
Uncertainty-aware Simulation of Adaptive Systems

JEAN-MARC JÉZÉQUEL, University of Rennes, CNRS, Inria, IRISA, France

ANTONIO VALLECILLO, ITIS Software, Universidad de Málaga, Spain

Adaptive systems manage and regulate the behavior of devices or other systems using control loops to automatically adjust the

value of some measured variables to equal the value of a desired set-point. These systems normally interact with physical parts

or operate in physical environments, where uncertainty is unavoidable. Traditional approaches to manage that uncertainty

use either robust control algorithms that consider bounded variations of the uncertain variables and worst-case scenarios, or

adaptive control methods that estimate the parameters and change the control laws accordingly. In this paper we propose to

include the sources of uncertainty in the system models as irst-class entities using random variables, in order to simulate

adaptive and control systems more faithfully, including not only the use of random variables to represent and operate with

uncertain values, but also to represent decisions based on their comparisons. Two exemplar systems are used to illustrate and

validate our proposal.

CCS Concepts: · Software and its engineering → Software design engineering; Model-driven software engineering;

· Computing methodologies→ Uncertainty quantiication.

Additional Key Words and Phrases: Model-based Software Engineering, Control systems, Self-adaptive systems, Uncertainty.

1 INTRODUCTION

An adaptive system is a system that changes its behavior in response to its environment or to changes in its
interacting parts. In general, these systems are rather complex to design, prove correct and optimize, and therefore
simulations are used to analyze not only their behavior but also their properties of interest. In this context, models
are used to represent the relevant characteristics of the system under study, whereas the simulations represent
the evolution of the model over time [43].
Simulations are commonly used in domains where physical artifacts are costly to build and deploy, such as

manufacturing [26] or robotics [32]. A typical example is an automated assembly line, in which conveyor belts
and gantries are used to transport semi-assembled parts from one workstation to another, and the parts are
added in sequence until the inal assembly is produced. These systems are thoroughly simulated before they are
deployed to ensure correct behavior once they are built. However, when deployed, they most often require some
ine-tuning. The problem is that their physical parts and elements are never perfect: they contain looseness and
small inaccuracies that need to be adjusted for. These inaccuracies are not usually captured by the models, often
resulting in parts falling of the trays or clamps not gripping the items when initially deployed, for example.

Reality is indeed diferent from the model and its simulation because, e.g., the values obtained from the sensors
are actually imprecise, the physical contour of the parts is not exactly the same in all cases, or the moving times
are not always precise. Since this uncertainty is usually not explicitly considered Ð despite being an essential

Authors’ addresses: Jean-Marc Jézéquel, jezequel@irisa.fr, University of Rennes, CNRS, Inria, IRISA, France; Antonio Vallecillo, av@uma.es,

ITIS Software, Universidad de Málaga, Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-3301/2023/3-ART $15.00

https://doi.org/10.1145/3589517

ACM Trans. Model. Comput. Simul.

HTTPS://ORCID.ORG/0000-0002-0582-9745
HTTPS://ORCID.ORG/0000-0002-8139-9986
https://orcid.org/0000-0002-0582-9745
https://orcid.org/0000-0002-8139-9986
https://doi.org/10.1145/3589517
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589517&domain=pdf&date_stamp=2023-03-28

2 • Jézéquel and Vallecillo

aspect of any physical system [12, 19] Ð the decisions made by the control system to order movements or to
make adaptations are based on imprecise information that can even lead to catastrophic failures.

The usual solution to deal with uncertainty in these situations, including not only manufacturing but also in all
types of control systems [10], uses robust control, a conservative strategy that relies on estimating static upper
bounds on the variations of the variables, and assumes worst-case scenarios. This approach is easy to implement,
but it may be too conservative in many situations and therefore sub-optimal Ð e.g., wasting too many resources
or arriving at non-optimal approximations. Adaptive control systems aim at addressing this problem by using
dynamic variables (instead of upper bound constants) to control the system’s behavior. Although this strategy
results in simulations that are more faithful to reality, they are much more diicult to develop and prove correct
because all uncertainty operations, as well as the propagation of uncertainty, need to be manually and explicitly
programmed by the software engineer. At the simulation level, this is commonly achieved using some of the
existing uncertainty propagation packages, such as [2, 22, 23] (see [41] for a comprehensive list), but they are still
quite complex to use. More importantly, these packages enable the propagation of uncertainty through arithmetic
operations on uncertain numbers, but their comparison is not usually implemented. Indeed, these packages
only ofer crude support for comparing uncertain values, and we shall see that this is an essential operation for
operating with uncertainty in a more precise manner.
In this paper we propose to use random variables as irst-class entities in programs and models to represent

and operate with the system uncertain values, including their comparison. In this way, the controller is going
to be able to manage the uncertainties and then the simulations are going to be much more faithful than they
currently are.
Our concrete claims are that (1) we need to include the sources of uncertainty as irst-class entities in the

system models, and (2) they should be better handled by the type system, and not by the programmers. This
will enable the natural representation and management of uncertain numbers in models, and the automatic
propagation of uncertainty through operations, which are cumbersome and error-prone tasks when performed
manually by the programmers. In addition, it will allow the explicit representation of the uncertainty that occurs
when two uncertain numbers are compared.

The organization of the paper is as follows. After this introduction, Section 2 briely describes the context and
background of our work. Then, Section 3 presents our proposal, starting with a running example that serves to
illustrate our approach. We then describe how to represent and manage some of the uncertainties that afect
that system. Another example is used to illustrate further uncertainties in a more complex setting. After that,
Section 4 discusses some of the advantages and possible limitations of our proposal. Finally, Section 5 relates our
proposal to similar works, and Section 6 concludes with an outlook on future work.
Open research: All the software, artifacts and results described in the paper are publicly available from

https://github.com/atenearesearchgroup/uncertainty-aware-adaptive-systems.

2 CONTEXT

2.1 Introduction to the Chasing Robot

In this Section we present background concepts using a toy example of the simulation of a Chasing Robot model
where a robot must follow a moving target, staying as close as possible to the target but without ever going
under a speciied safety distance (e.g., 1 m). To keep it simple, we only consider a target moving at a constant
speed (e.g., 2 m/s) in straight line.

ACM Trans. Model. Comput. Simul.

https://github.com/atenearesearchgroup/uncertainty-aware-adaptive-systems

Uncertainty-aware Simulation of Adaptive Systems • 3

Fig. 1. Architecture of the Chasing Robot Example.

The chasing robot is controlled by a straightforward PID controller,1 as illustrated in Figure 1 and detailed in
the Python code below:

Simulating this model consists in having a loop that:

(1) moves the target by calling its move() method with a given delta time (dt)
(2) asks the controller to move the robot it controls with the same delta time. This is implemented by method

move_robot() below.

1A proportionalśintegralśderivative (PID) controller is a control loop mechanism that continuously calculates an error value as the diference

between a desired setpoint and a measured process variable and applies a correction based on proportional, integral, and derivative terms

(denoted P, I, and D respectively) [1].

ACM Trans. Model. Comput. Simul.

4 • Jézéquel and Vallecillo

As expected, after an initial acceleration phase, the chasing robot speed converges towards following its target
at the required distance. To assess the controller performance, we consider two indicators: (1) the minimum
distance ever reached between the chasing robot and its target, and (2) the average distance over the entire
course. The goal is, of course, to obtain the smallest possible average distance without ever going under the safety
distance.

Our BaseLine Controller simulation2 performs relatively well with respect to these indicators: starting 10 m
behind the target, it ends up after 30s with an average distance of 2.0 m and a minimum one of 1.07 m. However,
when tried in a real situation (i.e., not a simulated one), the chasing robot would violate the safety distance, and
even in some cases crash into the target. The reason is that reality is much more uncertain than our simple model.

2.2 Uncertainty sources

References [38, 44] summarize the main sources of uncertainty found in cyber physical systems. In this paper, we
only focus on measurement uncertainty [3, 18]. In the chasing robot example, we can identify two sources of
measurement uncertainty: (1) when calculating the distance to the target we rely on, e.g., ultrasound sensors that
yield imprecise data, and (2) when setting the speed of the robot, its actual speed might be a bit diferent due to
inertia and friction.

Once again, for the sake of simplicity in this section we will only consider (1), i.e., the distance uncertainty. In
our simulation, we can introduce a distance sensor uncertainty by adding a random value � to the computation
of the distance by a Mobile. � is chosen within a normal distribution, with an average value of 0 (no skew) and a
standard deviation depending on the actual distance (due to the speed of sound) of � ∗ (1 + 0.25 ∗ ����_��������).

Now, if we run again our simulation several times with increasing values of � , we can indeed see that as soon
as � ≥ 0.0325 m the chasing robot can violate the safety distance.

2.3 Robust control

In control theory, robust control is an approach to make a controller work in the presence of uncertainty, assuming
that certain variables will be unknown but bounded [1]. These robust methods aim to achieve robust performance
and/or stability in the presence of bounded modeling errors. We can thus implement a variant of our BaseLine
Controller that we call RobustController, that basically takes a ixed safety margin of 10 × � when computing
the error to be minimized in the PID control:

That works well: for e.g., � = 0.0325 m the chasing robot always stays above the safety distance (at least
2.05 m). However its overall performance is not so good, with an average distance of only 2.55 m, which is too

2Each simulation is repeated 30 times to deal with pseudo-random number generation issues.

ACM Trans. Model. Comput. Simul.

Uncertainty-aware Simulation of Adaptive Systems • 5

conservative. The goal of this paper is to investigate whether we can do any better by considering the distance
returned by the sensors as an explicit random variable, i.e., treat this kind of random variables as irst class entities
in our adaptive control programs.

3 UNCERTAINTY-AWARE CONTROL SYSTEMS

In this section we describe our proposal, and illustrate it on the chasing robot example discussed above. Our
approach consists in three steps:

• Identify the possible sources of uncertainty
• Explicitly represent them so that they can be managed
• Incorporate them into the control loop, to improve the decision process of the control system in such a
way that it can manage the identiied uncertainties.

3.1 The Chasing robot example revisited

In our simple chasing robot example, we only consider the uncertainty due to the estimation of the distance to
the target. Since we know that the distance sensor returns a value within a normal distribution with standard
deviation of � , we are going to explicitly model that return value with a random variable � having this � standard
deviation. Then, in the control loop of the robot, we can use � to make decisions (this approach is sometimes
called adaptive control).

For most systems, including mission critical ones, reliability is not absolute but estimated in terms of the prob-
ability of not failing the mission. Depending on the stakes, this probability can range from 0.999 to 0.9999999999
or more, and is usually made readable by "counting the 9’s". For instance, a probability of 0.999 is called 3 nines.

In the case of our chasing robot, this makes it possible to let the user choose the level of risk she wants to take,
and use it as a parameter for controlling the robot. For example, for a 3 nines probability of keeping the safety
distance, probability theory tells us that we need to take a margin of 3.29� , while for 5 nines we need 4.41� .
We can easily model that in Python using the class ufloat from the uncertainties package that provide basic
support for random variables:

1 class ProbabilisticController (BaseLine):

2 def __init__(self , robot: Robot , kp: float , ki: float , kd: float , risk: float):

3 super().__init__(robot , kp, ki, kd)

4 self.confidence = self.confidence_interval[risk]

5

6 confidence_interval = {.90:1.64 , .99:2.67 , .999:3.29 , .9999:3.89 , .99999:4.41}

7

8 def get_error(self , target_distance: float) -> ufloat:

9 distance = self.robot.get_distance(self.target)

10 return ufloat(distance , abs ((1+0.25* distance)*Mobile.sensor_accuracy))

11

12

13 class PXNinesController (ProbabilisticController):

14 def __init__(self , robot: Robot , kp: float , ki: float , kd: float , risk: float):

15 super ().__init__(robot , kp, ki, kd, risk)

16

17 def get_error(self , target_distance: float) -> float:

18 distance = super().get_error(target_distance)

19 return distance.nominal_value - distance.std_dev*self.confidence -target_distance # p>risk

Figure 2 summarizes the performance of various versions of our chasing robot controller when � increases.
It is obtained by running each chasing robot for 30 seconds and plotting both its real minimum and average
distance to the target. The experiment is repeated 30 times to account for random perturbations.
When the precision of the distance sensor degrades, the BaseLine controller fails, going below the safety

distance (1 m) as explained above. In contrast, the RobustController is too cautious and we can see how its

ACM Trans. Model. Comput. Simul.

6 • Jézéquel and Vallecillo

Fig. 2. Performance of various control algorithms for the chasing robot example.

performance degrades as the precision of the sensors decreases: it stays too far behind the target. However, our
two versions of an uncertainty aware controller (P3Nines and P5Nines) are making a good trade of between
quality of service (average distance) and safety (not going under 1 m).

Since this example is very simple, the basic support for random variables currently found in, e.g., Python, is good
enough to handle it. However, as soon as computations need to be done manually on random variables, things
get much more complicated to handle at the programmatic level without strong support for treating random
variables as irst class entities, including support for comparison operators among them. Let’s demonstrate that
in the next section with another example, the ZNN system, which is a bit more complex than the chasing robot
system.

3.2 The Znn.com system

Znn.com is a news service that is commonly used as an example of a self-adaptive system [35]. Its architecture is
shown in Figure 3. The system comprises several Servers, some of which can be inactive, and a load balancer
(Dispatcher) in charge of receiving requests from Clients and selecting the active server that will process them.
The system monitors the dispatcher and the servers to make decisions in order to optimize its behavior.

One typical example is the invariant stating that the current system response time � for any request should
always stay below some threshold ���� . When a request is received, the Dispatcher tries to ind an active server
able to process the request and respond to the originating client within the required time limit. If none is found,
the dispatcher activates one of the inactive servers and sends the pending request to it. If all servers are active
and none of them can ensure processing the request within the required timeframe, the request is denied and
returned to the client. Server activation takes some time, the so-called starting latency. If a server is inactive for
more than a certain time, it shuts itself down to save energy and waits for the dispatcher to activate it when
required.
Our exemplar system comprises one dispatcher and four servers, all initially inactive. Four clients generate

requests at a given pace. For simplicity, we assume that the processing time of all requests is the same, namely 20
time units.

To simulate this ZNN system we decided to use UML executable models, in order to show how our approach can
be used with diferent paradigms, i.e., it can work with both modeling and programming languages. In particular,

ACM Trans. Model. Comput. Simul.

Uncertainty-aware Simulation of Adaptive Systems • 7

Fig. 3. The ZNN.com system architecture.

we have used UML and OCL [28] to specify the ZNN system, and the UML-based Speciication Environment
(USE) [14] to execute the UML system speciications. The use of such high level speciications provides interesting
beneits, such as that we can abstract away from any concrete implementation, focusing on high-level models
that allow run-time veriication of system properties, and thus they require a very lightweight development
process. Furthermore, these UML models could be formally analyzed using high-level validation tools [15], or
transformed into concrete implementations if needed.

3.2.1 Baseline behavior. We simulated the system using diferent workloads, depending on the pace at which
the clients issue their requests. In the low workload (LW) scenario, each client issues a request every 30 time
units. Under medium workload (MW), requests are issued every 20 time units (i.e., same as the processing time
of requests). This simulates a stable system that works at optimal performance. In the heavy workload (HW)
scenario, clients issue their requests every 18 time units, to ensure that servers cannot process all incoming
requests. Assuming that the response time limit is 62 time units (i.e., ���� = 62) and that all clients issue their
requests at the same time, the simulations show that no requests are overdue in any scenario, and that no requests
are denied either under low and medium workloads. However, around 7.53% of the requests are denied under
heavy workload, as theoretically expected: the throughput of the four clients is, respectively, 2.6666, 4.0 and
4.4444 requests per time unit in each scenario, while the combined processing capability of the servers is always
4.1333. This means that 7.5267% of the requests (=4.4444/4.1333 - 1.0) should be denied in the heavy workload
scenario, as the simulations corroborate.

The three key decisions that the components of the system should make are: (1) whether a server can accept a
request because it is able to respond to it in time; (2) whether a request is ready to be responded because its has
been processed; and (3) whether a request is overdue.

These decisions can be implemented by the following query operations of a server (they are speciied in OCL):

1 fits(r:Request):Boolean =

2 r.finishTime - r.arrivalTime + self.swapTime < self.config.RMax

3

4 hasFinished(r:Request ,now:Real):Boolean =

5 r.finishTime <= now

6

7 isOverdue(r:Request):Boolean =

8 (self.actualFinishTime - self.arrivalTime) > self.config.RMax

ACM Trans. Model. Comput. Simul.

8 • Jézéquel and Vallecillo

Table 1. Baseline system: % of denied and overdue requests under medium (20) and heavy (18) workloads.

Proc.Time

Uncert. Denied-20 Overdue-20 Denied-18 Overdue-18

0.0 0.00% 0.00% 7.81% 2.52%

0.1 0.00% 0.00% 7.81% 2.53%

0.2 0.00% 0.00% 7.27% 2.66%

0.3 0.00% 0.00% 7.54% 2.76%

0.4 0.00% 0.00% 7.27% 3.01%

0.5 0.00% 0.03% 7.81% 2.27%

0.6 0.00% 0.03% 7.81% 3.32%

0.7 0.00% 0.03% 7.81% 3.33%

0.8 0.00% 0.05% 7.54% 3.48%

0.9 0.00% 0.13% 7.27% 3.76%

1.0 0.00% 0.16% 7.54% 4.52%

In the last operation, isOverdue(), the value of attributes arrivalTime and actualFinishTime are set by
the server when the request is accepted and when it is removed from its queue of pending requests, respectively.

3.2.2 A more realistic behavior. As mentioned in the introduction, reality is diferent from simulations, especially
in the case of physical systems that are subject to diferent types of uncertainties. In this paper we assume that
data collected from the environment can never be directly observed without noise, and also that an accurate
model of the environment cannot be obtained [7, 27]. These are inherent characteristics of any physical system,
and therefore cannot be neglected.

Let us consider here two sources of uncertainty that may afect our system:

• The actual time taken by a server to process a request is not a ixed value, but a random variable. This may
cause the actual processing time to be greater than the expected one. Thus, a server may accept a request
because, according to its calculations, it is able to respond to it within the required time, but then the actual
processing time is longer than expected and the response is delayed.

• Clocks have some imprecision. Even if we assume that the deviations are only of micro-time units (i.e.,
10−6), this can cause some comparisons between time variables to fail. We will see how this can cause some
requests to be delayed, because when the system checks if a request has inished, the comparison fails and
the request has to wait for the next clock cycle to be answered, hence causing unnecessary delays.

These two aspects correspond to measurement uncertainties [18], which afect the values of the variables
managed by the simulation. To evaluate the efect of such uncertainties, we developed a simulation system
(hereinafter, the Baseline system) where the values of the variables could have small variations, due to the lack
of precision of the sensors (e.g., the clock readings) or indeterminacy of the environment (e.g., variations in the
processing times of the requests due to other concurrent executing tasks running in the server).
To illustrate the efects of such uncertainties, Table 1 shows the percentage of denied and overdue requests

under medium and heavy workloads, for diferent levels of processing time imprecision. The irst column displays
the value of the processing time uncertainty, which ranges between 0 and 5% of the processing time of each
request, i.e., between 0 and 1 time units. This is used by the system to assign each request a deviation from
its expected processing time, which simulates a more realistic situation where the actual processing times of
requests are not perfect values but random variables. Of course, the heavier the workload the worst the results.

Figure 4 shows these results in a graphical way. Note how the percentages of denied requests maintains around
the łexpectedž theoretical value of 7.53% value. Sometimes it is even lower because the requests are accepted
based on their estimated processing times of 20 time units, and not on their actual processing times. In some

ACM Trans. Model. Comput. Simul.

Uncertainty-aware Simulation of Adaptive Systems • 9

Fig. 4. Baseline system: % of denied and overdue requests under medium (20) and heavy (18) workloads.

cases, these decisions led to overdue responses. This is similar to the situation described in the introduction,
where the behavior of the machines and parts on the assembly line did not correspond to what was expected
from the simulations, and some parts fell of the trays, or the gantry grippers failed to grasp the parts.

3.2.3 Taming uncertainty: robust approach. As previously mentioned, robust control methods aim to achieve
robust performance and/or stability in the presence of bounded uncertainty [1]. These methods normally use
interval arithmetic [17, 40]. Thus, instead of representing a value as a single number � , interval arithmetic
represents each value as a range of possibilities deined by the interval [��, ��] that contains � . The most
common use is in software, to keep track of rounding errors in calculations and of uncertainties in the knowledge
of the exact values of physical and technical parameters, so that reliable results can be guaranteed.
In the ZNN example, we implemented a robust solution using an interval of ±5� to ensure more than six

nines precision in the processing time (what we have called 1.0 conidence in Table 2). This can be implemented
by simply changing method fits() to include such a safety interval (note that in our case we use � = 1, and
therefore 5� = 5):

1 fits(r:Request):Boolean =

2 r.est_finishTime - r.arrivalTime + self.swapTime + 5.0 -- safety interval added

3 < self.config.RMax

However, it still does not work! We still get 0.08% overdue requests (see irst row of Table 2, under column
CI:PTU). Analyzing the causes, we realized that this is because we need to consider the second source of
uncertainty, i.e., the imprecision of the clock. As mentioned above, a slight variation of the clock readings may
cause that we miss one time step. For example, the actual inishing time of a request is 30.0, but the clock time is
29.9999999. Then, the comparison r.finishTime <= now returns false and the request has to wait for the next
time step.

To tackle this issue using a robust control approach, we substitute the uncertain variable (in this case, the clock
readings) by an interval, and use the interval in the comparison. With this, query hasFinished() is implemented
as follows:

1 hasFinished(r:Request ,now:Real):Boolean =

2 (now - r.finishTime).abs() <= 1.0)

This change has the desired efect, and no overdue requests are produced. However, the approach taken by
robust control systems is too coarse-grained and conservative, normally wasting too many resources or producing

ACM Trans. Model. Comput. Simul.

10 • Jézéquel and Vallecillo

Fig. 5. Comparing one random variable and one Real number.

sub-optimal results, as illustrated in the Chasing Robot example. This is where adaptive control systems come
into play.

3.2.4 Taming uncertainty: adaptive control. Adaptive control methods do not need a priori information about the
bounds on the uncertain or time-varying parameters. In contrast, their safety bounds can dynamically adapt to
improve the decisions made by the control loop. Random variables are commonly used instead of ixed-length
intervals, and ixed-bound intervals become conidence intervals (CI). For example, assuming that the actual
processing time of a request follows a normal distribution � ∼ � (�, �) with standard deviation � , we will use
such a random variable � instead of the Real value � [18]. Comparison are no longer Boolean values, but become
probabilities [3].

To illustrate the diference between the crisp, robust and adaptive approaches, consider the real values � = 20.0
and � = 20.7. Using Real arithmetic, � < � = true. Assuming a precision of � = 0.6 in the values of � , using a

robust control approach we would deine an interval of ±5� around � , i.e., �̂ = [17, 23]. In this case, given that

20.7 ∈ �̂ , then � < � = false.
Finally, using the adaptive control strategy, variable � would be modeled by a random variable � ∼ � (20, 0.6)

and the comparison � < � becomes � (� < 20.7) = 0.878. Such probability coincides with the area shaded in blue
in Figure 5.
To realize this adaptive control approach we only need to change the implementation of the two query

operations that compare the two random variables of our example, namely finishTime and now:

ACM Trans. Model. Comput. Simul.

Uncertainty-aware Simulation of Adaptive Systems • 11

1 fits(r:Request):Boolean =

2 r.finishTime - r.arrivalTime + self.swapTime

3 + self.config._processingTimeUnc * self.tolerance(config.robustness) < self.config.RMax

4

5 hasFinished(r:Request ,now:Real):Boolean =

6 (now -r.finishTime).abs() <= self.config._clockUnc * self.tolerance(config.robustness))

In these speciications, variables _processingTimeUnc and _clockUnc correspond to the precision of the
requests processing times and the clock (1.0 and 10−6, respectively). They are both stored as attributes of class
Config. Operation tolerance() returns the number of � ’s required to obtain a given robustness, i.e., conidence.
For example, assuming that the variables follow Normal distributions, to obtain a conidence of 3 nines (0.999)
we need 3.29� .

The results obtained for diferent levels of conidence using an adaptive control strategy are shown in columns
CI:PTU and CI:PTU+CU of Table 2, and, graphically, in Figure 6. Column CI:PTU shows the percentage of overdue
requests taking into account only the request performance time uncertainty (PTU). In turn, Column CI:PTU+CU
shows the percentage of overdue requests taking into account both the request performance time uncertainty
and the clock uncertainty (CU).

Table 2. Percentage of overdue requests depending on the confidence level.

Conidence CI:PTU CI:PTU+CU Stochastic

Robust (1.0) 0.08% 0.00% 0.00%

0.9999 0.20% 0.11% 0.00%

0.999 0.72% 0.12% 0.00%

0.99 0.84% 0.15% 0.00%

0.98 0.85% 0.16% 0.00%

0.95 0.86% 0.22% 0.02%

Fig. 6. Percentage of overdue requests depending on the confidence level.

3.2.5 Taming uncertainty with random variables. The adaptive strategy that uses random variables and conidence
intervals to model some of the values of the system, but still uses crisp values with the rest. Our claim is that
this is not realistic, because in physical systems there are no exact values, they all are subject to uncertainty,
numerical approximations, or both. This is why physical variables should never be modeled by means of Real
numbers, but using uncertain numbers.
For example, assuming that � ∼ � (20, 0.6) and � becomes a random variable � ∼ � (20.7, 0.5), we get that

� (� < �) = 0.48. This is graphically depicted in Figure 7, where the shaded area shows the value of the
comparison (check it against the area in Figure 5). By changing the standard deviation of the variables we obtain

ACM Trans. Model. Comput. Simul.

12 • Jézéquel and Vallecillo

Fig. 7. Comparing two random variables.

diferent values for that probability. The larger the variance, the more diicult it is to tell the two values apart,
and vice versa.
For implementing this approach we have used the Java library of datatypes extended with measurement

uncertainty deined in [3], which is also implemented in the tool USE to support uncertain numbers in UML and
OCL [29]. Essentially, this library extends the basic UML and OCL primitive datatypes (Real, Boolean, Integer,...)
with uncertainty by deining super-types for them, as well as the set of operations deined on the values of these
types. Thus, Real values with uncertainty are represented in terms of UReal values, which are composed of pairs
(�,�), also noted as � ± �, where � is the value, and � represents its uncertainty as the standard deviation of its
possible variations, according to the GUM international standard [18]. Likewise, a Boolean value � is lifted to
an UBoolean value �, which is a pair � = (�, �) in which � is a real number between 0 and 1 that represents the
conidence we assign to �. Comparison operators between UReal variables return UBoolean values. For example,
if � = 2.0 ± 0.3 and � = 2.5 ± 0.25, then � < � = Boolean(true,0.893), meaning that � < � with a conidence
of 0.893 [3]. Projection operation confidence() applied to an uncertain Boolean returns a probability, i.e., the
conidence assigned to that Boolean. Uncertain values then become irst-class entities of our models, and can
be managed and operated in a natural way by the underlying type system. Propagation of uncertainty through
operations is transparently taken care of by the type system, and comparisons are lifted to UBoolean values when
required. This greatly simpliies the management of uncertain numbers in both Java programs and UML/OCL
models.
Using these extended datatypes and operations, the critical queries in the ZNN system can be restated as

follows:

ACM Trans. Model. Comput. Simul.

Uncertainty-aware Simulation of Adaptive Systems • 13

1 fits(r:Request):Boolean =

2 (r.finishTime - r.arrivalTime + self.swapTime < self.config.RMax).confidence ()

3 >= self.config.robustness

4

5 hasFinished(r:Request ,now:UReal):Boolean =

6 (now >= r.finishTime).confidence () >= self.config.robustness

7

8 isOverdue(r:Request):Boolean =

9 (r.responseTime > self.config.RMax).confidence () >= self.config.robustness

We can see how we can now play with the level of conidence (robustness) required, thus being able to quantify
in a more precise way the degree of uncertainty with which we make decisions.
Last column (Stochastic) of Table 2 shows the percentage of overdue requests of a system that is simulated

using the strategy of representing physical attributes with random variables, i.e., uncertain reals. This is also
shown graphically in Figure 6. The last 0.02% is to be expected, because we are assuming a conidence of only
0.95 in our decisions. As in the example of the chasing robot, with this strategy we can obtain more faithful
simulations and therefore more accurate results.

4 DISCUSSION

So far we have shown how we are able to capture the inherent uncertainty of the possible values of the attributes
used in a control system by means of random variables, and the beneits of handing them as irst-class entities
of our programs or models with the appropriate libraries. This section provides some methodological guidance
on how our proposal can be used. Then, we discuss some further advantages and possible limitations of our
proposal, and inish with some open questions.
Note that the two examples we have used to illustrate our approach in this paper come from the realm of

physical systems, although our proposal is also applicable to scenarios where non-physical systems are considered.
Ultimately, what we propose is a more efective modeling approach for any application where uncertainty plays a
role, by considering uncertainty as a irst-class entity. For example, our proposal can be used in scenarios where
we are uncertain of the values of some parameters because the system is virtual, and decisions made by some
underlying real system may materialize diferent values over time. Likewise, it is applicable in situations where
we have to model the duration of tasks in software development environments, or where numerical errors in
computations may lead to inaccurate results.

4.1 Methodological guidelines

If one wants to leverage the use of uncertain variables in a consistent way across an application, the following 3
steps might be followed.

• First, identify all possible primary sources of uncertainty in a model or a program. In cyber-physical systems,
that is all the variables that store values which are read from system sensors. In other systems, it might be
variables whose values depend on the hardware platform on which the program would execute. This is for
example what may occur for virtual machines vs. hypervisors, e.g., in terms of the completion time of a
task.

• Then, for each uncertain variable, ind a law that models its probability distribution (e.g., normal, uniform,
etc.). Alternatively, if the law is unknown, one could resort to measurements and store the measured
distribution as a random variable (i.e., Type A evaluation of uncertainty [18]).

• Finally, propagate uncertainty across the source code. That is, each time an uncertain variable is used in a
computation, the result of the computation also becomes an uncertain variable. For instance, if � and �
are UReal variables, the result � of their comparison, � = � ≤ �, must be an uncertain variable, namely a

ACM Trans. Model. Comput. Simul.

14 • Jézéquel and Vallecillo

UBoolean. Some easy-to-implement static analysis can help ensure that this rule is enforced across the
source code of an application.

This approach relies on the use of libraries supporting operations across uncertain basic data types (e.g., Ubooleans,
UIntegers, UReals). Several such libraries already exist, for Python (with some limitations with respect to
comparing uncertain variables), for Java (for instance the one we have developed in a previous work and which is
freely available in our Github repository https://github.com/atenearesearchgroup/uncertainty), and for UML/OCL,
this later one actually relying on the Java one.

4.2 Advantages

First, our proposal allows capturing the uncertainty of the data collected from the environment of the system in
an accurate way. This uncertainty basically depends on the precision of the sources of these data, i.e., on the
possible variations of their values. Such precision values become input parameters for the control algorithms.
Using these input parameters we have shown how explicit uncertainty management allows us to choose the

level of łriskž we want to take between the too naive (i.e., crisp) vs. the too conservative (i.e., robust) approaches.
Thus, such a level of risk (e.g., the acceptable failure rate, the admissible deviations from a theoretical ground
truth, or the allowable degree of uncertainty in the value of an attribute) becomes a parameter we can play with
Ð something essential for, e.g., software certiication.

In this way, we can make trade-ofs to achieve acceptable compromises depending on the precision of the
sensors, which is not the case now, as current control algorithms tend to use an all-or-nothing strategy. For the
‘all’ case, they decide the level of risk they want to take (maybe none in case of critical systems) and then build
the control system based on this level. However, in our proposal the level of risk is a parameter of the controller,
and we can decide (even at runtime) the trade-of we want to make and thus the level of risk acceptable for our
system.
Working on the opposite direction, based on a given level of risk (or of robustness) and on the expected

behavior of the system, we can decide about the required precision of the sensors that we need to install in
our system to ensure that level of risk. This is very useful for systems where the costs of their parts (e.g., the
sensors) are important and should be maintained under control, but still ensure the required level of precision.
Note that the use of random variables provides more accurate estimations than those provided by current control
algorithms.

4.3 Potential limitations (and how to mitigate them)

Normality of the distributions. In the irst place, our proposal makes some assumptions that might not hold in
all situations. For example, we suppose that the random variables that represent the uncertainty of the attributes
of our control algorithms follow Normal distributions (as usually done in measurement [18]). Should this not be
the case, one solution would be to use Chebyshev’s inequality to determine the range of standard deviations
around the mean, and thus decide the level of robustness we are accepting. Note that the Chebyshev’s inequality
works for any type of distribution. Its practical usage is similar to the 68ś95ś99.7 rule, which applies only to
normal distributions. Chebyshev’s inequality is more general, stating that a minimum of just 75% of values must
lie within two standard deviations of the mean and 88.89% within three standard deviations. Although this is a
more conservative estimation that that used for the Normal distribution, it is still very useful to ensure acceptable
levels of risk.

Variable independence. Secondly, in this work we have made some assumptions regarding the independence
of the attributes when operating with their associated uncertainty using the closed-form solution. If such an
independence cannot be ensured, there are several ways to deal with dependent (i.e., correlated) variables. First,
if we know their covariances, most speciications and implementations support closed-form expressions of the

ACM Trans. Model. Comput. Simul.

https://github.com/atenearesearchgroup/uncertainty

Uncertainty-aware Simulation of Adaptive Systems • 15

operations with uncertainty when variables are dependent. However, the values of such covariances are rarely
known by users, and therefore they are not very useful in common practice. An alternative solution consists of
using the implementation of the operations based on samples (i.e., Type A evaluation of uncertainty [18]). This
is also the approach proposed by ISO, which is very general and powerful. However, it may have a signiicant
impact on the performance of the evaluation of the operations, given that they have to be applied to the samples,
hence introducing an overhead proportional to the sample size.

Precision estimation. Sometimes, estimating the precision of data collected from the environment is not an
easy task. Some common factors that make this task diicult include: the lack of information about the data
sources and their uncertainty; the efect of unreliable communication channels and networks, which can produce
large distortions in the values of the input data; or the degradation of data sources or communication channels
themselves, which can make the quality of the data received increasingly worse. In this paper we have assumed
that the precision of the input data is known and constant. As for the latter, it would not be diicult to deal with
variable precision, since functions can be used to deine the uncertainty of the UReal values. How to deal with
unknown and imprecise precision (i.e., a type of second-order uncertainty) remains part of our future work.

Usage complexity. This proposal adds a certain level of complexity related to the need to compare probabilistic
values, which is not required in more conventional approaches, such as those based on the inclusion of error
bounds. Instead of a single comparison, the developer must provide a piece of code that returns a Boolean value
under the probabilistic comparison, depending on the conidence level that can be accepted. While this introduces
some additional complexity, at the same time it clearly provides more reined and accurate results in terms of the
inal quality of the developed model.

4.4 Open questions

In addition to the potential beneits and limitations of our proposal, this section discusses some open issues that
we have found during its evaluation.

Domain expert implication. When incorporating measurement uncertainty information into a model, sometimes
it is diicult to identify the attributes that are subject to uncertainty. In general, all attributes that represent
physical variables should be subject to uncertainty, but there might be others. For example, some constants should
be endowed with uncertainty, too. The variability of the duration of tasks in certain processes, or of the cost of a
given product due to currency exchange luctuations, are uncertainties that need to be estimated. For this, the
judgment of the domain expert is essential, and communication with them is needed to clarify which attributes
should be endowed with this kind of information.

Representing and operating with uncertainty. There are diferent ways of representing measurement uncertainty,
especially for the uncertainty associated to numeric values. They include ranges, probability distributions of the
values, or the standard deviation of the variability of the measured attribute. From all the available alternatives,
we decided to use a library that implements the ISO VIM recommended representation and management of
measurement uncertainty, as deined in the GUM [18], which is also the notation used in most engineering
disciplines. Ranges and other kinds of possible expressions of the measurements deviations can be reduced to
this representation [18]. Similarly, Bayesian Probability [5], Fuzzy logic [46] or uncertainty theory [24] can be
used to assign conidence to uncertain Boolean values. All these theories have advantages and limitations (see,
e.g., [6, 21, 24]) but, as previously mentioned, we decided to use Bayesian Probability, which is the one that, in
our opinion, is the most well known and easily understood by software engineers. A proper comparison analysis
between the diferent approaches is left for future work. Likewise, the use of Type A representation of uncertainty,
which uses the value samples instead of closed-form equations to represent and propagate the uncertainty is

ACM Trans. Model. Comput. Simul.

16 • Jézéquel and Vallecillo

something that we would like to explore further. Although a priori this would have a signiicant input on the
performance of the uncertainty analysis, the use of cheap hardware accelerators such as graphic cards might
provide efective solutions for these simple vector operations and therefore we could deal with uncertainty in a
more statistically precise manner.

5 RELATED WORK

Uncertainty in control systems and their simulation has been traditionally represented and managed using two
main approaches.

In the irst place, intervals to represent the possible values of uncertain attributes have been extensively used in
the simulation domain. For example, Fujimoto [11, 25] use time intervals to deal with the concepts of Approximate
Time and Approximate Time Event Ordering in the context of DEVS [43]. In their proposal, two events are
considered concurrent if the intervals representing their timestamps have a non-empty intersection. Other authors
have proposed to introduce uncertainty on the spatial properties of the model for obtaining speed-ups [13, 31].
Saadawi and Wainer also explored replacing time datatype in DEVS models by intervals in their RTA-DEVS
formalism [34]. Furthermore, two new extensions to DEVS, called UA-DEVS and IA-DEVS, provide methods to
specify uncertainty in the state, input, and output variables in addition to the time variable [40]. The former
deines a formal speciication of models including uncertainty speciications as intervals. The latter enables the
simulation of UA-DEVS models based on computational constraints (time, memory, etc.). This separation of
concerns allows the domain expert to deine the model once, and then simulate it with diferent constraints
without redeining the model. Other approaches, such as [20], make conservative decisions based on intervals to
robustify the speciication of controllers of cyber-physical systems so that they satisfy safety requirements under
uncertain conditions.

We see two major limitations of approaches based on intervals for specifying the possible values of uncertain
variables. On the one hand, they are very coarse-grained as we have seen in the examples shown above, which
results in very conservative (also called cautious) simulations [42]. On the other hand, specifying and operating
with intervals require a signiicant efort by the modeler since there is no direct support for making computations
with them, such as arithmetic operations or comparisons, which are really burdensome and error-prone tasks.

Other set of works study the relationship the uncertainty of the input parameters and that of the simulation
results, aiming at deining measures for risk quantiication under input uncertainty. In general, there are two
sources of uncertainty in a typical stochastic simulation experiment: the extrinsic uncertainty on input parameters
(also called input parameter uncertainty), and the intrinsic uncertainty on output response (referred to as stochastic
uncertainty) that relects the inherent stochasticity of the system. The variability of simulation output response
depends on both input uncertainty and stochastic uncertainty. Some authors [16, 45] propose nested Monte
Carlo simulation approaches to estimate them. Others [4] propose statistical methods for the calculation of
conidence intervals for the mean of a simulation output. As in our case, they obtain more accurate results than
those proposals that use interval arithmetic or very conservative (i.e., robust) estimations. However, both the
complexity of their calculations and their computational costs might hinder their applicability. In our case, the fact
that we assume Normal distributions and that uncertainty propagation is achieved using closed-form solutions
mitigate these issues.
Another group of papers provides alternative approaches to exploit approximation (hence uncertainty) for

improving the trade-of between performance and representativeness of simulation output, under uncertain event
occurrence [11, 31] or using approximated rollbacks [30]. Our proposal is orthogonal to these approaches, as
each focuses on diferent aspects of uncertainty.
Similarly, existing schemes for adaptive control used in industry provide reasonable heuristic approaches,

although they have the limitation that parameter uncertainties are not usually taken into account in the design

ACM Trans. Model. Comput. Simul.

Uncertainty-aware Simulation of Adaptive Systems • 17

of the controller. This has led to the notion of dual control [9, 39], which addresses this issue by considering
parameter uncertainties. In particular, explicit dual control algorithms, such as the ones used in our examples,
are based on the minimization of cost functions deined in terms of control losses and uncertainty measurements
(the measure of precision of the parameter estimation) [37]. Basically, the controller has a dual action: it follows
the control goal, i.e., the system output cautiously tracks the desired reference value; and it excites the plant so
that the control quality becomes better in future time intervals. One of the known problems with such control
algorithms is that they are complicated and not always feasible to implement in practical problems [37], which
hinders their applicability in real systems. What we have shown in this paper is that the use of a type system
that provides basic support for explicitly representing and operating with uncertain attributes and propagating
their associated uncertainty transparently greatly simpliies these problems. This makes it possible to obtain the
advantages of dual control algorithms while minimizing their limitations.
In this context, the explicit representation of uncertainty is also a challenge, especially in the context of

software models. The survey [38] covers current approaches, although signiicant challenges remain to be
addressed. In particular, there are very few libraries for programming or modeling languages that support
measurement uncertainty, i.e., the representation and operation of uncertain datatypes [3]. Even those that
support the propagation of uncertainty (e.g., [2, 22, 23, 41]) are quite complex to use and do not support the
comparison between uncertain numbers. This is a general problem that we have observed in most uncertainty
modeling proposals: they only deal with uncertain reals. However, in the physical world, all other primitive data
types also have uncertain values. In particular, logical variables representing decisions or comparisons between
quantities rarely have crisp true or false values. Instead, extensions to the Boolean logic enable dealing with
this type of uncertainty, including probability theory [5, 8], possibility theory (based on fuzzy logic [33, 46]),
plausibility (a measure in the Dempster-Shafer theory of evidence [36]), and uncertainty theory [24]. These
approaches assign diferent probabilities to propositions, rather than truth values, and probability formulas
replace truth tables. From the surveyed literature, in this paper we use the proposal presented in [3], which
provides a Java library that supports all UML and OCL primitive datatypes endowed with uncertainty. Moreover,
as mentioned above, probabilities tend to be easier for engineers to understand and manage than other measures
that quantify conidence or the likelihood of failure.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed to include the sources of uncertainty in system models as irst-class entities
using random variables, in order to simulate control systems more faithfully, including not only the use of
random variables to represent and operate with uncertain values, but also to represent decisions based on their
comparisons. We have illustrated the problem with the toy example of a Chasing Robot, and validated our
approach on the ZNN case study, which is a standard for the self-adaptive systems community.

Uncertainty is inherent in cyber-physical systems and we strongly believe that it should be handled explicitly
at every level, from requirements to design to code and validation. We have shown that this is not so diicult
to implement by leveraging emerging libraries for supporting sound computations on random variables. We
hope this paper would help in triggering a wider adoption of stochastic approaches for software controlling
cyber-physical systems.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their very valuable comments and suggestions, which helped us
signiicantly to improve the paper. This work was partially funded by the Spanish Government (FEDER/Ministerio
de Ciencia e Innovación ś Agencia Estatal de Investigación) under projects PID2021-125527NB-I00 and TED2021-
130523B-I00.

ACM Trans. Model. Comput. Simul.

18 • Jézéquel and Vallecillo

REFERENCES
[1] Michael Athans. 1971. Editorial on the LQG problem. IEEE Trans. Autom. Control 16, 6 (1971), 528.

[2] Michaël Baudin, Anne Dutfoy, Bertrand Iooss, and Anne-Laure Popelin. 2016. OpenTURNS: An Industrial Software for Uncertainty

Quantiication in Simulation. Springer, 1ś38. https://doi.org/10.1007/978-3-319-11259-6_64-1 https://openturns.github.io/.

[3] Manuel F. Bertoa, Loli Burgueño, Nathalie Moreno, and Antonio Vallecillo. 2020. Incorporating measurement uncertainty into OCL/UML

primitive datatypes. Softw. Syst. Model. 19, 5 (2020), 1163ś1189. https://doi.org/10.1007/s10270-019-00741-0

[4] R. C. H. Cheng and W. Holland. 2004. Calculation of Conidence Intervals for Simulation Output. ACM Trans. Model. Comput. Simul. 14,

4 (Oct. 2004), 344Ð-362. https://doi.org/10.1145/1029174.1029176

[5] Bruno de Finetti. 2017. Theory of Probability: A critical introductory treatment. John Wiley & Sons.

[6] Didier Dubois and Henri Prade. 1993. Fuzzy sets and probability: Misunderstandings, bridges and gaps. In Proc. of the IEEE Conf. on

Fuzzy Systems. IEEE, 1059ś1068. https://doi.org/10.1109/FUZZY.1993.327367

[7] Naeem Esfahani and Sam Malek. 2013. Uncertainty in Self-Adaptive Software Systems. In Software Engineering for Self-Adaptive Systems

II. LNCS, Vol. 7475. Springer, 214ś238.

[8] W. Feller. 2008. An Introduction to Probability Theory and Its Applications. Wiley.

[9] Nikolai M. Filatov and Heinz Unbehauen. 2000. Survey of adaptive dual control methods. IEEE Proceedings Control Theory and Application

147, 1 (2000), 118ś128. https://doi.org/10.1049/ip-cta:20000107

[10] Antonio Filieri et al. 2015. Software Engineering Meets Control Theory. In Proc. of SEAMS’15. IEEE Computer Society, 71ś82. https:

//doi.org/10.1109/SEAMS.2015.12

[11] Richard Fujimoto. 1999. Exploiting Temporal Uncertainty in Parallel and Distributed Simulations. In Proc. of PADS’99. IEEE Computer

Society, 46ś53. https://doi.org/10.1109/PADS.1999.766160

[12] David Garlan. 2010. Software engineering in an uncertain world. In Proc. of FoSER’10. 125ś128. https://doi.org/10.1145/1882362.1882389

[13] Valerio Gheri, Giovanni Castellari, and Francesco Quaglia. 2008. Controlling Bias in Optimistic Simulations with Space Uncertain Events.

In Proc. of DS-RT’08. IEEE Computer Society, 157ś164. https://doi.org/10.1109/DS-RT.2008.37

[14] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A UML-based speciication environment for validating UML and OCL.

Sci. Comput. Program. 69, 1-3 (2007), 27ś34. https://doi.org/10.1016/j.scico.2007.01.013

[15] Martin Gogolla, Frank Hilken, and Khanh-Hoang Doan. 2018. Achieving Model Quality through Model Validation, Veriication and

Exploration. Computer Languages, Systems & Structures 54 (Dec. 2018), 474ś511. https://doi.org/10.1016/j.cl.2017.10.001

[16] Michael B. Gordy and Sandeep Juneja. 2010. Nested Simulation in Portfolio Risk Measurement. Management Science 56 (Aug. 2010),

1833Ð-1848. https://doi.org/10.1287/mnsc.1100.1213

[17] IEEE 1788-2015. 2015. IEEE Standard for Interval Arithmetic. https://standards.ieee.org/ieee/1788/4431/.

[18] JCGM 100:2008. 2008. Evaluation of measurement dataÐGuide to the expression of uncertainty in measurement (GUM). Joint Com. for

Guides in Metrology. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

[19] Deepali Kholkar, Suman Roychoudhury, Vinay Kulkarni, and Sreedhar Reddy. 2022. Learning to Adapt ś Software Engineering for

Uncertainty. In Proc. ISEC’22. ACM, 21:1ś21:5. https://doi.org/10.1145/3511430.3511449

[20] Tsutomu Kobayashi, Rick Salay, Ichiro Hasuo, Krzysztof Czarnecki, Fuyuki Ishikawa, and Shin-ya Katsumata. 2021. Robustifying

Controller Speciications of Cyber-Physical Systems Against Perceptual Uncertainty. In Proc. of NASA Formal Methods 2021 (LNCS,

Vol. 12673). Springer, 198ś213. https://doi.org/10.1007/978-3-030-76384-8_13

[21] Bart Kosko. 1990. Fuzziness vs. Probability. International Journal of General Systems 17, 2ś3 (1990), 211ś240. https://doi.org/10.1080/

03081079008935108

[22] Eric O. Lebigot. 2016. Uncertainties package. https://pythonhosted.org/uncertainties/. Accessed: May 30, 2022.

[23] Abraham Lee. 2013. SOERP Uncertainties package. https://pypi.org/project/soerp/. Accessed: May 30, 2022.

[24] Baoding Liu. 2018. Uncertainty Theory (5 ed.). Springer. http://orsc.edu.cn/liu/ut.pdf

[25] Margaret L. Loper and Richard M. Fujimoto. 2000. Pre-sampling as an approach for exploiting temporal uncertainty. In Proc. of PADS’00.

IEEE Computer Society, 157ś164. https://doi.org/10.1109/PADS.2000.847159

[26] Giovanni Lugaresi and Andrea Matta. 2018. Real-Time simulation in manufacturing Systems: Challenges and Research Directions. In

Proc. of WSC’18. IEEE, 3319ś3330. https://doi.org/10.1109/WSC.2018.8632542

[27] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. 2017. A Classiication Framework of Uncertainty in Architecture-Based

Self-Adaptive Systems With Multiple Quality Requirements. Morgan Kaufmann, Boston, Chapter 3, 45ś77. https://doi.org/10.1016/B978-

0-12-802855-1.00003-4

[28] Object Management Group. 2014. Object Constraint Language (OCL) Speciication. Version 2.4. OMG Document formal/2014-02-03.

[29] Victor Ortiz, Loli Burgueño, Antonio Vallecillo, and Martin Gogolla. 2019. Native Support for UML and OCL Primitive Datatypes

Enriched with Uncertainty in USE. In Proc. of OCL@MODELS’19 (CEUR Workshop Proceedings, Vol. 2513). CEUR-WS.org, 59ś66. http:

//ceur-ws.org/Vol-2513/paper5.pdf

ACM Trans. Model. Comput. Simul.

https://doi.org/10.1007/978-3-319-11259-6_64-1
https://openturns.github.io/
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1145/1029174.1029176
https://doi.org/10.1109/FUZZY.1993.327367
https://doi.org/10.1049/ip-cta:20000107
https://doi.org/10.1109/SEAMS.2015.12
https://doi.org/10.1109/SEAMS.2015.12
https://doi.org/10.1109/PADS.1999.766160
https://doi.org/10.1145/1882362.1882389
https://doi.org/10.1109/DS-RT.2008.37
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1016/j.cl.2017.10.001
https://doi.org/10.1287/mnsc.1100.1213
https://standards.ieee.org/ieee/1788/4431/
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://doi.org/10.1145/3511430.3511449
https://doi.org/10.1007/978-3-030-76384-8_13
https://doi.org/10.1080/03081079008935108
https://doi.org/10.1080/03081079008935108
https://pythonhosted.org/uncertainties/
https://pypi.org/project/soerp/
http://orsc.edu.cn/liu/ut.pdf
https://doi.org/10.1109/PADS.2000.847159
https://doi.org/10.1109/WSC.2018.8632542
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
http://ceur-ws.org/Vol-2513/paper5.pdf
http://ceur-ws.org/Vol-2513/paper5.pdf

Uncertainty-aware Simulation of Adaptive Systems • 19

[30] Matteo Principe, Andrea Piccione, Alessandro Pellegrini, and Francesco Quaglia. 2020. Approximated Rollbacks. In Proc. of SIGSIM-

PADS’20. ACM, 23ś33. https://doi.org/10.1145/3384441.3395984

[31] Francesco Quaglia and Roberto Beraldi. 2004. Space Uncertain Simulation Events: Some Concepts and an Application to Optimistic

Synchronization. In Proc. of PADS’04. IEEE Computer Society, 181ś188. https://doi.org/10.1109/PADS.2004.1301299

[32] Jürgen Roßmann, Eric Guifo Kaigom, Linus Atorf, Malte Rast, Georgij Grinshpun, and Christian Schlette. 2014. Mental Models

for Intelligent Systems: eRobotics Enables New Approaches to Simulation-Based AI. Künstliche Intell. 28, 2 (2014), 101ś110. https:

//doi.org/10.1007/s13218-014-0298-z

[33] Stuart J. Russell and Peter Norvig. 2010. Artiicial Intelligence. A Modern Approach (3 ed.). Prentice Hall.

[34] Hesham Saadawi and Gabriel A. Wainer. 2010. Rational time-advance DEVS (RTA-DEVS). In Proc. of SpringSim’10. SCS/ACM, 143:1ś143:8.

https://doi.org/10.1145/1878537.1878686

[35] Bradley R. Schmerl, Javier Cámara, Jefrey Gennari, David Garlan, Paulo Casanova, Gabriel A. Moreno, Thomas J. Glazier, and Jefrey M.

Barnes. 2014. Architecture-based self-protection: composing and reasoning about denial-of-service mitigations. In Proc. of HotSoS’14.

ACM, 2:1ś2:12. https://doi.org/10.1145/2600176.2600181

[36] Glenn Shafer. 1976. A Mathematical Theory of Evidence. Princeton University Press.

[37] Pankaj Swarnkar, Shailendra Kumar Jain, and R.K Nema. 2014. Adaptive Control Schemes for Improving the Control System Dynamics:

A Review. IETE Technical Review 31, 1 (2014), 17ś33. https://doi.org/10.1080/02564602.2014.890838

[38] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. 2021. Uncertainty representation in software models: a survey.

Softw. Syst. Model. 20, 4 (2021), 1183ś1213. https://doi.org/10.1007/s10270-020-00842-1

[39] Heinz Unbehauen. 2000. Adaptive dual control systems: a survey. In Proc. of AS-SPCC’00. IEEE, 171ś180. https://doi.org/10.1109/

ASSPCC.2000.882466

[40] Damián Vicino, Gabriel A. Wainer, and Olivier Dalle. 2022. Uncertainty on Discrete-Event System Simulation. ACM Trans. Model.

Comput. Simul. 32, 1 (2022), 2:1ś2:27. https://doi.org/10.1145/3466169

[41] Wikipedia. Accessed: May 30, 2022. List of uncertainty propagation software. https://en.wikipedia.org/wiki/List_of_uncertainty_

propagation_software.

[42] B. Wittenmark. 1975. Stochastic adaptive control methods: a survey. Internat. J. Control 21, 5 (1975), 705ś730. https://doi.org/10.1080/

00207177508922026

[43] Bernard P. Zeigler, Alexandre Muzy, and Ernesto Kofman. 2018. Theory of modeling and design: Discrete Event and Iterative System

Computational Foundations (3 ed.). Academic Press.

[44] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and Roland Norgren. 2016. Understanding Uncertainty in Cyber-Physical

Systems: A Conceptual Model. LNCS, Vol. 9764. Springer, 247ś264. https://doi.org/10.1007/978-3-319-42061-5_16

[45] Helin Zhu, Tianyi Liu, and Enlu Zhou. 2020. Risk Quantiication in Stochastic Simulation under Input Uncertainty. ACM Trans. Model.

Comput. Simul. 30, 1 (Feb. 2020), 1:1ś1:24. https://doi.org/10.1145/3329117

[46] Hans-Jürgen Zimmermann. 2001. Fuzzy Set Theory ś and Its Applications. Springer Science+Business Media.

Received 22 July 2022; revised 7 February 2023; accepted 23 March 2023

ACM Trans. Model. Comput. Simul.

https://doi.org/10.1145/3384441.3395984
https://doi.org/10.1109/PADS.2004.1301299
https://doi.org/10.1007/s13218-014-0298-z
https://doi.org/10.1007/s13218-014-0298-z
https://doi.org/10.1145/1878537.1878686
https://doi.org/10.1145/2600176.2600181
https://doi.org/10.1080/02564602.2014.890838
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1109/ASSPCC.2000.882466
https://doi.org/10.1109/ASSPCC.2000.882466
https://doi.org/10.1145/3466169
https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
https://doi.org/10.1080/00207177508922026
https://doi.org/10.1080/00207177508922026
https://doi.org/10.1007/978-3-319-42061-5_16
https://doi.org/10.1145/3329117

	Abstract
	1 Introduction
	2 Context
	2.1 Introduction to the Chasing Robot
	2.2 Uncertainty sources
	2.3 Robust control

	3 Uncertainty-aware control systems
	3.1 The Chasing robot example revisited
	3.2 The Znn.com system

	4 Discussion
	4.1 Methodological guidelines
	4.2 Advantages
	4.3 Potential limitations (and how to mitigate them)
	4.4 Open questions

	5 Related Work
	6 Conclusions and future work
	Acknowledgments
	References

