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Abstract
Testing discrete-event simulation models is often done at
the level of traces. However, visual feed-back to the mod-
eler is crucial as he is very often a domain expert with lim-
ited computing knowledge. We propose a generic framework
for graphically animating the visualization of DEVS simula-
tions to enable testing of the simulation model at the domain-
specific level. This paper reports initial work for animating
micro-traffic simulation with our framework.
Keywords: domain-specific model, DEVS, testing

1. INTRODUCTION
Micro-traffic simulation has been studied for many

decades. Transportation engineers, urbanists, and governing
authorities typically use it to investigate present trafficnet-
works and evaluate projections. Visualization of micro-traffic
network simulation is of greater importance for these users
who are typically not computer scientists or simulation tool
builders. A plethora of commercial and open-source visual
traffic simulation tools exist [1],e.g.,CORSIM, NETSIM,
SUMO, VISSIM etc. Although they are powerful tools to
animate the simulation of traffic networks with lane chang-
ing, intersections and freeways, it is hard to incorporate con-
ception of factors such as driver perception, reaction time,
or recklessness. The traffic modeler would have to explicitly
implement such features as plug-ins, in addition to modify-
ing the kernel of the tool itself; these are certainly not trivial
tasks for traffic modelers. Therefore, to further reduce thegap
between modeler and programmer, our solution is a domain-
specific modeling platform that generates individualized traf-
fic simulators through model-driven techniques [2].

The ultimate goal of the research we propose is to enable
testing of simulation models at the model level rather than
at the level of simulation traces. In this context, the mod-
eler defines a graphical domain-specific language (DSL), for
example a language for modeling traffic networks. The be-
havior of the individual components of the DSL (e.g.,cars,
roads stretches, intersections, traffic lights) is defined modu-
larly in a given simulation protocol. In our case, we use the
discrete-event system specification formalism (DEVS) [3].
The domain-specific model (DSM) is then automatically syn-
thesized into a corresponding DEVS model. Then, the simu-
lation of the DEVS model is recorded and re-played for ani-
mation purposes. In this paper, we describe the initial set up

of the framework for animating the DSM given a simulation
run.

In Section 2., we outline the generic architecture of our
simulation animation framework. In Section 3., we describe
our traffic DSL example and explain the implementation de-
tails of the animation in Section 4.. Finally we outline some
relevant related work in Section 5. and conclude in Section 6..

2. ANIMATION ARCHITECTURE
As identified in [4], model-driven simulation requires a

domain-specific expert (modeler) and a simulation expert.
Our simulation animation framework relies on two technolo-
gies: AToMPM for graphical modeling and PythonDEVS [5]
for simulation. On the one hand, the modeler defines a
domain-specific language for modeling traffic networks. The
modeling tool used in our framework is AToMPM [6], an
online tool for designing domain-specific modeling environ-
ments and transform models. Clients connect to and commu-
nicate with the AToMPM server through HTTP requests. On
the other hand, the simulation expert models traffic system
components in DEVS and encodes them as atomic and cou-
pled DEVS. Thissimulation logic librarydefines the behavior
of each component. A traffic DSM, instance of the DSL, is au-
tomatically generated into a specific DEVS model (a coupled
DEVS and coupling of its sub-models) and the experiment
frame. This corresponds to the first step in Figure 1.

The second step is to simulate the generated DEVS model.
The traces of execution of the simulation are stored in a log.

The third step happens offline, meaning after the simula-
tion has terminated. In this step the trace log is filtered and
transformed into an animation model. It dictates the sequence
of statements to manipulate the DSM.

Finally, the instructions are sent to the AToMPM server in
order to visually animate the DSM. In the following, we out-
line each component of the architecture in Figure 1 and their
relationships.

DSM is a domain-specific model that conforms to an explic-
itly modeled domain-specific language. In our example,
this is a model of the traffic DSL. It involves concepts
proper to traffic network modeling, independent from
DEVS. The DSM is modeled in AToMPM.

DS-DEVS PIM is a domain-specific DEVS platform-
independent model. It is a DEVS model specific to the
domain, but not specific to any DEVS implementation.
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Figure 1. The overall architecture.

It is an abstraction of the coupled models in the logic li-
brary. In our example, this is a refinement of the traffic
DSM mapped onto DEVS-specific constructs. A rule-
based model transformation in AToMPM defines the
mapping from each entity in the traffic DSL onto their
representation in DEVS. This transformation is essen-
tial for the animation as it defines the correspondence
between AToMPM objects and DEVS objects.

DEVS Model is a particular instance of the atomic and cou-
pled DEVS entities defined in the logic library. In our ex-
ample, this is the traffic network model in PythonDEVS.
It consists of instances of coupled DEVS the traffic li-
brary defines. The code generation, also implemented
in AToMPM, produces the configuration of the DEVS
model, not its behavior. It also specifies the initial state
of atomic DEVS models.

Logic Library encodes, for a target language implementa-
tion of DEVS, the functionality of the system to simu-
late as atomic and coupled DEVS entities. In our exam-
ple, the traffic library defines all atomic DEVS models,
their external/internal transitions and their output/time
advance functions in Python.

Experimental Frame is partially generated from the DS-
DEVS PIM. It defines the initial parameters of the
DEVS model as well as the setup for the logging mecha-
nism. In our example, it specifies the termination condi-
tions of the DEVS traffic network model, initializes the
static parameters and links the log to the simulator.

Simulator is a DEVS simulator that executes the DEVS
model. In our example, we used the PythonDEVS clas-
sical simulator.

Log collects all log events the simulator outputs. A log event
is generic to any DEVS simulation.

Animation Log Parser filters the log events that are only
needed for animation. It produces the corresponding an-
imation model. In our current implementation, the ani-
mation log parser is not real-time: the log parser starts
after the simulation is complete. The benefit is that one

can replay the animation without having to run the sim-
ulation every time.

Animation DSM is a domain-specific model that specifies
what changes need to happen in a DSM to animate it. It
is generic for animating any DSM for AToMPM. Cur-
rently, the animation DSM is a sequence of statements
that indicate the steps of the animation. A statement
can create a model element, update some of its attribute
value(s), delete the element, or modify its geometric lo-
cation.

Animator takes as input an animation DSM and transforms
it into a series of HTTP requests to the AToMPM server.
Ideally, this would be a model transformation gener-
ated from the animation DSM model through higher-
order transformation. However, we have currently im-
plemented as a plugin of AToMPM.

AToMPM Server handles any request received to manipu-
late a model and propagates the change to the views of
all registered clients.

3. TRAFFIC SIMULATION MODEL
In the following we outline the traffic DSM and its imple-

mentation in DEVS.

3.1. Traffic DSL to DEVS
Figure 2 illustrates the traffic DSL which focuses solely

on traffic network concepts, with no notion of DEVS. The
model-to-model transformation mentioned previously refines
an instance of this DSL into a DS-DEVS PIM defined by the
meta-model in Figure 3). This transformation simplifies the
modeler’s task of creating a valid and optimized model (the
most notable step being the expansion of RoadStretches into
two sub-types). The model-to-code transformation is a sim-
ple one-to-one mapping of each DS-DEVS PIM entity to a
DEVS entity defined in the logic library. The framework cur-
rently supports DEVS simulators written in Python (which
we chose for its excellence as a prototyping language) and
will eventually support more.
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Figure 2. The Traffic DSL.
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Figure 3. The DS-DEVS platform-independent meta-
model.

3.2. DEVS Traffic Simulation Model
Before proceeding, it is necessary to describe the individ-

ual components of the Traffic DEVS meta-model.
Road Element encodes an atomic or coupled DEVS entity

that can send or receive cars. A traffic network model
consists of a partially sequence of road elements.

Cars are the fundamental component of the traffic DEVS
meta-model. They are implemented as messages passed
between road elements. Cars also encode the typi-
cal driver’s approximation attributes, such as: current
velocity, preferred velocity, minimum and maximum
ac/deceleration, and front and rear spacing.

Query is a message sent from a road element to the “next”
road element, encoding the driver of a specific car wish-
ing to move to the target road element. It request in-

formation regarding the presence of other cars. Once a
query has been received, its querier (the car) is regis-
tered such that future changes are also propagated to the
requesting road element.

Acknowledgment is a message sent one or more times in
response to a query. The response specifies the time until
a slot opens (timeUntilOpen) for the querying car to
move ahead.

Road Segmentis an atomic DEVS with one or more lanes.
Each lane may contain cars; however, we consider the
presence of two or more cars in a lane as being in a
“crashed” state. Conceptually, each road segment will be
described as owning six ports per lane: query, acknowl-
edgment, and car in/outports, each set connected to an
arbitrary destination. In practice, however, we have uni-
fied these ports where possible to improve the simulation
performance.

Road Stretch is a coupled road element consisting of one or
more road segments in succession. There are two vari-
ants of road stretch: multiple port and condensed port.

Intersection is a road element capable of directing the cars
of many incoming road elements to many outgoing road
elements. The manner in which it directs traffic is de-
fined by its sub-classes.

3.2.1. High-Level Design
In contrast with agent-based traffic system models [7], we

chose to model static elements (such as roads, intersections,
and buildings1) as atomic and coupled DEVS and cars as
messages passed between them. This is an effective arrange-
ment, since the vast majority of drivers’ dynamic concerns
are within their immediate vicinity; this allows them to be
modeled with simple query and acknowledgment messages
passed between neighboring DEVS.

While drivers do have physically distant concerns
(e.g.,pathing towards distant locations), the majority of these
can be modeled with elements that are static with respect to
the simulation; therefore, they can be modeled independently
of DEVS, though still in conjunction with it. This is possi-
ble since the information provided by static elements of the
meta-model do not change during the simulation, and thus do
not depend on it. For example, when a driver’s path becomes
obstructed, he could reroute by performing an A* search on
the traffic system,withoutviolating the principles of DEVS,
since a traffic system’s structure remains unchanged through-
out its simulation. This example is a planned feature of the
simulation.

There are several drawbacks to this approach, however.
Namely, cars should not be aware of dynamic elements fur-
ther than a single DEVS away. Hence, road segments were

1 We have currently modeled buildings with generators or collectors.



designed encompassing multiple lanes, allowing cars to be
completely aware of others in the same segment, no mat-
ter how many lanes away. This decision was motivated by
a problem in the initial design of our meta-model, as road
segments consisted of only one lane. Because of this, cars
were unaware of other cars more than a lane away, which
caused them to blindly merge into the same lane at once.
When left unchecked, the system was plagued with unrealis-
tic crashes; however, when a complex system of queries was
implemented to remedy this, the system became terribly slow.
Our solution, however, has proven to be highly scalable as the
number of lanes increases, and we remain confident that fu-
ture, related difficulties can be overcome by analogous solu-
tions.

3.2.2. Road Element Behavior
When a car first arrives at a road element, its next destina-

tion must be determined. By “destination,” we mean the road
element out of the set of possible outgoing road elements that
the car will be sent to. To do this, it performs the three opera-
tions upon arrival: (1) decide destination from set of outgoing
road elements, (2) query the destination road element, and (3)
maintain current velocity. Then, the car will either receive an
acknowledgment from its destination after some elapsed time
or leave the segment before ever being acknowledged (the
consequence of poor visibility, distraction, etc). The former
would constitute normal behavior. The latter, however, may
result in a crash, since the car could not react to any informa-
tion regarding its destination.

The latter behavior is of particular interest, since it allows
us to model a number of factors with ease: cars may have in-
termittent periods of distraction, occurring with uniformran-
domness (as with texting while driving) or beginning at pre-
defined locations (as with picking up children after school),
and turns can be modeled with poor visibility due to foliage.
Where possible, factors are parameterized on an individual
driver basis, such that increased distraction can be allotted to
teenagers, or slower reaction time allotted to the elderly.

If and when a car is acknowledged, the road element will
determine if the car can arrive at its destination safely. Then,
if it can arrive safely, the car’s velocity is adjusted. Otherwise,
the road element chooses another destination. If at this point,
all destinations have been exhausted, then the car is informed
to stop. Otherwise, the new destination is queried, and the car
is informed to slow down.

Our definition of “safely” is somewhat more involved than
a simple crash check, however. Specifically, each car will at-
tempt to respect its preferred front and rear spacing, both of
which are parameterized; higher spacings emulate more cau-
tious driving, whereas lower spacings emulate recklessness.
The front spacing is applied when gauging the departure time
of the car inhabiting the current destination, whereas the rear

spacing is applied when observing the earliest departure time
of other cars headed to that destination. If the driver can ad-
just its velocity such that both conditions will be satisfied, the
car adjusts accordingly and prepares for its destination; oth-
erwise, a reroute occurs.

If the road element has exhausted every possible destina-
tion, it will attempt to stop the car before it leaves. If it suc-
ceeds, the car will remain stationary, and the segment will
send queries to potential destinations at increasing intervals
until one becomes available (analogous to the driver whose
attentiveness wanes while waiting for traffic to budge.) Oth-
erwise, the car will enter its last destination unintentionally
and likely crash as a consequence.

3.2.3. Intersection Behavior
The behavior of an intersection differs from that of

the standard road element. Specifically, an intersection
may respond to queries with acknowledgments of infinite
timeUntilOpen, such that recipient cars will come to a halt
(as in the case of a stop sign). Furthermore, for the sake of re-
ducing needless complexity, intersections transmit contained
cars instantaneously, such that at most one car is ever con-
tained at a time. For this reason, it is important that theselect
function is designed carefully, such that an intersection al-
ways sends any contained car before receiving another. This
models both stop sign and semaphore intersections.

3.2.4. Queries as Registration
When a road element receives a car, it must inform any

prior lanes that have recently sent queries of the change. For
instance, when a car accelerates to beat another car to its des-
tination (as in the previous description), the other car must
be notified of this change, lest it were to crash unrealistically.
Each road element accomplishes this by maintaining a list of
cars and their destinations, each index of the list being asso-
ciated with a previous lane. When the road segment receives
a query, the querying car is“registered” into the array by the
index of its current lane. Then, when a car enters a lane, all
cars in its road segment’s list whose destinations are the cur-
rent lane are notified. A car is only removed from the list once
it has arrived in the road segment; however, there are a num-
ber of other cases in which a car could be removed. Since a
car may never enter the road segment it queries (e.g.,when
a crash is imminent), a road segment may continue to notify
previous lanes of car arrivals, despite the previous lanes be-
ing vacant. Additional methods of removing unnecessary cars
from the list are an open area of study.

3.2.5. Combining Road Segment Ports
As previously mentioned, a road segment’s ports are

frequently combined as a performance measure. This is
the case when the modeler creates a condensed port road
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Figure 4. Condensed vs Multiple Port Performance.

stretch, whose segments may be one of three variants: MUX,
Middle, and DEMUX. The first road segment is a MUX,
the last is a DEMUX, and all other segments are Mid-
dles. As in digital circuitry, a MUX combines multiple
queries/acknowledgment streams into one, whereas a DE-
MUX splits them back into many. This is accomplished by
using variants of query and acknowledgment, each with two
additional fields,laneFrom andlaneTo. For road stretches
with more than one lane, the performance gains are signifi-
cant as redundant external transitions are combined, reducing
the overall workload on the DEVS simulator as demonstrated
in Figure 4.

3.2.6. Road Element Select Functions

In selectfunctions where the imminent set contains road
elements, it is desirable that a “foremost” road element be
selected. That is, an imminent road element whose transition
is guaranteednot to result in theexternal transitionof another
imminent element. This is to prevent erroneous corner cases,
such as when a car is scheduled to advance the instant the car
at its destination is scheduled to leave, and is selectedbefore
the destination car has a chance to leave.

In a road stretch, selecting the foremost element is trivial,
since its elements are simply items in a list, the foremost ele-
ment being the closest to the end. In a coupled DEVS contain-
ing a complicated network, however, it is necessary to per-
form a topological sort on the nested DEVS to efficiently dis-
cover an ordering of foremost elements (if there is one). If the
graph of nested DEVS is acyclic, then a total ordering exists,
and a sort need only be performed once before the simulation
begins. If the graph contains a cycle, however, then a modified
topological sort must be performed within theselectfunction
such that cycles containing nodes not in the imminent set are
ignored.

4. LOGGING AND ANIMATION
We now describe how this DEVS model will generate an

animation for AToMPM to render.

AtomicDEVS

+ outputFunc()

+ extTransition()

+ intTransition()

+ timeAdvance()

state = _intTransition()

string s = globalTime

+ " " + id

+ " " + state.log()

+ " " + message.log()

Logger.log(s)

LoggableAtomicDEVS

- id : string

- globalTime : float

#_extTransition()

#_intTransition()

State

LoggableState

+ log() : string

LoggableMessage

+ log() : string

Message

Logger

+ log(entry:string)

Figure 5. Extension of DEVS to allow logging.

4.1. Generating the Log
Each log entry represents either anexternal or internal

transitionof an atomic DEVS model. An external entry con-
sists of a time, id, state, and message, whereas an internal
entry consists of only a time, id, and state. The time is simply
the simulation time at which the event occurred. The id is a
unique identifier given to the DEVS when it is generated, so
that information pertaining to it may be communicated back
to AToMPM. The state and message are Traffic DEVS ele-
ment specific (e.g.,in the case of a traffic light, the state is a
string representing the current color of the light).

Logging functionality is added to the traffic DEVS meta-
model instead of the simulator in order to keep the freedom
of selecting any DEVS simulator (classic, parallel, real-time,
etc.). We extend the meta-model of DEVS via inheritance
(illustrated by Figure 5), such that each atomic and coupled
DEVS sub-class inherits from aloggablesuper-class. Theex-
ternal andinternal transitionsare overridden to invoke their
implemented counterparts and write the log entry.

4.2. Animation
After producing the event log, the entries of the log are

filtered such that only those relevant to the animation are ob-
tained. They are then transformed into a simplified anima-
tion DSM. This is interpreted by the animator, which is in
constant communication with AToMPM via HTTP requests.
Specifically, AToMPM is able to direct the actions of the an-
imator such that the modeler may play and replay the ani-
mation through AToMPM’s GUI, and the animator is able to
communicate transitions of the animation in accordance with
this.

Each statement of the animation DSM takes the form
<time> <ID> <newState>, wherenewState is a string
corresponding to an animation state of an entity in AToMPM.
For example, a drawbridge would have two states, ’raised and
lowered, each with differing animations. A statement might
read637.00 45 raised. Figure 6 depicts a snapshot of a
traffic DSM animated in AToMPM.
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Figure 6. A snapshot of the animated traffic DSM.

5. RELATED WORK
Recently, DEVSML 2.0 [4] introduced the idea of first

letting a domain expert develop a DSL and then define a
model transformation to DEVS, which requires DEVS ex-
pertise. The DSL is transformed into DEVSML, a platform-
independent representation of DEVS which is then compiled
and executed by a particular DEVS simulator. Ideally in our
framework, the logic library can be modeled in DEVSML,
instead of coded in PythonDEVS. DEVSML can also be in-
corporated in our framework as an intermediate between the
domain-specific DEVS PIM and the generated DEVS model.
The advantage gained would be to not rely on any imple-
mentation of DEVS (Python, Java, C++) and therefore pro-
mote cross-platform re-use. However, although DEVSML is
a modeled language, the modeler is still required to code the
functions (internal, external, select) in Java.

DEVSView++ [8] offers a logging mechanism for visual-
izing the simulation of cellular DEVS models. The logs are
triggered after either an external transition or an output func-
tion is executed. As soon as a log event is created it is sent to
a dedicated parser which extracts the required informationto
visualize the model. The logging system described in this pa-
per differs in the one of DEVSView++ in various ways. DE-
VSView++ logger is not well suited for classical DEVS mod-
els since it does not consider states resulting from an inter-
nal transition (because DEVSView++ was designed for cellu-
lar DEVS instead). Furthermore, in AToMPM, animation of
models must be triggered by HTTP requests. Therefore pars-
ing each log event as they are created does not guarantee that
the simulation time is respected due to unpredictable network
delays.

6. CONCLUSION
In this paper, we have outlined a framework for animat-

ing the execution of traffic simulation DEVS models. This
enables domain experts to visualize and ultimately unit test
their models.

The foreseen bottleneck of the presented architecture is

the scalability issue to large complex traffic models. How-
ever, since unit testing typically involves a small subset of the
model, this framework gives correct feedback in a reasonable
amount of time for the simulation tester. In order to build the
complete DEVS simulation testing framework, we will inves-
tigate how to define test oracles, how to specify failure and
sanity testing, and report on the usefulness of this testingap-
proach.

We would also like to further improve the automation of
the framework. Recall that the animation log parser requires
the mapping from DEVS elements back to the DSM. Our
current implementation of the prototype keeps a dictionary
mapping AToMPM object identifiers to atomic and coupled
DEVS model identifiers. In the future, we plan to be able to
automatically extract the reverse mapping from the model-to-
model transformation. This can be done, for example, by a
higher-order transformation that takes as input the DSM to
DS-DEVS PIM transformation and feeds the identifier map-
ping directly to the animation log parser.
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