
2023
Volume 33, Number 3

ACM Transactions on

Modeling and
Computer Simulation

Article 8
(19 pages)

J.-M. Jézéquel

A. Vallecillo

Uncertainty-aware Simulation

of Adaptive Systems

SPECIAL ISSUE ON ISIM 2021: PART 1

Article 9
(34 pages)

T. Zhu

H. Liu

Z. Zheng

Learning to Simulate Sequentially Generated Data

via Neural Networks andWasserstein Training

Article 10
(26 pages)

W. Cen

P. J. Haas

NIM: Generative Neural Networks for Automated

Modeling and Generation of Simulation Inputs
A

C
M

 Tra
n

sa
ctio

n
s o

n
 M

o
d

e
lin

g
 a

n
d

 C
o

m
p

u
te

r S
im

u
la

tio
n

V

o
l. 3

3
 • N

o
. 3

 • 2
0

2
3

A

rticle
s 8

–
1

0

TOMACS3303-Cover.indd 1 8/11/2023 10:50:17 AM

ACM
1601 Broadway, 10th Floor
New York, NY 10019-7434
Tel.: 212-869-7440
Fax: 212-869-0481
https://www.acm.org

Home Page: https://tomacs.acm.org

ACM Transactions on

Modeling and
Computer Simulation

Editor-in-Chief

Wentong Cai Nanyang Technological University,
Singapore

Information Director

Romolo Marotta University of Rome Tor Vergata, Italy

Associate Editors

Christos Alexopoulos Georgia Institute of Technology, USA

Luca Bortolussi University of Trieste, Italy

Peter Frazier Cornell University, USA

Victor S. Frost University of Kansas, USA

Mike Giles University of Oxford, United Kingdom

Peter Haas University of Massachusetts Amherst,
USA

Monika Heiner University of Cottbus, Germany

Jeff Hong City University of Hong Kong,
Hong Kong

Xiaolin Hu Georgia State University, USA

Dong (Kevin) Jin University of Arkansas, USA

Jason Liu Florida International University, USA

Charles M. Macal Argonne National Laboratory, USA

Makoto Matsumoto University of Tokyo, Japan

Marvin Nakayama New Jersey Institute of Technology,
USA

James Nutaro Oak Ridge National Laboratory, USA

Alessandro Pellegrini University of Rome Tor Vergata, Italy

Claudia Szabo The University of Adelaide, Australia

Georgios Southern University of Science and
K. Theodoropoulos Technology, China

Andreas Tolk MITRE, USA

Bruno Tuffin INRIA, France

Hong Wan North Carolina State University, USA

Verena Wolf University of Saarbrücken, Germany

Wei Xie Northeastern University, USA

Reproducibility Board

Philipp Andelfinger TUMCREATE and Nanyang
Technological University, Singapore

Michele Loreti University of Camerino, Italy

Andrea Vandin Sant'Anna School of Advanced
Studies, Italy

Advisory Board

Richard Fujimoto Georgia Institute of Technology, USA

Pierre L'Ecuyer Université de Montréal, Canada

Richard E. Nance Virginia Polytechnic Institute & State
University, USA

David M. Nicol University of Illinois at
Urbana–Champaign, USA

Adelinde M. Uhrmacher University of Rostock, Germany

James R. Wilson North Carolina State University, USA

Journal Administrator

Megan Shuler KGL Editorial, USA

Headquarters Staff

Scott Delman Director of Publications

Sara Kate Heukerott Associate Director of Publications,
Journals

Yubing Zhai Editor

Stacey Schick Associate Editor

Craig Rodkin Publications Operation Manager

Barbara Ryan Intellectual Property Rights Manager

Bernadette Shade Print Production Manager

Anna Lacson Content QA Specialist

Darshanie Jattan Administrative Assistant

The ACM Transactions on Modeling and Computer Simulation (ISSN 1049-3301) is published quarterly in Spring, Summer, Fall, and Winter by the
Associ ation for Computing Machinery (ACM), 1601 Broadway, 10th Floor, New York, NY 10019-7434. Summer 2023. Periodicals class postage paid at
New York, NY 10001, and at additional mailing offices. Printed in the U.S.A. POSTMASTER: Send address changes to ACM Transactions on Modeling
and Computer Simulation, ACM, 1601 Broadway, 10th Floor, New York, NY 10019-7434.

Copyright © 2023 by the Association for Computing Machinery (ACM). Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permission to republish from: permissions@acm.org
or fax Publications Department, ACM, Inc. Fax +1 212-869-0481.

For other copying of articles that carry a code at the bottom
of the first or last page or screen display, copying is permitted
provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923.

TOMACS3303-Cover.indd 2 8/11/2023 10:50:17 AM

8

Uncertainty-aware Simulation of Adaptive Systems

JEAN-MARC JÉZÉQUEL, University of Rennes, CNRS, Inria, IRISA, France

ANTONIO VALLECILLO, ITIS Software, Universidad de Málaga, Spain

Adaptive systems manage and regulate the behavior of devices or other systems using control loops to

automatically adjust the value of some measured variables to equal the value of a desired set-point. These

systems normally interact with physical parts or operate in physical environments, where uncertainty is

unavoidable. Traditional approaches to manage that uncertainty use either robust control algorithms that

consider bounded variations of the uncertain variables and worst-case scenarios or adaptive control methods

that estimate the parameters and change the control laws accordingly. In this article, we propose to include

the sources of uncertainty in the system models as first-class entities using random variables to simulate

adaptive and control systems more faithfully, including not only the use of random variables to represent

and operate with uncertain values but also to represent decisions based on their comparisons. Two exemplar

systems are used to illustrate and validate our proposal.

CCS Concepts: • Software and its engineering→ Software design engineering; Model-driven software

engineering; • Computing methodologies→ Uncertainty quantification;

Additional Key Words and Phrases: Model-based software engineering, control systems, self-adaptive sys-

tems, uncertainty

ACM Reference format:

Jean-Marc Jézéquel and Antonio Vallecillo. 2023. Uncertainty-aware Simulation of Adaptive Systems. ACM

Trans. Model. Comput. Simul. 33, 3, Article 8 (May 2023), 19 pages.

https://doi.org/10.1145/3589517

1 INTRODUCTION

An adaptive system is a system that changes its behavior in response to its environment or to
changes in its interacting parts. In general, these systems are rather complex to design, prove
correct, and optimize, and therefore simulations are used to analyze not only their behavior but also
their properties of interest. In this context, models are used to represent the relevant characteristics
of the system under study, whereas the simulations represent the evolution of the model over
time [43].

Simulations are commonly used in domains where physical artifacts are costly to build and de-
ploy, such as manufacturing [26] or robotics [32]. A typical example is an automated assembly

This work was partially funded by the Spanish Government (FEDER/Ministerio de Ciencia e Innovación–Agencia Estatal

de Investigación) under projects PID2021-125527NB-I00 and TED2021-130523B-I00.

Authors’ addresses: J.-M. Jézéquel, University of Rennes, CNRS, Inria, IRISA, Campus de Beaulieu, F-35042 Rennes Cedex,

France; email: jezequel@irisa.fr; A. Vallecillo, ITIS Software, Universidad de Málaga, Bulevar Louis Pasteur 35 (29071) Spain;

email: av@uma.es.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-3301/2023/05-ART8 $15.00

https://doi.org/10.1145/3589517

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:2 J.-M. Jézéquel and A. Vallecillo

line, in which conveyor belts and gantries are used to transport semi-assembled parts from one
workstation to another, and the parts are added in sequence until the final assembly is produced.
These systems are thoroughly simulated before they are deployed to ensure correct behavior once
they are built. However, when deployed, they most often require some fine-tuning. The problem is
that their physical parts and elements are never perfect: They contain looseness and small inaccu-
racies that need to be adjusted for. These inaccuracies are not usually captured by the models, often
resulting in parts falling off the trays or clamps not gripping the items when initially deployed, for
example.

Reality is indeed different from the model and its simulation, because, e.g., the values obtained
from the sensors are actually imprecise, the physical contour of the parts is not exactly the same
in all cases, or the moving times are not always precise. Since this uncertainty is usually not explic-
itly considered—despite being an essential aspect of any physical system [12, 19]—the decisions
made by the control system to order movements or to make adaptations are based on imprecise
information that can even lead to catastrophic failures.

The usual solution to deal with uncertainty in these situations, including not only manufactur-
ing but also in all types of control systems [10], uses robust control and a conservative strategy
that relies on estimating static upper bounds on the variations of the variables and assumes worst-
case scenarios. This approach is easy to implement, but it may be too conservative in many sit-
uations and therefore sub-optimal—e.g., wasting too many resources or arriving at non-optimal
approximations. Adaptive control systems aim at addressing this problem by using dynamic vari-
ables (instead of upper bound constants) to control the system’s behavior. Although this strategy
results in simulations that are more faithful to reality, they are much more difficult to develop
and prove correct, because all uncertainty operations, as well as the propagation of uncertainty,
need to be manually and explicitly programmed by the software engineer. At the simulation
level, this is commonly achieved using some of the existing uncertainty propagation packages,
such as in References [2, 22, 23] (see Reference [41] for a comprehensive list), but they are still
quite complex to use. More importantly, these packages enable the propagation of uncertainty
through arithmetic operations on uncertain numbers, but their comparison is not usually im-
plemented. Indeed, these packages only offer crude support for comparing uncertain values, and
we shall see that this is an essential operation for operating with uncertainty in a more precise
manner.

In this article, we propose to use random variables as first-class entities in programs and models
to represent and operate with the system uncertain values, including their comparison. In this way,
the controller is going to be able to manage the uncertainties and then the simulations are going
to be much more faithful than they currently are.

Our concrete claims are that (1) we need to include the sources of uncertainty as first-class
entities in the system models, and (2) they should be better handled by the type system and not by
the programmers. This will enable the natural representation and management of uncertain
numbers in models, and the automatic propagation of uncertainty through operations, which are
cumbersome and error-prone tasks when performed manually by the programmers. In addition, it
will allow the explicit representation of the uncertainty that occurs when two uncertain numbers
are compared.

The organization of the article is as follows. After this introduction, Section 2 briefly describes
the context and background of our work. Then Section 3 presents our proposal, starting with a
running example that serves to illustrate our approach. We then describe how to represent and
manage some of the uncertainties that affect that system. Another example is used to illustrate
further uncertainties in a more complex setting. After that, Section 4 discusses some of the

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:3

Fig. 1. Architecture of the chasing robot example.

advantages and possible limitations of our proposal. Finally, Section 5 relates our proposal to
similar works, and Section 6 concludes with an outlook on future work.

Open research: All the software, artifacts and results described in the article are publicly avail-
able from https://github.com/atenearesearchgroup/uncertainty-aware-adaptive-systems.

2 CONTEXT

2.1 Introduction to the Chasing Robot

In this section, we present background concepts using a toy example of the simulation of a Chasing
Robot model where a robot must follow a moving target, staying as close as possible to the target
but without ever going under a specified safety distance (e.g., 1 m). To keep it simple, we only
consider a target moving at a constant speed (e.g., 2 m/s) in straight line.

The chasing robot is controlled by a straightforward proportional–integral–derivative (PID)

controller,1 as illustrated in Figure 1 and detailed in the Python code below:

Simulating this model consists in having a loop that

(1) moves the target by calling its move() method with a given delta time (dt)
(2) asks the controller to move the robot it controls with the same delta time. This is imple-

mented by method move_robot() below.

1A PID controller is a control loop mechanism that continuously calculates an error value as the difference between a

desired setpoint and a measured process variable and applies a correction based on proportional, integral, and derivative

terms (denoted P, I, and D, respectively) [1].

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:4 J.-M. Jézéquel and A. Vallecillo

As expected, after an initial acceleration phase, the chasing robot speed converges toward
following its target at the required distance. To assess the controller performance, we consider
two indicators: (1) the minimum distance ever reached between the chasing robot and its target
and (2) the average distance over the entire course. The goal is, of course, to obtain the smallest
possible average distance without ever going under the safety distance.

Our BaseLine Controller simulation2 performs relatively well with respect to these indicators:
starting 10 m behind the target, it ends up after 30 seconds with an average distance of 2.0 m and
a minimum one of 1.07 m. However, when tried in a real situation (i.e., not a simulated one), the
chasing robot would violate the safety distance, and even in some cases crash into the target. The
reason is that reality is much more uncertain than our simple model.

2.2 Uncertainty Sources

References [38, 44] summarize the main sources of uncertainty found in cyber physical systems.
In this article, we only focus on measurement uncertainty [3, 18]. In the chasing robot example,
we can identify two sources of measurement uncertainty: (1) when calculating the distance to the
target we rely on, e.g., ultrasound sensors that yield imprecise data, and (2) when setting the speed
of the robot, its actual speed might be a bit different due to inertia and friction.

Once again, for the sake of simplicity in this section we will only consider (1), i.e., the distance
uncertainty. In our simulation, we can introduce a distance sensor uncertainty by adding a random
value X to the computation of the distance by a Mobile. X is chosen within a normal distribution,
with an average value of 0 (no skew) and a standard deviation depending on the actual distance
(due to the speed of sound) of σ ∗ (1 + 0.25 ∗ real_distance).

Now, if we run again our simulation several times with increasing values of σ , then we can
indeed see that as soon as σ ≥ 0.0325 m the chasing robot can violate the safety distance.

2.3 Robust Control

In control theory, robust control is an approach to make a controller work in the presence of un-
certainty, assuming that certain variables will be unknown but bounded [1]. These robust methods
aim to achieve robust performance and/or stability in the presence of bounded modeling errors.
We can thus implement a variant of our BaseLine Controller that we call RobustController that
basically takes a fixed safety margin of 10 × σ when computing the error to be minimized in the
PID control:

2Each simulation is repeated 30 times to deal with pseudo-random number generation issues.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:5

That works well; for example, for σ = 0.0325 m the chasing robot always stays above the safety
distance (at least 2.05 m). However, its overall performance is not so good, with an average dis-
tance of only 2.55 m, which is too conservative. The goal of this article is to investigate whether
we can do any better by considering the distance returned by the sensors as an explicit random
variable, i.e., treating this kind of random variables as first class entities in our adaptive control
programs.

3 UNCERTAINTY-AWARE CONTROL SYSTEMS

In this section, we describe our proposal and illustrate it on the chasing robot example discussed
above. Our approach consists of three steps:

• Identify the possible sources of uncertainty
• Explicitly represent them so that they can be managed
• Incorporate them into the control loop to improve the decision process of the control system

in such a way that it can manage the identified uncertainties.

3.1 The Chasing Robot Example Revisited

In our simple chasing robot example, we only consider the uncertainty due to the estimation of
the distance to the target. Since we know that the distance sensor returns a value within a normal
distribution with standard deviation of σ , we are going to explicitly model that return value with
a random variable X having this σ standard deviation. Then, in the control loop of the robot, we
can use X to make decisions (this approach is sometimes called adaptive control).

For most systems, including mission critical ones, reliability is not absolute but estimated in
terms of the probability of not failing the mission. Depending on the stakes, this probability can
range from 0.999 to 0.9999999999 or more and is usually made readable by “counting the nines.”
For instance, a probability of 0.999 is called “3 nines.”

In the case of our chasing robot, this makes it possible to let the user choose the level of risk
she wants to take and use it as a parameter for controlling the robot. For example, for a 3-nines
probability of keeping the safety distance, probability theory tells us that we need to take a margin
of 3.29σ , while for 5 nines we need 4.41σ . We can easily model that in Python using the class
ufloat from the uncertainties package that provide basic support for random variables:

1 class ProbabilisticController (BaseLine):
2 def __init__(self , robot: Robot , kp: float , ki: float , kd: float , risk: float):
3 super().__init__(robot , kp, ki, kd)
4 self.confidence = self.confidence_interval[risk]
5
6 confidence_interval = {.90:1.64 , .99:2.67 , .999:3.29 , .9999:3.89 , .99999:4.41}
7
8 def get_error(self , target_distance: float) -> ufloat:
9 distance = self.robot.get_distance(self.target)
10 return ufloat(distance , abs ((1+0.25* distance)*Mobile.sensor_accuracy))
11
12
13 class PXNinesController (ProbabilisticController):
14 def __init__(self , robot: Robot , kp: float , ki: float , kd: float , risk: float):
15 super().__init__(robot , kp, ki, kd, risk)
16
17 def get_error(self , target_distance: float) -> float:
18 distance = super().get_error(target_distance)
19 return distance.nominal_value - distance.std_dev*self.confidence -target_distance # p>risk

Figure 2 summarizes the performance of various versions of our chasing robot controller when
σ increases. It is obtained by running each chasing robot for 30 seconds and plotting both its real
minimum and average distance to the target. The experiment is repeated 30 times to account for
random perturbations.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:6 J.-M. Jézéquel and A. Vallecillo

Fig. 2. Performance of various control algorithms for the chasing robot example.

Fig. 3. The ZNN.com system architecture.

When the precision of the distance sensor degrades, the BaseLine controller fails, going below
the safety distance (1 m) as explained above. In contrast, the RobustController is too cautious,
and we can see how its performance degrades as the precision of the sensors decreases: It stays
too far behind the target. However, our two versions of an uncertainty aware controller (P3Nines
and P5Nines) are making a good tradeoff between quality of service (average distance) and safety
(not going under 1 m).

Since this example is very simple, the basic support for random variables currently found in,
e.g., Python, is good enough to handle it. However, as soon as computations need to be done
manually on random variables, things get much more complicated to handle at the programmatic
level without strong support for treating random variables as first class entities, including support
for comparison operators among them. Let us demonstrate that in the next section with another
example, the ZNN system, which is a bit more complex than the chasing robot system.

3.2 The Znn.com System

Znn.com is a news service that is commonly used as an example of a self-adaptive system [35].
Its architecture is shown in Figure 3. The system comprises several servers, some of which can
be inactive, and a load balancer (d) in charge of receiving requests from clients and selecting the
active server that will process them. The system monitors the dispatcher and the servers to make
decisions to optimize its behavior.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:7

One typical example is the invariant stating that the current system response time R for any
request should always stay below some thresholdRMax . When a request is received, the dispatcher
tries to find an active server able to process the request and respond to the originating client within
the required time limit. If none is found, then the dispatcher activates one of the inactive servers
and sends the pending request to it. If all servers are active and none of them can ensure processing
the request within the required timeframe, then the request is denied and returned to the client.
Server activation takes some time, the so-called starting latency. If a server is inactive for more
than a certain time, then it shuts itself down to save energy and waits for the dispatcher to activate
it when required.

Our exemplar system comprises one dispatcher and four servers, all initially inactive. Four
clients generate requests at a given pace. For simplicity, we assume that the processing time of
all requests is the same, namely 20 time units.

To simulate this ZNN system we decided to use UML executable models to show how our ap-
proach can be used with different paradigms, i.e., it can work with both modeling and program-
ming languages. In particular, we have used UML and OCL [28] to specify the ZNN system and the
UML-based Specification Environment (USE) [14] to execute the UML system specifications.
The use of such high-level specifications provides interesting benefits, such as that we can ab-
stract away from any concrete implementation, focusing on high-level models that allow runtime
verification of system properties, and thus they require a very lightweight development process.
Furthermore, these UML models could be formally analyzed using high-level validation tools [15]
or transformed into concrete implementations if needed.

3.2.1 Baseline Behavior. We simulated the system using different workloads, depending on the
pace at which the clients issue their requests. In the low workload scenario, each client issues a
request every 30 time units. Under medium workload, requests are issued every 20 time units (i.e.,
same as the processing time of requests). This simulates a stable system that works at optimal
performance. In the heavy workload scenario, clients issue their requests every 18 time units to
ensure that servers cannot process all incoming requests. Assuming that the response time limit
is 62 time units (i.e., RMax = 62) and that all clients issue their requests at the same time, the sim-
ulations show that no requests are overdue in any scenario and that no requests are denied either
under low and medium workloads. However, around 7.53% of the requests are denied under heavy
workload, as theoretically expected: The throughput of the four clients is, respectively, 2.6666, 4.0,
and 4.4444 requests per time unit in each scenario, while the combined processing capability of the
servers is always 4.1333. This means that 7.5267% of the requests (= 4.4444/4.1333 − 1.0) should
be denied in the heavy workload scenario, as the simulations corroborate.

The three key decisions that the components of the system should make are (1) whether a server
can accept a request, because it is able to respond to it in time; (2) whether a request is ready to be
responded, because its has been processed; and (3) whether a request is overdue.

These decisions can be implemented by the following query operations of a server (they are
specified in OCL):

1 fits(r:Request):Boolean =
2 r.finishTime - r.arrivalTime + self.swapTime < self.config.RMax
3
4 hasFinished(r:Request ,now:Real):Boolean =
5 r.finishTime <= now
6
7 isOverdue(r:Request):Boolean =
8 (self.actualFinishTime - self.arrivalTime) > self.config.RMax

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:8 J.-M. Jézéquel and A. Vallecillo

Table 1. Baseline System: Percentage of Denied and Overdue
Requests under Medium (20) and Heavy (18) Workloads

Proc.Time

Uncert. Denied-20 Overdue-20 Denied-18 Overdue-18

0.0 0.00% 0.00% 7.81% 2.52%

0.1 0.00% 0.00% 7.81% 2.53%

0.2 0.00% 0.00% 7.27% 2.66%

0.3 0.00% 0.00% 7.54% 2.76%

0.4 0.00% 0.00% 7.27% 3.01%

0.5 0.00% 0.03% 7.81% 2.27%

0.6 0.00% 0.03% 7.81% 3.32%

0.7 0.00% 0.03% 7.81% 3.33%

0.8 0.00% 0.05% 7.54% 3.48%

0.9 0.00% 0.13% 7.27% 3.76%

1.0 0.00% 0.16% 7.54% 4.52%

In the last operation, isOverdue(), the value of attributes arrivalTime and actualFinishTime
are set by the server when the request is accepted and when it is removed from its queue of pending
requests, respectively.

3.2.2 A More Realistic Behavior. As mentioned in the Introduction, reality is different from sim-
ulations, especially in the case of physical systems that are subject to different types of uncertain-
ties. In this article, we assume that data collected from the environment can never be directly ob-
served without noise and also that an accurate model of the environment cannot be obtained [7, 27].
These are inherent characteristics of any physical system and therefore cannot be neglected.

Let us consider here two sources of uncertainty that may affect our system:

• The actual time taken by a server to process a request is not a fixed value, but a random
variable. This may cause the actual processing time to be greater than the expected one. Thus,
a server may accept a request, because, according to its calculations, it is able to respond to
it within the required time, but then the actual processing time is longer than expected and
the response is delayed.
• Clocks have some imprecision. Even if we assume that the deviations are only of micro-time

units (i.e., 10−6), this can cause some comparisons between time variables to fail. We will
see how this can cause some requests to be delayed, because when the system checks if a
request has finished, the comparison fails and the request has to wait for the next clock cycle
to be answered, hence causing unnecessary delays.

These two aspects correspond to measurement uncertainties [18], which affect the values of the
variables managed by the simulation. To evaluate the effect of such uncertainties, we developed
a simulation system (hereinafter, the Baseline system) where the values of the variables could
have small variations, due to the lack of precision of the sensors (e.g., the clock readings) or inde-
terminacy of the environment (e.g., variations in the processing times of the requests due to other
concurrent executing tasks running in the server).

To illustrate the effects of such uncertainties, Table 1 shows the percentage of denied and over-
due requests under medium and heavy workloads for different levels of processing time impreci-
sion. The first column displays the value of the processing time uncertainty, which ranges between
0 and 5% of the processing time of each request, i.e., between 0 and 1 time units. This is used by
the system to assign each request a deviation from its expected processing time, which simulates

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:9

Fig. 4. Baseline system: Percentage of denied and overdue requests under medium (20) and heavy (18)
workloads.

a more realistic situation where the actual processing times of requests are not perfect values but
random variables. Of course, the heavier the workload the worse the results.

Figure 4 shows these results in a graphical way. Note how the percentages of denied requests
maintains around the “expected” theoretical value of 7.53% value. Sometimes it is even lower, be-
cause the requests are accepted based on their estimated processing times of 20 time units and
not on their actual processing times. In some cases, these decisions led to overdue responses. This
is similar to the situation described in the Introduction, where the behavior of the machines and
parts on the assembly line did not correspond to what was expected from the simulations, and
some parts fell off the trays, or the gantry grippers failed to grasp the parts.

3.2.3 Taming Uncertainty: Robust Approach. As previously mentioned, robust control methods
aim to achieve robust performance and/or stability in the presence of bounded uncertainty [1].
These methods normally use interval arithmetic [17, 40]. Thus, instead of representing a value as a
single number x , interval arithmetic represents each value as a range of possibilities defined by the
interval [xm ,xM] that contains x . The most common use is in software to keep track of rounding
errors in calculations and of uncertainties in the knowledge of the exact values of physical and
technical parameters, so that reliable results can be guaranteed.

In the ZNN example, we implemented a robust solution using an interval of ±5σ to ensure more
than 6-nines precision in the processing time (what we have called 1.0 confidence in Table 2). This
can be implemented by simply changing method fits() to include such a safety interval (note
that in our case we use σ = 1, and therefore 5σ = 5):

1 fits(r:Request):Boolean =
2 r.est_finishTime - r.arrivalTime + self.swapTime + 5.0 -- safety interval added
3 < self.config.RMax

However, it still does not work. We still get 0.08% overdue requests (see first row of Table 2,
under column CI:PTU). Analyzing the causes, we realized that this is because we need to consider
the second source of uncertainty, i.e., the imprecision of the clock. As mentioned above, a slight
variation of the clock readings may cause that we miss one timestep. For example, the actual finish-
ing time of a request is 30.0, but the clock time is 29.9999999. Then, the comparison r.finishTime
<= now returns false and the request has to wait for the next timestep.

To tackle this issue using a robust control approach, we substitute the uncertain variable (in this
case, the clock readings) by an interval and use the interval in the comparison. With this, query
hasFinished() is implemented as follows:

1 hasFinished(r:Request ,now:Real):Boolean =
2 (now - r.finishTime).abs() <= 1.0)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:10 J.-M. Jézéquel and A. Vallecillo

Fig. 5. Comparing one random variable and one real number.

This change has the desired effect, and no overdue requests are produced. However, the
approach taken by robust control systems is too coarse grained and conservative, normally wasting
too many resources or producing sub-optimal results, as illustrated in the Chasing Robot example.
This is where adaptive control systems come into play.

3.2.4 Taming Uncertainty: Adaptive Control. Adaptive control methods do not need a priori

information about the bounds on the uncertain or time-varying parameters. In contrast, their
safety bounds can dynamically adapt to improve the decisions made by the control loop. Random
variables are commonly used instead of fixed-length intervals, and fixed-bound intervals become
confidence intervals (CI). For example, assuming that the actual processing time of a request
follows a normal distribution X ∼ N (x ,σ) with standard deviation σ , we will use such a random
variable X instead of the real value x [18]. Comparison are no longer Boolean values but become
probabilities [3].

To illustrate the differences among the crisp, robust, and adaptive approaches, consider the real
values x = 20.0 and y = 20.7. Using real arithmetic, x < y = true. Assuming a precision of σ = 0.6
in the values of x , using a robust control approach we would define an interval of ±5σ around x ,

i.e., ̂X = [17, 23]. In this case, given that 20.7 ∈ ̂X , then x < y = false.
Finally, using the adaptive control strategy, variable x would be modeled by a random variable

X ∼ N (20, 0.6), and the comparison x < y becomes P (X < 20.7) = 0.878. Such probability
coincides with the area shaded in blue in Figure 5.

To realize this adaptive control approach, we only need to change the implementation of the two
query operations that compare the two random variables of our example, namely finishTime and
now:

1 fits(r:Request):Boolean =
2 r.finishTime - r.arrivalTime + self.swapTime
3 + self.config._processingTimeUnc * self.tolerance(config.robustness) < self.config.RMax
4
5 hasFinished(r:Request ,now:Real):Boolean =
6 (now -r.finishTime).abs() <= self.config._clockUnc * self.tolerance(config.robustness))

In these specifications, variables _processingTimeUnc and _clockUnc correspond to the pre-
cision of the requests processing times and the clock (1.0 and 10−6, respectively). They are both
stored as attributes of class Config. Operation tolerance() returns the number of σ ’s required to
obtain a given robustness, i.e., confidence. For example, assuming that the variables follow normal
distributions, to obtain a confidence of 3 nines (0.999) we need 3.29σ .

The results obtained for different levels of confidence using an adaptive control strategy are
shown in columns CI:PTU and CI:PTU+CU of Table 2 and graphically in Figure 6. Column CI:PTU
shows the percentage of overdue requests taking into account only the request performance time

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:11

Table 2. Percentage of Overdue Requests Depending on
the Confidence Level

Confidence CI:PTU CI:PTU+CU Stochastic

Robust (1.0) 0.08% 0.00% 0.00%

0.9999 0.20% 0.11% 0.00%

0.999 0.72% 0.12% 0.00%

0.99 0.84% 0.15% 0.00%

0.98 0.85% 0.16% 0.00%

0.95 0.86% 0.22% 0.02%

Fig. 6. Percentage of overdue requests depending on the confidence level.

Fig. 7. Comparing two random variables.

uncertainty (PTU). In turn, Column CI:PTU+CU shows the percentage of overdue requests taking
into account both the request performance time uncertainty and the clock uncertainty (CU).

3.2.5 Taming Uncertainty with Random Variables. The adaptive strategy that uses random vari-
ables and confidence intervals to model some of the values of the system but still uses crisp values
with the rest. Our claim is that this is not realistic, because in physical systems there are no exact
values—they all are subject to uncertainty, numerical approximations, or both. This is why physi-
cal variables should never be modeled by means of real numbers but using uncertain numbers.

For example, assuming that X ∼ N (20, 0.6) and y becomes a random variable Y ∼ N (20.7, 0.5),
we get that P (X < Y) = 0.48. This is graphically depicted in Figure 7, where the shaded area
shows the value of the comparison (check it against the area in Figure 5). By changing the standard
deviation of the variables we obtain different values for that probability. The larger the variance,
the more difficult it is to tell the two values apart and vice versa.

For implementing this approach, we have used the Java library of datatypes extended with
measurement uncertainty defined in Reference [3], which is also implemented in the tool USE to

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:12 J.-M. Jézéquel and A. Vallecillo

support uncertain numbers in UML and OCL [29]. Essentially, this library extends the basic UML
and OCL primitive datatypes (Real, Boolean, Integer,. . .) with uncertainty by defining super-types
for them, as well as the set of operations defined on the values of these types. Thus, Real values
with uncertainty are represented in terms of UReal values, which are composed of pairs (x ,u),
also noted as x ±u, where x is the value, and u represents its uncertainty as the standard deviation
of its possible variations, according to the GUM international standard [18]. Likewise, a Boolean
value b is lifted to a UBoolean value B, which is a pair B = (b, c) in which c is a real number be-
tween 0 and 1 that represents the confidence we assign to b. Comparison operators between UReal
variables return UBoolean values. For example, if a = 2.0 ± 0.3 and b = 2.5 ± 0.25, then a < b =
Boolean(true,0.893), meaning that a < b with a confidence of 0.893 [3]. Projection operation
confidence() applied to an uncertain Boolean returns a probability, i.e., the confidence assigned
to that Boolean. Uncertain values then become first-class entities of our models and can be man-
aged and operated in a natural way by the underlying type system. Propagation of uncertainty
through operations is transparently taken care of by the type system, and comparisons are lifted
to UBoolean values when required. This greatly simplifies the management of uncertain numbers
in both Java programs and UML/OCL models.

Using these extended datatypes and operations, the critical queries in the ZNN system can be
restated as follows:

1 fits(r:Request):Boolean =
2 (r.finishTime - r.arrivalTime + self.swapTime < self.config.RMax).confidence ()
3 >= self.config.robustness
4
5 hasFinished(r:Request ,now:UReal):Boolean =
6 (now >= r.finishTime).confidence () >= self.config.robustness
7
8 isOverdue(r:Request):Boolean =
9 (r.responseTime > self.config.RMax).confidence () >= self.config.robustness

We can see how we can now play with the level of confidence (robustness) required, thus being
able to quantify in a more precise way the degree of uncertainty with which we make decisions.

The last column (Stochastic) of Table 2 shows the percentage of overdue requests of a system
that is simulated using the strategy of representing physical attributes with random variables, i.e.,
uncertain reals. This is also shown graphically in Figure 6. The last 0.02% is to be expected, because
we are assuming a confidence of only 0.95 in our decisions. As in the example of the chasing robot,
with this strategy we can obtain more faithful simulations and therefore more accurate results.

4 DISCUSSION

So far we have shown how we are able to capture the inherent uncertainty of the possible values of
the attributes used in a control system by means of random variables, and the benefits of handing
them as first-class entities of our programs or models with the appropriate libraries. This section
provides some methodological guidance on how our proposal can be used. Then, we discuss some
further advantages and possible limitations of our proposal and finish with some open questions.

Note that the two examples we have used to illustrate our approach in this article come from the
realm of physical systems, although our proposal is also applicable to scenarios where non-physical
systems are considered. Ultimately, what we propose is a more effective modeling approach for
any application where uncertainty plays a role by considering uncertainty as a first-class entity.
For example, our proposal can be used in scenarios where we are uncertain of the values of some
parameters, because the system is virtual, and decisions made by some underlying real system
may materialize different values over time. Likewise, it is applicable in situations where we have

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:13

to model the duration of tasks in software development environments or where numerical errors
in computations may lead to inaccurate results.

4.1 Methodological Guidelines

If one wants to leverage the use of uncertain variables in a consistent way across an application,
then the following three steps might be followed:

• First, identify all possible primary sources of uncertainty in a model or a program. In cyber-
physical systems, that is all the variables that store values that are read from system sensors.
In other systems, it might be variables whose values depend on the hardware platform on
which the program would execute. This is, for example, what may occur for virtual machines
vs. hypervisors, e.g., in terms of the completion time of a task.
• Then, for each uncertain variable, find a law that models its probability distribution (e.g.,

normal, uniform, etc.). Alternatively, if the law is unknown, then one could resort to mea-
surements and store the measured distribution as a random variable (i.e., Type A evaluation
of uncertainty [18]).
• Finally, propagate uncertainty across the source code. That is, each time an uncertain vari-

able is used in a computation, the result of the computation also becomes an uncertain vari-
able. For instance, if x and y are UReal variables, then the result b of their comparison,
b = x ≤ y, must be an uncertain variable, namely a UBoolean. Some easy-to-implement
static analysis can help ensure that this rule is enforced across the source code of an
application.

This approach relies on the use of libraries supporting operations across uncertain basic data types
(e.g., UBooleans, UIntegers, UReals). Several such libraries already exist for Python (with some
limitations with respect to comparing uncertain variables), for Java (for instance, the one we have
developed in a previous work and that is freely available in our Github repository https://github.
com/atenearesearchgroup/uncertainty), and for UML/OCL, the latter actually relying on the Java
one.

4.2 Advantages

First, our proposal allows us to capture the uncertainty of the data collected from the environment
of the system in an accurate way. This uncertainty basically depends on the precision of the sources
of these data, i.e., on the possible variations of their values. Such precision values become input
parameters for the control algorithms.

Using these input parameters, we have shown how explicit uncertainty management allows
us to choose the level of “risk” we want to take between the too-naive (i.e., crisp) vs. the too-
conservative (i.e., robust) approaches. Thus, such a level of risk (e.g., the acceptable failure rate,
the admissible deviations from a theoretical ground truth, or the allowable degree of uncertainty
in the value of an attribute) becomes a parameter we can play with—something essential for, e.g.,
software certification.

In this way, we can make tradeoffs to achieve acceptable compromises depending on the pre-
cision of the sensors, which is not the case now, as current control algorithms tend to use an
all-or-nothing strategy. For the “all” case, they decide the level of risk they want to take (maybe
none in case of critical systems) and then build the control system based on this level. However, in
our proposal the level of risk is a parameter of the controller, and we can decide (even at runtime)
the tradeoff we want to make and thus the level of risk acceptable for our system.

Working on the opposite direction, based on a given level of risk (or of robustness) and on the
expected behavior of the system, we can decide about the required precision of the sensors that we

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:14 J.-M. Jézéquel and A. Vallecillo

need to install in our system to ensure that level of risk. This is very useful for systems where the
costs of their parts (e.g., the sensors) are important and should be maintained under control but
still ensure the required level of precision. Note that the use of random variables provides more
accurate estimations than those provided by current control algorithms.

4.3 Potential Limitations (and How to Mitigate Them)

Normality of the distributions. In the first place, our proposal makes some assumptions that
might not hold in all situations. For example, we suppose that the random variables that represent
the uncertainty of the attributes of our control algorithms follow normal distributions (as usually
done in measurement [18]). Should this not be the case, one solution would be to use Chebyshev’s
inequality to determine the range of standard deviations around the mean and thus decide the
level of robustness we are accepting. Note that the Chebyshev’s inequality works for any type
of distribution. Its practical usage is similar to the 68–95–99.7 rule, which applies only to normal
distributions. Chebyshev’s inequality is more general, stating that a minimum of just 75% of values
must lie within two standard deviations of the mean and 88.89% within three standard deviations.
Although this is a more conservative estimation that that used for the normal distribution, it is
still very useful to ensure acceptable levels of risk.

Variable independence. Second, in this work we have made some assumptions regarding the
independence of the attributes when operating with their associated uncertainty using the closed-
form solution. If such an independence cannot be ensured, then there are several ways to deal
with dependent (i.e., correlated) variables. First, if we know their covariances, then most specifi-
cations and implementations support closed-form expressions of the operations with uncertainty
when variables are dependent. However, the values of such covariances are rarely known by users,
and therefore they are not very useful in common practice. An alternative solution consists of
using the implementation of the operations based on samples (i.e., Type A evaluation of uncer-
tainty [18]). This is also the approach proposed by ISO, which is very general and powerful. How-
ever, it may have a significant impact on the performance of the evaluation of the operations, given
that they have to be applied to the samples, hence introducing an overhead proportional to the
sample size.

Precision estimation. Sometimes, estimating the precision of data collected from the environ-
ment is not an easy task. Some common factors that make this task difficult include the lack of
information about the data sources and their uncertainty; the effect of unreliable communication
channels and networks, which can produce large distortions in the values of the input data; or the
degradation of data sources or communication channels themselves, which can make the quality
of the data received increasingly worse. In this article, we have assumed that the precision of the
input data is known and constant. As for the latter, it would not be difficult to deal with variable
precision, since functions can be used to define the uncertainty of the UReal values. How to deal
with unknown and imprecise precision (i.e., a type of second-order uncertainty) remains part of
our future work.

Usage complexity. This proposal adds a certain level of complexity related to the need to compare
probabilistic values, which is not required in more conventional approaches, such as those based
on the inclusion of error bounds. Instead of a single comparison, the developer must provide a
piece of code that returns a Boolean value under the probabilistic comparison, depending on the
confidence level that can be accepted. While this introduces some additional complexity, at the
same time it clearly provides more refined and accurate results in terms of the final quality of
the developed model.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:15

4.4 Open Questions

In addition to the potential benefits and limitations of our proposal, this section discusses some
open issues that we have found during its evaluation.

Domain expert implication. When incorporating measurement uncertainty information into a
model, sometimes it is difficult to identify the attributes that are subject to uncertainty. In general,
all attributes that represent physical variables should be subject to uncertainty, but there might
be others. For example, some constants should be endowed with uncertainty, too. The variability
of the duration of tasks in certain processes, or of the cost of a given product due to currency
exchange fluctuations, are uncertainties that need to be estimated. For this, the judgment of the
domain expert is essential, and communication with them is needed to clarify which attributes
should be endowed with this kind of information.

Representing and operating with uncertainty. There are different ways of representing measure-
ment uncertainty, especially for the uncertainty associated to numeric values. They include ranges,
probability distributions of the values, or the standard deviation of the variability of the measured
attribute. From all the available alternatives, we decided to use a library that implements the ISO
VIM recommended representation and management of measurement uncertainty, as defined in the
GUM [18], which is also the notation used in most engineering disciplines. Ranges and other kinds
of possible expressions of the measurements deviations can be reduced to this representation [18].
Similarly, Bayesian probability [5], fuzzy logic [46], or uncertainty theory [24] can be used to assign
confidence to uncertain Boolean values. All these theories have advantages and limitations (see,
e.g., References [6, 21, 24]), but, as previously mentioned, we decided to use Bayesian probability,
which is the one that, in our opinion, is the most well known and easily understood by software
engineers. A proper comparison analysis between the different approaches is left for future work.
Likewise, the use of Type A representation of uncertainty, which uses the value samples instead
of closed-form equations to represent and propagate the uncertainty is something that we would
like to explore further. Although a priori this would have a significant input on the performance
of the uncertainty analysis, the use of cheap hardware accelerators such as graphic cards might
provide effective solutions for these simple vector operations, and therefore we could deal with
uncertainty in a more statistically precise manner.

5 RELATED WORK

Uncertainty in control systems and their simulation has been traditionally represented and man-
aged using two main approaches.

In the first place, intervals to represent the possible values of uncertain attributes have been
extensively used in the simulation domain. For example, Fujimoto [11, 25] use time intervals to
deal with the concepts of approximate time and approximate time event ordering in the context
of DEVS [43]. In their proposal, two events are considered concurrent if the intervals represent-
ing their timestamps have a non-empty intersection. Other authors have proposed to introduce
uncertainty on the spatial properties of the model for obtaining speed-ups [13, 31]. Saadawi and
Wainer also explored replacing time datatype in DEVS models by intervals in their RTA-DEVS for-
malism [34]. Furthermore, two new extensions to DEVS, called UA-DEVS and IA-DEVS, provide
methods to specify uncertainty in the state, input, and output variables in addition to the time
variable [40]. The former defines a formal specification of models including uncertainty specifica-
tions as intervals. The latter enables the simulation of UA-DEVS models based on computational
constraints (time, memory, etc.). This separation of concerns allows the domain expert to define
the model once and then simulate it with different constraints without redefining the model. Other

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:16 J.-M. Jézéquel and A. Vallecillo

approaches, such as Reference [20], make conservative decisions based on intervals to robustify
the specification of controllers of cyber-physical systems so that they satisfy safety requirements
under uncertain conditions.

We see two major limitations of approaches based on intervals for specifying the possible values
of uncertain variables. On the one hand, they are very coarse grained, as we have seen in the ex-
amples shown above, which results in very conservative (also called cautious) simulations [42]. On
the other hand, specifying and operating with intervals require a significant effort by the modeler,
since there is no direct support for making computations with them, such as arithmetic operations
or comparisons, which are really burdensome and error-prone tasks.

Other set of works study the relationship the uncertainty of the input parameters and that of
the simulation results, aiming at defining measures for risk quantification under input uncertainty.
In general, there are two sources of uncertainty in a typical stochastic simulation experiment:
the extrinsic uncertainty on input parameters (also called input parameter uncertainty) and the
intrinsic uncertainty on output response (referred to as stochastic uncertainty) that reflects the
inherent stochasticity of the system. The variability of simulation output response depends on both
input uncertainty and stochastic uncertainty. Some authors [16, 45] propose nested Monte Carlo
simulation approaches to estimate them. Others [4] propose statistical methods for the calculation
of confidence intervals for the mean of a simulation output. As in our case, they obtain more
accurate results than those proposals that use interval arithmetic or very conservative (i.e., robust)
estimations. However, both the complexity of their calculations and their computational costs
might hinder their applicability. In our case, the fact that we assume normal distributions and
that uncertainty propagation is achieved using closed-form solutions mitigate these issues.

Another group of papers provides alternative approaches to exploit approximation (hence uncer-
tainty) for improving the tradeoff between performance and representativeness of simulation out-
put, under uncertain event occurrence [11, 31] or using approximated rollbacks [30]. Our proposal
is orthogonal to these approaches, as each focuses on different aspects of uncertainty.

Similarly, existing schemes for adaptive control used in industry provide reasonable heuristic
approaches, although they have the limitation that parameter uncertainties are not usually taken
into account in the design of the controller. This has led to the notion of dual control [9, 39], which
addresses this issue by considering parameter uncertainties. In particular, explicit dual control
algorithms, such as the ones used in our examples, are based on the minimization of cost functions
defined in terms of control losses and uncertainty measurements (the measure of precision of the
parameter estimation) [37]. Basically, the controller has a dual action: It follows the control goal,
i.e., the system output cautiously tracks the desired reference value, and it excites the plant so that
the control quality becomes better in future time intervals. One of the known problems with such
control algorithms is that they are complicated and not always feasible to implement in practical
problems [37], which hinders their applicability in real systems. What we have shown in this
article is that the use of a type system that provides basic support for explicitly representing and
operating with uncertain attributes and propagating their associated uncertainty transparently
greatly simplifies these problems. This makes it possible to obtain the advantages of dual control
algorithms while minimizing their limitations.

In this context, the explicit representation of uncertainty is also a challenge, especially in the
context of software models. The survey [38] covers current approaches, although significant chal-
lenges remain to be addressed. In particular, there are very few libraries for programming or
modeling languages that support measurement uncertainty, i.e., the representation and opera-
tion of uncertain datatypes [3]. Even those that support the propagation of uncertainty (e.g.,
References [2, 22, 23, 41]) are quite complex to use and do not support the comparison between
uncertain numbers. This is a general problem that we have observed in most uncertainty mod-

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:17

eling proposals: They only deal with uncertain reals. However, in the physical world, all other
primitive data types also have uncertain values. In particular, logical variables representing deci-
sions or comparisons between quantities rarely have crisp true or false values. Instead, extensions
to the Boolean logic enable dealing with this type of uncertainty, including probability theory [5, 8],
possibility theory (based on fuzzy logic [33, 46]), plausibility (a measure in the Dempster–Shafer
theory of evidence [36]), and uncertainty theory [24]. These approaches assign different probabil-
ities to propositions, rather than truth values, and probability formulas replace truth tables. From
the surveyed literature, in this article we use the proposal presented in Reference [3], which pro-
vides a Java library that supports all UML and OCL primitive datatypes endowed with uncertainty.
Moreover, as mentioned above, probabilities tend to be easier for engineers to understand and
manage than other measures that quantify confidence or the likelihood of failure.

6 CONCLUSIONS AND FUTURE WORK

In this article, we have proposed to include the sources of uncertainty in system models as first-
class entities using random variables to simulate control systems more faithfully, including not
only the use of random variables to represent and operate with uncertain values, but also to repre-
sent decisions based on their comparisons. We have illustrated the problem with the toy example
of a Chasing Robot and validated our approach on the ZNN case study, which is a standard for the
self-adaptive systems community.

Uncertainty is inherent in cyber-physical systems, and we strongly believe that it should be
handled explicitly at every level from requirements to design to code and validation. We have
shown that this is not so difficult to implement by leveraging emerging libraries for supporting
sound computations on random variables. We hope this article would help in triggering a wider
adoption of stochastic approaches for software controlling cyber-physical systems.

ACKNOWLEDGMENTS

We thank the reviewers for their very valuable comments and suggestions, which helped us
significantly to improve the article.

REFERENCES

[1] Michael Athans. 1971. Editorial on the LQG problem. IEEE Trans. Autom. Contr. 16, 6 (1971), 528.

[2] Michaël Baudin, Anne Dutfoy, Bertrand Iooss, and Anne-Laure Popelin. 2016. OpenTURNS: An Industrial Software

for Uncertainty Quantification in Simulation. Springer, 1–38. https://doi.org/10.1007/978-3-319-11259-6_64-1. https://

openturns.github.io/.

[3] Manuel F. Bertoa, Loli Burgueño, Nathalie Moreno, and Antonio Vallecillo. 2020. Incorporating measurement uncer-

tainty into OCL/UML primitive datatypes. Softw. Syst. Model. 19, 5 (2020), 1163–1189. https://doi.org/10.1007/s10270-

019-00741-0

[4] R. C. H. Cheng and W. Holland. 2004. Calculation of confidence intervals for simulation output. ACM Trans. Model.

Comput. Simul. 14, 4 (October 2004), 344–362. https://doi.org/10.1145/1029174.1029176

[5] Bruno de Finetti. 2017. Theory of Probability: A Critical Introductory Treatment. John Wiley & Sons.

[6] Didier Dubois and Henri Prade. 1993. Fuzzy sets and probability: Misunderstandings, bridges and gaps. In Proceedings

of the IEEE Conference on Fuzzy Systems. IEEE, 1059–1068. https://doi.org/10.1109/FUZZY.1993.327367

[7] Naeem Esfahani and Sam Malek. 2013. Uncertainty in self-adaptive software systems. In Software Engineering for

Self-Adaptive Systems II. LNCS, Vol. 7475. Springer, 214–238.

[8] W. Feller. 2008. An Introduction to Probability Theory and Its Applications. Wiley.

[9] Nikolai M. Filatov and Heinz Unbehauen. 2000. Survey of adaptive dual control methods. IEEE Proc. Contr. Theory

Appl. 147, 1 (2000), 118–128. https://doi.org/10.1049/ip-cta:20000107

[10] Antonio Filieri et al. 2015. Software engineering meets control theory. In Proceedings of the International Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’15). IEEE Computer Society, 71–82. https://

doi.org/10.1109/SEAMS.2015.12

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

8:18 J.-M. Jézéquel and A. Vallecillo

[11] Richard Fujimoto. 1999. Exploiting temporal uncertainty in parallel and distributed simulations. In Proceedings of

the International Conference on Principles of Advanced Discrete Simulation (PADS’99). IEEE Computer Society, 46–53.

https://doi.org/10.1109/PADS.1999.766160

[12] David Garlan. 2010. Software engineering in an uncertain world. In Proceedings of the Future of Software Engineering

Research (FoSER’10). 125–128. https://doi.org/10.1145/1882362.1882389

[13] Valerio Gheri, Giovanni Castellari, and Francesco Quaglia. 2008. Controlling bias in optimistic simulations with space

uncertain events. In Proceedings of the IEEE/ACM 25th International Symposium on Distributed Simulation and Real

Time Applications (DS-RT’08). IEEE Computer Society, 157–164. https://doi.org/10.1109/DS-RT.2008.37

[14] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A UML-based specification environment for validating

UML and OCL. Sci. Comput. Program. 69, 1-3 (2007), 27–34. https://doi.org/10.1016/j.scico.2007.01.013

[15] Martin Gogolla, Frank Hilken, and Khanh-Hoang Doan. 2018. Achieving model quality through model validation,

verification and exploration. Comput. Lang. Syst. Struct. 54 (December 2018), 474–511. https://doi.org/10.1016/j.cl.2017.

10.001

[16] Michael B. Gordy and Sandeep Juneja. 2010. Nested simulation in portfolio risk measurement. Manage. Sci. 56 (August

2010), 1833–1848. https://doi.org/10.1287/mnsc.1100.1213

[17] IEEE 1788-2015. 2015. IEEE Standard for Interval Arithmetic. Retrieved from https://standards.ieee.org/ieee/1788/

4431/.

[18] JCGM 100:2008. 2008. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM).

Joint Com. for Guides in Metrology. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.

[19] Deepali Kholkar, Suman Roychoudhury, Vinay Kulkarni, and Sreedhar Reddy. 2022. Learning to adapt—Software

engineering for uncertainty. In Proceedings of the International Solvent Extraction Conference (ISEC’22). ACM, 21:1–

21:5. https://doi.org/10.1145/3511430.3511449

[20] Tsutomu Kobayashi, Rick Salay, Ichiro Hasuo, Krzysztof Czarnecki, Fuyuki Ishikawa, and Shin-ya Katsumata. 2021.

Robustifying controller specifications of cyber-physical systems against perceptual uncertainty. In Proceedings of the

NASA Formal Methods Symposium (NFM’21), LNCS, Vol. 12673. Springer, 198–213. https://doi.org/10.1007/978-3-030-

76384-8_13

[21] Bart Kosko. 1990. Fuzziness vs. probability. Int. J. Gen. Syst. 17, 2–3 (1990), 211–240. https://doi.org/10.1080/

03081079008935108

[22] Eric O. Lebigot. 2016. Uncertainties Package. Retrieved May 30, 2022 from https://pythonhosted.org/uncertainties/.

[23] Abraham Lee. 2013. SOERP Uncertainties Package. Retrieved May 30, 2022 from https://pypi.org/project/soerp/.

[24] Baoding Liu. 2018. Uncertainty Theory (5th ed.). Springer.

[25] Margaret L. Loper and Richard M. Fujimoto. 2000. Pre-sampling as an approach for exploiting temporal uncertainty.

In Proceedings of the International Conference on Principles of Advanced Discrete Simulation (PADS’00). IEEE Computer

Society, 157–164. https://doi.org/10.1109/PADS.2000.847159

[26] Giovanni Lugaresi and Andrea Matta. 2018. Real-time simulation in manufacturing systems: Challenges and research

directions. In Proceedings of the Winter Simulation Conference (WSC’18). IEEE, 3319–3330. https://doi.org/10.1109/WSC.

2018.8632542

[27] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. 2017. A Classification Framework of Uncertainty in

Architecture-Based Self-Adaptive Systems With Multiple Quality Requirements. Morgan Kaufmann, Boston, 45–77.

https://doi.org/10.1016/B978-0-12-802855-1.00003-4

[28] Object Management Group. 2014. Object Constraint Language (OCL) Specification. Version 2.4. OMG Document

formal/2014-02-03.

[29] Victor Ortiz, Loli Burgueño, Antonio Vallecillo, and Martin Gogolla. 2019. Native support for UML and OCL primitive

datatypes enriched with uncertainty in USE. In Proceedings of the International Workshop in OCL and Textual Model-

ing (OCL 2019) co-located with IEEE/ACM 22nd International Conference on Model Driven Engineering Languages and

Systems (MODELS 2019), CEUR Workshop Proceedings, Vol. 2513. 59–66.

[30] Matteo Principe, Andrea Piccione, Alessandro Pellegrini, and Francesco Quaglia. 2020. Approximated rollbacks. In

Proceedings of the ACM SIGSIM-PADS. International Conference on Principles of Advanced Discrete Simulation (SIGSIM-

PADS’20). ACM, 23–33. https://doi.org/10.1145/3384441.3395984

[31] Francesco Quaglia and Roberto Beraldi. 2004. Space uncertain simulation events: Some concepts and an application to

optimistic synchronization. In Proceedings of the International Conference on Principles of Advanced Discrete Simulation

(PADS’04). IEEE Computer Society, 181–188. https://doi.org/10.1109/PADS.2004.1301299

[32] Jürgen Roßmann, Eric Guiffo Kaigom, Linus Atorf, Malte Rast, Georgij Grinshpun, and Christian Schlette. 2014. Mental

models for intelligent systems: eRobotics enables new approaches to simulation-based AI. Künstl. Intell. 28, 2 (2014),

101–110. https://doi.org/10.1007/s13218-014-0298-z

[33] Stuart J. Russell and Peter Norvig. 2010. Artificial Intelligence. A Modern Approach (3rd ed.). Prentice Hall.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

Uncertainty-aware Simulation of Adaptive Systems 8:19

[34] Hesham Saadawi and Gabriel A. Wainer. 2010. Rational time-advance DEVS (RTA-DEVS). In Proceedings of the Spring

Simulation Multi-conference (SpringSim’10). SCS/ACM, 143:1–143:8. https://doi.org/10.1145/1878537.1878686

[35] Bradley R. Schmerl, Javier Cámara, Jeffrey Gennari, David Garlan, Paulo Casanova, Gabriel A. Moreno, Thomas J.

Glazier, and Jeffrey M. Barnes. 2014. Architecture-based self-protection: Composing and reasoning about denial-of-

service mitigations. In Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security

(HotSoS’14). ACM, 2:1–2:12. https://doi.org/10.1145/2600176.2600181

[36] Glenn Shafer. 1976. A Mathematical Theory of Evidence. Princeton University Press.

[37] Pankaj Swarnkar, Shailendra Kumar Jain, and R. K. Nema. 2014. Adaptive control schemes for improving the control

system dynamics: A review. IETE Techn. Rev. 31, 1 (2014), 17–33. https://doi.org/10.1080/02564602.2014.890838

[38] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. 2021. Uncertainty representation in software

models: A survey. Softw. Syst. Model. 20, 4 (2021), 1183–1213. https://doi.org/10.1007/s10270-020-00842-1

[39] Heinz Unbehauen. 2000. Adaptive dual control systems: A survey. In Proceedings of the IEEE Adaptive Systems for Signal

Processing, Communications, and Control Symposium (AS-SPCC’00). IEEE, 171–180. https://doi.org/10.1109/ASSPCC.

2000.882466

[40] Damián Vicino, Gabriel A. Wainer, and Olivier Dalle. 2022. Uncertainty on discrete-event system simulation. ACM

Trans. Model. Comput. Simul. 32, 1 (2022), 2:1–2:27. https://doi.org/10.1145/3466169

[41] Wikipedia. List of uncertainty propagation software. https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_

software.

[42] B. Wittenmark. 1975. Stochastic adaptive control methods: A survey. Int. J. Contr. 21, 5 (1975), 705–730. https://doi.

org/10.1080/00207177508922026

[43] Bernard P. Zeigler, Alexandre Muzy, and Ernesto Kofman. 2018. Theory of Modeling and Design: Discrete Event and

Iterative System Computational Foundations (3rd ed.). Academic Press.

[44] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and Roland Norgren. 2016. Understanding Uncertainty in

Cyber-Physical Systems: A Conceptual Model. In Proceedings of the 12th European Conference on Modelling Foundations

and Applications (ECMFA’16), Vol. 9764. Springer, 247–264. https://doi.org/10.1007/978-3-319-42061-5_16

[45] Helin Zhu, Tianyi Liu, and Enlu Zhou. 2020. Risk quantification in stochastic simulation under input uncertainty.

ACM Trans. Model. Comput. Simul. 30, 1 (February 2020), 1:1–1:24. https://doi.org/10.1145/3329117

[46] Hans-Jürgen Zimmermann. 2001. Fuzzy Set Theory—And Its Applications. Springer Science+Business Media.

Received 22 July 2022; revised 7 February 2023; accepted 23 March 2023

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 8. Publication date: May 2023.

9

Learning to Simulate Sequentially Generated Data via

Neural Networks and Wasserstein Training

TINGYU ZHU and HAOYU LIU, Peking University, China

ZEYU ZHENG, University of California, Berkeley, USA

We propose a new framework of a neural network-assisted sequential structured simulator to model, estimate,

and simulate a wide class of sequentially generated data. Neural networks are integrated into the sequentially

structured simulators in order to capture potential nonlinear and complicated sequential structures. Given

representative real data, the neural network parameters in the simulator are estimated and calibrated through

a Wasserstein training process, without restrictive distributional assumptions. The target of Wasserstein train-

ing is to enforce the joint distribution of the simulated data to match the joint distribution of the real data in

terms of Wasserstein distance. Moreover, the neural network-assisted sequential structured simulator can flex-

ibly incorporate various kinds of elementary randomness and generate distributions with certain properties

such as heavy-tail, without the need to redesign the estimation and training procedures. Further, regarding

statistical properties, we provide results on consistency and convergence rate for the estimation procedure of

the proposed simulator, which are the first set of results that allow the training data samples to be correlated.

We then present numerical experiments with synthetic and real data sets to illustrate the performance of the

proposed simulator and estimation procedure.

CCS Concepts: • Computing methodologies→ Modeling and simulation;

Additional Key Words and Phrases: Sequential simulator, neural network, Wasserstein training, statistical

properties

ACM Reference format:

Tingyu Zhu, Haoyu Liu, and Zeyu Zheng. 2023. Learning to Simulate Sequentially Generated Data via Neural

Networks and Wasserstein Training. ACM Trans. Model. Comput. Simul. 33, 3, Article 9 (August 2023), 34 pages.

https://doi.org/10.1145/3583070

1 INTRODUCTION

In many applications, such as finance, transportation, and service systems, stochastic simulation
models (simulators) that have a sequential structure are widely used to create sample paths and
capture the dynamics of relevant multi-dimensional random objects. A sequential-structured sim-
ulator typically involves multiple discrete time periods at a certain resolution and models a sto-
chastic process with multi-dimensional state variables. In each time period, the simulator takes
the state from the previous time period as input, and generates, along with some new randomness,
a new state passing on the next time period. Such simulators are used to simulate sequentially

Authors’ addresses: T. Zhu and H. Liu, Peking University, Yiheyuan Rd. 5, Haidian, Beijing, China, 100871; emails:

{1800017813, 1800015905}@pku.edu.cn; Z. Zheng, University of California, Berkeley, 4125 Etcheverry Hall, Berkeley, CA,

USA; email: zyzheng@berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-3301/2023/08-ART9 $15.00

https://doi.org/10.1145/3583070

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:2 T. Zhu et al.

generated data, which is slightly more general than time series models. The data is in turn used
to evaluate expectations/quantiles of functions of the sample paths or to support decision making
tasks. For example, in financial applications, a simulator may be used to simulate sequential data
that represents the dynamics of prices and volatilities for multiple correlated assets, possibly as
well as other relevant factors that impact the asset prices. The simulated data can then be used to
evaluate the risks and performances of a portfolio that are composed of these assets.

For some applications, real data are available to calibrate such sequential-structured simula-
tors. Specifically, representative real data may record the dynamics of some, but maybe not all,
dimensions of the stochastic process modeled by the sequential-structured simulator. With real
data in hand, there is a natural need to tailor the simulator such that the sequentially generated
data from the simulator “matches” real data in the corresponding dimensions. Such tasks have
always been challenging in terms of both statistical properties and computational demands, due
to large data dimension and/or partial observations. In order to calibrate a sequential-structured
simulation model, existing methods largely rely on parametric models with specific distributional
assumption, such that maximum likelihood method can be used to estimate the parameters using
real data. In general, these methods bring up difficult-to-solve estimation procedures especially
when real data only contains partial observations in a subset of dimensions. Moreover, specific
distributional assumptions are often needed to compute the likelihood function. In addition to the
risk of mis-specification, different distributional assumptions may require completely different op-
timization, computation, and statistical analysis.

To address such challenges, we propose a new framework of sequential simulation assisted
by generative adversarial neural networks and Wasserstein training. At each time step, the neu-
ral networks take the state vector of the previous time as input, and generate the next state with
some additional randomness known as elementary randomness. The elementary randomness is pre-
specified by users according to domain knowledge, whereas parameters of the neural networks,
which aim to capture the potential non-linear and complicated dependence of the dynamics on
the previous state, are estimated from data. Such estimation is carried out through a Wasserstein
training process, which aims to match the (possibly high-dimensional) joint distribution of the
simulated data with that of the real data. More specifically, batches of simulated data and real
data are passed to another neural network known as the discriminator, which then produces a
loss function indicating the similarity of the underlying distributions of both data. The loss func-
tion is then alternately maximized via updating the network parameters of the discriminator and
minimized via updating the parameters of the simulator networks. We note that this estimation
procedure does not require computing likelihood functions, and does not change significantly
if the dimensions increase or the type of elementary randomness changes. With such flexibility,
the sequential-structured simulator fitted to real data can provide us with information regarding
“what-if” scenarios. By altering some parts of the simulator, such as the elementary randomness
and length of the sequences, we can answer questions such as “what happens if the variances
increase by 10%” and “what happens if the length of the sequences increases by 10%”. Further,
such modeling scheme allows us to discuss its statistical aspect, which involves three research
questions: What types of underlying sequential-structured simulation model can be consistently
learned by such framework? What is the statistical rate of convergence if consistency is achieved?
To what extent is correlation allowed to exist between different sequences in the sample set, and
how much impact does it have on the convergence rate? To the best of our knowledge, such the-
oretical guarantees do not exist for general sequential-structured simulators assisted by neural
networks, especially when the associated distributions have unbounded support.

The modeling and simulation of sequentially generated data has been introduced and inten-
sively studied in the literature. An important class of models is based on parametric assumptions

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:3

to capture the dependence structure in the sequences, of which one most representative example
is the stochastic volatility model (SVM). As [29] points out, a key intuition in the SVM litera-
ture is that the variations in the level of activity is directed by an underlying stochastic process.
As an early example of discrete-time stochastic volatility modeling, [32] models the risky part
of returns as a product process, integrating an underlying indicator of volatility which follows a
non-zero mean Gaussian linear process. Later, continuous-time SVMs formulated as diffusion pro-
cesses, such as the Heston model presented by [21], become more favorable in portfolio choice and
derivatives pricing. The multivariate generalizations of SVMs are presented by [4]. Estimating such
models poses substantial challenge due to difficulties in evaluating the exact likelihood function.
It is concluded in [8] that there are mainly three categories of estimation techniques to address
the challenge, namely estimators based on the method of moments, such as [25]; estimators based
on the maximum likelihood principle, such as [28] and estimators based on an auxiliary model,
such as [6]. A most representative application of auxiliary models is model calibration, which uses
current information such as the option price in parameter estimation, see [1] for example. How-
ever, these techniques can become intractable or computationally demanding when the dimension
becomes even moderately high. Moreover, considerable assumptions are required, rendering these
techniques vulnerable to model mis-specifications.

An alternative way of modeling sequential data and estimating such models is to use the neural
network framework. A representative class of models is the recurrent neural network (RNN),
which, along with other variants such as gated recurrent unit (GRU) and long-short-term

memory (LSTM), aims to capture the transition and dependencies between the state vectors in the
time-series. Recently, variational autoencoder (VAE) provided by [23] is combined with RNN to
model and estimate sequentially generated data with a latent stochastic process, see [9, 17, 24, 35]
for examples. We also note that [9] and [35] are among the first that integrate these frameworks
with Monte Carlo simulation. Such frameworks in general adopt a likelihood-based statistical infer-
ence method, using VAE to learn the posterior distributions of latent process variables whose prior
distribution and randomness-generation distribution need to be pre-specified. Another branch of
neural network-based sequential modeling, including our work, is based on the generative ad-

versarial network (GAN) [18]. A GAN is a generative model consisting of a generator and a
discriminator, both of which are often neural networks. The generator produces data of some dis-
tribution, and the discriminator compares such distributions with the empirical distribution of
the sample set. By alternately maximizing the loss function via updating the discriminator and
minimizing the loss function via updating the generator, people train the generator network to
produce data with the same underlying distribution as the sample set. What is noteworthy about
GAN is that it inherently provides a way to compare (possibly high-dimensional) distributions via
capturing the most characteristic features, instead of conducting point-wise comparisons or com-
paring less informative statistics. This serves as an important foundation for application of GANs
in stochastic process modeling, which requires learning distributions from data. Representative
works such as [16, 31, 36] and [37] design network architectures and loss functions for various
specific purposes, such as incorporating extra information as conditions [16], and capturing long-
term dependence [36, 37]. We refer to [7] for an overview of application of GANs in time-series
modeling, and [14] for an overview of such application in specifically financial time-series data.
As stated in both overviews, instability of training, especially when the sample size is limited and
severe randomness is included, and lack of proper measurement of how well the distributions are
generated are the main problems suffered by applications of GAN in time-series modeling. An-
swering to such concerns, we use a more model-based approach instead of completely relying on
the neural network architectures to capture the distribution from representative data. Also, we use
the Wasserstein generative adversarial network (WGAN) training framework with gradient

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:4 T. Zhu et al.

penalty [19] in the estimation procedure to improve training stability as well as provide a basis
for our proof of statistical convergence. Apart from that, we propose our own illustrative measure-
ments in the numerical experiments, which either directly use statistics of distributions or resort
to a downstream task to provide assessment from an operational aspect. In terms of the sequen-
tial structure, [34] consider a different task from ours, inventory optimization, and proposed an
RNN-inspired simulation approach to improve computational capabilities for large-scale inventory
management.

The Wasserstein training of our neural network-based simulator is inspired by GAN [18],
WGAN [2], and the doubly stochastic WGAN framework by [38]. Representative theoretical works
like [5, 11] and [12] serve as fundamentals of the proof of our theorem. We also refer to [13]
and [20] for descriptions and efficient estimators for general distribution distance metrics such as
Wasserstein distance and Kullback-Liebler divergence. We adopt the use of Wasserstein distance to
measure distribution distance in this work. We additionally remark that, in financial applications,
the drift term and volatility term are separately and explicitly constructed in our framework, which
indicates that the induced stochastic process allows a transition to its risk-neutral distribution. The
generated risk-neutral paths can be used to estimate the option prices of underlying assets. There-
fore, option data can be incorporated, for instance, by adding the mean square error of estimated
option prices into the loss function, to jointly learn the real and risk-neutral dynamics. Moreover,
options data can be used to fine-tune the parameters in order to assist the training process on price
sequences.

The rest of this paper is organized as follows. Section 2 discusses the model setup of the simulator.
Section 3 discusses the estimation framework. Section 3.3 discusses the statistical theory for the
estimation method. Section 4 provides numerical experiments.

2 MODEL SETUP

We consider a class of simulators that are used to simulate sequential data. A simulator consists of
two functions μ (·, ·) and Σ(·, ·), which take current information as input to generate information
about the next step, and incorporate a sequence of elementary randomness, denoted as {ηk }, which
contributes to all the randomness in the simulation process. Such simulators generate the dynamics
of a stochastic process (Xk : k = 0, 1, 2, . . .) that takes value in a d-dimensional multi-dimensional
real space. That is, Xk ∈ Rd for any k . The simulator sequentially updates (Xk : k = 0, 1, 2, . . .)
according to

Xk+1 = μ (lk ,Xk) + Σ(lk ,Xk)ηk+1, k = 0, 1, 2, . . . , (1)

in which lk is a real-valued deterministic label that can be used to represent the time-of-day effect
or seasonality associated with time period k . The notion μ (·, ·) is a d-dimensional function of the
label and the state of the stochastic process in the previous time period. Similarly, Σ(·, ·) has the
same input variables as μ (·, ·), and outputs a d × d ′ matrix. The expressions of μ (·, ·) and Σ(·, ·)
can be further specified to incorporate background knowledge. The notion ηk+1 is referred to as
elementary randomness, which represents a d ′-dimensional mean-zero random vector that is used
by the simulator in the time period k + 1, and ηk : k = 1, 2, . . . are assumed to be independent and
identically distributed.

We consider practical applications in which the probability distribution of the elementary ran-
domness ηk ’s are specified by the users according to background domain knowledge, whereas both
μ (·, ·) and Σ(·, ·) are unknown functions that need to be estimated from empirical data. For many
applications, not all dimensions of Xk and not all time periods of data can be observed. Therefore,
we consider a flexible data framework for which only the first d1 ≤ d dimension of Xk can be
observed at selected time periods. Specifically, we write Xk as (Sk ,Yk)�, where Sk denotes the d1-

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:5

dimensional observed process, and Yk denotes the (d − d1)-dimensional latent process that is not
observed in empirical data. In terms of generality, suppose that the sequence of Sk ’s can only be
observed at p selected time periods labeled as 0 ≤ k1 < k2 < · · · < kp . Set S = (Ski

: i = 1, 2, . . . ,p).
We presume that the empirical data is composed of n copies of S , denoted as

S1, S2, . . . , Sn ,

which are n identically distributed copies of S . Note that both the number of unobserved points
between ki and ki+1 (i = 1, 2, . . . ,p − 1) and the dimension d −d1 can be either known or specified
by the user as part of the modeling assumptions.

The copies of S do not need to be mutually independent in practice. Our goal is to provide a
statistical and computational framework to train (or equivalently, to estimate) the simulator given
by (1) such that the sequentially generated data (Xk : k = 0, 1, 2, . . .) matches the joint distribution
of S on the corresponding dimensions and time periods.

Before discussing the statistical and computational framework, we briefly describe two examples
to demonstrate the relevance of the class of simulators of interest, given by the form of (1). The
first example is given by the multivariate stochastic volatility model (MSVM) formulated by
a stochastic differential equation, which is widely used within the fields of financial economics
and mathematical finance to capture the dynamics of asset prices. Specifically, the vector of state
variables Xt follows a multivariate diffusion process,

dXt = μc (Xt)dt + Σc (Xt)dWt , t ∈ [0,T], (2)

where Xt = (St ,Yt)�, with St denoting the observed price process and Yt denoting the latent
volatility process, and (Wt : t ∈ [0,T]) is a canonical multi-dimensional Brownian motion. Most
practical simulation tools for the multi-dimensional diffusion model use the idea of discretization,
at a user-specified discretization resolution. Using the Euler-Maruyama discretization scheme [27]
for example, once a discretization resolution Δt is selected, the simulation process fits into the
general simulator considered in (1). Specifically, we have

μ (lk ,Xk) = Xk + μc (Xk)Δt ,

Σ(lk ,Xk) = Σc (Xk)
√

Δt ,

ηk+1 ∼ N (0, Id ′).

(3)

Namely, (Xk : k = 0, 1, 2, . . .) is sequentially generated according to

Xk+1 = Xk + μc (Xk)Δt + Σc (Xk)
√

Δtηk+1, (4)

where ηk ,k = 1, 2, . . . are independent standard d ′-dimensional multi-variate normal random vari-
ables. We use the subscript c for μc and Σc to indicate that the label lk is a constant. We additionally
remark that, when the empirical data process follows a stationary pattern, we can always set lk as
a constant, which is often the case in practical applications. Therefore, in the rest of this work we
mostly consider stationary cases where lk = c , and μ (·, ·) and Σ(·, ·) are viewed as functions of Xk

only. Besides that the simulator considered in (1) covers the simulation process of MSVM, our data
framework also accommodates a practical possibility that the resolution at which data is observed
can be lower than the resolution at which the simulation of the stochastic process is conducted.

Not only does the simulator defined by (1) allow simulation of the MSVM, but our data frame-
work also accommodates sequential data with heavy-tailed distributions. As the second example,
this simulator sequentially updates (Xk ,k = 0, 1, 2, . . .) according to

Xk+1 = Xk + μh (Xk)Δt + Σh (Xk)Δηk+1, (5)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:6 T. Zhu et al.

where Δt can be any given resolution, and Δηk ,k = 1, 2, . . . are i.i.d. variables with some given
heavy-tailed distribution, such as the t distribution or Pareto distribution. This simulator can be
used for data modeling within the fields of spectroscopy, particle motion, finance, and so on, where
heavy-tailed behaviors are frequently observed. As a more specific case, we take

μh (Xk) = b (Xk ,α), Σh (Xk) = 1, Δηk+1 = Lα
k+1Δt1/α , α ∈ (0, 2) (6)

where the definition of b (·) is specified in [30], and Lα
k

: k = 1, 2, . . . is a sequence of i.i.d.
standard symmetric α-stable random variables which have heavy tails when α ∈ (0, 2). This is
the discretized version of a stochastic differential equation driven by a symmetric α-stable Lévy
process.

3 METHOD

In this section, we use a new framework to estimate the simulator so as to match its simulated data
with real data. More specifically, we use neural networks (NN) to approximate μ (·) and Σ(·) of the
simulator, and update the NN parameters to minimize the distance between the joint distribution
of simulated data and the joint distribution of real data. To achieve this, we need to specify how
the output distribution is generated by the NN-based simulator, how the distance between the two
distributions is formulated and computed, and how the NN parameters are updated according to
the computed distance. In the following part of this section, Sections 3.1 and 3.2 provide answers
to the first two questions, and formulate the estimation problem into a minimax optimization
problem. Section 3.3 answers the third question by discussing the training process to solve the
optimization problem.

3.1 Neural Network-integrated Simulator

Recall that S = (Sk1
, Sk2
, . . . , Skp

) represents the observed sequence. Let π denote the true joint
probability distribution of S . The training data are n identically distributed copies of S , given by
S1, S2, . . . , Sn . These sequences can be either independent or weakly correlated. Let π̃ denote the
empirical distribution of the data.

The neural network-based simulator generates a sequence of state vectors (Xk : k = 1, 2, . . .)
according to

Xk+1 = μθ (Xk) + Σϕ (Xk)ηk+1, (7)

where ηk ,k = 1, 2, . . . are given d ′-dimensional random vectors, μθ (·) is a d-dimensional func-
tion of Xk , and Σϕ (·) is a d × d ′-dimensional function of Xk which outputs a d × d ′ matrix. Both
functions adopt the NN architecture, parameterized by NN parameters θ and ϕ, and are approxi-
mations of μ (·) and Σ(·) of the simulator. Specifically, given the number of layers L ∈ Z+ and the
width of the l-th layer nl , l = 1, 2, . . . ,L, for an input variable X ∈ Rd , the functional forms of
μ (X ;θ = (W θ ,bθ)) and Σ(X ;ϕ = (W ϕ ,bϕ)) (expanded forms of μθ and Σϕ) are given as

μ0 = X ; μk = σ (Wθ,k · μk−1 + bθ,k−1), k = 1, 2, . . . ,L − 1;

μ (X ;θ = (W θ ,bθ)) =Wθ,L · μL−1 + bθ,L,
(8)

and
Σ0 = X ; Σk = σ (Wϕ,k · Σk−1 + bϕ,k−1), k = 1, 2, . . . ,L − 1;

Σ(X ;ϕ = (W ϕ ,bϕ)) =Wϕ,L · ΣL−1 + bϕ,L,
(9)

where (W θ ,bθ) and (W ϕ ,bϕ) represent all the parameters in the neural networks, which is the
aggregation ofWθ,k , bθ,k ,Wϕ,k and bϕ,k (k = 1, 2, . . . ,L), the parameters of each neural network
layer. The notation “·" represents a dot product. The dimensionality of (W θ ,bθ) and (W ϕ ,bϕ) can
be flexibly adjusted for better simulation outcomes, as long as the dimensionalities of the input and

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:7

output of μ (·;θ) and the input of Σ(·;ϕ) match that ofXk , and the output of Σ(·;ϕ) can be reshaped
into a matrix to multiply with the elementary random variables ηk+1. To train the neural networks
to produce results that fit observations is to search for optimal choices of such parameters. The
operator σ (·) takes a vector of any dimension as input and is a component-wise operator. We
specify the operator σ (·) as a rectified linear activation unit, or ReLU for short. Specifically, for
Z ∈ Rd , we have

σ (Z) = (max(Z1, 0),max(Z2, 0), . . . ,max(Zd , 0)) . (10)

LetX0 be a given constant or a random vector with a given probability distribution π0. Recall that
Xk = (Sk ,Yk), where Sk is the d1-dimensional observed process, and Yk is the (d −d1)-dimensional
latent process. We additionally remark that even though μ (·) and Σ(·) of the underlying true model
are assumed to be stationary, it is still necessary to generate a full sequence instead of modeling
a single step of transition. This is due to our assumption of an existing latent process (Yk : k =
1, 2, . . .), which is intractable and has to be sequentially simulated. Finally, the joint probability

distribution of the generated d-dimensional observed sequence at the measured data points Ŝ =
(Ŝk1
, Ŝk2
, . . . , Ŝkp

), denoted as π̂ , is taken as the output of the generator. Note that π̂ and Ŝ are also

functions of θ and ϕ, and are therefore sometimes denoted as π̂ (θ ,ϕ) and Ŝ (θ ,ϕ).

3.2 Wasserstein Distance and Discriminator

Next, we introduce the Wasserstein distance, which is used to quantify the distance between two
given distributions. The Wasserstein distance of the generated distribution π̂ and the real distribu-
tion π is given by

W (π̂ ,π) = inf
γ ∈Π(π̂ ,π)

E(Ŝ,S)∼γ
[‖Ŝ − S ‖2], (11)

where Π(π̂ ,π) denotes the set of all joint distributions of which the marginals are respectively π̂
and π , and ‖ · ‖ denotes the L2 norm. Since the Wasserstein distance in high dimensions does not
have a closed form for computation, we often use the Kantorovich-Rubinstein duality given by

W (π̂ ,π) = sup
‖f ‖L ≤1

EŜ∼π̂
[f (Ŝ)] − ES∼π [f (S)], (12)

where ‖ f ‖L ≤ 1 denotes the class of all 1-Lipschitz functions f , i.e., | f (x1) − f (x2) | ≤ ‖x1 −
x2‖2 for any x1,x2 ∈ Rdπ . Computation of the supremum over all 1-Lipschitz functions is also
analytically intractable, but we can use a neural network fψ to approximate f , and search over all
such approximations parameterized by NN parametersψ . With the same network architecture as
the simulator networks, fψ has functional form given as

f0 = X ; fk = σ (Wψ ,k · fk−1 + bψ ,k−1), k = 1, 2, . . . ,L − 1;

f (X ;ψ = (W ψ ,bψ)) =Wψ ,L · fL−1 + bψ ,L .
(13)

In the framework of the classical WGAN, a function with the same purpose as fψ is known as
the discriminator. Our method aims to match the generated distribution to the real distribution,
which can be achieved through minimizing the Wasserstein distance of the two distributions. We
formulate the estimation method as solving the following minimax optimization problem:

min
θ ∈Θ,ϕ ∈Φ

max
ψ ∈Ψ
EŜ∼π̂ (θ,ϕ)[fψ (Ŝ)] − ES∼π [fψ (S)]. (14)

The empirical version of problem (14) is given by

min
θ ∈Θ,ϕ ∈Φ

max
ψ ∈Ψ

1

n

n∑
j=1

fψ (Ŝ j (θ ,ϕ)) − 1

n

n∑
j=1

fψ (S j). (15)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:8 T. Zhu et al.

3.3 Training

In this section, we discuss the training process for model estimation optimization problem (15). We
adopt a classical training strategy to solve the minimax problem, which is to alternately update the
parameters of the NN-based discriminator and the simulator. Updating the discriminator increases
the difference between the two summation terms of (15), which is then attenuated by updating
parameters of the simulator. During this process, the discriminator converges to the supreme f
over the class of candidate functions, while the output distribution of the simulator converges to
the empirical distribution.

We apply the gradient descent method for the training process, which is based on computing

gradients of the objective functions to the model parameters. The gradient ∇θ,ϕ fψ (Ŝ (θ ,ϕ)) is eval-
uated through backpropagation using the chain rule, which involves differentiating the entire pro-
cess of simulation. The diagram for such computation is illustrated in Appendix A.

sectionStatistical Properties In this section, we discuss the statistical property of the estimation
method. We prove that the framework proposed in Sections 3.1 and 3.2 can effectively learn distri-
butions of a wide class of sequential data, if the neural network architectures are properly chosen,
and the number of copies of S , denoted as n, is large enough. In the following Section 3.4, we
formulate the statistical convergence problem and describe the requirements and assumptions.

3.4 Formulation of Problem

In this section, we propose three basic requirements on real data, data preparation, and neural
network functional class, and explain the reasons for them. Such explanations also shed light on
the main ideas of our proof.

3.4.1 Underlying Distribution of Real Data. Let X j = (S j ,Y j) denote the sequence. In this sec-
tion, we prove that the solution of the optimization problem (15) can generate a distribution π̂S of
the observed dimensions S that converges to the underlying real distribution πS of the observed
dimensions. Without loss of generality, we assume in this section that all dimensions and time
points of the real data are observed, i.e., we have X = S . We make this assumption because the
convergence of distribution does not include the unobserved dimensions Y . Besides, given the
value of S , the choice of Y has no effect on the optimality of S as a solution of the optimization
problem (15). Suppose that the real data, X j = (X j,0,X j,1, . . . ,X j,p), j = 1, 2, . . . ,n, is generated as

follows: the sequence starts from an initial distribution X0 ∼ π0, where X0 ∈ Rd , and sequentially
proceeds according to

Xi+1 − Xi = μ (Xi) + Σ(Xi)ξi . xi ∈ Rd , i = 1, 2, . . . ,p, (16)

where ξi is some given elementary randomness. The initial distribution π0 and the integrated
functions (μ, Σ) jointly determine the underlying distribution of the real data, denoted as π . To
ensure statistical convergence, we assume that π0 is a known distribution provided to the simulator,
and (ξi : i = 1, 2, . . . ,p) have the same distribution as the elementary randomness (ηk : k =
1, 2, . . . ,p) of the simulator.

Additionally, we can assume different sequences to be independent and identically distributed,
or weakly dependent. It is noteworthy that weak correlation allows for applicational situations
where all sequences in the sample set are segmented from one single sequence of time-series data.
To characterize weak correlation across sequences, we let the first element X0 of two arbitrary

sequences be correlated, namely, cov (X (j)
0 ,X

(l)
0) � 0 for some j, l ∈ {1, 2, . . . ,n}, where n is the

sample size. The specific assumption of constraint on correlation will be formulated in the main
theorem, where statistical convergence results for both i.i.d. and weakly dependent data will also
be presented.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:9

3.4.2 Truncation. Classical theoretical results of neural network approximation require the
input of the neural network to have bounded support, while in our framework the sequence
(ηk : k = 1, 2, . . .) is often set to follow the Gaussian distribution or some heavy-tailed distri-
bution, resulting in unboundedness of the sequence (Xk : k = 1, 2, . . .). To address the challenge
due to unboundedness, we perform truncation methods on both the empirical data and the sim-
ulated data. Specifically, we transform the empirical data into its bounded version X B

j according
to

X B
j,i =

{
X j,i , if |X j,i | ≤ B1;
B1, else.

i = 0, 1, 2, . . .p, j = 1, 2, . . . ,n,

and the bounded version of simulated data is simulated with bounded elementary randomness
given as

ηB
k =

{
ηk , if |ηk | ≤ B2;
B2, else.

k = 1, 2, . . .

We note that the real data and simulated data are truncated in different ways. We perform trun-
cation on elementary randomness, instead of truncating after simulating a whole unbounded se-
quence, because the approximability of μθ and Σϕ can only be ensured within bounded areas. We
lose control if an unbounded Xi is generated and fed to the networks during the sequential sim-
ulation process. However, to ensure that the simulated sequence is also bounded by B1, we can
find some constantC such that B2 = C · B1, as both truncation bounds B1 and B2 increase to infin-
ity. Therefore, for simplicity of notation, we use a common truncation bound B on the truncated
data.

We denote the bounded versions of the empirical data and the simulated data as X B
j and X̂

B

j ,

and their distributions as πB and π̂B . The empirical optimization problem (15) is then transformed
into the bounded version:

min
θ ∈Θ,ϕ ∈Φ

max
ψ ∈Ψ

1

n

n∑
j=1

fψ (X̂
B

j (θ ,ϕ)) − 1

n

n∑
j=1

fψ (X B
j). (17)

The Wasserstein distance between the bounded distributions, denoted as W (πB , π̂B), can be
controlled. As the size of NN goes to infinity, the truncation bounds also increase to infinity,
which, with certain restrictions on ηk that will be presented in the following specific assump-
tion, results in the convergence of the bounded distribution towards its unbounded version, i.e.,
limB→∞W (π ,πB) = 0. This convergence enables the controlling ofW (π ,πB), and thusW (π , π̂B).

3.4.3 Restrictions on the Discriminator Class. Since taking the supremum over a whole function
class, e.g., the bounded 1-Lipschitz class, is computationally intractable, we replace it with a func-
tion class of neural networks with bounded size. In this case, the discriminator is a neural network
with parameters to be optimized, and defines a metric dF (·, ·) of distributions. A proper discrimi-
nator should define a metric under which convergence is equivalent to Wasserstein convergence.
This equivalence guarantees that the discriminator effectively distinguishes different distributions,
while also making sure that if the training fails to find a solution with small distance under dF (·, ·),
then indeed the distributions are far away under Wasserstein distance. Therefore, we impose cer-
tain restrictions on the size and components of the discriminator class, so that its discriminative
power is proportional to that of the bounded 1-Lipschitz class. Further, such restrictions are helpful
when controlling the error induced by weak correlation.

Specifically, restrictions on the discriminator class are imposed through the following
definitions.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:10 T. Zhu et al.

Definition 3.1 (function class FΨ).

FΨ(κ,L, P ,K) =

{
f : Rd → R⏐⏐⏐ f in the form of ReLU neural networks with L layers

and width bounded by P , ‖Wi ‖∞ ≤ κ, ‖bi ‖∞ ≤ κ,
L∑

i=1

‖Wi ‖0 + ‖bi ‖0 ≤ K

}
.

whereWi and bi , i = 1, 2, . . . ,L are the weight matrices and bias vectors of the layers.

Definition 3.2 (restricted function class FΨ).

FΨ(κ,L, P ,K , ϵf) =
{
f ∈ FΨ(κ,L, P ,K)⏐⏐⏐‖ f (x1) − f (x2)‖ ≤ ‖x1 − x2‖ + 2ϵf ,∀x1,x2 ∈ [−B,B]d

}
.

Throughout our proof, we assume that the discriminator class FΨ is restricted as in
Definition 3.2, with parameters κ,L, P ,K , ϵf . In proof of the main theorem, we derive specific or-
der of such parameters with regard to sample size n, to ensure statistical convergence. We remark
that the additional 2ϵf term in 3.2 serves to allow for approximation, in the sense of infinity norm
and within a bounded area, of any 1-Lipschitz function by Fψ (κ,L,p,K , ϵf), which will be cru-
cial in controlling certain error terms. This is because there is no guarantee of the approximation
power of the strictly 1-Lipschitz neural network function class, but with theoretical guarantee that
Fψ (κ,L, P ,K), for large enough parameters κ,L, P ,K , can approximate any 1-Lipschitz function f
within distance ϵf , we know that Fψ (κ,L,p,K , ϵf) is dense enough to approximate any 1-Lipschitz
function within a bounded area. Conversely, the fact that Fψ (κ,L, P ,K , ϵf) can be approximated
by any 1-Lipschitz function f within distance 2ϵf is also a basis for controlling certain error terms.

3.5 Specific Assumption and Theorem

We make the following assumption on the underlying true model of the sample data:

Assumption 1. The following conditions are satisfied for the generation process of sample

data (16):

(1) All sequences X j are independent and identically distributed or weakly dependent. A specified

characterization of weak dependence is given as follows:

Let Πn denote the joint distribution of (X 1,X 2, . . . ,Xn). Let {X̄ j }nj=1 be independent and iden-

tically distributed variables, where X̄ j has the same distribution as X j . Let Π̄n denote the joint

distribution of (X̄ 1, X̄ 2, . . . , X̄n), we have

W (Πn , Π̄n) ≤ O (n
1
2−β),n → ∞ (18)

for some β > 0.

(2) μ : Rd → Rd and Σ : Rd → Rd×d ′ are Lipschitz continuous and bounded on Rd .

(3) The tail order of the probability density function of every random variable in the sequence of

elementary randomness (ξk : k = 1, 2, . . .) is no more than x−(2+α) , for some α > 0. Namely,

pξk
(x) ≤ O (x−(2+α)),x → ∞, for all k = 1, 2, . . ., where pξk

(x) is the density function of ξk .

The first condition is assumed in order to effectively control the statistical error, which we
will elaborate on in the following subsection. The two requirements of the second condition are
interpreted as follows: the Lipschitz continuous requirement for μ (·) and Σ(·) ensures that they can
be sufficiently approximated within a bounded area by neural networks with proper architectures.
The bounded requirement for μ (·) and Σ(·) restricts the output, and thus everyXk in the sequence,
to a bounded area, when the sequence of elementary randomness (ηk : k = 1, 2, . . .) is also bounded
or truncated to its bounded version. The third condition is imposed for controlling the bounding

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:11

error, which is defined as the Wasserstein distance between the real distribution and its bounded
counterpart, i.e.,W (π ,πB).

The main result of statistical analysis is presented as follows:

Theorem 3.3. Suppose that n copies of i.i.d. or weakly correlated data are available and that the

underlying generation model satisfies Assumption 1. Under appropriate specifications of the neural

network architecture, let θ ∗ andϕ∗ be the parameters that solve the optimization problem given as (17),

and let the truncation boundary B increase to infinity along with n, by order B = O (n
2

3pd+6),n → ∞.

We have

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
≤ O

(
n−

1
3pd+6 (logn)

3
2 + n−

2α
3pd+6 + n−β

)
,n → ∞. (19)

where α and β have the same meanings as in Assumption 1, p is the length of the observed sequence,

d is the dimension of the observed process. We hide constant coefficients that are independent of n and

B, but relevant to p, d , α , the Lipschitz constants and bounds of μ (·) and Σ(·).
The implication of the three terms, n−1/(3pd+6) (logn)3/2, n−2α /(3pd+6) , and n−β , can be explained

as follows:

• n−1/(3pd+6) (logn)3/2 is the balanced statistical error. Roughly speaking, balancing is to decide
on an appropriate size for the discriminator class, and two groups of parameters are taken
into consideration.

(1) The truncation bound B, which is also proportional to the domain size of the discriminator
function, and thus the size of the discriminator class. It should increase fast enough to
ensure the convergence rate ofW (π ,πB).

(2) Other parameters that control the size of the neural network, such as width, depth, number
of neurons, and maximum weight.

The size of the discriminator class should increase at a proper rate, so that the discrimi-
native power of the discriminator class is proportional to that of the 1-Lipschitz function
class, but does not become oversize to induce an uncontrollable statistical error. We refer to
Section 3.6.4 for details.
• n−2α /(3pd+6) is the bounding error induced by truncation, which is balanced together with

the statistical error term. The order of B is selected to make both error terms convergent at
similar rates. The bigger α is, the smaller is the tail order of π , and thus also the bounding
error.
• n−β is the statistical error induced by weak correlation among data. Note that the bigger β

is, the bigger are both the weak correlation and this portion of statistical error.

These terms together demonstrate the impact of the dimensionality of data, tail order, and weak
correlation on the statistical convergence rate.

Compared with existing work on GAN theory, our statistical theory discusses situations when
the input of the discriminator network is sequentially generated and unbounded. Further, most
theoretical work such as [3] and [5] lower bounds the discriminative power and upper bounds
the generalization error with regard to the discriminator class, but does not derive the statistical
convergence rate of W (π ,π ∗n), where π ∗n denotes the optimal solution of the empirical minimax
optimization problem for GAN training, and π is the underlying real distribution.

We additionally remark that the assumptions, as well as the truncation strategies, are imposed
only to guarantee statistical convergence in the following theorem, and are sometimes unnecessary
in practical applications, especially when we have a moderate tolerance for approximation error.
For example, to achieve the numerical results in Section 4, we did not perform truncation on the
empirical data or the elementary randomness.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:12 T. Zhu et al.

3.6 Analysis

In this section, we briefly describe how Theorem 3.3 is proved. We refer to the appendix for details.

3.6.1 Decomposition of Error. The main framework of proof is to control the Wasserstein dis-
tance of real distribution and learned simulated distribution using an oracle inequality, decompos-
ing it into generator approximation error, discriminator approximation error, bounding error, and
statistical error.

Adopting the idea of [12], we have

W (π , π̂B (μθ ∗ , Σϕ∗))
(i)
≤ W (π̃B , π̂B (μθ ∗ , Σϕ∗)) +W (πB , π̃B)︸�������︷︷�������︸

statistical error

+ W (π ,πB)︸�����︷︷�����︸
bounding error

, (20)

W (π̃B , π̂B (μθ ∗ , Σϕ∗)) = dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗)) +W (π̃B , π̂B (μθ ∗ , Σϕ∗)) − dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗))︸���︷︷���︸
discriminator approximation error I

,

(21)

dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗))
(ii)
≤ dFΨ (π̃B , π̂B (μθ , Σϕ))

(iii)
≤ dFΨ (πB , π̂B (μθ , Σϕ)) + dFΨ (π̃B ,πB)︸���������︷︷���������︸

statistical error

, (22)

dFΨ (πB , π̂B (μθ , Σϕ)) = W (πB , π̂B (μθ , Σϕ))︸�������������������︷︷�������������������︸
generator approximation error

+dFΨ (πB , π̂B (μθ , Σϕ)) −W (πB , π̂B (μθ , Σϕ))︸���︷︷���︸
discriminator approximation error II

.

(23)

Here we carry out the explanation of the inequalities along with specification of some notations.
As a general rule, upper subscript B denotes truncated data bounded by some constant B, hat ·̂ is a
notation for simulated distributions, and tilde ·̃ is for the empirical distribution of real data, (θ ∗,ϕ∗)
and (θ ,ϕ) denote solutions of different optimization problems described in the following.

• For two distributions P and Q , we have

dFΨ (P ,Q) = sup
fψ ∈FΨ

EX P∼P [fψ (X P)] − EX Q∼Q [fψ (XQ)].

We remark that dFΨ (·, ·), which serves as an approximation to W (·, ·), is not necessarily
nonnegative, but satisfies the inequality

dFΨ (P ,Q) ≤ dFΨ (P ,R) + dFΨ (R,Q),

which serves as the reason for (iii). Also, note that (i) is due to the triangular inequality of
Wasserstein distance.
• π̃B is the bounded empirical distribution, of which distance from the bounded real distribu-

tion πB is due to
(1) limitation in sample size
(2) weak correlation among the sample sequences, if we allow for it to exist
• The two pairs of parameters for the neural networks integrated in the generator, namely

(θ ∗,ϕ∗) and (θ ,ϕ), are solutions to different optimization problems defined as follows:

(θ ∗,ϕ∗) = arg min
θ,ϕ

dFΨ (π̃B , π̂B (μθ , Σϕ)), (24)

(θ ,ϕ) = arg min
θ,ϕ
‖μθ − μ‖L∞ ([−B,B]) + ‖Σϕ − Σ‖L∞ ([−B,B]) . (25)

Note that (24) is the reason for (ii).

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:13

• μθ and Σϕ are likely to be different from the optimal solutions μθ ∗ and Σϕ∗ for the following
reasons:

(1) In the minimax optimization problem, the distribution simulated with μθ ∗ and Σϕ∗ is di-

rected towards π̃B but not π .
(2) The difference between the function classes FΨ = FΨ(κ,L, P ,K , ϵf) and FLip := { f :
‖ f ‖L ≤ 1} also induces some difference between the “optimal solutions" and the “opti-
mal networks". This portion of error is bounded by discriminator approximation error I
and II.

3.6.2 Network Approximation. Before controlling the error terms, we introduce the foundation
of proof, which is the deep neural network approximation theory. We first present a theorem of
approximating CL-Lipschitz functions on [−B,B]d . Ideas and proofs of this theorem are adopted
from [11, 12] and [15].

Theorem 3.4 (Approximation with Explicit Order Dependence on Bound B). For

f ∈ [B,B]d s.t. ‖ f (x) − f (y)‖ ≤ CL ‖x −y‖,
we have a neural network Φf with L (Φf) = O (logB + logδ−1), W (Φf) = O (Bdδ−d), B (Φf) =

O (Bδ−1) andM (Φf) = O ((logB + logδ−1) · Bdδ−d), B → ∞ and δ → 0, satisfying

‖Φf (x) − f (x)‖L∞ ([−B,B]d) ≤ δ . (26)

where notations for the size of ReLU network Φ are defined as

• depth L (Φ) = L
• widthW (Φ) = maxl=0, ...,L Nl , where Nl is the width of the lth layer

• weight magnitude B (Φ) = maxl=1, ...,L max{‖Wl ‖∞, ‖bl ‖∞}
• number of neuronsM (Φ) =

∑L
l=1 ‖Wl ‖ + ‖bl ‖

The proof of Theorem 3.4 consists of two steps: approximating Lipschitz functions with inter-
polation polynomials, and approximating the polynomials with neural networks. We refer to Ap-
pendix B for details.

3.6.3 Controlling Error Terms. In this section, we describe how each error term is controlled.
We defer more details to the appendix to complete the proof.

First, for bounding error W (π ,πB), applying the definition of Wasserstein distance and using

the condition that pηk
(x) ≤ O (x−(2+α)), x → ∞, we have

W (π ,πB) ≤ O (B−α), B → ∞. (27)

Second, for generator approximation error W (πB , π̂B (μθ , Σϕ)), which is induced by the errors
of approximating μ and Σ with optimal neural networks μθ and Σϕ , denoted as ϵμ and ϵΣ, we apply
the law of total expectation on the sequence to derive that the generator approximation error can
be bounded as

W (πB , π̂B (μθ , Σϕ)) ≤ O (ϵμ + ϵΣ), ϵμ → 0 and ϵΣ → 0. (28)

Note that, replacing δ in Theorem 3.4 with ϵμ and ϵΣ, we can derive the required sizes of generator
networks μθ and Σϕ to achieve levels ϵμ , ϵΣ of approximation errors.

Next, we control the discriminator approximation error terms. We have the following lemma,
the proof of which is given in Appendix D.

Lemma 3.5. The two function classes FΨ(κ,L, P ,K , ϵf) and 1-Lipchitz class FLip can approximate

each other within the bounded area [−B,B]d , namely,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:14 T. Zhu et al.

(1) ∀f ∈ FLip, ∃fψ ∈ FΨ, such that ‖ f − fψ ‖L∞[−B,B]d ≤ ϵf ;

(2) ∀f ∈ FΨ, ∃fψ ∈ FLip, such that ‖ f − fψ ‖L∞[−B,B]d ≤ 3ϵf .

Using Lemma 3.5, we have for the discriminator approximation error terms,

W (π̃B , π̂B (μθ ∗ , Σϕ∗)) − dFΨ (π̃B , π̂B (μθ ∗ , Σϕ∗))

= sup
‖f ‖L ≤1

[
EX ∼π̃ B f (X) − EX ∼π̂ B f (X)

] − sup
fψ ∈FΨ

[
EX ∼π̃ B fψ (X) − EX ∼π̂ B fψ (X)

]
= inf

fψ ∈FΨ

sup
‖f ‖L ≤1

EX ∼π̃ B

[
f (X) − fψ (X)

]
+ inf

fψ ∈FΨ

sup
‖f ‖L ≤1

EX ∼π̂ B

[
fψ (X) − f (X)

]
≤ inf

fψ ∈FΨ

sup
‖f ‖L ≤1

2‖ f − fψ ‖∞ ≤ 2ϵf .

(29)

Also,

dFΨ (πB , π̂B (μθ , Σϕ)) −W (πB , π̂B (μθ , Σϕ))

= sup
fψ ∈FΨ

[
EX∼π B fψ (X) − EX ∼π̂ B fψ (X)

]
− sup
‖f ‖L ≤1

[
EX ∼π B f (X) − EX ∼π̂ B f (X)

]

= inf
‖f ‖L ≤1

sup
fψ ∈FΨ

EX ∼π B

[
f (X) − fψ (X)

]
+ inf
‖f ‖L ≤1

sup
fψ ∈FΨ

EX ∼π̂ B

[
fψ (X) − f (X)

]
≤ inf
‖f ‖L ≤1

sup
fψ ∈FΨ

2‖ f − fψ ‖∞ ≤ 6ϵf ,

(30)

After that, we control the statistical error terms dFΨ (π̃B ,πB) andW (πB , π̃B). We have

E

[
dFΨ (π̃B ,πB)

]
= E

⎡⎢⎢⎢⎢⎢⎣ sup
fψ ∈FΨ

1

n

n∑
j=1

fψ (X j) − EY ∼π B [fψ (Y)]

⎤⎥⎥⎥⎥⎥⎦
≤ EX EY j∼π B,i .i .d .

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ . (31)

If X j are correlated, according to the assumption of weak correlation, we created independent

variables X̄ j such that the joint distribution of (X 1,X 2, . . . ,Xn) and (X̄ 1, X̄ 2, . . . , X̄n), denoted as
γ (Πn , Π̄n), satisfies

γ ∗ (Πn , Π̄n) = arg inf
γ ∈γ (Πn, Π̄n)

E(X ,X̄)∼γ (Πn, Π̄n)

[
‖X − X̄ ‖

]
.

According to the definition of function class FΨ(κ,L, P ,K , ϵf), we have

EX EY j∼π B,i .i .d .

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦
≤E

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X̄ j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ + E
⎡⎢⎢⎢⎢⎢⎣

1

n

n∑
j=1

‖X j − X̄ j ‖
⎤⎥⎥⎥⎥⎥⎦ + 2ϵf .

[12] suggests that

E

⎡⎢⎢⎢⎢⎢⎣ sup
fψ ∈FΨ

1

n

n∑
j=1

[fψ (X̄ j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ ≤ 2 inf
0<δ<M

(
2δ +

12
√
n

∫ M

δ

√
logN (ϵ,FΨ, ‖ · ‖∞)dϵ

)
, (32)

where M = diam(FΨ(κ,L, P ,K , ϵf)) ≤ R = O (B), andN (ϵ,FΨ, ‖ · ‖∞) is the covering number [26]
of ϵ-balls over the functional class FΨ under distance ‖ ·‖∞. Further, let fψ , fψ ′ ∈ FΨ(κ,L, P ,K) with

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:15

all weight parameters at most h from each other, [12] shows that with bounded support ‖x ‖∞ ≤ B,
we have

‖ fψ − fψ ′ ‖∞ ≤ hL(PB + 2) (κP)L−1.

Discretizing each parameter uniformly into κ/h grids yields a δ -covering on FΨ, therefore,

N (δ ,FΨ(κ,L, P ,K), ‖ · ‖∞) ≤ (LP2)K
(

2κ

h

)K

,

where

h =
δ

L(PB + 2) (κP)L−1
.

Further, we have

N (δ ,FΨ(κ,L, P ,K , ϵf), ‖ · ‖∞) ≤ N
(
δ

2
,FΨ(κ,L, P ,K), ‖ · ‖∞

)
≤

(
4L2 (PB + 2) (κP)L+1

δ

)K

. (33)

Substituting (33) into (32) and taking δ = 1/n yields

E

⎡⎢⎢⎢⎢⎢⎣ sup
f ∈FΨ

1

n

n∑
j=1

[fψ (X̄ j) − fψ (Y j)]

⎤⎥⎥⎥⎥⎥⎦ ≤ O
(
B
√
n−1KL log(nLκPB)

)
.

Also, by Chebyshev inequality,

E

⎡⎢⎢⎢⎢⎢⎣
1

n

n∑
j=1

‖X j − X̄ j ‖
⎤⎥⎥⎥⎥⎥⎦ ≤

1
√
n
W (Πn , Π̄n) = O

(
n−β

)
.

Similarly, for the Wasserstein statistical errorW (πB , π̃B), we have

N (δ ,FLip, ‖ · ‖∞) ≤
(

2B

δ
+ 1

)pd (2B/δ+1)

.

Therefore, taking δ−1 = n(pd−1)/(pd+1) , we have

2 inf
0<δ<B

(
2δ +

12
√
n

∫ B

δ

√
logN (δ ,FLip, ‖ · ‖∞)dϵ

)
≤ O

(
B

3
2n−

1
pd+1

√
log(Bn)

)
.

And finally,

W (πB , π̃B) ≤ O
(
B

3
2n−

1
pd+1

√
log(nB) + n−β

)
+ 2ϵf .

3.6.4 Balancing. Finally, we balance the error terms relevant to the discriminator class. Sum-
marizing the four parts of errors, we have

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
= O

(
B−α + ϵΣ + ϵμ + ϵf + B

√
n−1KL log(nLκPB) + B

3
2n−

1
pd+1

√
log(Bn) + n−β

)
. (34)

Also, since ϵf is the approximation tolerance of the discriminator class, we have from Theorem 3.4,

L = O (logB + log ϵ−1
f

), κ = O (Bϵ−1
f

), P = O (Bpdϵ
−pd

f
) and K = O ((logB + log ϵ−1

f
) · Bpdϵ

−pd

f
). To

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:16 T. Zhu et al.

balance these terms, we mostly pay attention to B
√
n−1KL log(nLκPB) and B

3
2n−

1
pd+1

√
log(Bn). To

make sure that these two terms converge to 0 as n → ∞, let B = nk1 and ϵf = n
−k2 , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
pd

2
+ 1

)
k1 +

pd

2
k2 <

1

2
.

3

2
k1 <

1

pd + 1
,

We can set k1 =
2

3pd+6 and k2 =
1

3pd+6 . Also, make the generator network classes large enough so

that ϵΣ and ϵμ are not of leading order, then

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
≤ O

(
n−

1
3pd+6 (logn)

3
2 + n

− 1
(pd+2)(pd+1) (logn)

1
2 + n−

2α
3pd+6 + n−β

)
.

With pd ≥ 3, we have

E

[
W (π , π̂B (μθ ∗ , Σϕ∗))

]
≤ O

(
n−

1
3pd+6 (logn)

3
2 + n−

2α
3pd+6 + n−β

)
. (35)

and this is achieved by taking B = O (n
2

3pd+6),

L = O (logn) , κ = O
(
n

1
pd+2

)
, P = O

(
n

pd
pd+2

)
, K = O

(
n

pd
pd+2 logn

)
,

for the discriminator, where n → ∞. For the generator networks μθ and Σϕ , we take

ϵμ = ϵΣ = O
(
min

{
n−

1
3pd+6 (logn)

3
2 , n−

2α
3pd+6 , n−β

})
,

and the network sizes of μθ and Σϕ are accordingly

L = O (logn) , κ = O
(
n

2
3pd+6 ϵ−1

μ

)
, P =

(
n

2pd
3pd+6 ϵ

−pd
μ

)
, K = O

(
n

2pd
3pd+6 ϵ

−pd
μ logn

)
This result provides insights for selecting the neural network sizes, when the training set is large
and high precision of modeling is expected to be achieved.

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the simulator estimated by our proposed frame-
work, using four sets of synthetic data (Sections 4.1, 4.2, 4.3, and 4.4) and one set of real data
(Section 4.5) as the training data.1 In all experiments, we illustrate the use of the simulator by
considering scenarios where the simulator is applied to generate sequences of prices of multiple
correlated assets. Our proposed framework then aims to estimate the simulators such that the joint
distribution of the simulated data has a close Wasserstein distance compared to that of the train-
ing data. To demonstrate the performance of estimated simulators in their practical use, we first
consider the task of evaluating the distribution of the maximal drawdown (MDD) for all the as-
sets in consideration. In each experiment, we consider the distribution of the MDD of all observed
dimensions of the sequential data. We compare the MDD distribution of the simulated data-based
portfolio against the MDD distribution of the empirical data-based portfolio. The simulator that
simulates the sequential price data is estimated by our proposed method. In this way, we aim to
demonstrate the performance of our method from an operational performance point of view. We
present the definition of maximal drawdown, which is derived from [10]:

1see https://github.com/Goldenbean0521/Sequential-code for code.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:17

Definition 4.1. Let (Hi ∈ R : i = 0, 1, 2, . . . ,p) be a portfolio sequence, and let Hi be the portfolio
value at time step i . The portfolio drawdown at time step i is defined by

Di = max
0≤l ≤i

Hl − Hi

Hi
, (36)

and the maximal drawdown of a sequence is the maximum value of Di over all time steps i =
0, 1, 2, . . . ,p, namely, M = max0≤i≤p Di .

Apart from that, we demonstrate the ability of the network to capture the correlation among
the observed dimensions. Specifically, we use the trained networks to simulate 5,000 copies of
sequences, estimate the correlation matrices of all observed dimensions at certain time points, and
compare such matrices to that of the real (synthetic) data. Such operation is then replicated 100
times to produce a mean value and a standard deviation of the estimations.

4.1 Multi-dimensional Heston Model

In this subsection, we use a synthesized data set of three stock prices that is generated by a multi-
dimensional Heston model.

4.1.1 Underlying Model for Synthetic Data: Multi-dimensional Heston. The observed data is 3-
dimensional. For each dimension, the underlying stochastic process is formulated by a stochastic
differential equation known as the Heston model (see [1], which also presents the values of the
model parameters):

d

(
St

Yt

)
=

(
μSt

κ (γ − Yt)

)
dt +

(
St

√
(1 − ρ2)Yt ρSt

√
Yt

0 σ
√
Yt

)
dWt (37)

where μ,κ,γ , ρ,σ are given parameters, St is the observed price process, Yt is the latent volatility
process, andWt = (W S

t ,W
Y
t)� is the 2-dimensional canonical Brownian motion. We use a matrix

L to induce correlation among the three stochastic processes, namely, we let

d ���
X1,t

X2,t

X3,t

��� =
���
μ1,t

μ2,t

μ3,t

���dt + (L ⊗ I2) · ���
Σ1,t 0 0

0 Σ2,t 0
0 0 Σ3,t

���d
���
W1,t

W2,t

W3,t

��� , (38)

where

Xi,t =

(
Si,t

Yi,t

)
, μi,t =

(
μiSi,t

κi (γi − Yi,t)

)
, Σi,t = ��

Si,t

√
(1 − ρ2

i)Yi,t ρiSi,t

√
Yi,t

0 σi

√
Yi,t

�� ,
Wi,t =

(
W S

i,t

W Y
i,t

)
,

and ⊗ denotes the Kronecker product.
The model parameters are set as in Table 1. Additionally, we have μ = r−d , and L is the Cholesky

decomposition of P , given as

LL� = P = ���
1 0.3 0.2

0.3 1 0.4
0.2 0.4 1

��� .
We next describe how the data set is synthesized. The initial values are given by S0 ∼

N ((100, 100, 100) , 70P), and Y 0 = (0.1, 0.1, 0.1). There are n = 5,000 sequences generated in total,
each having p = 15 transitions, with the weekly frequency Δ = 7/365 as the resolution for obser-
vation. We use an Euler discretization of the process, setting 30 sub-intervals between every two

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:18 T. Zhu et al.

Table 1. Parameters of the Underlying

Multi-dimensional Heston Model

r d σ ρ κ γ
d1 0.04 0.015 0.25 −0.8 3 0.1
d2 0.04 0.015 0.2 −0.75 2.7 0.11
d3 0.04 0.015 0.15 −0.85 3.3 0.09

Fig. 1. Maximal draw down distribution, 3-dimensional Heston model, first dimension.

observations, which implies that the resolution for generation is set as 7/(365×30). This synthetic
data set is then used as input data for the discriminator.

4.1.2 Training Process and Results. We specify the structure of the simulator as

Xk+1 = Xk + μθ (Xk)Δt + Σϕ (Xk)
√

Δtηk+1 (39)

where ηk : k = 1, 2, . . . are independent 6-dimensional canonical normal variables, Δt is set as
0.01/15, which is not the same as the length of the sub-intervals used in synthetic data gener-
ation, but induces only scaling differences that can be eliminated by network parameters. The
parameterization of μθ is given by L = 2, ñ = (n1,n2) = (100, 6). The parameterization of Σϕ

is given by L = 2, ñ = (n1,n2) = (100, 36). The parameterization of fψ is given by L = 3,
ñ = (n1,n2,n3) = (500, 500, 1). The initialization of all the parameters of the weight matrices
Wl ’s of μθ , Σϕ , fψ are given by independent Gaussian random variables with mean 0 and variance
0.1. The vectors bl ’s are initialized as constant 3. The gradient penalty coefficient for fψ is set as
1, and the batch size for sampling from synthetic data and for simulator generation is set as 256.
The initial values S0 of each simulation process is set to be the same as the initial values of the
sample batch, and Y 0 is set as (0.1, 0.1, 0.1). The training process is carried out with 500 iterations
using the Adam optimizer [22] with coefficients β1 = 0.5 and β2 = 0.9. Within each iteration, fψ is
updated five times. The learning rate of μθ , Σϕ and fψ decays exponentially from 1e − 4 to 1e − 6.
The training takes about 10 minutes using the GPU resource on Google Colab.

For evaluation of training, we first illustrate the comparison between maximal drawdown dis-
tribution of the three dimensions. The sizes of the synthesized data set and the simulated data set
used for comparison are both 5,000. The results are illustrated in the following Figures 1, 2, and 3.

We also investigate the correlation matrix of the three observed dimensions of data at the 15th
observation. By simulating 5,000 sequences using the trained networks μθ and Σϕ each time to
estimate the correlation matrix, and replicating 100 times to derive the mean value and standard
deviation of simulated estimations, we have the following result in Table 2.

4.2 Multi-dimensional Heston Model with Highly Correlated Training Sequences

In this subsection, we demonstrate the performance of our proposed framework when the training
sequences are correlated with each other.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:19

Fig. 2. Maximal draw down distribution, 3-dimensional Heston model, second dimension.

Fig. 3. Maximal draw down distribution, 3-dimensional Heston model, third dimension.

Table 2. Simulated Correlation of the Three Observed

Dimensions at Time Step i = 15, Multi-dimensional

Heston Model

True value Sim. mean Std. dev.

corr(S1, S2) 0.3 0.295 0.012
corr(S1, S3) 0.2 0.200 0.014
corr(S2, S3) 0.4 0.383 0.011

4.2.1 Underlying Model for Synthetic Data: Multi-dimensional Heston. The underlying stochas-
tic process is formulated by the same stochastic differential equation as (37) and (38).

We next describe how the data set is synthesized. The initial values are given by S0 ∼
N ((100, 100, 100) , 70P), and Y 0 = (0.1, 0.1, 0.1). There are n = 5,000 sequences generated in to-
tal, each having p = 15 transitions, with the weekly frequency Δ = 7/365 as the resolution for
observation. We use an Euler discretization of the process, setting 30 sub-intervals between every
two observations, which implies that the resolution for generation is set as 7/(365 × 30). Namely,
(Xi,k : i = 1, 2, 3;k = 0, 1, 2, . . .) is sequentially generated according to

���
X1,k+1

X2,k+1

X3,k+1

��� =
���
X1,k

X2,k

X3,k

��� +
���
μ1,k

μ2,k

μ3,k

��� Δt + (L ⊗ I2) · ���
Σ1,k 0 0

0 Σ2,k 0
0 0 Σ3,k

���d
����
√

Δtη1,k+1√
Δtη2,k+1√
Δtη3,k+1

���� , (40)

where

Xi,k =

(
Si,k

Yi,k

)
, μi,k =

(
μiSi,k

κi (γi − Yi,k)

)
, Σi,k = ��

Si,k

√
(1 − ρ2

i)Yi,k ρiSi,k

√
Yi,k

0 σi

√
Yi,k

�� ,
ηi,k+1 =

(
ηS

i,k+1

ηY
i,k+1

)
.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:20 T. Zhu et al.

Fig. 4. Maximal draw down distribution, 3-dimensional Heston model with highly correlated training se-

quences, first dimension.

ηj

i,k
, i = 1, 2, 3;k = 1, 2, . . . , j = S,Y are independent standard normal random variables. To

create correlation among the 5,000 training-sequences, for each i,k, and j, the ηj

i,k
’s in the 5,000

sequences are simultaneously generated from a 5,000-dimensional multivariate normal distribu-
tion N (0, Σ), where

Σ =

�������

1 ρ · · · ρ
ρ 1 · · · ρ
...
...
. . .

...
ρ ρ · · · 1

�������
.

We set ρ = 0.9 in our synthetic data set. In other words, for each i ∈ {1, 2, 3},k ∈ {1, 2, . . .}, j ∈
{S,Y }, the correlation of ηj

i,k
’s (i.e., the random noises) in any two different sequences is 0.9, which

ensures that the training-sequences are highly correlated with each other. This synthetic data set
is then used as input data for the discriminator.

4.2.2 Training Process and Results. We specify the structure of the simulator to have the same
form as (39). The parameterization and initialization of the neural networks μθ , Σϕ and fψ , as well
as the iterative optimization process are similar to those of the first experiment. Note that although
the training sequences are highly correlated with each other, the sequences in the simulated set
generated by our framework are independent. The training takes about 10 minutes.

Since the training sequences are highly correlated with each other, the empirical distribution of
the training data might deviate from the real distribution of the underlying process. Considering
this difference, we generate another data set with independent sequences (hereafter "uncorrelated
set") according to (40). The statistics of the uncorrelated set will be unbiased estimators of the real
statistics of the underlying process. For evaluation of training, we compare the distribution of our
simulated data set with the distribution of both the training set and the uncorrelated set.

First, we illustrate the comparison among the maximal drawdown distribution of the three di-
mensions. The sizes of the synthesized data set and the simulated data set used for comparison are
both 5,000. We have the following results in Figures 4, 5, and 6. The results indicate that although
the empirical distribution of the training data has deviated from the real distribution of the under-
lying process, the distribution of the synthesized data set is still comparable to the distribution of
the training set.

We also investigate the correlation matrix of the three observed dimensions of data at the 15th
observation. By simulating 5,000 sequences using the trained networks μθ and Σϕ each time to
estimate the correlation matrix, and replicating 100 times to derive the mean value and standard
deviation of simulated estimations, we have the following result in Table 3.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:21

Fig. 5. Maximal draw down distribution, 3-dimensional Heston model with highly correlated training se-

quences, second dimension.

Fig. 6. Maximal draw down distribution, 3-dimensional Heston model with highly correlated training se-

quences, third dimension.

Table 3. Simulated Correlation of the Three Observed Dimensions at Time

Step i = 15, Multi-dimensional Heston Model with Highly Correlated

Training Sequences

Training Set Uncorrelated Set Sim. mean Std. dev.

corr(S1, S2) 0.28 0.27 0.29 0.008
corr(S1, S3) 0.20 0.19 0.17 0.009
corr(S2, S3) 0.42 0.42 0.43 0.008

4.3 Multi-dimensional Polynomial Model

In this subsection, we use a synthesized data set generated by a nonlinear SDE-based stochastic
process.

4.3.1 Underlying Model for Synthetic Data: Multi-dimensional Polynomial. The underlying sto-
chastic process is formulated by a stochastic differential equation given by:

d (St ,Y t)�

= μ (St ,Y t)dt + Σ(St ,Y t)dWt (41)

where

μ (St ,Y t)

=
(
S0.2

1,t + S
0.2
2,t + 1 S0.3

2,t + 0.02S1,tS3,t S0.25
3,t + 0.01S1,t Y2,t + Y3,t Y3,t + Y1,t Y1,t + Y2,t

)�
,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:22 T. Zhu et al.

Fig. 7. Maximal draw down distribution, 3-dimensional polynomial model, first dimension.

Fig. 8. Maximal draw down distribution, 3-dimensional polynomial model, second dimension.

and

Σ(St ,Y t) =

�����������

−2S1.2
1,t Y1,t S1,tS2,tY2,t 2S1,tS3,tY3,t 0.1S1,tY1,t 0.5S1,tY2,t 0.7S1,tY3,t

01.5S1,tS2,tY1,t 7S1.1
2,t Y2,t S1,tS3,tY3,t 0.1S2,tY1,t 0.2S2,tY2,t 0.2S2,tY2,t

3S1,tS3,tY1,t S2,tS3,tY2,t −Y3,tS1,tS
1.2
3,t 0.2S3,tY1,t 0.6S3,tY2,t 0.3S3,tY3,t

Y1,t 0 0 Y2,tY3,t Y3,tY1,t Y1,tY2,t

0 Y2,t 0 Y1,tY3,t Y1,tY2,t Y3,tY2,t

0 0 Y3,t Y2,tY1,t Y3,tY2,t Y1,tY3,t

�����������
.

We next describe how the data set is synthesized. The initial values are given by S0 ∼
N ((25, 25, 15), 1), where all three dimensions are independent, and Y 0 = (0.1, 0.1, 0.1). There
are n = 5,000 sequences generated in total, each having p = 25 observed points with frequency
Δ = 0.01 as the resolution for observation. We use an Euler discretization of the process, setting
15 sub-intervals between every two observations, which implies that the resolution for generation
is set as Δt = 0.00067. This synthetic data set is then used as input data for the discriminator.

4.3.2 Training Process and Results. We specify the structure of the simulator to have the same
form as (39). The parameterization and initialization of the neural networks μθ , Σϕ and fψ , as well
as the iterative optimization process are similar to those of the first experiment. The training takes
about 10 minutes.

For evaluation of training, we first illustrate the comparison between maximal drawdown dis-
tribution of the three dimensions. The sizes of the synthesized data set and the simulated data set
used for comparison are both 5,000. The results are illustrated in the following Figures 7, 8, and 9.

We also investigate the correlation matrix of the three dimensions of data at the 25th observation.
By generating 5,000 sequences using the trained networks μθ and Σϕ each time to estimate the
correlation matrix, and replicating 100 times to derive the mean value and standard deviation of
simulated estimations, we have the following results in Table 4. Note that the true value is now
estimated from real (synthetic) data.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:23

Fig. 9. Maximal draw down distribution, 3-dimensional polynomial model, third dimension.

Table 4. Simulated Correlation of the Three Observed

Dimensions at Time Step i = 15, Polynomial Model

Est. true value Sim. mean Std. dev.

cor(S1, S2) 0.187 0.213 0.014
cor(S1, S3) −0.157 −0.164 0.015
cor(S2, S3) 0.442 0.441 0.010

4.4 Multi-dimensional Polynomial Model with Heavy-tailed Noises

In this subsection, we demonstrate the performance of our proposed framework when the distri-
bution of the elementary randomness (i.e., ηk ’s) are heavy-tailed.

4.4.1 Underlying Model for Synthetic Data: Multi-dimensional Polynomial with Heavy-tailed

Randomness. The underlying stochastic process is sequentially generated according to

(Sk+1,Yk+1)� = (Sk ,Yk)� + μ (Sk ,Yk)Δt + Σ(Sk ,Yk)ΔtΔηk+1, (42)

where Sk : k = 0, 1, 2, . . . and Yk : k = 0, 1, 2, . . . are 3-dimensional vectors; μ (Sk ,Yk) and Σ(Sk ,Yk)
have the same form with (41). Specifically, we have

μ (Sk ,Y k)

=
(
S0.2

1,k
+ S0.2

2,k
+ 1 S0.3

2,k
+ 0.02S1,kS3,k S0.25

3,k
+ 0.01S1,k Y2,k + Y3,k Y3,k + Y1,k Y1,k + Y2,k

)�
,

and

Σ(Sk ,Y k)

=

�����������

−2S1.2
1,k

Y1,k S1,kS2,kY2,k 2S1,kS3,kY3,k 0.1S1,kY1,k 0.5S1,kY2,k 0.7S1,kY3,k

01.5S1,kS2,kY1,k 7S1.1
2,k

Y2,k S1,kS3,kY3,k 0.1S2,kY1,k 0.2S2,kY2,k 0.2S2,kY2,k

3S1,kS3,kY1,k S2,kS3,kY2,k −Y3,kS1,kS
1.2
3,k

0.2S3,kY1,k 0.6S3,kY2,k 0.3S3,kY3,k

Y1,k 0 0 Y2,kY3,k Y3,kY1,k Y1,kY2,k

0 Y2,k 0 Y1,kY3,k Y1,kY2,k Y3,kY2,k

0 0 Y3,k Y2,kY1,k Y3,kY2,k Y1,kY3,k

�����������
.

Δηk : k = 1, 2, . . . are i.i.d. 6-dimensional vectors. In each Δηk , the 6 dimensions are i.i.d. variables
following t-distribution with 2.5 degrees of freedom.

We next describe how the data set is synthesized. The initial values are given by S0 ∼
N ((25, 25, 15), 1), where all three dimensions are independent, and Y 0 = (0.1, 0.1, 0.1). The reso-
lution for generation is set as Δt = 0.00067. There are n = 5,000 sequences generated in total, each
having p = 25 observed points with frequency Δ = 0.01 as the resolution for observation. Thus,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:24 T. Zhu et al.

Fig. 10. Maximal draw down distribution, 3-dimensional polynomial model with heavy-tailed noises, first

dimension.

Fig. 11. Maximal draw down distribution, 3-dimensional polynomial model with heavy-tailed noises, second

dimension.

Fig. 12. Maximal draw down distribution, 3-dimensional polynomial model with heavy-tailed noises, third

dimension.

there are 15 sub-intervals between every two observations. This synthetic data set is then used as
input data for the discriminator.

4.4.2 Training Process and Results. We specify the structure of the simulator to have the same
form as (39). The parameterization and initialization of the neural networks μθ , Σϕ and fψ , as well
as the iterative optimization process are similar to those of the first experiment. The training takes
about 10 minutes.

For evaluation of training, we first illustrate the comparison between maximal drawdown dis-
tribution of the three dimensions. The sizes of the synthesized data set and the simulated data
set used for comparison are both 5,000. The results are illustrated in the following Figures 10, 11,
and 12.

We also investigate the correlation matrix of the three dimensions of data at the 25th observation.
By generating 5,000 sequences using the trained networks μθ and Σϕ each time to estimate the
correlation matrix, and replicating 100 times to derive the mean value and standard deviation of

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:25

Table 5. Simulated Correlation of the Three Observed

Dimensions at Time Step i = 15, Polynomial Model

Est. true value Sim. mean Std. dev.

cor(S1, S2) 0.31 0.29 0.10
cor(S1, S3) −0.24 −0.12 0.14
cor(S2, S3) 0.62 0.56 0.15

Fig. 13. Maximal draw down distribution, real stock price.

simulated estimations, we have the following results in Table 5. Note that the true value is now
estimated from real (synthetic) data.

4.5 Stock Price

4.5.1 The Real Data Set. In this subsection, we use a real data set from a data vendor from a
platform Wind to test the performance of our estimated simulator. The data set consists of the price
variations of a stock (Facebook) from Oct. 8th, 2020 to Mar. 22nd, 2021. The observation frequency
is 15 minutes, and 26 data points (Si : i = 0, 1, 2, . . . , 25) are recorded for every transaction day. The
empirical data is processed as follows. Since stock returns are usually stationary while prices are
not, we take logarithm of the data points (Si : i = 0, 1, 2, . . . , 25), and derive the log return sequence
(Ri : i = 1, 2, . . . , 25), where Ri = log Si − log Si−1. With such transformation, all log return
sequences can be regarded as weakly correlated identical copies of an underlying real distribution.
After removing the sequences with missing data, we retain n = 186 such copies.

4.5.2 Training Process and Results. We specify the structure of the simulator as

Xk+1 = Xk + μθ (Xk)Δt + Σϕ (Xk)
√

Δtηk+1 (43)

whereXk = (Rk ,Yk)�, ηk : k = 1, 2, . . . are independent 2-dimensional canonical normal variables.
The latent volatility process Yk is assumed to be 1-dimensional. We first simulate a sequence of

log Ŝi using the sequential simulator, and derive the log return sequence as part of the input of
the discriminator. Thus, the discriminator compares distributions of log returns. The resolution is
set as the daily frequency with Δt = 1/252 year. The parameterization of μθ is given by L = 2,
ñ = (n1,n2) = (50, 2). The parameterization of Σϕ is given by L = 2, ñ = (n1,n2) = (80, 4). The
parameterization of fψ is given by L = 3, ñ = (n1,n2,n3) = (200, 200, 1). The neural network
initialization of μθ , Σϕ and fψ , as well as the iterative optimization process are similar to those of
the first experiment. The training takes about 1.5 minutes.

We next evaluate the training results. Since the stock price is 1-dimensional, we take itself as
the portfolio, i.e., Ht = St . The comparison between the distribution of the maximal drawdown of

real data-based Ht and that of the simulated data-based Ĥt is illustrated in the following Figure 13.
The sizes of the real data set and the simulated data set used for comparison are both 186.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:26 T. Zhu et al.

5 CONCLUSION

We propose a new framework of a sequential-structured simulator assisted by neural networks
and Wasserstein training to model, estimate, and simulate a wide class of sequentially generated
data. Neural networks are integrated into the sequentially structured simulators to capture poten-
tial nonlinear and complicated sequential structures. Given representative real data, the neural
network parameters in the simulator are estimated and calibrated through a Wasserstein train-
ing process, which matches the joint distribution of the simulated data and real data in terms
of Wasserstein distance. Moreover, the neural network-assisted sequential structured simulator
can flexibly incorporate various kinds of elementary randomness and generate distributions with
certain properties such as heavy-tail, without the need to redesign the estimation and training
procedures. Further, regarding statistical properties, we provide results on consistency and con-
vergence rate for the estimation procedure of the proposed simulator, which are the first set of
results that allow the training data samples to be correlated.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous reviewers and editors for their very helpful comments
and suggestions, which have significantly benefited this work. The authors thank the participants
and organizers of 2021 INFORMS Simulation Society Workshop (I-Sim) for helpful comments and
feedback. A preliminary conference version of this work, [33], has appeared in the Proceedings
of the Winter Simulation Conference 2021. The theory and analysis in this manuscript are new,
compared to the conference version.

APPENDICES

A BACKPROPOGATION DIAGRAM ON GRADIENT EVALUATION

The backpropagation diagram (red dashed line) on the gradient evaluation of fψ (Ŝ (θ ,ϕ)) with
respect to the parameters θ ,ϕ in the simulator neural network μθ ,Σϕ is shown in Figure A.1.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:27

Fig. A.1. Backpropagation diagram (red dashed line) on the gradient evaluation of fψ (Ŝ (θ ,ϕ)) with respect

to the parameters θ ,ϕ in the simulator neural network μθ ,Σϕ .

B PROOF OF THEOREM 3.4

In the following subsections, we present a proof of Theorem 3.4 consisting of two main steps:
Approximating Lipschitz functions with interpolation polynomials and approximating the poly-
nomials with neural networks.

B.1 Polynomial Approximation of Lipschitz Functions

We first perform a linear transformation on f , namely, let

Ψ : [−B,B]d → [0, 1]d Ψ(z) =
1

2B
(z + B · 1). (44)

Let f Ψ = f ◦ Ψ−1, we have

f Ψ ∈ [0, 1]d , ‖ f Ψ(x) − f Ψ(y)‖ ≤ 2BCL ‖x −y‖. (45)

Without loss of generality, suppose that ‖ f Ψ‖L∞ ([0,1]d) ≤ BCL . Note that if the 2BCL-Lipschitz

function f Ψ can be approximated by a neural network Φ in the sense that ‖Φ(x) − f Ψ(x)‖ ≤
δ ,∀x ∈ [0, 1]d , we have

• Φ ◦ Ψ can also be expressed in the form of a neural network, where L (Φ ◦ Ψ) = L (Φ)
• ‖Φ ◦ Ψ(x) − f Ψ ◦ Ψ(x)‖ = ‖Φ ◦ Ψ(x) − f (x)‖ ≤ δ ,∀x ∈ [−B,B]d

The next step is to approximate an arbitrary 2BCL-Lipschitz function f Ψ on [0, 1]d with a ex-
plicitly constructed interpolation polynomial. Our construction and proof are a simplified version
of those in [11].

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:28 T. Zhu et al.

Fig. B.1. Construction of Φζm
.

Define the trapezoid function

ψ (x) =
⎧⎪⎪⎨⎪⎪⎩

1 |x | < 1,
2 − |x | 1 ≤ |x | ≤ 2,
0 |x | > 2,

x ∈ R, (46)

and let

ζN ,m (x) =
d∏

k=1

ψ
(
3N (xk −

mk

N
)
)

:=

d∏
k=1

ψN (xk), (47)

where m = (m1,m2, . . . ,md), mi ∈ {0, 1, . . . ,N }. Note that 0 ≤ ζN ,m (x) ≤ 1 and
∑

m ζN ,m (x) = 1,

∀x ∈ [0, 1]d . Further, let

PN ,m = f Ψ
(

1

N
·m

)
, f̄N =

∑
m

PN ,mζN ,m (x). (48)

We show that ‖ f̄N − f Ψ‖∞ can be bounded as follows:

max
x ∈[0,1]d

| f̄N (x) − f Ψ(x) | = max
x ∈[0,1]d

������
∑
m

ζN ,m (x) (PN ,m − f Ψ(x))
������

(i)
≤ max

x ∈[0,1]d

∑
m:

���xk−
mk
N

���< 1
N

���PN ,m − f Ψ(x)���
≤ max

x ∈[0,1]d
2d max

m:
���xk−

mk
N

���< 1
N

����f Ψ
(

1

N
·m

)
− f Ψ(x)

����
≤ max

x ∈[0,1]d
2d max

m:
���xk−

mk
N

���< 1
N

2BCL

���� 1

N
·m − x

����
≤ 2d+1

√
dBCL

N
.

(49)

Note that

ζN ,m (x) = 0 if ∃k ∈ {1, 2, . . . ,d } , s.t.
����xk −

mk

N

���� ≥ 1

N
, (50)

which is due to the definition (47) of ζN ,m (x) and is the reason for (i). Therefore, for N ≥
2d+2
√
dBCL/δ , we have ‖ f̄N − f Ψ‖∞ ≤ δ/2.

B.2 Neural Network Approximation of Polynomials

In this section, we use neural networks to approximate f̄N constructed in Section B.1. We first intro-
duce the following Theorem B.1 which constructs a neural network to approximate multiplication
of two constants, i.e., Φ(x ,y) ≈ xy.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:29

Theorem B.1 (Neural Network Approximation of the Product Operator, Proposition
3.3 of [15]). There exists a constant C > 0 such that, for all D ∈ R+ and ϵ ∈ (0, 1/2), there is a

network Φ ∈ N2,1, with L (Φ) ≤ C (log(�D�) + log(ϵ−1)),W (Φ) ≤ 5, B (Φ) ≤ 1,M (Φ) = O (L (Φ)),
Φ(0,x) = Φ(x , 0) = 0, for all x ∈ R, and

‖Φ(x ,y) − xy‖L∞ ([D,D]) ≤ ϵ . (51)

Now, using Theorem B.1 as a building block, we approximate ζN ,m (x) defined in Section B.1,
which is the product ofψN (xk) : k = 1, 2, . . . ,d . One useful way to analyze such approximation is
to view the neural network as not just a composition of linear and activation functions, but also a
combination of layers with operational connections between the elements of every two adjacent
layers.

First, the mapping xk → ψN (xk) can be expressed by a neural network. Consider the hat func-
tion h : R→ [0, 1],

h(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2x , if 0 ≤ x ≤ 1

2
,

2(1 − x), if
1

2
≤ x ≤ 1,

0, else,

(52)

we have

(1) According to [15], h(x) can be expressed by a neural network Φh (x), where L (Φh) = 2,
W (Φh) = 3, B (Φh) = 4 andM (Φh) = 8. Also note that the 2-Layer network is given as
W1 ◦σ ◦W2, and if a ReLU activation is not involved in the middle, any composition of linear
transformations can be compressed into a single layer.

(2) ψ (x) given as (46) can be expressed as follows:

ψ (x) = h
(

1

2
x
)
+ h

(
1

2
(x + 1)

)
+ h

(
1

2
(x + 2)

)
. (53)

Therefore, ψN (xk) can be expressed by a neural network Φψ ,N (xk) ∈ N1,1, where L (Φ)ψ ,N = 2,
W (Φψ ,N) = 9, and B (Φψ ,N) = O (N). We denote byNd1,d2

the set of all ReLU networks with input
dimension d1 and output dimension d2. Note that N will be balanced with ϵ and δ later on.

The next step is to iteratively approximate the product
∏d

k=1ψk with neural network approx-
imators of multiplication. Observe that ψk ,k = 1, 2, . . . ,d and their products are all bounded by
[0, 1]. Specifically, by Theorem B.1, we have a network Φ2 ∈ N2,1, with L (Φ2) = O (log(dϵ−1)),
W (Φ2) ≤ 5, B (Φ2) ≤ 1 andM (Φ2) = O (L (Φ2)) satisfying

‖Φ2 (ψ1,ψ2) −ψ1ψ2‖L∞ ([0,1]) ≤
ϵ

d
. (54)

Iteratively, we have a network Φ3 ∈ N2,1, with L (Φ3) = O (log(dϵ−1)),W (Φ3) ≤ 5, B (Φ3) ≤ 1 and
M (Φ3) = O (L (Φ3)) satisfying

‖Φ3 (Φ2 (ψ1,ψ2),ϕ3) −ψ1ψ2ψ3‖L∞ ([0,1])

≤‖Φ3 (Φ2 (ψ1,ψ2),ψ3) − Ψ2 (ψ1,ψ2)ψ3‖L∞ ([0,1]) + ‖Φ2 (ψ1,ψ2)ψ3 −ψ1ψ2ψ3‖L∞ ([0,1]) ≤
2ϵ

d
+O (ϵ2).

(55)
In total, we have a network ΦζN ,m ∈ Nd,1 composite of Φi , i = 2, 3, . . .d and Φψ ,N s, with

L (ΦζN ,m) = O (d log(dϵ−1)),W (ΦζN ,m) = O (d), B (ΦζN ,m) = O (N) andM (ΦζN ,m) = O (L (ΦζN ,m)
W (ΦζN ,m)) where

‖ΦζN ,m (x) − ζN ,m (x)‖L∞ ([0,1]d) ≤ 2ϵ . (56)

The following Figure B.1 illustrates how ΦζN ,m is constructed through combining and paralleling
small networks.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:30 T. Zhu et al.

Finally, the network Φf̄N
=

∑
m PN ,mΦζN ,m with L (Φf̄N

) = O (d log(dϵ−1)),W (Φf̄N
) = O (d (N +

1)d), B (Φf̄N
) = O (N + BCL) andM (Φf̄N

) +O (L (Φf̄)W (Φf̄N
)) satisfies

‖Φf̄N
(x) − f̄N (x)‖L∞ ([0,1]d) ≤ 2d+1BCLϵ . (57)

Note that ∀x ∈ [0, 1]d , only 2d out of the (N + 1)d elements of {ζN ,m },∀m are non-zero, and
according to Theorem B.1, the approximation error is exactly 0 when zero elements are contained
in the multipliers. This explains the term 2d+1 on R.H.S. of (57). The term BCL on R.H.S. of (57)
comes from the fact that |PN ,m | = | f Ψ(1

N
·M) | ≤ BCL .

B.3 Balance and Conclusion

To have ‖ f̄N − f Ψ‖∞ for Section B.1 and ‖Φf̄N
(x)− f̄N (x)‖L∞ ([0,1]d) ≤ 2d+1BCLϵ ≤ δ

2 for Section B.2,

let

N = 2d+2
√
dBCL

1

δ
, ϵ =

δ

2d+2BCL

, (58)

we can replace the orders of the network approximator Φf with L (Φf) = O (logB + logδ−1),

W (Φf) = O (Bdδ−d), B (Φf) = O (Bδ−1) and M (Φf) = O ((logB + logδ−1) · Bdδ−d), and Φf

satisfies

‖Φf (x) − f (x)‖L∞ ([−B,B]d) ≤ ‖ f̄N − f Ψ‖∞ + ‖Φf̄N
(x) − f̄N (x)‖L∞ ([0,1]d) ≤ δ . (59)

C CONTROLLING BOUNDING ERROR AND GENERATOR APPROXIMATION ERROR

C.1 Bounding Error

In this section, we control the bounding error termW (π ,πB). With the assumption that

Pηk
(x) ≤ O (x−(α+2)), α > 0, (60)

the bounding error term can be bounded as follows:

W (π ,πB) ≤W (π ,πB) = inf
γ ∈γ (π B,π)

Eγ (‖X − Y‖) ≤ E
(
‖X − X

B ‖
)
≤ O (B−α). (61)

C.2 Generator Approximation Error

In this section, we control the generator approximation errorW (πB , π̂B (μθ , Σϕ)). Note that

W (πB , π̂B (μθ , Σϕ)) ≤ W (π̂B (μ, Σ), π̂B (μθ , Σϕ))︸��������������������������︷︷��������������������������︸
identically bounded generator approximation error

+W (π , π̂B (μ, Σ)) +W (π ,πB)︸������������������������������︷︷������������������������������︸
bounding error

. (62)

As in Section C.1, the bounding error can be controlled by

W (π , π̂B (μ, Σ)) +W (π ,πB) ≤ O (B−α). (63)

Next, denote the network approximation error of μ and Σ on [−B,B]d as ϵμ and ϵΣ, respectively.
We have

W (π̂B (μ, Σ), π̂B (μθ , Σϕ)) = inf
γ ∈S (π̂ B (μθ ,Σϕ), π̂ B (μ,Σ))

E(X̂B, ŶB)∼γ

[
‖X̂B − Ŷ

B ‖
]

≤ E(X̂B, ŶB)∼γe

[
‖X̂B − Ŷ

B ‖
]
,

(64)

where, denoting the elementary randomness of the simulator of X̂
B

and Ŷ
B

as {ξi }pi=1 and {ηi }pi=1
respectively, we have

Eγe

[
‖X̂B − Ŷ

B ‖
]

:= E
[
‖X̂B − Ŷ

B ‖
����ξi ≡ ηi ,∀i

]
. (65)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:31

Since

Eγe

[
‖X̂B − Ŷ

B ‖
]
≤

p∑
k=1

Eγe

[
‖X̂ B

i − Ŷ B
i ‖

]
:=

p∑
i=1

Eγe
Δi , (66)

and by law of total expectation, we have

Eγe
Δi = Eγe

[
Eγe

(Δi |Δi−1)
]
, (67)

further,

Eγe

[
Δi

����Δi−1, X̂
B
i−1, Ŷ

B
i−1

]
≤Eγe

[
Δi−1 + |μ (Ŷ B

i−1) − μθ (X̂ B
i−1) | + ‖Σ(Ŷ B

i−1) − Σϕ (X̂ B
i−1)ηi ‖

����Δi−1, X̂
B
i−1, Ŷ

B
i−1

]
≤Eγe

[
Δi−1 + (ϵμ + Δi−1) + (ϵΣ + Δi−1)‖ηi ‖

����Δi−1

]
≤(2 + d)Δi−1 + (ϵμ + dϵΣ).

(68)

Therefore,

Eγe
Δi ≤

(2 + d)i − 1

1 + d
(dϵΣ + ϵμ), (69)

and
p∑

i=1

Eγe
Δi ≤ ��

1

1 + d

p∑
i=1

(2 + d)i �� · (dϵΣ + ϵμ) = O (ϵΣ + ϵμ). (70)

D PROOF OF LEMMA D.1

In this section, we first prove that the two function classes FN N (κ,L, P ,K , ϵf) and FLip can approx-
imate each other, namely,

(1) ∀f ∈ FLip, ∃fψ ∈ FN N , such that ‖ f − fψ ‖L∞[−B,B]d ≤ ϵf ,

(2) ∀f ∈ FN N , ∃fψ ∈ FLip, such that ‖ f − fψ ‖L∞[−B,B]d ≤ 3ϵf .

For 2, we have the following lemma:

Lemma D.1. Suppose that f : Rd → R, f ∈ C ([a,b]) satisfies | f (x) − f (y) | ≤ ‖x − y‖ + 2ϵ ,

∀x ,y ∈ [a,b]. Then there is a 1-Lipschitz function д : Rd → R, д ∈ C ([a,b]), such that

| f (x) − д(x) | ≤ 3ϵ, ∀x ∈ [a,b]. (71)

Proof: Without loss of generality, we assume that d = 1,a = 0,b = 1 and f (0) = 0. We prove by
contradiction. Let

x (д) := sup{x ∈ [0, 1] : | f (x ′) − д(x ′) | ≤ 2ϵ,∀x ′ < x }, (72)

and

д∗ = arg sup
‖д ‖L ≤1

x (д). (73)

The contradiction assumption suggests that x∗ := x (д∗) < 1. We first show that x∗ > 0 and that
д∗ exists. Note that for x ′ < ϵ , we have, by definition of the functional class FNN (κ,L, P ,K , ϵ),

| f (x ′) − f (0) | ≤ |x ′ | + ϵ < 3ϵ .

Therefore, taking д(x) ≡ f (0) yields an approximation of f with precision of 3ϵ on [0, ϵ], implying
that x∗ is at least ϵ . To demonstrate the existence of д∗, suppose that | f (x) | < C on [0, 1] for some
constantC . The 1-Lipschitz functional class bounded by 2C on [0, 1], denoted as F C

Lip is uniformly

bounded and equicontinuous. Arzelà-Ascoli theorem suggests that F C
Lip is sequentially compact.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:32 T. Zhu et al.

Further, for any convergent sequence in F C
Lip, it can be verified that the limit also lies in F C

Lip.

Therefore, F C
Lip is a compact set. It remains to be proved that x (д) is upper semi-continuous on

FLip, so that the supremum point д∗ exists. In fact, for a fixed element д0 ∈ FLip, for all small
enough ϵ > 0, let

δ = sup
x (д0)≤x ≤x (д0)+ϵ

[| f (x) − д0 (x) | − 3ϵ
]
.

By definition of x (д), we have δ > 0, and for all д ∈ FLip such that ‖д − д0‖L∞[0,B]d < δ , we have
x (д) < x (д0) + ϵ . The existence of д∗ is proved.

We next return to the contradiction assumption, which suggests that x∗ < 1. Note that both f
and д are continuous. Therefore, by the definition of sup, we have

|д∗ (x∗) − f (x∗) | = 3ϵ . (74)

Without loss of generality, let f (x∗) = д∗ (x∗) + 3ϵ . Also,

∀Δ > 0,∃x∗ < xΔ < min{x∗ + δ , 1}, s.t. f (xΔ) > д∗ (x∗) + (xΔ − x∗) + 3ϵ . (75)

Now, we claim that ∃δ0 > 0,

д∗ (x∗) − д∗ (x)

x∗ − x = 1, ∀x ∈ [x∗ − δ0,x
∗).

If this is contradicted, we have some δ < ϵ , and

д∗ (x∗) − δ < д∗ (x∗ − δ) < д∗ (x∗) + 3ϵ − δ .

In this case, we can move д∗ upward on [x∗ − δ ,x∗] by modifying it into

д̃∗ (x) =
⎧⎪⎪⎨⎪⎪⎩
д∗ (x), x ∈ [0,x∗ − δ];

д∗ (x∗ − δ) + x − (x∗ − δ), x ∈ (x∗ − δ ,x∗],

so that д̃∗ (x∗) > д∗ (x∗), and ‖д̃∗ (x∗)‖L ≤ 1 still holds. Also, note that ∀x ∈ [0, 1],

f (x) ≥ f (x∗) + x − x∗ − 3ϵ = д∗ (x∗) + x − x∗ > д̃∗ (x) − 3ϵ,

f (x) ≤ д∗ (x) + 3ϵ ≤ д̃∗ (x) + 3ϵf .

so x (д̃∗) > x (д∗), which contradicts (73). Therefore, the claim is valid.
Let

x1 = inf
x ∈[0,x ∗−δ0]

д∗ (x∗) − д∗ (x)

x∗ − x = 1

Note that f (xΔ) > д∗ (x1) + (xΔ − x1) + 3ϵ , therefore, f (x1) > д∗ (x1), which implies that x1 > 0.
In this case, we can find δ ′ > 0, such that

д∗ (x1) − δ ′ ≤ д∗ (x1 − δ ′) ≤ д∗ (x1) + 3ϵ − δ ′.

We can similarly define

д̃∗ (x) =
⎧⎪⎪⎨⎪⎪⎩
д∗ (x), x ∈ [0,x1 − δ ′];

д∗ (x1 − δ ′) + x − (x1 − δ ′), x ∈ (x1 − δ ′,x∗],

and verify that ‖д̃∗ (x∗)‖L ≤ 1 and x (д̃∗) > x (д∗), which also contradicts (73). The proof is complete.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

Learning to Simulate Sequentially Generated Data via Neural Networks 9:33

REFERENCES

[1] Yacine Aı, Robert Kimmel, et al. 2007. Maximum likelihood estimation of stochastic volatility models. Journal of

Financial Economics 83, 2 (2007), 413–452.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In Inter-

national Conference on Machine Learning. PMLR, 214–223.

[3] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. 2017. Generalization and equilibrium in generative

adversarial nets (GANs). In International Conference on Machine Learning. PMLR, 224–232.

[4] Manabu Asai, Michael McAleer, and Jun Yu. 2006. Multivariate stochastic volatility: A review. Econometric Reviews

25, 2-3 (2006), 145–175.

[5] Yu Bai, Tengyu Ma, and Andrej Risteski. 2018. Approximability of discriminators implies diversity in GANs. arXiv

preprint arXiv:1806.10586 (2018).

[6] Ravi Bansal, A. Ronald Gallant, Robert Hussey, and George Tauchen. 1994. Computational aspects of nonparametric

simulation estimation. In Computational Techniques for Econometrics and Economic Analysis. Springer, 3–22.

[7] Eoin Brophy, Zhengwei Wang, Qi She, and Tomas Ward. 2021. Generative adversarial networks in time series: A

survey and taxonomy. arXiv preprint arXiv:2107.11098 (2021).

[8] Carmen Broto and Esther Ruiz. 2004. Estimation methods for stochastic volatility models: A survey. Journal of Eco-

nomic Surveys 18, 5 (2004), 613–649.

[9] Wang Cen, Emily A. Herbert, and Peter J. Haas. 2020. NIM: Modeling and generation of simulation inputs via gener-

ative neural networks. In Proceedings of the 2020 Winter Simulation Conference, Bae, K., Feng, B., Kim, S., Lazarova-

Molnar, S., Zheng, Z., Roeder, T., and Thiesing, R. (Ed.). Institute of Electrical and Electronic Engineers, Inc., Piscat-

away, New Jersey, 584–595.

[10] Alexei Chekhlov, Stanislav Uryasev, and Michael Zabarankin. 2005. Drawdown measure in portfolio optimization.

International Journal of Theoretical and Applied Finance 8, 01 (2005), 13–58.

[11] Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. 2022. Nonparametric regression on low-dimensional

manifolds using deep ReLU networks: Function approximation and statistical recovery. Information and Inference: A

Journal of the IMA 11, 4 (2022), 1203–1253.

[12] Minshuo Chen, Wenjing Liao, Hongyuan Zha, and Tuo Zhao. 2020. Statistical guarantees of generative adversarial

networks for distribution estimation. arXiv preprint arXiv:2002.03938 (2020).

[13] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural Informa-

tion Processing Systems 26 (2013), 2292–2300.

[14] Florian Eckerli. 2021. Generative adversarial networks in finance: An overview. Available at SSRN 3864965 (2021).

[15] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. 2021. Deep neural network approx-

imation theory. IEEE Transactions on Information Theory 67, 5 (2021), 2581–2623.

[16] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. 2017. Real-valued (medical) time series generation with

recurrent conditional GANs. arXiv preprint arXiv:1706.02633 (2017).

[17] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. 2016. Sequential neural models with stochas-

tic layers. Advances in Neural Information Processing Systems 29 (2016).

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2020. Generative adversarial networks. Commun. ACM 63, 11 (2020), 139–144.

[19] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 2017. Improved train-

ing of Wasserstein GANs. Advances in Neural Information Processing Systems 30 (2017).

[20] Linyun He and Eunhye Song. 2021. Nonparametric Kullback-Liebler divergence estimation using M-spacing. In 2021

Winter Simulation Conference (WSC). IEEE.

[21] Steven L. Heston. 1993. A closed-form solution for options with stochastic volatility with applications to bond and

currency options. The Review of Financial Studies 6, 2 (1993), 327–343.

[22] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).

[23] Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013).

[24] Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang. 2018. A neural stochastic volatility model. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 32.

[25] Angelo Melino and Stuart M. Turnbull. 1990. Pricing foreign currency options with stochastic volatility. Journal of

Econometrics 45, 1-2 (1990), 239–265.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations of Machine Learning. MIT Press.

[27] Eckhard Platen and Nicola Bruti-Liberati. 2010. Numerical Solution of Stochastic Differential Equations with Jumps in

Finance. Vol. 64. Springer Science & Business Media.

[28] Neil Shephard. 1993. Fitting nonlinear time-series models with applications to stochastic variance models. Journal

of Applied Econometrics 8, S1 (1993), S135–S152.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

9:34 T. Zhu et al.

[29] Neil Shephard and Torben G. Andersen. 2009. Stochastic volatility: Origins and overview. In Handbook of Financial

Time Series. Springer, 233–254.

[30] Umut Şimşekli. 2017. Fractional Langevin Monte Carlo: Exploring Lévy driven stochastic differential equations for

Markov chain Monte Carlo. In International Conference on Machine Learning. PMLR, 3200–3209.

[31] Shuntaro Takahashi, Yu Chen, and Kumiko Tanaka-Ishii. 2019. Modeling financial time-series with generative ad-

versarial networks. Physica A: Statistical Mechanics and its Applications 527 (2019), 121261.

[32] Stephen John Taylor. 1982. Financial returns modelled by the product of two stochastic processes-a study of the daily

sugar prices 1961-75. Time Series Analysis: Theory and Practice 1 (1982), 203–226.

[33] Zhu Tingyu and Zheng Zeyu. 2021. Learning to simulate sequentially generated data via neural networks and Wasser-

stein training. In 2021 Winter Simulation Conference (WSC). IEEE.

[34] Tan Wan and L. Jeff Hong. 2022. Large-scale inventory optimization: A recurrent-neural-networks-inspired simula-

tion approach. INFORMS Journal on Computing (2022).

[35] Ruixin Wang, Prateek Jaiswal, and Harsha Honnappa. 2020. Estimating stochastic Poisson intensities using deep

latent models. In 2020 Winter Simulation Conference (WSC). IEEE, 596–607.

[36] Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. 2020. Quant GANs: Deep generation of financial

time series. Quantitative Finance 20, 9 (2020), 1419–1440.

[37] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. 2019. Time-series generative adversarial networks. (2019).

[38] Yufeng Zheng, Zeyu Zheng, and Tingyu Zhu. 2020. A doubly stochastic simulator with applications in arrivals mod-

eling and simulation. arXiv preprint arXiv:2012.13940 (2020).

Received 14 January 2022; revised 4 January 2023; accepted 10 January 2023

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 9. Publication date: August 2023.

10

NIM: Generative Neural Networks for Automated Modeling

and Generation of Simulation Inputs

WANG CEN and PETER J. HAAS, University of Massachusetts Amherst

Fitting stochastic input-process models to data and then sampling from them are key steps in a simulation

study but highly challenging to non-experts. We present Neural Input Modeling (NIM), a Generative Neural

Network (GNN) framework that exploits modern data-rich environments to automatically capture simulation

input processes and then generate samples from them. The basic GNN that we develop, called NIM-VL, com-

prises (i) a variational autoencoder architecture that learns the probability distribution of the input data while

avoiding overfitting and (ii) long short-term memory components that concisely capture statistical dependen-

cies across time. We show how the basic GNN architecture can be modified to exploit known distributional

properties—such as independent and identically distributed structure, nonnegativity, and multimodality—to

increase accuracy and speed, as well as to handle multivariate processes, categorical-valued processes, and

extrapolation beyond the training data for certain nonstationary processes. We also introduce an extension

to NIM called Conditional Neural Input Modeling (CNIM), which can learn from training data obtained under

various realizations of a (possibly time series valued) stochastic “condition,” such as temperature or inflation

rate, and then generate sample paths given a value of the condition not seen in the training data. This enables

users to simulate a system under a specific working condition by customizing a pre-trained model; CNIM

also facilitates what-if analysis. Extensive experiments show the efficacy of our approach. NIM can thus help

overcome one of the key barriers to simulation for non-experts.

CCS Concepts: • Computing methodologies→Modeling methodologies;

Additional Key Words and Phrases: Input modeling, neural networks, distribution fitting

ACM Reference format:

Wang Cen and Peter J. Haas. 2023. NIM: Generative Neural Networks for Automated Modeling and Generation

of Simulation Inputs. ACM Trans. Model. Comput. Simul. 33, 3, Article 10 (August 2023), 26 pages.

https://doi.org/10.1145/3592790

1 INTRODUCTION

Stochastic discrete-event simulation is a time-honored technology for improving the design and
operation of complex engineered systems under uncertainty, but the barriers to entry are high. Tra-
ditionally, a domain expert examines the existing system and specifies the simulation model struc-
ture (system elements and their interrelations), along with probability distributions for simulation
inputs, which are often fitted to empirical data gleaned from the existing system. For example, a

Authors’ address: W. Cen and P. J. Haas, University of Massachusetts Amherst, 140 Governors Drive, Amherst, MA 01003;

emails: cenwang@umass.edu, phaas@cs.umass.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-3301/2023/08-ART10 $15.00

https://doi.org/10.1145/3592790

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:2 W. Cen and P. J. Haas

manufacturing expert might decide that a robot station in an automated manufacturing system
can be modeled as a FIFO queue. Based on a small number of observed arrival times for raw parts
and observed processing times for the manufacturing robot, the expert will fit probability distribu-
tions for these quantities. Finally, the validated simulation model can be used to explore potential
improvements to the station via changes in buffer sizes, robot capabilities, job scheduling, and so
on. Although modern simulation software tools such as AnyLogic and Arena provide graphical
interfaces that can greatly ease the task of specifying the simulation model structure, modeling
the simulation inputs remains one of the most challenging tasks for a non-expert. Our goal is to
facilitate this process via automation.

Traditional Input Modeling. Traditionally, data for fitting input distributions has been expen-
sive and painful to collect (e.g., a human would have to stand on a factory floor, stopwatch in hand)
and hence has been in short supply. With little data available, a modeler typically imposes strong
simplifying assumptions, for example, by assuming that the interarrival times to a system are i.i.d.
according to one of a set of supported distribution functions from which the simulation engine can
efficiently generate samples. The specific distribution function is selected as the one that best fits
the observed data, as measured by an appropriate goodness-of-fit statistic; state-of-the-art tools
such as ExpertFit [21, Ch. 6] or Stat::Fit [12] can automate this selection task.

Unfortunately, distributions with complex features such as multimodality or phase-type struc-
ture [24] are typically hard to capture—for example, one of our experiments in Section 6.1 (see
Figure 14) shows that ExpertFit fails to model a Gamma-Uniform mixture distribution. Even for
“simple” distributions, handcrafted variate-generation code has traditionally been required. Re-
cently, Jiang and Nelson [18] proposed fitting multiple distributions and averaging them to achieve
better input model quality, but the candidate distributions must be prespecified and the method is
limited to the i.i.d. case. With respect to i.i.d. random number generation, techniques have been
developed to automatically produce code to generate from a wide range of distribution functions
[16], but again these distributions must be prespecified.

The situation becomes even more challenging when inputs are not well modeled as a sequence of
i.i.d. random variables. A system such as ExpertFit will sometimes detect the lack of i.i.d. structure,
but then, with little guidance or software support, the user faces a bewildering array of possible
models for autocorrelated and possibly nonstationary sequences, including matrix-geometric pro-
cesses [24], time series models such as ARIMA, GARCH, and SETAR, with various choices for the
innovations distribution [5], or, for arrival processes, direct point process models of arrival times
such as nonhomogeneous, compound, clustered, or doubly stochastic Poisson processes [10].

The other option for non-expert input modeling is to fit an empirical distribution for i.i.d. data
and use input traces for more general stochastic processes, perhaps combined with some sort of
bootstrap resampling [13]. Both approaches usually suffer from the fact that the data values pro-
duced during a simulation run are generally limited to those in the available data or, in the case
of empirical distributions, require ad hoc tail modeling [6, Section 4.6]. This issue is one aspect
of a general overfitting problem: the simulation model captures the training data precisely but
does not generalize well beyond it. Use of input traces has the additional drawback that, if the
simulation model is to be deployed widely, moving potentially large amounts of data around is
cumbersome and raises potential privacy issues. Schruben and Singham [29] have proposed an
interesting approach toward resampling trace data that is inspired by agent-based flocking algo-
rithms. Their technique can avoid the overfitting problem but is primarily designed for situations
in which there is relatively little trace data—indeed, only one trace is needed—and the goal is to
generate qualitatively “similar” sample paths via careful perturbation, where the similarity to the
real data is manually controlled by an “affinity” parameter together with added (typically Gaussian)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:3

noise. Our method, in contrast, exploits large amounts of data to learn the underlying generative
distribution while avoiding overfitting.

Neural Input Modeling. We aim to exploit the fact that data is becoming ever more abundant due
to the increasing use of sensors, the emergence of the Internet of Things, and the retention of log
data in formally defined process management systems [31]. Other potential sources of structured
log data include information extraction from text [25], as well as from images and video [35]. Our
key observation is that, in data-rich environments, neural networks are a powerful and flexible
tool for learning complex and subtle patterns from data; if designed carefully, they can potentially
automate the tasks of learning simulation input distributions and of generating samples from these
distributions during simulation runs.

We present Neural Input Modeling (NIM), a framework for automated modeling and gener-
ation of simulation input distributions. NIM uses Generative Neural Networks (GNNs), which
not only learn a potentially complex statistical distribution but also provide a means of sampling
from the distribution. NIM is designed to avoid overfitting problems and, unlike with input traces,
can generate sample values outside the original training range. GNNs have been used in a variety
of domains, including synthetic generation of music [33], faces [27], text [4], and more. To the best
of our knowledge, NIM is the first system to use GNNs to automate simulation input modeling.

NIM takes inspiration from the inversion method. Suppose we want to generate samples of
a continuous random variable X having cumulative distribution function (cdf) F . If we gener-
ate Z ∼ N (0, 1), then it is well known that X = G (Z) is distributed according to F , where
G (Z) = F−1 (Φ(Z)) and Φ is the cdf of a standard normal random variable. We can extend this
idea to a stochastic process X = (X1,X2, . . . ,Xt) having joint cdf F by factorizing F (x1,x2, . . . ,xt)
as F1 (x1)F2 (x2 |x1) · · · Ft (xt |x1,x2, . . . ,xt−1). We then generate i.i.d. normal variates Z1, . . . ,Zt and
set X1 = G1 (Z1),X2 = G2 (Z2 |X1), . . . ,Xt = Gt (Zt |X1,X2, . . . ,Xt−1), where Gi (zi |x1, . . . ,xi−1) =
F−1

i (Φ(zi) |x1, . . . ,xi−1). In other words, we have specified a function G that transforms Z =
(Z1, . . . ,Zt) into a sample path X = (X1, . . . ,Xt) having joint distribution F . NIM can be viewed
as a system for automatically learning the complex transformation function G from i.i.d. samples
ofX . (In contrast, the classic NORTA method [8] and its generalizations require a user to manually
select the transformation G to achieve a prespecified target distribution for X .)

Our NIM model derives from a particular form of GNN called a Variational Autoencoder

(VAE) [11, 20]. A VAE uses a pair of neural networks to learn an internal representation of a sto-
chastic process from data (the “encoder”) and then transform a sequence of i.i.d. Gaussian input
variables into a realization of the modeled process (the “decoder”). A VAE does not need to make
any prior assumptions about the features of the training data and appears easier to work with than
other types of GNNs, such as generative adversarial networks. In addition, a VAE automatically
avoids overfitting by inherently using a regularization term in its goodness-of-fit objective func-
tion. Doersch [11, Appendix A] formalizes the “inversion method” reasoning in the prior paragraph
for VAEs in a special case involving one-dimensional i.i.d. random samples.

There has been some very recent work on using Wasserstein Generative Adversarial Net-

works (WGANs) to model some specific types of simulation inputs. WGANs are composed of a
“generator network” that generates synthetic data and a “discriminator network” that attempts to
discern whether input data is real or synthetic; the two networks are jointly trained, with the over-
all goal of minimizing the Wasserstein distance between the actual and synthetic data distributions.
Zheng and Zheng [34] proposed the use of WGANs to model doubly stochastic Poisson processes,
and Zhu and Zheng [36], motivated by financial applications, model random sequences having the
recursive form Xk+1 = μ (lk ,Xk) + Σ(lk ,Xk)ηk+1, where ηk is a manually specified domain-specific
sequence of random variables, lk is a deterministic covariate (similar to a special case of a NIM

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:4 W. Cen and P. J. Haas

“condition” as described in the following), and μ and Σ are functions modeled via WGANs. An
advantage of the WGAN formulation is the ability to derive statistical properties (although cur-
rently under fairly strong assumptions). In contrast, our approach is completely automated and
imposes minimal assumptions on the underlying input sequence, allowing modeling of a broad
range of stochastic input processes. The downside is that data requirements are typically heavier,
since no prior assumptions can be leveraged. Moreover, formal statistical guarantees are currently
unavailable and a topic of future work; we therefore provide an extensive empirical study.

Article Organization. In Section 2, we start by reviewing the standard VAE model of Kingma
and Welling [20], which uses Multilayer Perceptrons (MLPs) (e.g., see [14]) for both the encoder
and decoder. Direct use of this VAE leads immediately to a simple neural network, called NIM-VM,
that is restricted to modeling and generation of i.i.d. random variables. In Section 3, we describe
how the basic NIM-VM architecture can be modified by using Long Short-Term Memory (LSTM)

components [15] for the encoder and decoder. The resulting network, called NIM-VL, can then com-
pactly represent complex stochastic processes. NIM-VL can be further adapted to exploit known
properties of the stochastic process of interest to increase speed and accuracy. Section 4 describes
various extensions of the basic NIM-VL architecture to allow modeling of multivariate, categor-
ical, and nonstationary input processes. In Section 5, we introduce an extension to NIM called
Conditional Neural Input Modeling (CNIM), which can learn from training data obtained un-
der various realizations of a (possibly time series valued) influencing stochastic “condition,” such
as temperature or inflation rate, and then generate sample paths given a value of the condition
not seen in the training data. This enables users to simulate a system under a specific working
condition by customizing a pretrained model; CNIM also facilitates what-if analysis. In Section 6,
we provide empirical evidence showing that NIM and CNIM can accurately and automatically cap-
ture a range of complex stochastic input processes and then efficiently generate synthetic sample
paths. We also examine the effectiveness of NIM in the context of a queueing simulation model
with complex inputs. We conclude in Section 7. An online supplement contains some additional
results, including some details about the model-training process and an ablation study confirming
that both VAE and LSTM components are needed to accurately capture complex simulation inputs.
Section and figure numbers prefaced with an “S” refer to the online supplemental materials.

An earlier conference version of this article was presented at the 2020 Winter Simulation Con-
ference. The current work contains significant extensions of the original work, including (i) CNIM,
(ii) extensions to multivariate, categorical-valued, and nonstationary input processes, (iii) con-
comitant experiments for all of these extensions, (iv) the ablation study mentioned previously, and
(v) some additional experiments examining the effect of training data and neural network size.

2 VAES AND NIM-VM

In this section, we describe the standard VAE framework, which directly yields the NIM-VM neural
network for modeling and generating sequences of i.i.d. random variables.

In general, a GNN can, to a good approximation, generate new data instances from a data dis-
tribution P (x) after being shown i.i.d. training samples from P ; here, x might be a real-valued
random variable, an image, a piece of digital music, or a sample path of a stochastic process. In
the setting of simulation input modeling, the new data instances might represent i.i.d. interarrival
or service times in a queueing network, blood pressure measurements for arriving patients, and
so on. We primarily focus on real-valued stochastic processes throughout but discuss multivariate
and categorical processes in Section 4.

VAE Overview. A VAE is a specific type of GNN that accomplishes the learning and generation
tasks via a pair of neural networks, an encoder E and a decoder D. The generative model for the

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:5

Fig. 1. NIM-VM training and generation architectures.

observed data assumes that a data sample is created by (i) sampling a latent variable from some
prior distribution, (ii) feeding that latent variable into a function that outputs a data-generation

distribution, and (iii) drawing a sample from the data-generation distribution. The encoder E in
the VAE learns to infer the latent-variable distribution that likely produced the observed data
samples. Thus a trained encoder stochastically maps an observed data value x into a latent value z
that serves as the internal representation of x . The decoder D learns the function from (ii), taking
a latent-variable sample z and outputting the data-generation distribution from which the final
sample is drawn. We use historical data to train both E and D such that the foregoing process will,
to a good approximation, generate samples from the underlying data distribution P .

NIM-VM is a direct implementation of such a standard VAE (Figure 1). The prior distribution
P (z) of the latent variable z is N (0, 1), a standard normal distribution. The data-generation dis-
tribution is of the form P (x | z) = N (μ̂, σ̂ 2). The decoder D thus learns the mapping from z to
(μ̂, σ̂) = (μ̂ (z), σ̂ (z)), and the final sample y is generated from the corresponding normal distri-
bution. This generation process is illustrated in Figure 1(b). We feed a sequence of i.i.d. N (0, 1)
z-values into the trained decoder to produce the desired sequence of i.i.d. y-values having distri-
bution P . However, given a data example x , the encoder infers the posterior probability P (z | x)—
the posterior distribution of the latent representation z given the observed data x . This distribu-
tion is complex and, in general, expensive to compute: an application of Bayes’ theorem requires

evaluation of
∫
P (x | z)P (z) dz over all configurations of latent variables, and z can be high di-

mensional for multivariate input processes (see Section 4). The VAE therefore approximates the
posterior distribution by a simpler distribution Q (z | x), which we take to be a normal distribu-
tion N (μ̃, σ̃ 2) because of its analytical tractability. Thus, encoder E learns the mapping from x to
(μ̃, σ̃) = (μ̃ (x), σ̃ (x)), and the latent variable z is generated from the corresponding normal distri-
bution. This latent-variable generation process is illustrated in the leftmost portion of Figure 1(a).

Note that the input z to the decoder depends on whether we are in the training or generation
phase. During training, a sample from the posterior distribution N (μ̃, σ̃ 2) will be input to the de-
coder function; this is done by setting z = μ̃ + σ̃ ξ , where ξ ∼ N (0, 1). During generation, z is a
sample from N (0, 1).

Network Architecture. Both the encoder and the decoder employ an MLP structure, which takes
inspiration from biology. A standard MLP consists of three layers of neurons: an input layer, a
hidden layer, and an output layer. In the hidden layer, each artificial neuron receives a signal from
one or more neurons in the input layer, applies a nonlinear “activation function,” and then sends
the result to the output layer, where the loss is computed. In our setting, the input layer comprises
one neuron, the output layer comprises two neurons (one each for the normal mean and variance),
and the hidden layer comprises m ≥ 1 neurons; Figure 2 shows an MLP with m = 3. In NIM-VM,
the encoder computes μ̃ and σ̃ 2 from an observation x via the sequence of computations

h̃ = max(0m ,W̃1x + b̃1), μ̃ = W̃2h̃ + b̃2, log σ̃ 2 = W̃3h̃ + b̃3,

where 0m is a column vector of m zeros, the maximum is taken component-wise, W̃1, b̃1 ∈ �m×1,

W̃2,W̃3 ∈ �1×m , and b2,b3 ∈ �. Similarly, the decoder computes μ̂ and σ̂ 2 from a latent variable z
via

ĥ = max(0m ,Ŵ1z + b̂1), μ̂ = Ŵ2ĥ + b̂2, log σ̂ 2 = Ŵ3ĥ + b̂3.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:6 W. Cen and P. J. Haas

Fig. 2. Multilayer perceptron.

We denote by θ = (W̃1,W̃2,W̃3, b̃1, b̃2, b̃3,Ŵ1,Ŵ2,Ŵ3, b̂1, b̂2, b̂3) the parameters of the network. The
W ’s and b’s are called weights and biases; they are learned during the training phase, which we
now discuss.

Training the VAE. The training phase seeks parameter values θ that minimize a carefully chosen
loss function. Specifically, the loss for a training point x is given by

L(x ;θ) = DKL

(
Qθ (z | x) ��� P (z)

)
− Ez∼Qθ (z |x)[log Pθ (x | z)], (1)

where DKL denotes Kullback-Liebler (KL) divergence and we have explicitly indicated the de-
pendence on θ ; see the work of Doersch [11] for a formal derivation. Under the VAE assumptions
(i.e., P (z) = N (0, 1), Qθ (z | x) = N (μ̃, σ̃ 2) and Pθ (x | z) = N (μ̂, σ̂)), the loss takes the specific form

L(x ;θ) = −1

2
(log σ̃ 2 − μ̃2 − σ̃ 2 + 1) +

1

2

(
log 2π + log σ̂ 2 +

(x − μ̂)2

σ̂ 2

)
. (2)

Note that μ̃ = μ̃ (x ;θ), σ̃ 2 = σ̃ 2 (x ;θ), μ̂ = μ̂ (z;θ), and σ̂ 2 = σ̂ 2 (z;θ); we often suppress these
dependencies for readability. Also note that the second term is a method-of-moments estimator of

the second term in Equation (1): given a training point x , we approximate Ez∼Qθ (z |x)

[
log Pθ (x | z)

]
by log Pθ (x | z), where z is the value output by the encoder.

The key ideas motivating the form of the loss function are that (i) given i.i.d. N (0, 1) z-values,
the decoder will produce μ̂ (z) and σ̂ 2 (z) values such that the resulting y-values will jointly be
distributed as an i.i.d. sample from the target data distribution, and (ii) a set of z-values produced
by the encoder, taken together, look like i.i.d. samples from a standard normal distribution N (0, 1),
since this is what is needed during generation. In the loss function, the first term represents the KL
divergence between N (μ̃, σ̃ 2) and N (0, 1); minimizing this term helps achieve goal (ii) presented
earlier. The second term is the negative expected log-likelihood of x under the N (μ̂, σ̂ 2) distribu-
tion for z, also called the reconstruction loss; minimizing this term (i.e., maximizing the expected
log-likelihood), helps achieve goal (i), which is to make the synthetic data look like the training
data. Importantly, the KL divergence term acts as a regularizer and helps prevent overfitting to
the training data (see the following). As further motivation for our loss function, it follows from
Doersch [11, Equation (5)] that the loss can be written as

L(x ;θ) = − log P (x) + DKL

(
Qθ (z | x) ��� P (z | x)

)
.

Since KL divergence is always nonnegative, we have that L(x ;θ) ≥ − log P (x) so that minimizing
the loss tends to maximize the log-likelihood of the training data; the better the approximation of
P (z | x) byQθ (z | x), the smaller the KL divergence, and the tighter the relation between loss min-
imization and likelihood maximization. From a neural network point of view, the KL divergence
term, acting as a regularizer, serves to keep the z-values (i.e., internal representations) for the data
observations “sufficiently diverse.” Without the regularizer, the encoder could learn to “cheat” and

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:7

Fig. 3. NIM-VL training architecture.

give each x value a representation in a different region of Euclidean space. This means that similar
x-values could be given vastly different representations, undermining the meaningfulness of the
latent space of z-values and causing the network to output only the exact training data values.
The regularization term has the effect of keeping similar x ’s representations close together and
avoiding the preceding overfitting problem [1]. Some VAE training details are given in Section S1.

3 LSTM COMPONENTS AND NIM-VL

NIM-VM can be used to model and generate i.i.d. univariate random variables. In this section, we
describe how to extend our methodology to model and generate i.i.d. sample paths of a univariate
stochastic process, given a training set of i.i.d. sample paths.

NIM-VL Overview. A straightforward solution would directly modify NIM-VM so that a training
point x is now a sample path: x = (x1,x2, . . . ,xt) for some t > 1. Then the input layer of the
MLP for encoder E would comprise t neurons to hold x and the output layer would consist of
2t neurons to hold μ̃ = (μ̃1, . . . , μ̃t) and σ̃ 2 = (σ̃ 2

1 , . . . , σ̃
2
t). During training, we would generate

z = (z1, . . . , zt) by setting zi = μ̃i + σ̃iξi for i ∈ [1..t], where the ξi ’s are i.i.d. N (0, 1). Similarly, the
input layer of the MLP for decoder D would now comprise t neurons to hold z and the output layer
would contain 2t neurons to hold μ̂ and σ̂ 2. During the generation phase, we would feed a vector
z = (z1, . . . , zt) of i.i.d. N (0, 1) random variables into the decoder and generate y = (y1, . . . ,yt)
by setting yi = μ̂i + σ̂iζi for i ∈ [1..t], where the ζi ’s are i.i.d. N (0, 1). Correspondingly, we would

have W̃1 ∈ �m×t , W̃2,W̃3 ∈ �t×m , and b2,b3 ∈ �t .
This approach has three serious problems. First, the number of neurons—or, equivalently, the

sizes of the weight matrices and bias vectors—grows linearly with the length of the stochastic
process, leading to a network that is slow and cumbersome when modeling long sequences. Second,
the model can only handle a fixed input and output size, namely t . For example, if each training
sample path has length t = 100, then the network can only generate sample paths of length 100.
Ideally, we would like a model that learns on length-100 sample paths but can generate, for example,
length-1,000 or even longer sample paths. Finally, MLPs are not good at capturing long-range
dependencies, which is key to modeling complex stochastic processes [23].

To overcome these problems, we modify the NIM-VM architecture by incorporating LSTM com-
ponents, as introduced in the work of Hochreiter and Schmidhuber [15]. We refer to the resulting
neural architecture as NIM-VL. Specifically, we replace the MLP networks in both the encoder
and decoder with LSTM layers. Moreover, instead of feeding a latent variable z = (z1, z2, . . . , zt)
directly to the decoder during training or generation, we pass pairs (z1, 0), (z2,x1), . . . , (zt ,xt−1)
to the decoder during training, and pairs (z1, 0), (z2,y1), . . . , (zt ,yt−1) during generation, where
x = (x1, . . . ,xt) is an input (training) sample path and y = (y1, . . . ,yt) is an output (generated)
sample path. Figures 3 and 4 show the training and generation architectures.

The LSTM layers allow the VAE to compactly capture temporal dependencies within a sample
path. In addition, the change to the decoder’s input increases NIM’s flexibility. This can be seen
clearly in Figure 4. Instead of generating sample paths whose length is fixed and limited by the
length of the training data, NIM-VL can generate values one at a time, thereby enabling it to

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:8 W. Cen and P. J. Haas

Fig. 4. NIM-VL generation architecture. (Note that we can have s > t .)

Fig. 5. LSTM architecture and dataflow.

generate sample paths of arbitrary length. We note that, even though the form of the preceding
pairs might create the impression that an LSTM is Markovian in nature, the LSTM architecture
in fact explicitly models temporal correlations over multiple timesteps [23, Section 1.2]. We note
that several authors have recently suggested combining VAEs and LSTMs for use in fields such
as robotics [26]—where the LSTM-VAE is used to learn the baseline distribution of dynamic robot
behavior to detect behavioral anomalies—and epidemiology [17]—where the neural network is
used to forecast disease occurrence at 1 step or 10 steps in the future; these applications are quite
different from simulation input modeling, however.

LSTM Details. LSTM networks belong to the family of Recurrent Neural Networks (RNNs)

(see [23]). RNNs are widely employed in sequence-modeling tasks such as machine translation,
image captioning, text-to-speech synthesis, handwriting recognition, and game playing. Whereas
an MLP treats a sequence x = (x1,x2, . . . ,xt) as merely a point in a high-dimensional space, RNNs
explicitly model the current value xi as a function of the previous value xi−1 and a hidden state
vector. This hidden state vector allows RNNs to capture long-range dependencies. For example,
an RNN that models arrivals to a restaurant might learn that a high arrival rate in the morning
predicts a high arrival rate later that evening. LSTM networks improve upon standard RNNs by
allowing easier and more stable training. We give a high-level functional overview of LSTMs in
the following, and refer the reader to the work of Hochreiter and Schmidhuber [15] for further
details about the low-level architecture.

At a (discrete) timestep i , the LSTM unit receives the hidden state and cell state from the previous
timestep, along with the current input. The unit computes a new hidden and cell state through a
series of nonlinear transformations, and passes this data on to the next timestep. The hidden state
is also fed into the input layer of a task-specific MLP to compute the output yi . For our specific

NIM-VL encoder, the MLP’s hidden layer transforms the input hidden state h̃i into an intermediate
state д̃i , which is then used to compute μ̃i and σ̃ 2

i ; the decoder behaves analogously. Figure 5(a)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:9

depicts this process. We also show an “unrolled” version of the LSTM network to clearly illustrate
the dataflow (Figure 5(b)).

Formally, the network structure is as follows. Let hi , ci ∈ �m and дi ∈ �l be the hidden state,
cell state, and task-specific hidden state (i.e., the state of the hidden layer of the task-specific MLP)
at time i , where m and l are user-defined sizes. Let xi be the input at time step i and θLSTM be
the collection of trainable weights inside the LSTM network. For simplicity, we denote the entire
LSTM transformation at time i as (hi , ci) = fLSTM (hi−1, ci−1,xi ;θLSTM). Then the encoder computes

μ̃ and σ̃ 2 from an observation x via the following computations, where W̃1 ∈ �l×m , b̃1 ∈ �l×1,

W̃2,W̃3 ∈ �1×l , and b̃2, b̃3 ∈ �:

(h̃i , c̃i) = fLSTM (h̃i−1, c̃i−1,xi ; θ̃LSTM), д̃i = max(0l ,W̃1h̃i + b̃1), μ̃i = W̃2д̃i + b̃2, log σ̃ 2
i = W̃3д̃i + b̃3.

(3)
The decoder similarly computes μ̂ and σ̂ 2 from z via

(ĥi , ĉi) = fLSTM (ĥi−1, ĉi−1,xi−1, zi ; θ̂LSTM), д̂i = max(0l ,Ŵ1ĥi +b̂1), μ̂i = Ŵ2д̂i +b̂2, log σ̂ 2
i = Ŵ3д̂i +b̂3. (4)

In our experiments, we set l =m in both the encoder and decoder LSTMs and refer tom as the size

parameter of the NIM-VL network. (Similarly, the size parameter m of a NIM-VM network is the
number of neurons in the hidden layer of the encoder and decoder MLPs.) The training procedure
is similar to NIM-VM—see Section S1—in that we use the Adam algorithm for mini-batch gradient
descent to minimize an appropriate loss function. With training points now t-dimensional (i.e.,
x = (x1, . . . ,xt)), the loss function in Equation (1) now takes the specific form

L(x ;θ) = −1

2

t∑
i=1

(log σ̃ 2
i − μ̃2

i − σ̃ 2
i + 1) +

1

2

t∑
i=1

(
log 2π + log σ̂ 2

i +
(xi − μ̂i)2

σ̂ 2
i

)
. (5)

Exploiting Domain Knowledge. When building a simulation, the modeler usually has some do-
main knowledge about the input processes to the system. For example, when studying the behavior
of a queueing system, we know that the interarrival times and the processing times must always be
positive. In other cases, we might know that the blood sugar levels of successive patients are i.i.d.,
or that the distribution of transportation times is multimodal. Exploiting these types of knowledge
lets us train a more accurate NIM model, and can also accelerate training and generation. We out-
line some specific techniques in the following. Although we describe our methods in the context
of NIM-VL, they can also be applied to NIM-VM essentially without change.

Bounded Random Variables. If we know a priori that there exist lower and/or upper bounds on the
range of the input stochastic process of interest, then we first transform each training point x =
(x1, . . . ,xt) by applying a nonlinear transformationϕ that maps each value into (−∞,+∞), thereby
creating a modified training point x ′ = (ϕ (x1), . . . ,ϕ (xt)). We then apply the normal training pro-
cedure to the x ′-values. During the subsequent generation phase, we apply the inverse transform
to each generated point y ′ = (y1, . . . ,yt) to create the final output y = (ϕ−1 (y ′1), . . . ,ϕ−1 (y ′t)). For

example, if the original range is (α ,+∞), we can choose ϕ (v) = log(v − α) and ϕ−1 (v) = ev + α .
Similarly, if the range is (−∞,α), then we can negate each value so the range becomes (−α ,+∞)
and apply the same method. For a range (α , β), we can choose ϕ (v) = ψ−1 ((v − α)/(β − α)) and
ϕ−1 (v) = (β − α)ψ (v) + α , whereψ (v) = 1/(1 + e−v) is the sigmoid function.

I.i.d. Random Variables. If the target variables are known to be i.i.d., then we can simply use the
NIM-VM architecture discussed in Section 2. This can increase both accuracy and generation speed,
since NIM-VM will not learn any erroneous intertemporal correlations, and MLP components are
simpler and faster than LSTM components.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:10 W. Cen and P. J. Haas

Multimodal Distributions. If we know that the marginal distributions of the xi ’s are multimodal, we
can replace the usual Gaussian data-generation distribution N (μ̂, σ̂ 2) in the decoder by a Gaussian
mixture distribution with M mixture components, where M is a user-specified parameter. Specifi-
cally, given an input zi , the decoder first executes the following computations:

(ĥi , ĉi) = fLSTM (ĥi−1, ĉi−1,xi−1, zi ; θ̂LSTM), д̂i = max(0l ,Ŵ1ĥi + b̂1), αi = softmax(Ŵ2д̂i + b̂2).
(6)

Forv = (v1, . . . ,vM), the ith component of softmax(v) is defined as evi /
∑M

j=1 e
vj . The components

of the vector αi = (αi1, . . . ,αiM) computed in Equation (6) thus sum to 1 and are interpreted as
mixture coefficients. The decoder computes the individual means and variances for the mixture
components via

μ̂i j = Ŵ3jд̂i + b̂3, log σ̂ 2
i j = Ŵ4jд̂i + b̂4

for j ∈ [1..M]. We also change the second term in the loss function accordingly to

t∑
i=1

log

(M∑
j=1

αi j (2πσ̂ 2)−1/2 exp
(
(x − μ̂i j)

2/2σ̂ 2
i j

))
.

To generate an output yi , we first choose a mixture component by sampling j ∈ [1..M] according
to the probabilities αi1, . . . ,αiM , and then sample yi from the jth Gaussian distribution N (μ̂i j , σ̂

2
i j).

When in doubt about the true number M ′ of modes, it is best for accuracy’s sake to err on the side
of too many mixture components; if M > M ′, we found empirically that NIM will automatically
make some of the μ̂i j ’s and σ̂i j ’s approximately equal to each other so that the effective number of
modes is M ′.

Necessity of VAE. Is it possible to model stochastic input processes simply by training an LSTM
to use the previous value xi−1 to compute the probability distribution of the current value xi ? This
would lead to a simpler and faster network. In Section S2, we therefore consider an ablated version
of the NIM-VL network in which the VAE component is removed and only the LSTM network is
kept. In our experiments, this ablated architecture usually failed to generate sample paths having
the required statistical characteristics. These results confirm that it is indeed the combination of
VAE and LSTM techniques that makes it possible for NIM-VL to model and generate complex
stochastic processes.

4 NIM-VL EXTENSIONS

In this section, we discuss three extensions to NIM-VL that enable it to be used when the modeled
stochastic sequence is multivariate, when it takes on discrete categorical values, and when it is
nonstationary.

Multivariate Sequences. Multivariate stochastic input sequences have traditionally been mod-
eled using classical linear Vector Autoregressive (VAR) processes [5, Section 14.2] whose mar-
ginal distributions are Gaussian. More recent models that allow arbitrary marginal distributions
include the VARTA model of Biller and Nelson [3], which was subsequently extended to allow a
broader variety of dependence structures via copula theory [2]. Such models, and many more, can
be captured by NIM with minimal changes to the basic architecture. In detail, to model a process
where xi ∈ �d for i ≥ 0, we use essentially the NIM-VL (or NIM-VM) architecture as described
previously, but with modifications to change the dimensions of μ̃i , σ̃i , μ̂i , μ̂i , and zi from 1 to to d .
For the encoder, the weights and biases inside the LSTM are now of respective dimensions m × d
and m × 1 so that the hidden and cell states are m × 1 as before, and the weights and biases in

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:11

Equation (3) are modified so that W̃2,W̃3 ∈ �d×l and b2,b3 ∈ �d . The decoder is modified simi-
larly. During training, we compute the d-dimensional variate zi = μ̃i + σ̃iξ , where ξ ∼ N (0, Id) is
a d-dimensional standard normal random variable; during generation, zi is sampled from N (0, Id).
In Section 6.1, we demonstrate how NIM can capture processes having statistical dependencies
both over time and between state components using a simple VAR(1) sequence.

Categorical-Valued Sequences. To model a stochastic sequence having finite state space S =
{1, 2, . . . ,C}, we modify the NIM architecture so that the decoder produces not the parameters μ̂i

and σ̂ 2
i of a normal distribution for generating a real-valued output state yi but rather the parame-

ters p̂ = (p̂1, p̂2, . . . , p̂C) of a discrete distribution for producing a categorical-valuedyi . Specifically,
during the training phase and for each i ∈ [1..t], we first transform each observed categorical value
xi via one-hot encoding, as is standard for dealing with categorical data. In other words, we trans-
form xi into a C-dimensional vector whose xi th element equals 1 and whose jth element equals 0
for j � xi . Next, the decoder computations of NIM-VL are changed to

(ĥi , ĉi) = fLSTM (ĥi−1, ĉi−1,xi−1, zi ; θ̂LSTM), д̂i = max(0l ,Ŵ1ĥi + b̂1), ŝi = Ŵ2д̂i + b̂2.

Here, ŝi = (ŝi,1, . . . , ŝi,C) is a “score vector” that is normalized to a vector of probabilities p̂i using
the softmax function defined in Equation (6)—that is,

p̂i, j =
e ŝi, j∑C

l=1 e
ŝi,l

for j ∈ [1..C]. The loss function is defined by modifying the reconstruction-loss term in
Equation (5) to obtain

L(x ;θ) = −1

2

t∑
i=1

(log σ̃ 2
i − μ̃2

i − σ̃ 2
i + 1) −

t∑
i=1

log(p̂i,xi
).

During the generation phase, we first sample zi ∼ N (0, 1) as usual. Then we feed zi into the decoder
to compute ŝi and normalize it via softmax to obtain p̂i . Finally, we generate yi as a sample from
the discrete distribution p̂i . In Section 6.1, we show how our technique can accurately capture a
second-order finite-state Markov chain.

Extrapolating Nonstationary Sequences. As exemplified later by Figure 12 in Section 6.1, in
which NIM-VL is used to model a Nonhomogeneous Poisson Process (NHPP) with periodic
rate function, we can sometimes extrapolate beyond the training data. In other words, given train-
ing points comprising stochastic sequences of the form x = (x1,x2, . . . ,xt), we can train NIM-VL
to generate synthetic sequences of length greater than t . In the case of the Poisson process, where
each xi is an interarrival time, we can extrapolate beyond the continuous-time interval [0, t] on
which the training data was observed.

For certain classes of nonstationary input processes, we also can extrapolate beyond the train-
ing data by applying differencing techniques developed for classical time series analysis [5].
Specifically, denote by ∇ the time series differencing operator: for x = (x1,x2, . . . ,xt), define
∇x = (x2 −x1,x3 −x2, . . . ,xt −xt−1) and recursively define the dth-order differencing operator by
∇dx = ∇(∇d−1x). A nonstationary time series x is homogeneous if the process ∇dx is stationary or
periodic for some d ≥ 1; in practice, small values of d usually suffice.1 Typically, such processes
can be represented as the sum of a stationary or periodic process plus a polynomial trend. For a
homogeneous nonstationary sequence, we can simply train NIM-VL on the differenced training

1This usage differs slightly from the standard time series terminology in which a time series x is called homogeneous if

∇d x is stationary for some value of d .

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:12 W. Cen and P. J. Haas

Fig. 6. The mean values of successive NHPP interarrival times before and after differencing. After differenc-

ing, the stochastic process is stationary. (Means are computed over 2,000 interarrival-time sequences.)

sequences. Then, at generation time, we first generate the dth-order differences using NIM-VL and
then recover the desired stochastic sequence by inverting the difference operator via cumulative
summation. This procedure is analogous to how an ARIMA(p,d,q) model is fit to a nonstationary
sequence by first taking dth-order differences and then fitting a stationary ARMA(p,q) model to
the differenced observations.

For example, when modeling the interarrival time sequence from a nonstationary NHPP whose
rate function is λ(t) = 1+0.02t , the mean of the successive interarrival times is nonstationary and
decreasing over time. However, after taking the first-order difference, the mean becomes stationary.
Figure 6 shows the effect of the differencing. In general, the degree of differencing required can be
informally determined by visual inspection of the time series and its Autocorrelation Functions

(ACFs) or by various formal statistical tests (e.g., See Section 10.1 in the book by Box et al. [5]).
Similarly, periodicity can be detected visually or via spectral density or periodogram [32] methods.
We illustrate the main ideas via an example (Section 6.1) but leave a full treatment of these issues
to future work.

5 CONDITIONAL NEURAL INPUT MODELING

We now introduce CNIM. This extension to NIM allows us to model and generate stochastic input
sequences given a vector C of static (“global”) or time-varying (“local”) external conditions that
can influence the characteristics of the sequence. For example, global daily weather conditions
(total precipitation, average wind speed, average temperature) can greatly affect the arrival rate
of calls to an emergency call center during the day. CNIM trains a single joint model on both
interarrival sequences and global weather conditions. During simulation, we then can specify
particular weather conditions (total precipitation = 5.2 inches, average wind speed = 20.6 mph,
average temperature = 31.7◦) and generate call arrival patterns specific to these conditions. For
more detailed modeling, we might want to condition the hourly call arrival rates on the hourly
weather conditions. Categorical conditions can be handled via one-hot encoding.

Whereas traditional input modeling helps practitioners simulate how the system of interest will
behave in general, CNIM can further answer what-if questions about the system under a particular
set of working conditions and thus help improve the quality of decision making for this specific
scenario. Additionally, CNIM can help us customize our general operational knowledge to novel
settings. Examples of the possible CNIM applications include the following:

(1) A company has several factories operating under different working conditions. For example,
at one factory, the workers are highly skilled but the machines they use are 6.5 years old. At
another site, the workers are less experienced but the machines are only 3 years old, and so

on. Suppose that we have collected processing-time datasets x (1), . . . x (n) for the n factories.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:13

Fig. 7. Two alternative methods for generating sample paths based on an external condition C = (C1,C2).
On the left, the condition space is partitioned and the data examples in the same grid are selected as training

data. On the right, three nearest neighbors in the condition space are selected to train the NIM model.

Now the company is opening a new factory where the workers are highly skilled and the
machines are 4 years old. We are interested in producing processing time samples under
these new conditions to simulate operations at this new factory.

(2) The orders placed at an ice cream shop correlate closely with real-time temperature readings
throughout the day. We would like to generate sample paths of the form (x1,x2, . . . ,x12)—
where xi is the amount of ice cream ordered during the ith hour of operation—given hourly
temperature observations. This application is similar to the factory example, except that the
conditions are local and take the form of a stochastic process rather than a static global
vector of parameter values.

Importantly, CNIM interpolates from the data it has seen during training and does not try to
extrapolate to the regions in the condition-value space where there is no training data available. For
example, if the training data only contains observations under sunny and rainy weather conditions,
then the user might be able to generate input sequences under intermittent showers but will not
be able to generate sequences under snowy conditions.

One potential alternative to CNIM is the partition method: to generate sample paths under con-
dition vector C, we first partition the space of condition values (the “condition space”) into a grid
and then train an (unconditional) NIM model on the sequences whose condition value falls into
the same grid cell as C (see Figure 7). Another alternative is the nearest neighbor method, where we
train a NIM model on the k nearest data points to C. As we demonstrate in Section 6.4, however,
neither method works very well, for several reasons. First, to generate sample paths under multiple
conditions, one must train multiple NIM models, one for each condition, which often translates
into relatively long training times. Second, it can be difficult to find a good scheme selecting the ap-
propriate data points on which to train. For example, we must determine the appropriate width of
the grids or how many neighboring condition values we want to include. The situation becomes es-
pecially difficult when the condition is represented as a high-dimensional real-valued vector. Most
critically, after partitioning or selecting the nearest neighbors, there may not be enough data in a
given region of the condition space to train a high-quality model. In contrast, for CNIM, we only
need to train a single model, which can then generate sample paths under different conditions. By
training on the entire dataset, CNIM can learn the common features across all data examples and
fine-tune its response by automatically interpolating the points near C.

Technical Details. Mathematically, CNIM aims to generate a stochastic process sample path
x = (x1, . . . ,xt), given an external condition in the form of a sequence C = (C1, . . . ,Ct) of the same
length as x . In general, each element of Ci is of the form Ci = [G,Li], where G = [G1, . . . ,Gq] is
a static vector of q ≥ 1 “global” conditions that hold over the entire duration of the input process

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:14 W. Cen and P. J. Haas

Fig. 8. CNIM architecture.

and L = (L1, . . . ,Lt) is a time series of “local” conditions that vary over the simulation run; each
Li is itself a vector of length n ≥ 1. For instance, in the factory example, we have G = [G1,G2],
where G1 = 1 if the workers are highly skilled and 0 otherwise, and G2 = the age of the machines.
Thus, G = (1, 6.5) for the first factory and G = (0, 3.0) for the second. The condition G impacts the
entire stochastic sequence of processing times. There is no local condition, so Li = [] for i ∈ [1..t].
In the example of the ice cream shop, there is no global condition, so that G = [], and the local
condition Li is the temperature at the ith timestep.

From a technical perspective, the extension from NIM to CNIM does not require changing the
NIM architecture; it only requires changing the training data provided to NIM. In other words, both
global and local CNIM models lead to the same neural network architecture and loss function as
before, with the difference being how we concatenate the stochastic process x and the condition
c and feed the combined data to NIM. Specifically, the input to the encoder during both training
and generation becomes x ′ = (x ′1, . . . ,x

′
t), where x ′i = [xi ,Ci] for i ∈ [1..t], and the input to the

decoder becomes Z ′i = [zi ,xi−1,Ci] for i ∈ [1..t]. Figure 8 shows the resulting architectures of
both models.

Practicalities. One natural question is whether the global condition G must be concatenated
with each xi when forming the input to NIM. A possible alternative is to introduce G into the
computation by using it to initialize the hidden state of the LSTM component and letting this com-
ponent handle the propagation of G over all of the timesteps. Unfortunately, this type of approach
fails because, due to the finite capacity of the LSTM component, initial conditions eventually fade
out, so that the global condition G is not correctly propagated to the ith time step as i becomes
large. We therefore must “manually” propagate G by appending it to each xi . We note, however,
that we do not need to store multiple copies of G on disk; condition G can be stored once and
concatenated with each xi as the input-process sample paths are fed into NIM. Moreover, using,
for example, the PyTorch expand operator, we need only store one copy of G in memory during
training.

There are some subtle considerations when determining whether a given condition should be
treated as local or global. In particular, our network architecture (see Figure 8) implicitly assumes
that

P (xi | x1, . . . ,xi−1;L1, . . . ,Lt) = P (xi | x1, . . . ,xi−1;L1, . . . ,Li) (7)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:15

so that P (xi) cannot depend on any information that will only be revealed after timestep i . As
an example, suppose we have a dataset consisting of stochastic process x = (x1, . . . ,xt) and the
local condition L = (L1, . . . ,Lt) where xi are the arrival times for an NHPP and each Li is
the instantaneous arrival rate at time xi (i.e., Li = λ(xi)). At generation time, suppose we have
a specific local condition L′ = (L′1, . . . ,L′t) so that our goal is to generate sample paths y =
(y1, . . . ,yt) such that the instantaneous rate at time yi is L′i . In this case, CNIM will not work well
because, for an NHPP, we have

P (xi+1 > t | xi = ti) = exp
(
−

∫ t

ti

λ(u) du
)
.

In other words, to calculate the probability distribution of next arrival time xi+1, we need to know
the entire shape of λ(u) for u ∈ [xi , t), in violation of (7). We therefore need to use a global con-
dition G = (L1,L2, . . . ,Lt). We show, via an experiment in Section 6.4, that the global approach
can be used successfully for this example.

The additional functionality of CNIM comes at a computational cost. Specifically, assuming that

the dimension of the encoder’s hidden layer ĥ is |ĥ | and that each xi is real valued, the weight

matrix to map the encoder input [xi ,G,Li] to the hidden vector ĥ is of size (|G| + |L| + 1) × |ĥ |,
where |G| and |L| are the dimensions of G and Li . For ordinary NIM, the weight matrix is only

of size 1 × |ĥ |. A similar analysis applies for the decoder. In the foregoing NHPP example, |G| = t
so that CNIM becomes relatively expensive when t is large.

6 EXPERIMENTS

We conducted a series of experiments to assess NIM’s accuracy and performance. Our results indi-
cate that NIM can faithfully model both complex i.i.d. probability distributions and complex, possi-
bly nonstationary stochastic processes. Moreover, when interarrival and service times learned by
NIM are used to drive a GI/G/1 queueing simulation, the outputs are close to those of the same sim-
ulation driven by the “ground truth” input processes. NIM was also able to accurately model the
arrival process to a real-world call center. For CNIM, we found that the sample paths it generates
have the required characteristics specified by the conditional parameters. Finally, NIM exhibited
fast training and generation speeds, enabling practical deployment, and the required training set
sizes were modest compared to other VAE applications such as images, music, and text.

In general, we selected the network sizes essentially by cross validation. One simple approach
for doing this is as follows: (i) partition the overall training data into training and testing subsets,
(ii) determine an appropriate error metric such as the integrated difference between ground
truth and empirical arrival rates, (iii) initially fit a small NIM model on the training subset, and
(iv) iteratively increase the model size until the error (as measured using the testing subset)
reaches an acceptable value. See also the discussion on AutoML in Section 6.5.

6.1 Synthetic Complex Input Processes

We tested NIM-VL on seven synthetic stochastic processes of varying complexity: an ARMA(3,3)
process, a nonstationary ARMA/ARMA mixture process, an interarrival-time sequence for a non-
homogenous Poisson process, the waiting-time sequence for a GI/G/1 queue, a sequence of i.i.d.
multimodal random variables, a multivariate VAR(1) process, and a Markov chain with finite state
space. In each case, NIM-VL was trained with 1,000 ground truth sample paths, each of length 100
unless otherwise noted. (For the i.i.d. example, this amounts to 100,000 i.i.d. training samples.) Sam-
ple paths generated traditionally are called ground truth, and those generated by our VAE are called
NIM-VL. Unless specified otherwise, we used size parameter m = 32 for NIM-VL and NIM-VM, as
defined previously.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:16 W. Cen and P. J. Haas

Fig. 9. ACF and PACF for the ARMA(3,3) process.

Table 1. Mean Log-Likelihood of Sample Paths Generated by NIM-VL, Ground Truth, and ExpertFit

Stochastic Process NIM-VL Ground Truth ExpertFit ExpertFit Dist’n/Quality
ARMA(3, 3) –198.56 ± 1.18 –197.98 ± 1.07 –5,931.81 ± 240.43 Johnson SU/Good
NHPP 43.00 ± 0.17 43.53 ± 0.17 37.73 ± 0.18 Pearson Type VI/Good
I.i.d. Gamma-unif. mix. –236.26 ± 0.39 –226.95 ± 0.19 –415.42 ± 0.64 Johnson SB/Bad

ARMA(3,3). We first modeled an ARMA(3,3) process using NIM-VL. The autoregressive coeffi-
cients were (0.3, 0.4,−0.1), and the moving average coefficients were (0.2, 0.3,−0.7). Distribution
of each error term (for this and all other ARMA and ARIMA processes discussed in the article
unless otherwise noted) is N (0, 1). At test time, we generated one NIM-VL sample path and
compared it to a ground truth ARMA(3, 3) sample path, both of length 10,000. Figure 9 shows the
empirical ACF and Partial Autocorrelation Function (PACF) of the ground truth ARMA time
series and NIM-generated sample path. Notice that the ACF and PACF of the NIM-VL generated
sample path have damped sine wave shapes almost identical to those of the ground truth ARMA
process.

We also numerically evaluated the fidelity of NIM-VL by computing the mean log-likelihood,
under the ARMA(3,3) distribution, over 1,000 sample paths of length t = 100 generated (i) by NIM-
VL after training, (ii) as sequences of i.i.d. samples from a fitted distribution found by ExpertFit,
and (iii) directly from a true ARMA(3,3) distribution (and different from the paths used to train
NIM-VL).

The results are given in the first row of Table 1, where precision is indicated by 95% confidence
interval bounds. It can be seen that the mean log-likelihood for NIM-VL-generated sample paths is
close to that for the ground truth sample paths. ExpertFit was unable to detect the inter-temporal
correlations of ARMA(3,3), and mistakenly identified the process as a sequence of i.i.d. samples
from a Johnson SU distribution, rating the fit as “good.” Not surprisingly, the log-likelihood score
was extremely poor in this case.

ARMA/ARMA Mixture. Next, we considered a mixture {Xi }i≥1 of two nonstationary ARMA(2,2)
processes {Ai }i≥1 and {Bi }i≥1. To generate a sample path, we ran both processes in parallel; at
timestep i , we set Xi = Ai with probability 0.5 and otherwise set Xi = Bi . The parameters of the
two processes are (0.95,−0.1; 0.2, 0.95) and (0.8,−0.3; 0.3, 0.7). At test time, the trained model was
used to generate 10,000 NIM-VL sample paths of length 100, and these NIM-VL sample paths were
compared against 10,000 validation ground truth sample paths (again distinct from the sample
paths used for training). As a simple way to compare these complex, nonstationary stochastic pro-
cesses, we took the validation ground truth sample paths xn = (xn,1, . . . ,xn,100) for n ∈ [1..10,000]

and computed empirical correlation coefficients ρ̂GT
i j = Ĉorr[Xi ,X j] for 1 ≤ i, j ≤ 100. We similarly

computed ρ̂NIM
i j for the NIM-VL sample paths and plotted the absolute differencesdi j = |ρ̂NIM

i j −ρ̂GT
i j |

in a heat map. Figure 10(a) and 10(b) show the empirical correlations ρ̂GT
i j and ρ̂NIM

i j , respectively.

Figure 10(c) gives the correlation difference plot. Note that Figure 10(a) and (b) both have scale

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:17

Fig. 10. Empirical correlation coefficients for the ARMA/ARMA mixture stochastic process.

Fig. 11. Empirical correlation co-

efficient differences for NHPP.

Fig. 12. Empirical arrival rate and

arrival variance for NHPP.

Fig. 13. Empirical correlation co-

efficient differences for GI/G/1

waiting-time sequence.

[0, 1], whereas Figure 10(c) has scale [0, 0.1]. The largest absolute correlation difference value is
0.060, indicating good agreement.

Nonhomogeneous Poisson Process. We next tested our approach on an NHPP interarrival time
process with a rate function λ(t) = 1

2 sin(π
8 t) +

3
2 . Because we know a priori that interarrival

times for an NHPP are positive with probability 1, we applied the log-transformation technique
described in Section 3 when using NIM-VL. Ground truth data was generated via thinning (see [22]).
Figure 11 shows the correlation differences. The largest absolute correlation difference is 0.069,
again indicating good agreement.

We also compared the empirical arrival-rate function to the ground truth function λ(·) given
previously. We trained NIM-VL on 1,000 sample paths of arrival times in the time interval [0, 50]
and tested on 10,000 sample paths with arrivals in [0, 100]. In detail, we computed the empirical
arrival-rate function by first computing the sequence of arrival times (by taking partial sums of in-
terarrival times), then dividing the interval [0, 100] into small subintervals of length 0.2, and finally
computing the average number of arrivals in each subinterval over the 10,000 sample paths. We
also computed the empirical and theoretical variance of the number of arrivals in each subinterval.

Figure 12 shows the empirical and ground truth arrival-rate functions, as well as the empirical
and ground truth variance in the number of arrivals over the small subintervals. As can be seen,
the agreement is quite good, not just during the interval [0, 50], the period on which NIM-VL was
trained, but also on the interval [50, 100], where NIM-VL never saw data values during training.
NIM-VL thus learned the underlying statistical structure of the NHPP—without knowing that it
was an NHPP—and thus was able to extrapolate beyond the training data.

Next, we computed log-likelihoods of generated sample paths, analogously to our ARMA(3,3)
experiment. Looking at the second row of Table 1, it can be seen that, as with ARMA(3,3), the mean
log-likelihood for NIM-VL generated sample paths is close to that for the ground truth sample

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:18 W. Cen and P. J. Haas

Fig. 14. Empirical densities for Gamma-Uniform mixture.

paths. ExpertFit is again unable to detect intertemporal correlations, and mistakenly identifies the
process as a sequence of i.i.d. samples from a Pearson Type VI distribution, rating the fit as “good.”
Although the log-likelihood score is much better than for ARMA(3,3), it is still lower than for NIM-
VL. We note that a more careful user of ExpertFit could generate an autocorrelation plot, and hence
might visually detect the lack of independence, but then there would be no guidance on what to
do next.

Waiting Time Sequence for a GI/G/1 Queue. The next complex stochastic process that we
examined was the waiting-time sequence for a GI/G/1 queue, which can be generated from the
well-known Lindley recursion or by simulating the queue. We used a Gamma(0.25, 4) interarrival-
time distribution and a Gamma(0.5, 1) service-time distribution. Since the waiting time is always
nonnegative, we used the log-transformation described in Section 3. We generated 1,000 sample
paths, each comprising the sequence of waiting times for the first 100 jobs, and used these to
train NIM-VL with size parameter m = 128. We then compared the NIM-VL sample paths against
a validation set of 1,000 ground truth sample paths. Figure 13 shows the empirical correlation
differences. The maximum difference is 0.056, again showing good agreement.

Multimodal Distribution. Finally, in the i.i.d. setting, we show how domain knowledge can be
exploited to accurately capture a multimodal distribution by using the Gaussian-mixture technique
of Section 3, as well as a log-transformation to enforce nonnegativity. We denote the resulting
network as NIM-VL-GM. Specifically, we consider a mixture distribution having two components,
a Gamma(2.875, 0.5) and a Uniform(10, 20) distribution, with mixing weights 0.6 and 0.4. For this
challenging distribution, ExpertFit fitted a Johnson SB distribution family to the data, completely
missing the multimodality, but at least rated the fit as “bad.” As shown in Figure 14, the enhanced
version of NIM-VL is able to capture the structure of this distribution. Moreover, the third line in
Table 1 shows that the empirical mean log-likelihood of NIM-VL-GM is close to that of ground
truth and is significantly higher than that of ExpertFit.

Multivariate Stochastic Process. We tested the ability of NIM to capture a multivariate stochas-
tic process using a two-dimensional VAR(1) process of the form[

x1,t

x2,t

]
=

[
0.3 −0.4
−0.6 −0.3

] [
x1,t−1

x2,t−1

]
+

[
e1,t

e2,t

]
,

where e1,t and e2,t are i.i.d. N (0, 1) random variables. We created a dataset of 1,000 sample paths
from this process comprising 50 timesteps each. After training, we used NIM-VL to generate one
sample path of length 500 and estimated the coefficient matrix via least squares [5, p. 516]. The
estimated coefficient matrix is [

0.330 −0.381
−0.634 −0.228

]
,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:19

Table 2. Mean Log-Likelihood of Multivariate Sample Paths Generated by

NIM-VL, Ground Truth, and the i.i.d. Model

Stochastic Process NIM-VL Ground Truth I.i.d. 2D Normal

VAR(1) −1, 435.20 −1, 438.10 −1, 616.34

Table 3. Ground Truth Transition Probability of Second-Order Markov Chain and Estimated

Transition Probability of the Sequences Generated by NIM-VL

Next State

Current State 1 2 3

1, 1 1/10 1/2 2/5
1, 2 1/3 1/3 1/3
1, 3 1/2 1/3 1/6
2, 1 1/5 7/10 1/10
2, 2 4/5 1/10 1/10
2, 3 1/10 4/5 1/10
3, 1 3/10 3/10 2/5
3, 2 2/5 2/5 1/5
3, 3 1/10 1/3 17/30

True transition probabilities.

Next State

Current State 1 2 3

1, 1 0.095 0.504 0.401
1, 2 0.325 0.323 0.352
1, 3 0.484 0.307 0.210
2, 1 0.163 0.729 0.108
2, 2 0.839 0.068 0.093
2, 3 0.071 0.839 0.090
3, 1 0.275 0.309 0.416
3, 2 0.386 0.387 0.227
3, 3 0.107 0.345 0.547

NIM-VL empirical transition probabilities.

a close match to the ground truth coefficient matrix that generated the original process. Further-
more, we computed the mean log-likelihood of sample paths generated by NIM-VL and compared
it with that of a true VAR(1) process. We also evaluated the mean log-likelihood in a hypothetical
situation where correlation across timesteps is ignored and the process is erroneously modeled
as an i.i.d. sequence of two-dimensional Gaussian vectors. The result is shown in Table 2. As can
be seen, the mean log-likelihood for NIM-VL-generated sample paths falls in the same range as
for the ground truth sample paths and is much higher than for the sample paths generated from
the erroneous i.i.d. Gaussian model. This experiment indicates that the multivariate extension of
NIM-VL can accurately model certain multivariate stochastic processes. If the state dimension in-
creases and there are many complex interactions between state components at a given time or at
successive times, as in a sequence of video frames, then our architecture would encounter increas-
ing difficulty in capturing the process due to both process complexity and increasing network size.
Increases in order are easier to handle.

Finite-State Categorical Stochastic Process. The next experiment models a second-order
Markov chain to test NIM-VL’s ability to model discrete stochastic process with finite number
of categories. The transition probabilities are given on the left side of Table 3. As in previous ex-
periments, we generated a training dataset of 1,000 sample paths, each of length 50. The neural
network has size parameterm = 32. After training, we used NIM-VL to generate discrete sequences
and estimated the empirical transition probability, shown on the right side of Table 3. It can be seen
that the true and empirical transition probabilities agree closely.

Extrapolating Nonstationary Stochastic Processes. We consider two examples where NIM-VL
can successfully extrapolate a nonstationary process beyond the time interval used for training.
The first example is “easier,” in that the ground truth values in the extrapolated time interval are
similar to a subset of the values that occur during the training interval, and the evolution of the
data values follows a predictable pattern (although NIM-VL must learn the pattern). In this case,
we show that standard NIM-VL can successfully extrapolate values if there is enough training data

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:20 W. Cen and P. J. Haas

Fig. 15. Extrapolation of two nonstationary NHPPs with different rate functions. In each case, NIM-VL was

trained on arrivals in the interval [0, 50] and arrival times were extrapolated to the interval [50, 100]; em-

pirical arrival rates are based on 2,000 i.i.d. sample paths. (a, b) The empirical rates for a damped sine wave

rate function. (c, d) The empirical arrival rate of for a linearly increasing rate function without and with

differencing.

and the network size parameter m is sufficiently large. For the second example, the ground truth
values in the extrapolation range are different from those in the training range so that standard
NIM-VL fails. Because the process is homogeneous nonstationary, we show that differencing can
be applied successfully.

For the first example, we considered an NHPP process whose rate function is given by
λ(t) = 0.5 exp(−0.02t) sin(π

8 t) + 1.5 (i.e., a damped sine wave). We used a dataset comprising
1,000 training sequences to train two different NIM-VL networks having size-parameter values of
m = 32 and m = 256, respectively. We then compared ground truth and empirical rate functions
for each network. As seen in Figure 15(a) and (b), both networks performed well over the training
interval. In the extrapolation interval, the larger network was able to model the gradually
decreasing amplitude of the sine wave, whereas the smaller network was not. Thus, given enough
training data, increasing the size of a NIM-VL network can improve its ability to model more
complex patterns in the dataset. As shown in Table 4 in Section 6.5, a complementary result is
that, for a given network size, a larger training dataset is typically needed to capture more subtle
statistical features of the stochastic process.

Our second example demonstrates the use of differencing to allow extrapolation of homoge-
neous nonstationary input processes beyond the training interval. In detail, we considered an
NHPP having linear rate function λ(t) = 1+ 0.02t . We created a training dataset comprising 2,000
sequences of interarrival times in the time interval [0, 50]. Although a NIM-VL model trained di-
rectly on the interarrival-time sequences captured the linear rate function within the range [0, 50],
the model was unable to correctly extrapolate the rate function to the range [50, 100], as seen
in Figure 15(c). To overcome this difficulty, we trained NIM-VL on the successive differences of
arrival times, used the trained model to generate synthetic sequences of differences, and then in-
tegrated these sequences to obtain the desired synthetic sequences of interarrival times. As seen
in Figure 15(d), use of the differencing technique allowed us to correctly extrapolate the rate func-
tion to the interval [50, 100]. In an additional experiment (Section S4) we found that NIM-VL with
differencing can accurately model a stochastic sequence that is both nonstationary and periodic.

The preceding results indicate that modeling the differenced sequence can be a simple yet effec-
tive way for NIM to extrapolate homogeneous nonstationary stochastic processes. Our examples
had linear trends, so first-order differencing sufficed, but as mentioned previously, techniques from
the time series literature can be adapted to automatically estimate the required order of differenc-
ing for processes having a polynomial trend. Other trend removal techniques can potentially be
used to handle other types of nonstationary stochastic processes (e.g., see [7, pp. 14–25]), but it
becomes challenging to automate these procedures for non-experts. We leave a full treatment of
extrapolation beyond the training data to future work.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:21

Fig. 16. Empirical arrival rates for emergency-call

data.

Fig. 17. Q-Q plot forW60 distribution in a GI/G/1

queue.

6.2 Real-World Dataset: Emergency Call Center

We applied NIM-VL (with size parameterm = 128) to a real-world dataset, the daily emergency-call
interarrival times for the San Francisco Fire Department in 2018. We randomly selected two-thirds
of the data (243 days) to train the model. We then generated sample paths and compared their
empirical arrival-rate function to the remaining one-third (122 days) of the San Francisco Fire
Department data using the same method discussed in the previous section.

As can be seen in Figure 16, the empirical arrival-rate function of NIM-generated data closely
approximates that of the actual data. Note that the ground truth arrival-rate function is constructed
from less data than was used to construct the arrival-rate function for NIM-VL, and hence is less
smooth.

6.3 A Queueing Simulation

Our next experiment examines the end-to-end effect of using inputs from NIM-VL to simulate the
waiting timeW60 of the 60th job in an NHPP/Gamma/1 FIFO queue: the interarrival time process is
an NHPP as before with i.i.d. Gamma(1.2, 0.4) service times. The training sets for interarrival times
and for service times each comprise 1,000 sample paths with 50 observations per path. We applied
our log-transformation method for interarrival and service times. Figure 17 shows a Q-Q plot for
the distribution of W60 over 4,000 simulation replications, comparing simulations with ground
truth inputs to simulations with NIM-VL inputs; there is close agreement between the simulations.
Note that each sample path in the training data comprises only 50 jobs, but we simulate 60 jobs.
This indicates that, if the system is not too nonstationary, we can extrapolate beyond our training
set; a trace-driven simulation would not be applicable here.

6.4 Conditional Neural Input Modeling

Global Condition. Our first experiment for CNIM tests its ability to generate sample paths when
given a two-dimensional global condition G = (G1,G2). Specifically, our training dataset com-
prises 2,000 sequences of interarrival times for NHPPs, where each sequence is generated accord-
ing to rate function λ(t ;G) = G1 sin(G2t) + 1.8 with G selected randomly and uniformly from the
rectangle [0.5, 1] × [10, 20], the “condition space.” Thus, G1 and G2 control the amplitude and fre-
quency of the periodic rate function. At test time, we evaluate the quality of CNIM-generated sam-
ple paths at different locations in the condition space. Figure 18 plots the empirical rate functions
estimated from 2,000 sample paths for G values located at the four corners, midpoints of the four
edges, and the center of the condition space. We emphasize that none of the training points were

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:22 W. Cen and P. J. Haas

Fig. 18. Empirical arrival rate estimated at nine different points in the condition space.

generated using any of these specific nine values of G. It can be seen that all of the empirical rate
functions match the ground truth rate functions closely. We further study the mean log-likelihood
throughout the condition space. In other words, for each G in an 11 × 11 grid of points that cover
the condition space, we generate 2,000 NHPP sample paths using the rate function λ(t ;G) and
compute the mean log-likelihood over the paths. For a given sample path x = (x1,x2, . . . ,xn (x))
generated under a condition G, the log-likelihood is

l (x1,x2, . . . ,xn (x)) =

n (x)∑
j=1

log λ(tj ;G) −
∫ T

0

λ(u;G) du,

where tj =
∑j

k=1
xk is the jth arrival time for j ∈ [1..n]. Besides CNIM, we also implemented

the partition and nearest neighbors methods mentioned in Section 5. The absolute differences
between the (estimated) mean log-likelihood for learned and ground truth sample paths at the
various values of G are shown for the three methods in Figure 19. As we can see, the absolute
difference in log-likelihood is much higher for these two alternative procedures that only use
the nearby training points. Overall, this experiment shows that CNIM is able to learn how the
characteristics of a stochastic process change as some external global condition changes.

Local Condition. Our next experiment tests CNIM’s performance for a local condition. We con-
sider a stochastic process x = (x1, . . . ,xt) whose state xi is influenced by two kinds of events: UP
and DOWN. Specifically, x0 = 0 and

xi =
⎧⎪⎨⎪⎩
xi−1 +wi , if Li is UP

xi−1 −wi , if Li is DOWN

for i ≥ 1, where {wi }i≥1 is a sequence of i.i.d. N (0.05, 0.12) random variables. We collected 2,000
sample paths of this system as training data, where each training data point has 50 timesteps. For
each timestep i , we encode UP event as 1 and DOWN event as −1 and randomly choose between

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:23

Fig. 19. Absolute differences between estimated mean log-likelihood of learned and ground truth sample

paths for CNIM, partitioning, and nearest neighbors methods, evaluated at 11 × 11 = 121 points on a grid

covering the condition space.

Fig. 20. CNIM for a local-condition sequence: sample paths, mean, and variance.

the two events with equal probability. After training the model, we generate sample paths under
a fixed event sequence l , specifically, Li = −1 for i ∈ {1, . . . , 10} ∪ {20, . . . , 30} ∪ {40, . . . , 50} and
Li = 1 otherwise. Figure 20 shows 1,000 ground truth and CNIM-generated sample paths of the
stochastic process x under the specific event sequence. As can be seen, the sample-path behavior
for CNIM is quite similar to the ground truth behavior. Figure 20 also shows the time-varying
empirical mean and variance of the sample paths generated by CNIM and of the ground truth
sample paths. As expected, the mean follows a zig-zag pattern and the variance increases linearly.
Again, the behavior of CNIM closely approximates the ground truth.

Global vs. Local Condition for an NHPP. In Section 5, we asserted that, in the context of mod-
eling the sequence of arrival times x = (x1,x2, . . . ,xt) for an NHPP, the ostensibly “local” condi-
tion of instantaneous arrival rates L = (L1,L2, . . . ,Lt)—where Li = λ(xi)—actually needs to be
treated as a global condition in order not to violate the “nonanticipatory” condition in Equation (7).
In this example, we show how to model an NHPP conditioned on realization of rate function by
using the discretized realization of the rate function as a global condition. We developed a CNIM
model for the customer arrivals of an ice cream shop where we assume the arrival process fol-
lows an NHPP whose rate function is λ(t) = 0.5 + 0.1T (t); here, T (t) is the temperature at time t
for t ∈ [0, 24]. Further, T (t) is determined by four parameters: a ∈ [15, 25] is the temperature at
the beginning of the day, b ∈ [14, 17] is the time when the temperatures peaks during the day,
c ∈ [25, 30] is the peak temperature at b, and d ∈ [15, 25] is the temperature at the end of the day.
T (t) is linear between [0,b] and [b, 24]. All four parameters are uniformly randomly sampled in
their ranges. Note that we do not directly provide the four parameters as a condition but instead
give the realization of the temperatures as a condition. In particular, for a specific sample path of
the temperature process, we discretize it into a vector G = (G1, . . . ,G50), which is the temperature
process evaluated at 50 evenly spaced points from t = 0 to t = 24, and provide this vector as a
global condition. We collected 2,000 interarrival time sequences over the time interval [0, 24] as
training data. For Figure 21, we used CNIM to generate 20,000 sample paths with (21, 16, 25, 24)

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:24 W. Cen and P. J. Haas

Fig. 21. Modeling an NHPP based on a discretized rate function as the global condition.

Table 4. Minimum Number of Training Sample Paths Required to Achieve Fidelity Comparable to an n =

1,000 Baseline

Stochastic Process: ARMA(3, 3) ARMA mix. NHPP GI/G/1 Waiting time Gamma-unif. mix.
Min. No. of Sample Paths: 10 500 250 500 1,000

as the temperature process parameter—again, the temperature process is discretized into a vector
G′ = (G′1, . . . ,G′50)—and estimated the empirical rate function. As can be seen, CNIM was able to
capture this NHPP by using a discretized rate function as global condition and thus bypassing the
“nonanticipatory” restriction.

6.5 Training Times, Generation Speeds, and Training Set Size

In this section, we consider some practical aspects of our NIM implementation.

Training Times. We implemented NIM-VL in PyTorch 1.0 and trained our models on a worksta-
tion equipped with a 2.10-GHz Intel Xeon CPU having 376 GB of RAM, plus an NVIDIA GeForce
RTX 2080 Ti GPU with 12 GB of memory and CUDA 10.1 installed. Training times ranged between
10 and 20 minutes. As discussed in Section S3, training times compared favorably to at least one
state-of-the-art method for modeling NHPPs.

Generation Speeds. After training, the models were exported in ONNX format, which can then
be used for sample-path generation on a wide range of computers. We tested generation speeds
on a commodity 2018 MacBook Pro (2.2-GHz six-core Intel Core i7 with 32 GB of RAM). We were
able to generate 1,000 sequences of 1,000 learned NHPP interarrival times in roughly 0.85 seconds.
For i.i.d. data, NIM-VM (with 32 hidden nodes per encoder and decoder) is able to generate 106

i.i.d. learned exponential random variables in roughly 0.12 seconds. Since sample-path generation
consists mainly of simple matrix multiplications, it can potentially be accelerated via GPUs. Thus,
for the neural network sizes considered, NIM-VL was fast enough to be usable in practice. As
mentioned previously, we selected network sizes essentially by ad hoc cross validation, and found
that a NIM-VL size parameter ofm = 32 sufficed for many of our simpler input processes (especially
when extrapolation was not required), a size parameter of m = 128 sufficed for most of the more
complex processes, and a maximum size parameter of m = 256 yielded satisfactory results in all
experiments. In future work, we intend to investigate how AutoML techniques [19] can be used
to automatically and efficiently select the smallest (and hence fastest) NIM model that will suffice
to capture a given input process.

Training Set Size. We have used a baseline training set size of 1,000 sample paths throughout,
with excellent results. Unlike, for example, image generation, where huge amounts of training
data are needed, the data requirements for stochastic process modeling seem lighter. We tested the
effect of training set size, recording for each of the five synthetic stochastic processes in Section 6.1
the smallest size for which the fidelity was comparable to the baseline (see Table 4). We observe

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

NIM: GNNs for Automated Modeling and Generation of Simulation Inputs 10:25

that, not surprisingly, the simpler the distribution or stochastic process, the less training data is
needed.

7 CONCLUSION

GNNs are promising tools for automating the modeling and generation of simulation input data.
NIM can automatically capture complex stochastic processes, thereby facilitating one of the hard-
est tasks in a simulation study and promoting wider use of simulation modeling and analysis. To
this end, we have released NIM as an open source tool (https://github.com/cenwangumass/nim).
We have extended the basic NIM technology in a variety of ways, allowing it to exploit a pri-

ori knowledge, to capture a greater variety of input processes, to sometimes extrapolate beyond
the training interval, and to allow conditional generation of input-process sample paths. We em-
phasize, however, that NIM is not a “silver bullet.” Data must be plentiful, and estimating tails
(especially heavy ones) and extrapolating far beyond the training data is challenging for any input
modeling scheme. Sanity checking and validation are still needed—for example, using visualiza-
tion and data mining to explore the training and NIM-generated data and the resulting simulation
output. In future work, we plan to further develop capabilities around extrapolation and processes
with discrete state spaces, to explore other types of GNNs, such as WGANs, Wasserstein autoen-
coders [30], and diffusion models [28], develop statistical error bounds, and investigate automatic
network sizing via AutoML methods.

ACKNOWLEDGMENTS

The authors wish to thank Justin Domke for helpful insights into GNNs and Emily A. Herbert for
contributions to initial versions of this work. We thank the reviewers for their helpful comments.

REFERENCES

[1] Jaan Altosaar. 2020. Tutorial—What Is a Variational Autoencoder? Retrieved April 18, 2020 from https://jaan.io/what-

is-variational-autoencoder-vae-tutorial.

[2] Bahar Biller. 2009. Copula-based multivariate input models for stochastic simulation. Operations Research 57, 4 (2009),

878–892.

[3] Bahar Biller and Barry L. Nelson. 2003. Modeling and generating multivariate time-series input processes using a

vector autoregressive technique. ACM Transactions on Modeling and Computer Simulation 13, 3 (2003), 211–237.

[4] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy Bengio. 2016. Generating

sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language

Learning. 10–21.

[5] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. 2016. Time Series Analysis: Forecasting

and Control. Wiley.

[6] P. Bratley, B. L. Fox, and L. E. Schrage. 1987. A Guide to Simulation. Springer-Verlag.

[7] P. J. Brockwell and R. A. Davis. 2009. Time Series: Theory and Methods. Springer.

[8] M. C. Cario and B. L. Nelson. 1997. Modeling and Generating Random Vectors with Arbitrary Marginal Distributions and

Correlation Matrix. Technical Report. Department of Industrial Engineering and Management Sciences, Northwestern

University, Evanston, IL.

[9] Wang Cen, Emily A. Herbert, and Peter J. Haas. 2020. NIM: Modeling and generation of simulation inputs via genera-

tive neural networks. In Proceedings of the 2020 Winter Simulation Conference (WSC’20). IEEE, Piscataway, NJ, 584–595.

[10] D. R. Cox and V. Isham. 1980. Point Processes. Chapman & Hall.

[11] Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908v2 (2016).

[12] Geer Mountain Software 2020. Stat::Fit Distribution Fitting Software. Retrieved April 18, 2020 from https://www.

geerms.com.

[13] Wolfgang Härdle, Joel Horowitz, and Jens-Peter Kreiss. 2003. Bootstrap methods for time series. International Statis-

tical Review 71, 2 (2003), 435–459.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning (2nd ed.). Springer.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

10:26 W. Cen and P. J. Haas

[16] Wolfgang Hörmann, Josef Leydold, and Gerhard Derflinger. 2004. Automatic Nonuniform Random Variate Generation.

Springer.

[17] M. R. Ibrahim, J. Haworth, A. Lipani, N. Aslam, T. Cheng, and N. Christie. 2021. Variational-LSTM autoencoder to

forecast the spread of coronavirus across the globe. PLoS One 16, 1 (2021), e0246120.

[18] Wendy Xi Jiang and Barry L. Nelson. 2018. Better input modeling via model averaging. In Proceedings of the 2018

Winter Simulation Conference (WSC’18). IEEE, Piscataway, NJ, 1575–1586.

[19] Shubhra Kanti Karmaker, Md. Mahadi Hassan, Micah J. Smith, Lei Xu, Chengxiang Zhai, and Kalyan Veeramachaneni.

2021. AutoML to date and beyond: Challenges and opportunities. ACM Computing Surveys 54, 8 (2021), 1–36.

[20] Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114v10 (2013).

[21] Averill M. Law. 2015. Simulation Modeling and Analysis (5th ed.). McGraw-Hill, New York, NY.

[22] P. A. W. Lewis and G. S. Shedler. 1979. Simulation of nonhomogeneous Poisson processes by thinning. Naval Research

Logistics Quarterly 26 (1979), 403–413.

[23] Zachary C. Lipton. 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint

arXiv:1506.00019v4 (2015).

[24] Marcel Neuts. 1981. Matrix-Geometric Solutions in Stochastic Models. Dover.

[25] Christina Niklaus, Matthias Cetto, André Freitas, and Siegfried Handschuh. 2018. A survey on open information

extraction. In Proceedings of the 27th International Conference on Computational Linguistics (COLING’18). 3866–3878.

[26] Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. 2018. A multimodal anomaly detector for robot-assisted feeding

using an LSTM-based variational autoencoder. IEEE Robotics and Automation Letters 3, 3 (2018), 1544–1551.

[27] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional

generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015).

[28] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image

generation with clip latents. arXiv preprint arXiv:2204.06125 (2022).

[29] Lee W. Schruben and Dashi I. Singham. 2014. Data-driven simulation of complex multidimensional time series. ACM

Transactions on Modeling and Computer Simulation 24, 1 (2014), Article 5, 13 pages.

[30] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2017. Wasserstein auto-encoders. arXiv

preprint arXiv:1711.01558 (2017).

[31] Wil M. P. van der Aalst. 2018. Process mining and simulation: A match made in heaven! In Proceedings of the 2018

Summer Simulation Conference (SummerSim’18). Article 4, 12 pages.

[32] Jacob T. VanderPlas. 2018. Understanding the Lomb-Scargle periodogram. Astrophysical Journal Supplement Series 236,

1 (2018), 16.

[33] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. 2017. MidiNet: A convolutional generative adversarial network for

symbolic-domain music generation. arXiv preprint arXiv:1703.10847 (2017).

[34] Yufeng Zheng and Zeyu Zheng. 2021. Doubly stochastic generative arrivals modeling. arXiv:2012.13940 [stat.ML]

(2021).

[35] Luowei Zhou, Chenliang Xu, and Jason J. Corso. 2018. Towards automatic learning of procedures from web instruc-

tional videos. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications

of Artificial Intelligence Conference, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence

(AAAI’18/IAAI’18/EAAI’18). 7590–7598.

[36] Tingyu Zhu and Zeyu Zheng. 2021. Learning to simulate sequentially generated data via neural networks and Wasser-

stein training. In Proceedings of the 2021 Winter Simulation Conference (WSC’21). IEEE, Piscataway, NJ, 1–12.

Received 12 January 2022; revised 24 October 2022; accepted 3 April 2023

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 3, Article 10. Publication date: August 2023.

ACM Transactions on Modeling and Computer Simulation
https://tomacs.acm.org

Guide to Manuscript Submission
Submission to the ACM Transactions on Modeling and Computer Simulation is done electronically through
https://mc.manuscriptcentral.com/tomacs. Please visit https://tomacs.acm.org/authors.html for further infor-
mation and guidelines on submission procedure.

You will be asked to create an abstract that will be used throughout the system as a synopsis of your paper. You
will also be asked to classify your submission using the ACM Computing Classification System through a link
provided at the Author Center. For completeness, please select at least one primary-level classification followed
by two secondary-level classifications. To make the process easier, you may cut and paste from the list. Remem-
ber, you, the author, know best which area and sub-areas are covered by your paper; in addition to clarifying
the area where your paper belongs, classification often helps in quickly identifying suitable reviewers for your
paper. So it is important that you provide as thorough a classification of your paper as possible.

The ACM Production Department prefers that your manuscript be prepared in either LaTeX or MS Word for-
mat. Style files for manuscript preparation can be obtained at the following location: https://www.acm.org/
publications/authors/submissions. For editorial review, the manuscript should be submitted as a PDF or Post-
script file. Accompanying material can be in any number of text or image formats, as well as software/documen-
tation bundles in zip or tar-gzipped formats.

Questions regarding editorial review process should be directed to the Editor-in-Chief. Questions regarding the post-
acceptance production process should be addressed to the Associate Director of Publications, Sara Kate Heukerott,
at heukerott@hq.acm.org.

Ceasing Print Publication of ACM Journals and Transactions
ACM has made the decision to cease print publication for ACM’s journals and transactions as of January 2024.
There were several motivations for this change: ACM wants to be as environmentally friendly as possible; print
journals lack the new features and functionality of the electronic versions in the ACM Digital Library; and print
subscriptions, which have been declining for years, have now reached a level where the time was right to sunset print.

Please contact acmhelp@acm.org should you have any questions.

Subscription and Membership Information.

Send orders to:

ACM Member Services Dept.
General Post Office
PO Box 30777
New York, NY 10087-0777

For information, contact:

Mail: ACM Member Services Dept.
 1601 Broadway, 10th Floor
 New York, NY 10019-7434
Phone: +1-212-626-0500
Fax: +1-212-944-1318
Email: acmhelp@acm.org
Catalog: https://www.acm.org/publications/alacarte

About ACM. ACM is the world’s largest educational and scientific computing society, uniting educators,
researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM
strengthens the computing profession’s collective voice through strong leadership, promotion of the highest
standards, and recognition of technical excellence. ACM supports the professional growth of its members by
providing opportunities for life-long learning, career development, and professional networking.

Visit ACM’s Web site: https://www.acm.org.

Change of Address Notification. To notify ACM of a change of address, use the addresses above or send an
email to coa@acm.org.

Please allow 6-8 weeks for new membership or change of name and address to become effective. Send your
old label with your new address notification. To avoid interruption of service, notify your local post office before
change of residence. For a fee, the post office will forward 2nd- and 3rd-class periodicals.

TOMACS3303-Cover.indd 2 8/11/2023 10:50:17 AM

TOMACS3303-Cover.indd 1 8/11/2023 10:50:17 AM

