as network topology and routing information, are often du-

plicated for each process [33]. As shown in Figure 2b, using ns-3,

we change the number of processes to simulate a FatTree topol-

ogy with 𝑘=16 (FatTree16), which has 1024 servers, 320 switches,

and 3072 links with 100Gbps. We observe that ns-3 with 32 pro-

cesses can saturate the cores, but its total memory usage is 132.5 GB.

This high consumption limits the size of simulated networks on a

single machine: simulating FatTree32 with 32 processes requires

>5,000GB of memory.

3. Manual partitioning is not optimal: In addition to the above,

manual partitioning of network subgraphs to workers must be

hand-tuned and may still be frequently imbalanced. An imbalanced

workload among participating CPU cores or servers may prolong

2
https://github.com/nsnam/ns-3-dev-git/blob/master/src/core/model/

default-simulator-impl.cc#L197

3
https://github.com/omnetpp/omnetpp/blob/master/src/sim/csimulation.cc#L1074
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Figure 3: The performance of the parallel ns-3 is degraded.

simulation completion time. When a network is badly partitioned, a

multi-process simulation can perform worse than a single-process

simulation. Figure 3 shows a bad case of partitioning: the nodes

in the network are randomly divided into the two ns-3 processes.

We can see that the simulation speed of two processes in parallel is

slower. This is because of the high synchronization overhead be-

tween processes. Formally, every LP must adhere to a Local Causal-
ity Constraint (LCC) [16], which refers to the fact that each LP

processes events strictly in chronological order—the synchroniza-

tion algorithm should guarantee that, before processing an event

at simulated time 𝑡 , no additional events with 𝑡𝑒<𝑡 will ever oc-

cur. With bad simulation partitioning, synchronization between

LPs introduces significant consistency overhead, making parallel

processing slower than a single process [57].

2.3 Motivating DONS’s Design Choices
With the above observations, we see plenty of headroom for im-

proving the scalability of DES simulations. DONS centers around

three key ideas.

1. Adopt DOD to optimize the data layout. To enable efficient par-

allelization and improve cache efficiency, we adopt DOD and fun-

damentally restructure the storage and management of simulation

data.

To the best of our knowledge, all existing DES simulators adopt

OOD to design their engines. Although OOD claims to “organise

code around data”, it actually organises source code around data

types rather than physically grouping individual fields and arrays in

an efficient format for access by specific functions [54]. For example,

in all existing DES simulators, a packet is encapsulated as an object,

containing all its information, such as size, timestamps, source and

destination addresses, protocol, etc. At run-time, objects of packets

are scattered in heap memory. Many network functions, such as

packet scheduling, generally do not need all of the information

about a packet but only specific pieces of information (e.g., times-

tamps) from all relevant packets. After our careful investigation,

we found that network functions of this nature account for more

than 78% of the total network functions and protocols in the current

ns-3 [44]. When a function is incurred, current simulators fetch the

relevant packet objects one by one into the CPU cache and access

only one field in each of them. This random access pattern results

in inefficient cache line usage, ineffective prefetching, and high

cache miss rates, which we witness in §2.2.
We adopt DOD for its focus on data layout. DOD advocates

storing data of the same type (e.g., the same attribute of all objects)

together, akin to the strategy taken by columnar databases. In DOD,

all processing logic considers only the transformations of data,

which can be parallelized easily. In this way, the attributes of interest

to the running network function can be fetched simultaneously to

the cache and processed in parallel on multi-core CPUs.

DOD also breaks the coupling between network devices. In exist-

ing DES simulators, a device’s functions are executed sequentially

for each packet. In contrast, DONS (on a single machine) executes

the same functions of all devices together. This allows DONS to

exploit cross-device parallelization opportunities, which existing

simulators ignore. We prove the correctness of this parallel execu-

tion model (§3.3) and confirm that packet traces produced by this

model are the same as those of ns-3/OMNeT++ (§6.1).
DONS uses a popular DOD software framework, the Entity-

Component-System (ECS) [49] framework, and we describe the

ECS-based network modeling in §3.2.
2. Use multi-threaded parallelization with a novel batch-based thread-
ing model. Within a machine, DONS employs a thread-pool-based

run-time environment to achieve automatic multi-threaded par-

allelization, making full use of the multi-core CPU. Compared to

process-based parallelization, multi-threaded parallelization is su-

perior in at least two aspects: efficient memory usage and low

cross-thread communication overhead, because data can be shared

easily between threads within a process. We also develop a batch-

based threading model. Within a batch, the processing logic of the

network function can be executed in a data-parallel fashion without

synchronization algorithms, which we elaborate in §3.3.
3. Design an automatic partitioning algorithm for multi-server paral-
lel simulation. Across machines, we cannot directly generalize the

above single-machine, batch-based threading model design because

the communication latency between servers is much larger than

that between cores, and the bandwidth is smaller. To enable par-

allel DES simulation among servers, we instead layer the existing

methodology of DES simulators (partition the simulation topology

into sub-graphs and execute each on a different server) on top of

the single-machine DONS execution model, with the following

improvements (§4):
• We design a new time-cost model for partitioning the topology.

To the best of our knowledge, this is the first time computation

capacity and the traffic pattern are considered in a time-cost

model for parallel DES simulations.

• With the new model, we develop an automatic heuristic par-

titioning algorithm that can balance the load among servers.

With this algorithm, users no longer need to iteratively tune the

partition for parallel DES to achieve satisfactory load-balancing

and can program the simulation as if it is on a single machine.

3 DONS DESIGN
In this section, we first overview the architecture of DONS and

then describe its ECS-based modeling of network simulation. We

proceed to the design of the batch-based threading model, and

finally, we provide proof of the correctness of DONS’s execution
model.

3.1 Architecture
DONS adopts a simple Client-Server architecture, which is shown

in Figure 4. The DONS Manager accepts a user’s submission of

simulation settings and orchestrates the simulation on one or more
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Figure 4: DONS’s system architecture.

machines. Each participating machine runs a single DONS Agent,

and it executes the simulation tasks assigned by the Manager. The

Manager and the Agent can run on the same machine.

DONS Manager. The Manager has three core components, the

Load Estimator, the Partitioner, and the Cluster Controller. The

Load Estimator and Partitioner work together to produce parallel

execution plans when there is more than one machine in the cluster.

We describe them in detail in §4. The Cluster Controller maintains

a connection with all the Agents, monitors the health and simula-

tion progress of the DONS Cluster, and aggregates the simulation

results.

DONS Agent. Each machine runs only one instance of DONS
Agent. The Agent has two core components, the Simulation Builder

and the Runner. The Simulation Builder constructs the simulation

scenario locally based on the setting information from the DONS
Manager. The Runner is a thread-pool-based run-time environment

that executes the simulation.

The Agent also sets up and manages the communication chan-

nels between the DONS Manager, as well as other Agents. During

distributed simulation across machines, the Agents perform clock

synchronization among themselves using their direct channels.

3.2 Network Modeling
As discussed in §2.3, we use the ECS framework to implement

DONS. ECS is a popular framework for realizing DOD principles

and has been adopted in many large-scale gaming and virtual reality

software projects [6, 13]. In the following, we describe how we

model network simulations using concepts in ECS.

First, we introduce the concepts in ECS. As the name indicates,

ECS comprises three concepts:

• Entity: The entities are general-purpose objects in the simula-

tion scenarios. An entity is not an object in OOD. Entities serve

to identify which pieces of data belong together logically. Thus,

it is usually implemented as a unique identifier (UID).

• Component: A component labels an entity as possessing a

particular aspect or attribute and holds the data needed tomodel

that aspect. For example, in a physics engine, every entity has

a mass component associated with it. Data for all instances of

a component are stored together in physical memory, indexed

by the UIDs of entities. This enables efficient memory access

for systems that operate over many entities.

• System: A system contains all logic of a process. It acts on

all entities with the desired components and transforms the

component data from its current state to the next state. For

example, a physics system may query entities having mass,

velocity, and position components and iterate over the results

by doing physics calculations on the sets of components for

Figure 5: DONS modeling of network simulation.

Figure 6: Example of DONS modeling: 2 hosts connected by a

2-port switch.

each entity. A system can be considered a behavioral description

of an aspect of the simulation.

With the ECS framework for DOD, we analyze the life cycles of

all packets in the network data plane and abstract out the entities,

components, and systems in network simulations. Our abstraction

is shown in Figure 5. A packet originates from a Sender Entity

and then traverses a data plane forwarding path comprised of con-

secutive IngressPort Entities and EgressPort Entities. Finally, the

packet arrives at the Receiver Entity, which triggers its correspond-

ing Sender Entity to send an acknowledgment (ACK) if needed.

Based on this abstraction, we design a novel network simulation

engine that conforms to ECS framework. The engine currently en-

compasses four entities and four systems. Due to space limits, we

introduce the components along with their associated entities, and

we refer interested readers to our released source code, where the

definitions of all components can be found.

DONS Entities. DONS has four entities:

• Sender: it abstracts all the traffic generators. It is associated

with components such as ID, source and destination addresses,

flow demands, and congestion windows.

• Receiver: it represents the destination of the traffic. It is as-

sociated with components such as ID, source and destination

addresses, and receive window.

• IngressPort: it models the input ports of network devices, such

as an end-host or a switch. A switch has multiple IngressPorts,

and each host has one IngressPort. The IngressPort Entity con-

tains components such as a forwarding table and buffer.

• EgressPort: it models the output port of the network devices.

A switch can have multiple EgressPorts, and it contains com-

ponents such as scheduling strategy and buffer.

We do not define packets as entities because of the sheer amount

of packets in modern networks. Instead, DONS treats packets as

plain data to be transformed by systems and put the packet data in

the components of different entities.

We use an example to help the understanding of DONS’s entity
modeling. In Figure 6, we show a simple topology with 2 end-hosts

connected by a 2-port switch. For each of the two ports, DONS’s
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Figure 7: DONS’s component data layout.

modeling divides it into two logical entities: the IngressPort and

the EgressPort. Within the switch, the IngressPorts are connected

to all EgressPorts in a cross-bar.

DONS Systems. DONS has four systems operating on component

data, corresponding to four categories of network behavior, and

each system governs one aspect of the simulation. We argue that

all network functionality can be split in this way. The SendSystem

manages all the packet generation behavior; the ForwardSystem is

responsible for packet-moving within a device, i.e., forwarding; the
TransmitSystem controls the packet-moving across devices; and the

ACKSystem handles all the processing regarding the termination

of the packets. Specifically, using the same example in Figure 6:

• SendSystem: it generates packets from all the Senders and

places them in the buffer component of the connected Ingress-

Port Entities. It also maintains the state machines for transport

layer congestion control protocols, e.g., TCP, for all the Senders.
In the example, Steps ❶ & ❺ are processed by this system.

• ForwardSystem: For all the IngressPorts in the simulation,

this system forwards packets to the corresponding EgressPorts

according to the forwarding information base (FIB), which is

determined in the build phase of the simulation. It can also en-

able Equal Cost Multi-Path (ECMP). Steps ❷ & ❻ are processed

by this system.

• TransmitSystem: it first sorts the packets from all the Egress-

Ports’ buffer components in chronological order and thenmoves

them to the linked IngressPorts or Receivers according to the

pre-defined scheduling strategies of the EgressPorts. Steps ❸

& ❼ are processed by this system.

• ACKSystem: it is responsible for processing the packets re-

ceived by all the Receivers. For example, if a flow uses TCP,

the ACKSystem checks the packet sequence number and then

registers an ACK packet to its paired Sender Entity. Steps ❹ &

❽ are processed by this system.

Component data layout. As shown in Figure 7, DONS places

component data of the same type together. The data belongs to and

is indexed by different entities. For large components that cannot

fit in a memory page, DONS splits them into chunks and manages

the indexing metadata. This improves cache-friendliness and helps

multi-core parallelization. Take the TransmitSystem as an example.

This system processes all the cross-device packet transmission

for all the links in a simulation scenario. It can fetch the relevant

chunk(s) into the cache at once and begin processing. Once the

data chunks are in the L3 cache, the TransmitSystem can run in

a data-parallel manner across multi-cores because the L3 cache is

shared by all cores.

3.3 Batch-based Threading Model
With the ECS-based network modeling, we next explain how we

execute the simulation correctly using multi-core parallelization.

For parallel DES, the synchronization overhead always increases

with the degree of parallelism, i.e., how many LPs participate in

the simulation. Existing synchronization algorithms incur high

overhead [8, 10, 16].

Insights. For DONS, we observe two properties of network simu-

lation that help to improve parallelization performance:

1. Use link delay as lookahead time. Lookahead time is a period

of time in which the LP can safely execute the events without

worrying about synchronization with other LPs [16]. In modern

networks, link delay (e.g., ∼1 μs) is at least an order of magnitude

larger than packet processing time (e.g., ∼100 ns)4. This indicates
that DONS can safely execute a batch of packet-level events during

the link delay without worrying about violating LCC.

However, merely using lookahead time in LPs is not enough,

and existing parallel DES [39, 51] are already treating link delay as

the lookahead. It seems imperative to implement synchronization

algorithms in DONS, since some entities exhibit minuscule delays

in their interaction, such as the Receiver and Sender within a host.

Next, we show why this is unnecessary for DONS.

2. Break the coupling between network devices. In large-scale net-

works, there are a lot of devices, and in each device, we find the same

set of network functions (or behavioral aspects). In our ECS-based

modeling, we summarize four aspects and define them as different

systems. As we prove at the end of this section, if these systems are

executed in the following order, (“ACKSystem, SendSystem, For-

wardSystem, TransmitSystem”), the correctness of the simulation

can be guaranteed.

We also observe that, within an aspect, there is no dependency

between devices. Take the ForwardSystem as an example. In a

window of the lookahead time, this system moves all packets in

all the IngressPorts to the corresponding EgressPorts, according

to the FIB component. Thus, the ForwardSystem concerns only

the buffer component and the FIB component associated with all

the IngressPorts, and these two components are determined in the

previous lookahead window by the SendSystem (for host-to-device

links) and the TransmitSystem (for device-to-device links). There

is no dependency between devices when the ForwardSystem is

running, so it can be safely parallelized on multi-cores without

violation of LCC. This independence means that we can safely

execute the same behavioral aspect of all simulated devices in a

data-parallel manner across multiple cores.

On a server, DONS has only one LP because DONS uses a single-
process, multi-threaded run-time model. Unlike existing parallel

DES on amulti-core server,DONS does not bind a core to a partition
of the network. In DONS, all cores simulate the whole network

together, just that only one aspect of the simulation is executed at

4
We also expect this discrepancy to enlarge with the introduction of 200/400GbE

interfaces in modern networks because the link bandwidth grows exponentially while

wire lengths stay relatively stable.
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Figure 8: Batch-based threading model of DONS.

the same time. This frees DONS from synchronization overhead,

which contributes greatly towards its performance and scalability

on a single multi-core machine.

Threading model: With these two insights, we redesign the DES

simulation engine. DONS uses a batch-based threading model, as

shown in Figure 8, where vertical is the time order, and horizontal is

the system execution order. The length of a batch is the lookahead

time, which is based on the smallest link delay in the simulation

scenario.

DONS sequentially executes the 4 systems within a batch. Note

that a naïve execution order would be: “SendSystem, ForwardSys-

tem, TransmitSystem, ACKSystem,” which packs packet generation

and retrieval at the beginning of the batch and packet processing

at the end. With this order, however, when the current batch ends

and the next batch begins, the simulation clock must increase, and

the ACKSystem may trigger the SendSystem to execute events in

the current batch, causing the SendSystem to violate LCC. There-

fore, we instead use “ACKSystem, SendSystem, ForwardSystem,

TransmitSystem” as the execution order
5
.

Within a machine, DONS employs a thread-pool-based run-time

environment. Each task in the thread pool is a parallel part of the

execution of a system. For the simulation of modern-size networks,

the tasks are usually large and computation-intensive. So we rec-

ommend configuring the size of the thread pool to be the number

of cores of the CPU for full utilization. Using thread-pool, DONS
achieve automatic multi-threaded parallelization and fine-grained

load-balancing on multiple cores. Compared to process-based paral-

lelization, multi-threaded parallelization has more efficient memory

usage and low cross-thread communication overhead, because data

can be shared easily between threads within a process.

Correctness of DONS. The following theorem is proved by prior

work in distributed and parallel DES [16]:

Theorem 1. If each LP adheres to the LCC, execution of the simu-
lation program on a parallel computer will produce exactly the same
results as execution on a sequential computer.

We intend to prove the following:

Theorem 2. DONS’s execution model on a multi-core CPU pro-
duces exactly the same results as execution on a sequential computer.

5
SendSystem as the last system and ForwardSystem as the beginning system should

also work, but is less intuitive.

Since the LP of DONS is the whole server, if we can prove that all
systems process events strictly in chronological order, thenDONS’s
execution is correct.

Proof. For the ACKSystem, as shown in Figure 8, when a batch

starts, the order of events to be processed by ACKSystem is already

determined by TransmitSystem. No new events will be inserted

when executing this batch, so ACKSystem conforms to LCC. This is

the same for the ForwardSystem and the SendSystem:When a batch

starts, the order of events to be processed is already determined

by the preceding system, so both systems conform to LCC. For

the TransmitSystem, because multiple IngressPorts can forward

packets to an EgressPort, and the ForwardSystem processes them

in parallel, so when the batch starts, the packets in the buffer com-

ponents of the EgressPorts are not in the correct order. Because

TransmitSytem first sorts the packets in chronological order and

then perform the egress scheduling, it also conforms to LCC. In

conclusion, all systems in DONS process event at simulated time

𝑡 without worrying about other events with 𝑡𝑒<𝑡 . By Theorem 1,

DONS’s execution model on a single machine produces exactly the

same results as execution on a sequential computer. □

Thus, DONS achieves correctness while not requiring any syn-

chronization algorithms within a single machine.

4 DONS DISTRIBUTED EXECUTION
The computing and memory capacity of a single machine limits

the scale of simulation that DONS can run on it. For example, in

our evaluations (§6), FatTree48 is the largest FatTree topology that

we can run on a single machine, but recent data centers exceed this

scale significantly. To simulate larger networks, we must enable

distributed execution for DONS.

Design Overview. It is not feasible to apply the same batch-based

threading model design for a cluster of servers, as the inter-server

communication latency is much larger than that between cores,

the bandwidth is smaller, and the clocks of the machines are not

synchronized. To conduct parallel DES simulation among servers,

similar to existing DES simulators, DONS partitions the simulation

topology into sub-graphs, and each server executes one of them.

Unfortunately, we find that the current partitioning methods are

coarse-grained and result in unbalanced workload distribution.

To enable balanced distributed simulation, we make three design

decisions. First, we design a precise time-costmodel which improves

the state-of-the-art. Second, we develop an automatic heuristic

partitioning algorithm that utilizes the new time-cost model to

find a partition that minimizes the overall simulation completion

time. Third, we implement a simple conservative synchronization

algorithm [16] to guarantee the correctness of distributed parallel

DONS.

4.1 Automatic Partitioning

Problem formalization. Finding the best partition across multiple

machines can be approached as an optimization problem, where

the input is the setup of the simulation task and the computing

and communication capabilities of the cluster; the output is the

partition result; the objective is minimizing the completion time of
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each machine, which can be estimated by a time-cost model. In the

following, we will try to solve this optimization problem through a

novel time-cost model and a heuristic algorithm.

Time-costModel.OMNeT++ uses a Coupling factor [52] to roughly

evaluate whether a simulation scenario can be accelerated using

distributed execution. However, the only constraint considered by

the Coupling factor is that the communication latency between

servers should be less than the wall-clock time for the server to

execute one lookahead. This condition does not directly relate to

the completion time of the whole simulation. For example, if the

load is extremely unbalanced among these servers, it may have a

similar low coupling factor, but its completion time may be large.

In order to accurately predict the simulation completion time

for a given network and partition, the cost model must take into

account the following three factors:

• The traffic pattern in the simulation network. This represents the
load of each node and link in the network (i.e., the number of

events to be simulated), which helps balance the computation

load of each sub-graph and the communication load between

the servers. For example, if we cut a link with high utilization,

its two end nodes are simulated by different servers, then these

servers need to communicate frequently.

• The computation capacity of the physical servers. This represents
the computation efficiency of the servers, which may have

heterogeneous computing power. Based on the computation

capacity of a server and the load it is assigned, we are able to

infer the time that the server spends in computation.

• The communication capacity of the physical cluster. This repre-
sents the communication efficiency between servers, and the

efficiency and the total amount of communication traffic can

calculate the network communication time required by the

simulation.

We define a time-cost model capable of estimating the simulation

completion time for a given network and partition as follows:

𝑇𝑎=
𝐸𝑎

𝑃𝑎
+ 𝜏𝑎

𝐵𝑎
(1)

𝑇= max

𝑎∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟
{𝑇𝑎} (2)

where 𝐸𝑎 represents the computation load in server 𝑎, 𝑃𝑎 represents

the computation efficiency of server 𝑎, 𝜏𝑎 represents out-going

traffic from server 𝑎, and 𝐵𝑎 represents the bandwidth of server

𝑎. 𝑇𝑎 is an estimate of the execution time of server 𝑎, and 𝑇 is an

estimate of the overall simulation completion time.

Load Estimator. Given the simulation setting, the Load Estimator

obtains the parameters in Eq. (1) using a simple flow-level network

model. The network is a topology of connected devices and links.

First, flows are added into the network in the same order and

time as in the simulation. They are also routed using the same

approach as in the simulation. When a new flow is added to the

model, we add the bandwidth of that flow to the load value of the

devices and links along its path. The load of each device and link in

the network is represented by the total bandwidth passing through

it. In the end, we can obtain quick estimates of loads on all devices

and links in the network from this model. We ignore fairness or

interaction between flows in this model, and the bandwidth on a

(a) An example of partition
(b) Synchronization

Figure 9: Implementation details of distributed execution.

link can exceed the link capacity. We do this to control the time

complexity (𝑂 (𝑛)) on large networks.

The actual load of both nodes and links is a function over time.

Note that DONS supports dynamic partitioning to better balance

the load among servers, and we describe this feature in Appen-

dix A. In cases where the flow demand is unknown in advance,

we adopt an alternative partitioning scheme that directly cuts the

static topology.

Partitioner. The objective is to minimize 𝑇 . The simulated net-

work, as profiled by the Load Estimator, can be viewed as a graph

with node weights and link weights, which represent the device

load and link load, respectively. For each server 𝑎, 𝑇𝑎 consists of

two parts: 𝐸𝑎/𝑃𝑎 and 𝜏𝑎/𝐵𝑎 . We observe that: (1) minimizing 𝐸𝑎/𝑃𝑎
is to solve the balanced cut problem in the graph, i.e., minimizing

the maximum sum of node weights among all sub-graphs; (2) min-

imizing 𝜏𝑎/𝐵𝑎 is to solve the minimum cut problem in the graph,

i.e., minimizing the sum of weights of the cut links. Thus, mini-

mizing 𝑇 is an instance of the well-known Minimum Balanced Cut

(MBC) problem [11], which is NP-hard [7, 11].

Thus, we propose a heuristic algorithm. Given that there are

many approximation algorithms that can solve the MBC (𝑘=2)

problem in near-linear time, we propose an iterative algorithm,

its pseudo-code is described in Appendix B. It solves an MBC (𝑘=2)

problem at each iteration and recursively partitions the entire net-

work. The iteration terminates when either one of the following two

conditions is met: (1) all machines in the cluster are fully utilized, or

(2) the current partitioning does not bring performance benefits as

estimated by the time-cost model. Figure 9a shows an example of a

partitioning result. Because we only cut the links, communication

between machines is restricted to the TransmitSystem. We explain

the execution of distributed DONS below.

4.2 Distributed Execution
In order to guarantee correctness, DONS requires that each Run-

ner executes the same batch at the same time. In other words, the

entire cluster should work on the same lookahead window. If one

TransmitSystem’s next hop is located on a remote server, it sends

one RPC to carry the information of a batch of packets in order to

overlap communication and computation. To determine the comple-

tion of the TransmitSystem and the communication in all Runner,

we design a simple conservative synchronization mechanism, as

shown in Figure 9b. When a machine finishes the TransmitSys-

tem and remote communications, it sends a FINISH signal to the
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other machines in the cluster. Thus, when a machine receives 𝑁−1
FINISH signals, it indicates that it will not receive any further RPC

requests and can execute the subsequent system. In the evaluation

in §6, we find that thanks to the improved load-balancing achieved

by our partitioning algorithm, this synchronization mechanism is

sufficient for DONS to obtain up to 65× speedup against OMNeT++,

which uses the more sophisticated Null-Message algorithm [16].

5 IMPLEMENTATION
Inspired by Mark Handley, who used Unity at SIGCOMM ’17 [21]

and SIGCOMM ’19 [20] to show how NDP [21] and the Internet

work, we saw the potential to develop a DES engine based on

Unity. We mainly use Unity’s Data-Oriented Technology Stack

(DOTS) [48], which provides an implementation of ECS frame-

work. DONS’s current code base has ∼3000 lines of C# code, which
we release for the networking community

6
. We follow the design

in §3, and implement functions in their respective systems. Cur-

rently, DONS supports the following features: UDP [36], conges-

tion control (DCTCP [4]), Random Early Detection [15] (packet

tagging), ECMP, and four popular packet schedulers (First-In-First-

Out, Round Robin, Deficit Round Robin, and Strict Priority). We

devise many optimization techniques to solve the problems en-

countered in the implementation of DONS, such as write-conflicts,

sorting packets, and active queue management. Due to space limits,

we describe them in Appendix C. With the prototype, we proceed

to evaluate DONS against existing simulators.

6 EVALUATION
We evaluate DONS’s fidelity, simulation speed, and scalability. We

summarize our results as follows:

Key Results.
• Fidelity: The simulation accuracy of DONS is equivalent to

that of existing DESs (e.g., ns-3 and OMNeT++), even down to

the timestamp of all events.

• Simulation speed: DONS is capable of simulating large-scale

networks (FatTree32) on a commodity 32-core server with only

CPUs, and the simulation time is 22× shorter than ns-3.

• Scalability: With the help of automatic distributed paralleliza-

tion, DONS can simulate larger networks on a cluster easily.

Using 8 commodity servers, DONS can finish a simulation of

FatTree64 (65,536 servers) in under 3 hours (a 65× speedup

compared to OMNeT++).

Baselines.We select ns-3 [39], OMNeT++ [51], and DeepQueue-

Net [55] (DQN) as the comparison alternatives, where ns-3 and

OMNeT++ are widely used DES simulators, and DQN is the state-of-

the-art APA scheme recently proposed. We also release the source

code for the experiments
7
.

Setup. Our cluster used for simulation consists of 8 Linux servers,

each including one Nvidia Tesla V100-16GB GPU, two Intel Xeon

CPUs (totaling 32 cores), and 128GB memory. All servers are con-

nected to a switch through a 40Gbps link. To showcase versatility,

we use a MacBook Air (M1, 2020) with 8 cores and 8GB memory

to test the performance of DONS on a consumer laptop, which is

6
https://github.com/dons2023/Data-Oriented-Network-Simulator

7
https://github.com/dons2023/

(a) RTT evolution (b) FCT distribution

Figure 10: DONS has the same fidelity with existing DES.

(a) FatTree4 (16-server) (b) FatTree8 (128-server)

(c) FatTree16 (1024-server) (d) FatTree32 (8192-server)

(e) Abilene (f) GÉANT

Figure 11: Simulation running time speedup brought by different

simulators under FatTree and WAN topology.

an affordable and available computing hardware for networking

practitioners. The simulation topologies encompass data center

networks (DCN) and wide area networks (WAN) of various scales.

Flow sizes and intervals are obtained from real-world traces [4, 42].

The source and destination of a flow are selected uniformly at ran-

dom from the servers in the topology. In all simulations, we use

DCTCP [4] as the congestion control algorithm.

6.1 Simulation on a Single Machine
All the following experiments were run on a single machine. ns-

3 and OMNeT++ employ one process or multiple processes, and

175

https://github.com/dons2023/Data-Oriented-Network-Simulator
https://github.com/dons2023/


ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Gao et al.

(a)Memory usage (b) Cache miss rate (c) CPU utilization

Figure 12: The performance of different simulators.

DONS’s multi-threaded parallelization automatically utilizes all

CPU cores.

Fidelity.We use these simulators to simulate a FatTree [3] topology

with 𝑘=8 (FatTree8) and run 64 flows, each transmitting 1.50MB of

data. We collect RTT and FCT to compare the fidelity. Figure 10a

depicts the RTT experienced by the first 200 packets, and Figure 10b

shows the distribution of the FCTs. DONS has the same RTT evo-

lution and FCT distribution as ns-3 and OMNeT++, and according

to our measurement, even the timestamps of all events in these

DES-based simulators are identical.

Simulation speed. We use different scales of DCN and WAN

to compare the speed of these DES simulators. The metric is the

speedup ratio (𝑡𝑛𝑠−3(1)/𝑡𝑥 ), where 𝑡𝑥 is the simulator’s simulation

completion time, and 𝑡𝑛𝑠−3(1) is taht of the single-process ns-3. Fig-
ure 11 shows the speedup ratios of these simulators under FatTree

topology. Using 2 processes actually reduces the performance of

ns-3 due to high synchronization overhead, and using 32 processes

barely speeds up performance. Furthermore, ns-3 cannot use multi-

process to run FatTree32 due to an Out-of-Memory (OOM) error,

the reason will be introduced in the following. The simulation speed

of OMNeT++ is comparable to ns-3, with a speedup ratio less than

3×, but it does not encounter OOM errors. In these experiments, the

speedup ratio of DONS increases from 3× to 22×, which indicates

that even large-scale networks can be simulated quickly using only

a multi-core CPU on a single machine.

In addition, we compare the simulation speed of different simu-

lators for WANs (e.g., Abilene [1] and GÉANT [46]). Abilene has

12 routers and 15 links, and GÉANT has 23 routers and 36 links. A

server was connected to each router to send and receive traffic. In

this simulation task, we construct full-mesh dynamic flows among

all servers. As shown in Figure 11e and Figure 11f, DONS achieved

speedups of at most ∼4× and ∼7×, respectively.
Memory efficiency. During the above experiments, we recorded

various performancemetrics of the simulators. Figure 12a shows the

memory usage of each simulator, which represents the maximum

value during execution. As ns-3 stores a complete simulation setting

in each LP (process), its memory usage increases with the number of

LPs. Calculations show that executing FatTree32 with 32 processes

using ns-3 requires ∼5,000GB of memory. In contrast, the memory

usage of OMNeT++ remains roughly the same regardless of the

number of LPs. The consumption of both ns-3 and OMNeT++ for

FatTree32 is close to the memory capacity (128GB) of a single

machine. Since DONS adopts DOD and focuses on data layout, it

Figure 13: The breakdown of CPU utilization of DONS.

is memory-efficient. For FatTree32, DONS only uses 12.6 GB of

memory. At maximum, DONS can run FatTree48 (27648 servers)

on a single server.

Cache efficiency. Figure 12b depicts each simulator’s L3 cache

miss rate (CMR) during the execution period. CMR refers to the

proportion of the number of cache misses on all cache query times,

collected by perf. Both ns-3 and OMNeT++ have a CMR greater

than 1% in all scenarios and increase with the topology scale. In

contrast, DONS has the lowest CMR of 0.12% for FatTree32. Com-

pared to both ns-3 and OMNeT++, the CMR of DONS has been

reduced by 56× at the highest and 4.5× at the lowest. Such low

cache miss accelerated the simulation completion time of DONS.

Multi-core utilization. Figure 12c shows the CPU utilization of

each simulator. The number of CPUs used by ns-3 and OMNeT++

is equal to the number of processes enabled. DONS adaptively uses

CPU cores using a multi-threaded approach. For different topolo-

gies, DONS’s CPU utilization rises from 1,003% to 2,634%, consis-

tently using all cores. Furthermore, the utilization rate remains

stable throughout the execution period. DONS’s CPU utilization is

3,200% under FatTree48, which indicates that, when running DONS
on the Linux server, the maximum topology size that will still expe-

rience parallelism speedups is FatTree48, and for larger topologies

(such as FatTree64), DONS requires distributed parallelization to

improve efficiency.

Then, we delve into analyzing the CPU overhead of each system

in DONS. To this end, we simulate FatTree16 on a MacBook Air (8

cores) using DONS and collect fine-grained CPU information using

Unity Profiler [50]. Figure 13 displays the CPU utilization of each

system within 1ms. Most of the time, all 8 cores are fully utilized,

with TransmitSystem taking the lion’s share. It also shows that

each system is executed in the order that guarantees correctness.

Scale of simulation. We analyze the maximum topology that a

single machine can simulate using different simulators. We set the

link capacity to 100Gbps in all experiments. On our Linux server,
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# Machines Simulator # GPUs Time Speedup 𝒘1

4

OMNeT++ 0 9d 14h 24m baseline -

DQN 4 2h 56m 78.5× 0.43

DONS 0 5h 27m 42.2× 0

8

OMNeT++ 0 7d 19h 8m baseline -

DQN 8 1h 48m 104.1× 0.46

DONS 0 2h 53m 65.0× 0

Table 1: Simulation time under FatTree64 (65,536 servers).

both ns-3 and OMNeT++ are limited at FatTree32. Simulations with

larger FatTree topology are terminated due to an Out-of-Memory

error. In comparison, the maximum size of DONS can simulate is

FatTree48 with 27,648 servers.

DONS can also support large-scale simulation on affordable

consumer laptops. The maximum size of DONS can simulate on

a MacBook Air with an M1 chip is FatTree16 with 1,024 servers,

and 1,000ms of simulated time takes 22 minutes, while OMNeT++

takes ∼7.8 hours.

6.2 Distributed Simulation on a Cluster
We use multiple machines for distributed simulation of larger DCN

and WAN topologies. Ns-3 is not compared as it cannot run such

large topologies, instead, we use OMNeT++ as the baseline, which

is set to utilize all cores in all machines. It should be noted that to

enable distributed parallelism in OMNeT++, users are required to

add a substantial amount of configuration code, with the number of

lines equivalent to the count of network nodes. Conversely, DONS
only requires users to program the simulation as if it is on a single

machine. DONS uses Load Estimator, Time-cost Model, and Parti-

tioner to divide the simulation network and generate a distributed

execution plan, then leverage the resources of all machines for sim-

ulation. DQNmakes use of all GPUs in these machines. We compare

the speed and scalability of different simulators and evaluate the

overhead of DONS’s Partitioner.

Simulation speed. First, Table 1 shows the simulation time of

different simulators under FatTree64. DONS achieved a maximum

acceleration of 65×, only 1.6× slower than DQN, but possesses

full fidelity. The speedup of DONS using 8 machines is ∼2× that

of using 4 machines, which indicates that DONS has near-linear

scalability. DQN achieves higher acceleration using 4 and 8 GPUs,

but it sacrifices accuracy. We compute the normalized Wasserstein

distance (𝑤1) of the RTT distribution between the simulators and

OMNeT++, and find that DQN cannot produce accurate results. For

all settings, its𝑤1s are all greater than 0.4.

To compare the effects of different topology partitioning meth-

ods, we simulate a large-scale irregular WAN in this experiment.

We obtain a large topology from a major ISP, which includes a

backbone network, provincial network, and metropolitan area net-

work, the WAN provides both home broadband and Internet private

line services. The WAN has 13𝑘 core routers and 32𝑘 links, and its

connections are very irregular. Figure 14 shows a part of the WAN

topology. We compare the impact of different topology partitioning

methods on simulation speed. The first method is the static balanced

cut algorithm, which aims to distribute the number of nodes across

multiple machines evenly. The second is the Coupling-factor-based

Figure 14: A part of the large-scale WAN from a major ISP.

Method Simulator # GPUs Time Speedup 𝒘1

Balanced

cut

OMNeT++ 0 6d 7h 6m baseline -

DQN 8 4h 46m 31.7× 0.53

DONS 0 11h 59m 12.6× 0

CFP

OMNeT++ 0 4d 1h 13m 1.6× 0

DQN 8 4h 10m 36.2× 0.52

DONS 0 9h 6m 16.6× 0

DONS
Partitioner

OMNeT++ 0 1d 15h 58m 3.8× 0

DQN 8 2h 26m 61.8× 0.57

DONS 0 4h 17m 35.2× 0

Table 2: Simulation time using 8 servers for a large-scale WAN

under different partitioning methods.

Method Planning time Execution time

Balanced cut 15s 11h 59m 17s

CFP 42s 9h 6m 03s

DONS Partitioner 1m 46s 4h 17m 24s

Table 3: Planning and execution time of DONS.

partitioning (CFP) method recommended by OMNeT++ [52], which

only considers the relationship between communication delay and

the lookahead time. The third is DONS’s Partitioner, which uses

the time-cost model for automatic partitioning.

We integrate these three methods into distributed OMNeT++,

DQN, and DONS, and the simulation speed is shown in Table 2.

Compared to the baseline (OMNeT++ with balanced cut), CFP has a

slight performance improvement. OMNeT++, using DONS’s Parti-
tioner, precisely plans the distributed simulation, resulting in a 3.8×
improvement in simulation speed. Partitioner also benefits DQN.

In summary, the static CFP and static balanced cut have similar

effects, as they do not consider dynamic traffic patterns. Partitioner

can improve the simulation speed by ∼2× compared to CFP.

Partitioner overhead. We examine the completion time of differ-

ent partitioning methods in the above experiment. As shown in

Table 3, the entire simulation time is divided into two parts: 1) Plan-

ning time, which represents the time spent running partitioning

algorithm to generate the distributed execution plan; 2) Execution
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time, which represents the actual time spent running the simula-

tion task. Using Load Estimator and Partitioner with the time-cost

model for planning takes ∼2 minutes, which is 2.5× that of CFP,

but reduces the execution time from 9 hours to 4 hours. Hence, the

time spent on planning in DONS is negligible but brings significant
performance improvement.

7 RELATEDWORK
Discrete-event simulators (DES). As critical tools for network
practitioners, DES simulators have existed for decades [25]. Notable

examples include ns-2/3 [22, 39], OMNeT++ [51], and OPNET [29].

They all face the scalability issue for simulating modern networks.

Parallel and distributed DES [16, 23] has also been extensively

studied, but parallelization of simulation often leads to performance

degradation due to inefficient data layout and high synchronization

overhead [55, 57].

Continuous-time simulators (CTS). Control-theoretic simula-

tors [5, 30, 31, 35], network calculus [12, 26], and queueing theoretic

simulators [40] have several limitations: (1) they require users to

have extensive knowledge and expertise in defining state evolu-

tion equations; (2) they only provide steady state results; and (3)

accurately estimating performance using CTS simulators can be

computationally demanding. DONS, on the other hand, provides a

simpler and more robust packet-level simulation abstraction.

AI-powered performance approximators (APA). APAs all have
an inherent loss of accuracy, a time-consuming training process,

and often come with limitations on their flexibility and generality,

stemming from assumptions about what can be approximated and

what cannot. DeepQueueNet [55] assumes static sender demands,

MimicNet [24, 57] is unable to accommodate topologies other than

FatTrees [3], and RouteNet [43] cannot generalize to different traf-

fic generation models. While approximation may eventually be

necessary, DONS proves that there is still significant headroom for

full-fidelity packet-level simulation. It can also provide complemen-

tary benefits, e.g., to training data generation.

Data-oriented design (DOD). DOD [14, 54] is a software design

philosophy that emphasizes the importance of data organization

and manipulation in the development of software systems. DOD

can be applied to various areas of computer science, including

game development [6, 13, 48, 49], programming languages [2], and

transaction processing [34]. To the best of our knowledge DONS is

the first to apply it to network simulation.

8 DISCUSSION

Extending DONS: Once the users are familiar with the DOD style

of programming, implementing a new functionality inDONS can be
as straightforward as in ns-3 and OMNeT++. We also provide basic

templates and building blocks for users. Taking the congestion con-

trol algorithm (CCA) as an example, DONS offers a foundational

TCP-based state machine for transport layer protocols, making

the integration of a novel CCA a relatively simple task. By imple-

menting the necessary logic and components, a new CCA can be

seamlessly added without the need for any additional systems. The

coding process closely resembles the development of a new pro-

tocol in ns-3. In the future, we plan to improve DONS to support

more network protocols, such as IPv6, routing, wireless, etc.

Fault tolerance: Since network simulations typically run for ex-

tended periods, DONS may encounter failures. In single-machine

multi-threading scenarios,DONS employs automatic recovery tech-

niques across multiple threads to ensure robustness and fault toler-

ance. In multi-machine environments,DONS utilizes checkpointing
to periodically preserve the run-time state of the simulation. This

approach facilitates the retention of progress and enables the simu-

lator to resume from a previous checkpoint in the event of failures

or interruptions. To achieve this, DONS periodically saves the cur-

rent state of the simulation to persistent storage. These checkpoints

encompass the internal state of the simulator, including the current

simulation time, object positions and attributes, and other necessary

variables and data structures. By creating checkpoints at regular

intervals, DONS ensures the ability to quickly recover to the most

recent checkpoint in the event of system failures or interruptions,

allowing the simulation to proceed from there. Furthermore, to

enhance fault tolerance, DONS can replicate checkpoints across

multiple locations to mitigate the risks of single-point failures. This

ensures that even if one storage location experiences a failure, the

simulation state can still be recovered from other locations.

Visualization: Visualization of network simulations is a crucial

tool for both network research and education. However, the front-

end of current network simulators [32, 41, 51] often fails to provide

satisfactory performancewhen dealingwith contemporary network

scales and interface speeds. We chose the Unity framework because

of its ability to support DOD and network simulation visualization.

Based on Unity, we have developed an efficient visualization front-

end [18] for DONS. The front-end offers a flow-level visualization

of network behavior and key performance metrics. In addition,

through parallel optimization, it supports real-time visualization

for large-scale, high-speed networks.

9 CONCLUSION
This paper demonstrates the ability to simulate large-scale net-

works with full fidelity using only affordable hardware, such as

CPUs. We first identify that the fundamental limitation of existing

DESs is their Object-Oriented-Design-based software architecture.

Then we utilize DOD principles (Data-Oriented Design) to design a

novel DES system, DONS, which can be automatically parallelized

for intra-server and inter-server settings. We prove the correctness

of DONS. Extensive experiments show that the simulation results

of DONS are exactly the same as ns-3/OMNeT++, and the simu-

lation speed is up to 65× faster. The scalability of DONS is also

demonstrated in distributed simulation experiments on a cluster.
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Algorithm 1: Heuristic partitioning algorithm

1 Function partitioner(𝑛𝑒𝑡𝑤𝑜𝑟𝑘):
2 𝑠𝑢𝑏𝑛𝑒𝑡1, 𝑠𝑢𝑏𝑛𝑒𝑡2 = MBC(𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , 𝑘=2);

3 if 𝑛𝑢𝑚_𝑠𝑢𝑏𝑛𝑒𝑡+1 >𝑛𝑢𝑚_𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 then
4 return;

5 if max(time_cost(𝑠𝑢𝑏𝑛𝑒𝑡1), time_cost(𝑠𝑢𝑏𝑛𝑒𝑡2))
<time_cost(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) then

6 𝑛𝑢𝑚_𝑠𝑢𝑏𝑛𝑒𝑡+=1;
7 partitioner(𝑠𝑢𝑏𝑛𝑒𝑡1);

8 partitioner(𝑠𝑢𝑏𝑛𝑒𝑡2);

9 else
10 return;

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A DYNAMIC PARTITIONING IN
DISTRIBUTED EXECUTION

If the partition is set in stone and does not change during the

distributed execution, then it will be very inefficient at some time

because the traffic pattern may vary greatly. A good partitioning

scheme should be able to change as the traffic pattern changes

dramatically but should also avoid frequent changes.

Figure 15: Load Estimator generates multiple simulation tasks

when the traffic pattern changes drastically.

To address this challenge, we first use a vector to record the

average load (normalized) of all network devices over a certain

period of time, as shown in Figure 15. Then, multiple consecutive

vectors record the changes in the network load over time. Next, we

calculate the Wasserstein distance between two adjacent vectors, if

it exceeds a certain threshold, it indicates that the traffic pattern of

the network has changed dramatically, and DONS get a new simu-

lation scenario. Finally, DONS will get several simulation scenarios

(maybe one if the traffic pattern does not change much). DONS
should treat them as separate simulation tasks, that is, perform the

heuristic partitioning algorithm on each of them. All results form

an overall simulation configuration, based on it, DONSManager

orchestrates the clusters.

B ITERATIVE PARTITIONING ALGORITHM
Algorithm 1 describes the heuristic partitioning algorithm used in

DONS’s Partitioner.
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C OPTIMIZING DONS
Multi-threaded simulation builder. As shown in Figure 4, Simu-

lation Builder constructs the simulation world based on the setting

information. The Builder performs the following tasks: 1. creation

and initialization of all entities, with a time complexity of O(#𝑛𝑜𝑑𝑒);

2. calculation of routes for each destination through BFS, with a

time complexity of O(#ℎ𝑜𝑠𝑡×(#𝑛𝑜𝑑𝑒+#𝑙𝑖𝑛𝑘)); 3. conversion of rout-

ing tables to forwarding tables for all IngressPorts, with a time

complexity of O(#𝑙𝑖𝑛𝑘×#ℎ𝑜𝑠𝑡 ). The latter two steps have a time

complexity of O(𝑁 2
), and for large networks, executing them on

one thread can be quite time-consuming. To enhance the efficiency

of the build phase, the Builder employs multithreading, enabling

threads to compute the BFS for different hosts and install the for-

warding tables for different IngressPorts.

Avoiding write conflicts. The ForwardSystem has a many-to-one

write-conflict problem because multiple IngressPorts can forward

packets to a single EgressPort. To solve this problem, we adopt the

command pattern [17]. It is a behavioral design pattern in which an

object is used to encapsulate all information needed to perform an

action or trigger an event at a later time. For each IngressPort, For-

wardSystem records its write requests in its own command buffer,
and in the end, the main thread consolidates the write operations

in all command buffers.

Sorting and scheduling packets. The TransmitSystem must ar-

range all packets in chronological order prior to writing them to

the next IngressPort or Receiver. Suppose there are𝑚 IngressPorts

forwarding packets to a single EgressPort, as previously mentioned,

the main thread executes these writes in a serial manner. Since the

packets generated by an IngressPort are ordered, meaning that the

EgressPort buffer will contain multiple sorted arrays of packets.

Consequently, the TransmitSystem can use Merge Sort to combine

these sorted arrays before scheduling, with a time complexity of

O(𝑁𝑙𝑜𝑔2𝑚), where𝑚 represents the number of arrays. After sorting,

the TransmitSystem checks the buffer size, and drop packets when

necessary. We currently use tail-drop in our prototype, and more

sophisticated dropping strategies can be extended in the future.

Then the TransmitSystem uses a scheduling algorithm to deter-

mine the order of transmission. We implement four popularly used

scheduling disciplines in the DONS prototype: First-In-First-Out

(FIFO), Round Robin, Deficit Round Robin, and Strict Priority. To

enable FIFO on an EgressPort, only one buffer component need

to be attached to it. For all other three disciplines, multiple buffer

components must be attached, representing multiple queues. For

each batch, the TransmitSystem looks at all the packets in the buffer

component(s) and determines the exit order based on the strategy

of each EgressPort.

Queue length. To determine tail-drop or Random Early Drops,

DONS must provide accurate queue lengths for each packet enter-

ing a port. However, in DONS’s batch-based execution, obtaining

the queueing length is not direct. This is because, in the lookahead

window of a batch, for each EgressPort, the packets in its buffer

components is processed by the TransmitSystem at the same time.

After the batch-processing, some packets are moved to the linked

Receiver or IngressPort, some remains in the buffer component(s),

and the others dropped. Before the TransmitSystem finished pro-

cessing, the exact order of the events (exit event, no-op event, drop

event) cannot be determined. When a packet arrives at the Egress-

Port, its accurate queue length can only be calculated at the end

of the processing of the TransmitSystem. To address this issue,

the TransmitSystem maintains a TXhistory component for each

EgressPort, which is a snapshot of the history of events on this

port. When a packet is dequeued, the accurate queueing length is

determined based on its enqueue and dequeue timestamps recorded

in the TXhistory.
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