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Abstract
This paper introduces a new Discrete EVent system Specifi-
cation (DEVS) modeling and simulation library implemented
in Ruby: a dynamic, reflective, object-oriented programming
language freely available for all major platforms. Its syntac-
tic sugar and features such as monkey patching, lexical clo-
sures, custom dispatch behavior and native plug-in API pro-
vides strong support to grow a Domain Specific Language
(DSL). The library, by providing an internal DSL, allows for-
mal specifications of DEVS models. The greatest strength of
DEVS-Ruby lies in the extensibility of the DSL, allowing to
meet each modeler’s domain specific vocabulary and thus, to
evolve from a general modeling and simulation formalism to
a specialized tool. We also optimize simulations by imple-
menting bottlenecks in native language with the plug-in API.
As Ruby gained popularity with web frameworks, it is also
particularly suited to expose models as web services, espe-
cially since we can feel a momentum towards system interop-
erability in the DEVS community.

1. INTRODUCTION
In the field of modeling and simulation we find recurring

themes as simulation optimization, standardization, model
and simulator interoperability, model reusability, modeling
languages [1]. Our work should be placed in the latter item
as [2]. In this paper, we present a modeling and simula-
tion library based on the Discrete EVent system Specification
(DEVS) formalism. It relies on a Domain Specific Language
(DSL) to provide a high-level language to help modelers to
code and model their systems with an intuitive and domain-
specific vocabulary.

Domain-specific languages (DSLs) are tailored to appli-
cation domains and have definite advantages over general-
purpose languages [2–6]. Among the benefits of using a DSL
we can name expressiveness and, therefore, increased pro-
ductivity, as well as ease-of-use, easier model specification
verification and optimization [4, 6–10]. Domain experts can

directly use the DSL to model their systems. Another impor-
tant factor is that a DSL requires less effort from an end-
user to write valid programs. In this paper, we propose a
domain-specific language to describe DEVS models and sim-
ulate them.

The discrete event systems specification (DEVS) formal-
ism is based on system engineering principles and is used for
modeling and simulation purposes in many application do-
mains. Our main concerns in writing this framework were:
(1) fulfill the DEVS formalism specifications; (2) provide
scalability through parallel or distributed simulations; and
(3) encourage model reusability and simulation configuration
with our DSL. In this paper we present a new implementa-
tion of the DEVS framework based on the Ruby program-
ming language which focuses on providing a domain-specific
language and proposes to choose between several simula-
tion algorithms (classic or parallel). This paper consists of
three main components: (1) the background which gives an
overview of the state-of-the-art; (2) an overview of the design
and implementation of the framework, and (3) an example of
how we build a simulation with DEVS-Ruby.

2. BACKGROUND
2.1. Domain-Specific Languages

A Domain-Specific Language (DSL) is a programming or
description language tied to a specific application domain. It
is designed for a particular kind of problem, and contrasts
with a general purpose language which is aimed at any kind
of software. DSLs are very common and widely used in com-
puting and includes HTML for document markup, CSS for
stylesheets, SQL for database queries or QML and Tcl/Tk
for GUI scripting and plenty of graphical languages. In this
study, we focus on textual DSLs, compared to equivalent pro-
grams written in general purpose languages, programs using
DSLs can be much easier to program with. If well-designed
they can be used by domain experts who aren’t expert pro-
grammers because they can use their specific vocabulary to
describe their models. DSLs are useful tools - they allow to
reduce the gap between computer scientists and domain ex-
perts.



A textual DSL can either be external or internal. The for-
mer describe a language with its own syntax, which exists
independently from any other language. It needs a specific
parser and interpreter. CSS or SQL for example, are two good
examples of external DSLs. The latter form, also called em-
bedded DSL, rely on the hosting language, it lives inside an-
other programming language, as an enhancement. Both forms
have their advantages and drawbacks. Since an internal DSL
is written inside a host language, it can be a little less read-
able than an external DSL as it must conform to a valid syn-
tax within the host language. Conversely, an external DSL is
completely independent and can have any syntax, this implies
the cost of time and efforts to build a parser and grammar.
In practice, a DSL isn’t inevitably used in isolation from a
general programming language and embedded DSLs already
inherits from all features of the host language [4]. Users can
take full advantage of the host language, share a common core
language and use all available libraries and tools of the host
language. In our case, the modeler benefits from a DSL, nev-
ertheless he has to define the logic behind its models. That’s
why we chose to embed our DSL in Ruby, which is a very
convenient language for writing internal DSLs.

Listing 1. Ruby internal DSL used to edit crontabs
1 every 3.hours do
2 command "echo ’hello world’"
3 end
4 every :monday, :at => ’12pm’ do
5 command "echo ’Have a nice week’"
6 end

The listing 1 is an example of an internal DSL used to edit
crontabs. This chunk of code is fully conforming to the Ruby
syntax. However, what looks like keywords (”every” and
”command”) are not reserved keywords of the language, in-
stead they are defined as being part of the library’s internal
DSL. In the next section we will see how we can achieve this
in Ruby.

2.2. DEVS Formalism
DEVS, which stands for Discrete EVent system Specifica-

tion, was originally defined in the seventies as an abstract for-
malism for discrete-event modeling and simulation [11]. Sev-
eral discrete-event formalisms were formerly defined such as
finite state automata or Petri nets. However, they are limited
to systems with a finite number of states. Conversely, DEVS
allows representing any system whose input/output behavior
can be described with a sequence of events. For a finite time
interval, a finite number of events occur. These events may be
the source of a state change of the system. DEVS is a mod-
ular formalism which encourage model reusability through
hierarchical modeling and separation between modeling and
simulation.

2.2.1. Models
The DEVS formalism allows defining hierarchical modular

models with two distinct types: atomic (behavioral) and cou-
pled (structural) models. The first describes the autonomous
behavior of a discrete-event system; the last one is composed
of submodels, each of them being an atomic or a coupled
model. Both can receive and send messages but these are
interpreted only by atomic models which is the behavioral
part of a complex system represented by a coupled model.
An atomic model can be passive, autonomous or both (in a
superposition of these two behaviors). It is passive if it re-
acts only when it receives a message and it is autonomous
when messages are scheduled to be sent independently. For a
given time, a model is in a given state and the behavior of the
model depends on transitions between these states. There are
two different kind of transitions: external or internal. External
transitions occur when an external message is received; inter-
nal transitions occur when an internal variable value needs to
be changed. After a state change, if the model needs to trans-
mit some message, an output function is activated. Formally,
an atomic model is described by the following 7 tuple struc-
ture:

AM = 〈X ,Y,S,δint ,δext ,λ, ta〉

where
- X = {(p,v) | p∈ IPorts,v∈ Xp} is a set of input values and

ports
- Y = {(p,v) | p ∈ OPorts,v ∈ Yp} is a set of output values

and ports
- S the set of state variables
- δext : Q×X → S the external transition function
- δint : S→ S the internal transition function
- λ : S→ Y the output function
- ta : S→ R+

0,∞ the time advance function
- Q = {(s,e) | s∈ S,0≤ e≤ ta(s)} is the set of all states with

e the elapsed time since the last transition
A complex system can be designed as a coupling of several
simpler systems. The DEVS formalism allows such concep-
tion through coupled models, formally defined by the follow-
ing 8 tuple structure:

N = 〈X ,Y,D,{Md | d ∈ D},EIC,EOC, IC,Select〉

where X the set of input values and ports; Y the set of out-
put values and ports; D the set of components; EIC the set
of external input couplings, which links an input port with a
component; EOC the set of external output couplings, which
links a component with an output port; IC the set of internal
couplings, which links two components with each other; the
Select function is used to prioritize components supposed to
be activated at the same time.



2.2.2. Simulation
To define the simulation semantics of DEVS models, Zei-

gler introduced abstract simulators. The advantage with such
an approach lies in the separation between the models and
the simulators. DEVS provides the algorithms used to simu-
late a model hierarchy. There is a simulator for each atomic
model, and each coupled model is associated with its coordi-
nator. Both adheres to a communication protocol allowing to
coordinates the simulation execution between them. The allo-
cation of each component (simulator or coordinator) follows
the same hierarchical structure of the models until the root of
the tree is found.

We use the DEVS formalism because of its openness and
extensibility. It offers both a formal framework to define mod-
els and a flexible implementation in object-oriented program-
ming. The next section briefly introduces a selection of sev-
eral implementations that we compare to ours.

2.3. DEVS Frameworks
There are many environments based on the DEVS formal-

ism. Here we selected a set of environments for which we give
a brief description with a highlight of their respective goals.

2.3.1. MS4 Me
MS4 Me [12] is a recent framework developed by Zeigler’s

team. It allows to design, engineer, visualize and test in a sin-
gle environment without compromising rigor, quality or per-
formance. It is based on the major part of Zeigler’s work.

2.3.2. DEVSimpy
Our team also works on DEVSimpy. DEVSimpy [13] is a

framework developed at the University of Corsica which pro-
vides a simple graphical user interface based on WxPython
to create and use DEVS models. The SPE (Sciences Pour
l’Environnement) laboratory of the University of Corsica is
specialized in the field of environmental systems modeling
based on the DEVS formalism. The main idea of DEVSimpy
is to provide a GUI atop of PyDEVS [14], an API that al-
lows hierarchical DEVS models to be defined and simulated
in Python.

2.3.3. AToM3

AToM3 [15] is a multi-paradigm modeling tool. The con-
cerns in developing this tool were twofold: (1) meta-modeling
which refers to the modeling of different kinds of differ-
ent kinds of formalisms; and (2) model-transforming which
refers to the process of converting, translating, or modifying
a model in a given formalism, into another model that might
not be in the same formalism. This tool relies on model driven
engineering concepts and uses the PyDEVS API [14].

2.3.4. PowerDEVS
PowerDEVS [16] is a general purpose software tool for

DEVS modeling and simulation oriented to the simulation
of hybrid systems written in C++. It allows defining atomic
DEVS models which can be graphically coupled. Coupled
models are automatically translated into code before execut-
ing the simulation.

2.3.5. CD++
CD++ [17] is an platform-independent environment which

implements DEVS and Cell-DEVS theory. Different simula-
tion algorithms have been implemented: standalone (single
CPU), server mode (the simulator is installed as a server ac-
cessible through TCP/IP sockets), real time (the simulator is
tied to the real-time clock), embedded (E-CD++; the simula-
tor uses the real-time clock and can be embedded in single-
board computers), parallel (over a linux cluster or windows-
based PC clusters), distributed (over Web Services).

2.3.6. VLE
The Virtual Laboratory Environment (VLE) is a software

and an API which supports multi-modeling, simulation and
analysis [18]. VLE is based on the DEVS formalism and
provides a set of C++ libraries, the VFL (VLE Foundation
Libraries) and several programs such as a simulator, a GUI
to model and develop models and tools to analyze and
visualize simulation outputs. This project is supported by the
French National Institute for Agricultural Research (INRA)
and is now included in the RECORD platform. It supports
different model specification formalisms such as discrete
event specifications, differential equations, petri nets, finite
state automata among others.

The frameworks we seen offers tools based on Model-
Driven Engineering (MDE) concepts to assist the modeling
phase. In this paper, we took another approach by proposing
a DSL.

3. DESIGN AND IMPLEMENTATION
DEVS-Ruby has been implemented using Ruby; the library

itself is packed using RubyGems (Ruby’s package manager),
and can easily be installed via the command line like this:
gem install devs. We should specify that the library is cur-
rently still in development and so we haven’t met all our goals
yet. As DEVS-Ruby implements the DEVS theory, our main
concern is to remain consistent with the formalism specifica-
tions. Ultimately, we want to implement several simulation
algorithms that can be found in the literature [19–25] to pro-
vide a scalable simulation platform. From all DEVS imple-
mentations we seen in section 2.3., our work is closest to Py-
DEVS [14] because it provides only an API to build DEVS
models and simulate them. Although the beginnings of our



implementation provided an API, we added so much support
for describing DEVS models easily atop Ruby that it started
to feel like a specialized tool. We wanted to develop this as-
pect and thus, grow an internal DSL. First, we present our
modeling class architecture. Then, we discuss our simulation
class architecture flexible enough to support several simula-
tion algorithms.

3.1. Modeling architecture
The Figure 1 represents our modeling class architecture.

The hierarchical modeling capability of DEVS is expressed
through a composite pattern, which enables to represent mod-
els into a tree structure. Model is the component class, which
is the abstraction for both atomic and coupled models and
provides common capabilities for the latters, like input and
output interfaces. The AtomicModel class is meant to be ex-
tended to define the behavior of a model. It provides a default
passive behavior (the model remain in its initial state forever)
along with several attributes: time which represent the last
simulation time at which the model was activated; elapsed
which represent the time elapsed since the last activation;
sigma which is a variable introduced to simplify modeling
phase and represent the next activation time. The methods
external transition, internal transition, confluent transition,
output and time advance should be overridden to implement a
custom behavior. By default, time advance returns the sigma
attribute, which is set to DEVS::INFINITY constant. We also
provide a convenient method (post) meant to be used in the
method body of output to drop off a value onto a given out-
put interface. The other method fetch output must not be used
nor overridden by the modeler, it is used internally to retrieve
messages from all interfaces.

Listing 2. Atomic model definition example
1 class TrafficLight < AtomicModel
2 def initialize
3 super()
4 add_output_port :out
5 @color = :red
6 @sigma = 0
7 end
8

9 def output
10 post @color, :out
11 end
12

13 def internal_transition
14 @color, @sigma = case @state
15 when :red
16 [:green, 5]
17 when :green
18 [:orange, 20]
19 when :orange
20 [:red, 2]
21 end

22 end
23 end

Listing 2 is a very concise example definition of the classical
traffic light model with an autonomous behavior. It has one
output interface and sends at time-interval depending on its
current state the appropriate new color. As we wanted to pro-
vide as most flexibility as we could, note once the modeler
name a given port, all methods expecting a Port can receive
indifferently either its name or the actual object. We should
insist on the expressiveness and readability of the syntax of
Ruby compared to other languages.

Most of the time, a modeler will define atomic models.
However, as the classic hierarchical DEVS specify, a coupled
model must respond to a select method that returns a model
from a given list of components with an imminent activation.
By default, this method returns the first element in that list,
but if the modeled system needs another behavior, the mod-
eler must override this method. Otherwise, the CoupledModel
class can be directly instantiated. Then, the modeler can add
its input and output ports, add sub-models through add child
method, and also define the couplings between the coupled
model interfaces and interfaces of its components with the
methods add internal coupling, add external input coupling
and add external output coupling.

Listing 3. Coupled model definition example
1 class MyCoupledModel < CoupledModel
2 def initialize
3 super()
4 # add input & output interfaces
5 add_output_port :out_1
6 # add components
7 m = TrafficLight.new
8 m.name = :traffic_light
9 add_child(m)
10 # add couplings
11 add_external_output_coupling(m, :out_1, :out)
12 end
13

14 def select(imminent_children)
15 imminent_children.sample
16 end
17 end

Listing 3 shows an example of how to build a coupled model.
Such modeling architecture offers nothing original. More-
over, the effort needed to build the modeling tree could be
reduced using Ruby features for a more readable and more
concise code. Our attempt to do this can be read in section 4.,
but before that we describe our simulation architecture.

3.2. Simulation architecture
The simulation architecture enables the evolution of a mod-

eled system over time whose behavior has been defined as in
section 3.1.. Several simulation algorithms for the DEVS for-
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Figure 1. Modeling class diagram

-model : Model

-next_time : Real

-last_time : Real

+dispatch(ev : Event)
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+min_next_time() : Real

+max_last_time() : Real

+imminent_children() : Simulator []
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+simulate()
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-type : Symbol
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-message : Message

Event

+handle_input_event(ev : Event)

+handle_output_event(ev : Event)

+handle_init_event(ev : Event)

+handle_internal_event(ev : Event)
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<<Interface>>
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Figure 2. Simulation class diagram

malism have been developed. For now, we support the origi-
nal classic algorithm along with PDEVS, both defined in [11].
We designed our architecture described in Figure 2 so that
multiple simulation algorithms can be easily added over time.
As defined in the DEVS formalism and explained in section
2.2.2., we provide a Simulator for each atomic model and
a Coordinator for each coupled model, along with a Root-
Coordinator that coordinates the whole simulation. All these
processors communicate through message-passing. We dif-
ferentiate a message (Message class) drop off onto a model
output interface or onto a model input port and the mes-
sages sent between processors (Event class). The latter are
emitted at a given simulation time with a particular type and
wraps optionally a Message. Again, we used a composite pat-
tern to organize the processors as a modeling tree except that
we drop the common interface (the component) between the
leaf (Simulator) and the composite (Coordinator). The sim-
ulator wraps its associated Model, and define next time and
last time attributes, that represent respectively the next simu-
lation time at which the associated model will be activated
and the last simulation time at which the model was acti-
vated. The dispatch method handles incoming events from
other processors. We moved the core logic of each algorithm
in other classes through a strategy pattern. In the dispatch
method, depending on the type of the event, the appropri-
ate method is called on the strategy object following this

pattern: handle TYPE event. In Ruby, we implemented the
strategy pattern through mixins. A mixin is a facility allow-
ing the inclusion of a module within a class definition and a
module is a structure allowing grouping a set of functions.
When a module is mixed in a class, the functions that were
available in the module become available as methods within
the class. We use this feature along with monkey-patching,
which allows extending or modifying the code at runtime.
Thereby, it is fairly easy to implement a new algorithm: we
define a module responding to all types of events that are
likely to be emitted. The events (i,t), (*,t), (y,t) and (x,t) de-
fined in the classical DEVS algorithm will be respectively im-
plemented as handle init event, handle internal event, han-
dle output event and handle input event. The same logic is
applied for the coordinators. For the root coordinator, it is a
module responding to the run method.

There is a lot of benefits in using Ruby to implement
the DEVS formalism, but performance in terms of execution
speed isn’t part of them. For that reason, we used the Ruby
C API to implement the most demanding methods in C. To
identify them, we used a sampling profiler. Unsurprisingly,
the results showed that during a simulation all methods rel-
ative to processors are critical. With the same models to be
simulated, a mean execution time on 100 simulations drop
from 3.11 seconds in pure Ruby to 0.67 seconds in Ruby and
C (nearly a 5X speedup).



In this section we presented both our base modeling and
simulation architectures. The next section explains how we
built a DSL based on this work using Ruby dynamic features.

4. BUILDING A SIMULATION
To build a simulation, we propose an internal DSL more

convenient that a traditional API. As we said earlier, Ruby
is well-suited for such task. To implement it, we rely heav-
ily on closures and Ruby’s reflection API (specifically in-
stance eval). A closure is a function that captures its refer-
encing environment. Unlike a function, it allows to access
non-local variables even when invoked outside its immedi-
ate lexical scope. In Ruby, a closure is defined by a block of
code between braces or between do-end keywords. The in-
stance eval method is accessible to all objects, allowing to
evaluates a closure within the context of the receiver. While
the closure is executed, the variable self is set to the receiver,
giving the code access to the methods and instance variables
of the receivers.

In this section, we present our DSL syntax proposal for
DEVS modeling and simulation built with these features.
Then, we explain how to extend our DSL in order to spe-
cialize it with the domain of the modeled system.

4.1. DSL Proposal for DEVS
To propose a DSL we found helpful to start thinking to

what would be the ideal syntax with the following require-
ments:
- parameterize and start the simulation
- express hierarchical modeling by adding atomic and cou-

pled models
- specify couplings between all components
- support the DEVS vocabulary along with a simplified one,

more accessible to non-experts of the formalism
- offer a way to add a model already defined (class derived

from AtomicModel) or to define an atomic model on-the-fly
In listing 4 you will find a proposal of syntax taking into ac-
count the requirements we listed above. It is a working ex-
ample of a system which generates a random number within
a range from 2 to 10. Then this number is transmitted to an-
other model whose role is to compute each input by a power
of two. Finally, the result goes to a coupled model collecting
results into a CSV file and a plot is generated.

Listing 4. DSL proposal for DEVS
1 require ’devs’
2 require ’devs/models’
3

4 DEVS.simulate do
5 duration 10
6

7 add_model RandomGenerator, with_params: [2,
10], :name => :random

8

9 add_model do
10 name ’xˆ2’
11 init { add_output_port :out_1 }
12

13 when_input_received do |*messages|
14 messages.each do |message|
15 value = message.payload
16 @result = value ** 2
17 end
18 self.next_activation = 0
19 end
20

21 output { post(@result, :out_1) }
22 after_output { self.next_activation = DEVS::

INFINITY }
23 time_advance { self.next_activation }
24 end
25

26 add_coupled_model do
27 name :collector
28 add_model PlotCollector, :name => :plot
29 add_model CSVCollector, :name => :csv
30

31 plug_input_port :a, :with_child => :csv, :
and_child_port => ’x’

32 plug_input_port :a, :with_child => :plot, :
and_child_port => ’x’

33 plug_input_port :b, :with_child => :csv, :
and_child_port => ’xˆ2’

34 plug_input_port :b, :with_child => :plot, :
and_child_port => ’xˆ2’

35 end
36

37 plug :random, :with => ’xˆ2’, :from => :out_1,
:to => :in_1

38 plug :random, :with => :collector, :from => :
out_1, :to => :a

39 plug ’xˆ2’, :with => :collector, :from => :
out_1, :to => :b

40 end

The function simulate, defined under the DEVS namespace,
serves as the entry point into our DSL. It expects a namespace
(module) along with a closure and does two things. Firstly it
instantiates a SimulationBuilder (see Figure 3). The construc-
tors of builders have the responsibility to instantiate a proces-
sor and its associated atomic or coupled model. Then, it is
going to execute the given closure within the context of the
builder. Thus, a SimulationBuilder instantiate the root cou-
pled model, a Coordinator, and the RootCoordinator; a Cou-
pledBuilder instantiate a coupled model and a Coordinator;
an AtomicBuilder instantiate an AtomicModel and a Simula-
tor. The simulate function also pass a namespace (module),
which implements a simulation algorithm as we seen in sec-
tion 3.2.: Parallel by default, or Classic if the classic im-



-model : Model

-processor : Simulator

+add_input_port(name)

+add_output_port(name)

+name(name)

BaseBuilder

-duration : Numeric

-root_coordinator

+duration(d : Numeric)

+SimulationBuilder(namespace, block)

SimulationBuilder

+CoupledBuilder(namespace, klass, args, block)

+add_coupled_model(args, block)

+add_model(type, opts, block)

+select(block)

+add_internal_coupling(a, b, out, in)

+add_external_output_coupling(child, out, child_out)

+add_external_input_coupling(child, in, child_in)

+plug(child : Model, opts : Hash)

+plug_output_port(port : Port, opts : Hash)

+plug_input_port(port : Port, opts : Hash)

CoupledBuilder

+init(block)

+external_transition(block)

+when_input_received(block)

+internal_transition(block)

+after_output(block)

+time_advance(block)

+output(block)

+post_simulation_hook(block)

+AtomicBuilder(namespace, klass, name, args, block)

AtomicBuilder

Figure 3. DSL class diagram for builders

plementation is imported. It is used to dynamically mix the
given module in each processor. The possibility to define an
atomic model on-the-fly is given by another Ruby’s reflec-
tion method: define singleton method which allows to define
a method dynamically on a given instance.

4.2. Extending the DSL
Despite that we simplify the definition of DEVS models

with our DSL, we encourage modelers who have a good un-
derstanding of DEVS to package their complex systems as
libraries. Defining an atomic model on-the-fly is convenient
to prototype a model especially using Ruby’s interpreter but
this should be avoided for other uses. For more readability
and maintainability, we advise to define each model in its
own file within a namespace. Ultimately, we encourage the
modeler to extend our DSL to introduce its own specific vo-
cabulary. With such practice, end-users could simulate these
models easily.

To extend our DSL, the modeler can use the same approach
we described in section 4.1., with three steps: (1) define the
models, (2) define an entry point, (3) define a builder to ini-
tialize the modeling tree. The next section gives an exam-
ple of a resulting DSL following these precepts to simulate
a multi-agent system.

4.3. DSL for Multi-agent systems
An architecture for coupling Multi-agent systems (MAS)

and the DEVS formalism is proposed in [26]. We imple-
mented this architecture with our framework as a library and
we used ant colonies as an application. The listing 5 shows
the resulting DSL. Our entry point is the function build de-
fined under the DEVS::MAS namespace. The only common
verb with the original DSL is duration. We can see that new
verbs (environment, population dynamics, affiliation, . . . ) are
related to MAS semantics. Also, it refers to several models
that are defined beforehand like ExponentialGrowth, Worker,
Soldier or Nest.

Listing 5. DSL for MAS
1 require ’devs’
2 require ’devs/mas’
3

4 DEVS::MAS.build do

5 duration 100
6

7 # setup the environment
8 environment :cellular, dimension: 2, size:

[100, 100]
9 population_dynamics ExponentialGrowth
10

11 # setup affiliations
12 affiliation :ant_colony_a do
13 base Nest, at: Point.new(8, 15)
14 instantiate 30, Worker, with_params: [...]
15 instantiate 10, Soldier, with_params: [...]
16 end
17 affiliation :ant_colony_b do
18 base Nest, at: Point.new(67, 53), with_params:

[453]
19 instantiate 54, Worker, with_params: [...]
20 instantiate 23, Soldier, with_params: [...]
21 end
22

23 # place entities
24 place Food, at: Point.new(9, 12), with_params:

[120]
25 place Boulder, at: Point.new(86, 34),

with_params: [234]
26 end.simulate

As we seen in section 4.1., the technique to introduce new
verbs is to define a builder. The listing 6 shows a builder tem-
plate to extend the DEVS-Ruby DSL.

Listing 6. Builder template used to extend the DSL
1 module DEVS
2 module MAS
3 class Builder
4 def initialize(namespace, &block)
5 # do some initialization here
6 # and execute the closure within this

context
7 instance_eval(&block)
8 end
9

10 def environment(type, opts={}); end
11

12 def population_dynamics(klass); end
13

14 def affiliation(name, &block)



15 # instantiate a ColonyBuilder
16 end
17

18 def place(resource, opts={}); end
19

20 def simulate
21 DEVS.simulate do
22 # parameterize and start the DEVS

simulation
23 end
24 end
25 end
26 end
27 end

We should emphasize that Listing 5 is devoid from DEVS
related vocabulary. Hence, the end-user is not required to be
a DEVS expert to read and produce such code, but should be
a domain expert, which is precisely what is sought.

With DSL extensions, a biologist or an economist can de-
fine its models with his vocabulary. A meaning can be given
to transition functions according to each domain. When defin-
ing an agent for example, a DEVS transition could represent
a neighborhood function. This can facilitate the use and the
handling of the formalism.

5. CONCLUSION AND PERSPECTIVES
The work presented in this paper is born from a simple

observation: although there are already several DEVS frame-
works, most of them require to be familiar with the formal-
ism, even for those providing a GUI to facilitate the model-
ing phase. We propose another approach to simulate DEVS
models by introducing a DSL allowing to express easily the
structure hierarchy, atomic models behavior and couplings.
By encouraging the extension of our DSL, we can distinguish
the modeler from the end-user. The modeler must be familiar
with DEVS but the not the end-user, provided that the mod-
eler capture the semantics of the specific domain. Although
Ruby is well suited to build DSLs and its expressiveness is a
benefit to define models, it is a slow high-level language and
thus, not really adapted to simulation. Luckily, it offers a way
to extend the language in a low-level language. We took this
opportunity to implement the most demanding methods in C
to remain as effective as possible.

We already met many of our goals by fulfilling the DEVS
formalism specifications, by defining a convenient DSL and
by remaining performant. Our perspectives are manifold, at
first we want to provide a scalable platform by developing
extensions for distributed simulations and parallel execution.
Also, we would like to provide other DSL extensions along
with a library of models. We also plan to provide a way to
save a simulation in order to replay it.
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